
Advanced Studies in Pure Mathematics 46, 2007 
Singularities in Geometry and Topology 2004 
pp. 77-94 

On hyperbolic perturbations 
of algebraic links and small Mahler measure 

Eriko Hironaka 

Abstract. 

This paper surveys some results surrounding Lehmer's problem 
in the context of fibered links and Hopf plumbing. Topics addressed 
here are Mahler measures of fibered links, the relation between it­
erated Hopf plumbings and Salem-Boyd polynomials, and the ques­
tion of when monotone growth occurs under iterated plumbing. Ex­
plicit calculations for certain "perturbations" of links associated to 
the ADE singularities are computed. 

§1. Introduction 

The Mahler measure of a monic integer polynomial is the absolute 
value of the product of roots with norm greater than one. Lehmer's 
problem [Leh] asks whether the Mahler measure of a monic integer poly­
nomial can be made arbitrarily close to but greater than one. So far, 
there is no known monic integer polynomial with Mahler measure greater 
than one but less than Lehmer's number O:£ = 1.17628 ... , which is the 
Mahler measure of the polynomial 

To solve Lehmer' s problem it is enough to answer the question for 
Alexander polynomials of fibered links. A polynomial f ( t) is reciprocal if 
f(t) = td f(ljt), where d = deg(f). Smyth [Smy] showed that the Mahler 
measures of irreducible non-reciprocal polynomials not vanishing at zero 
are bounded below by (}0 = 1.32472 ... , a number greater than Lehmer's 
number. Thus, it remains to search among reciprocal polynomials. Any 
monic reciprocal polynomial occurs as the Alexander polynomial of a 
fibered link K C 5 3 up to cyclotomic factors [Kan]. Lehmer's number 
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etL appears in this context as the Mahler measure of the Alexander 
polynomial of the ( -2, 3, 7)-pretzel knot. 

The Mahler measure of a fibered link (K, I:) can be considered to 
be a weak measure of "hyperbolicity" of the link in the following sense. 
Let K c S 3 be a fibered link with monodromy h: I: ---> I:. Define the 
Mahler measure M(K, L:) to be the Mahler measure of ~(K, I:), where 
~(K, I:) is the characteristic polynomial of the automorphism on the first 
singular homology group of I: 

induced by h. The Mahler measure M(K, L:) is bounded from below by 
the leading eigenvalue >..(K, I:) of h*, known as the homological dilatation 
of the monodromy h. If h is isotopic to a pseudo-Anosov map, then 
>..(K, I:) is also a lower bound for the (geometric) dilatation of h. In 
particular, if >..(K, I:) > 1, and h is irreducible, then h is isotopic to a 
pseudo-Anosov homeomorphism [Thu] (see also [FLP], [CB]). 

As a first guess, it seems natural to expect small Mahler measures 
to be attained by "small perturbations" of non-hyperbolic links, for ex­
ample, algebraic links. Here, we will take small perturbations to mean 
Hopf or trefoil plumbing along a suitable path on the fibering surface. 
For example, the smallest Mahler measures of degrees 2,4,6,8,10 (listed 
by Lehmer in [Leh]) all arise from Hopf or trefoil plumbings of torus 
links (see Section 4). 

Two problems arise in this approach. The first is that the Alexander 
polynomial is only a weak indicator of geometric properties of the fibered 
link; a hyperbolic fibered link (K, I:) may have M(K, L:) = >..(K, I:) = 
1. The second is that Mahler measure and homological dilatation are 
not always monotone increasing or decreasing under iterations of Hopf 
plumbing. Useful connections between Mahler measure and geometry 
do hold, however, when we restrict our attention to certain subfamilies 
of fibered links. 

We begin by defining and stating properties of Hopf plumbings in 
Section 2. In particular, we give a formula for the Alexander polynomials 
of fibered links obtained by iterated Hopf plumbing. These have the 
form of Salem-Boyd polynomials introduced in [Sal], developed further 
in [Boyd], and applied to Hopf plumbings in [Hir2]. 

In Section 3 we present two families of fibered links with the mono­
tonicity property. The first example is the family of Coxeter links stud­
ied in [Hirl]. For Coxeter links, the homological dilatations grow or 
decrease monotonically with iterations of Hopf plumbing. If the un­
derlying Coxeter graph is a star graph, then the homological dilatation 
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equals the Mahler measure for any associated Coxeter link. Further­
more, Leininger [Lei] showed that for pseudo-Anosov Coxeter links as­
sociated to a bi-colored graph, the monodromy is orientable. It follows 
that the homological and geometric dilatations are equal for these exam­
ples [Ryk]. The second example is the family of Salem links. These are 
fibered links whose homological dilatation is equal to the Mahler mea­
sure of the Alexander polynomial. The Coxeter links associated to star 
graphs are either cyclotomic or Salem links. We give a criterion for a 
sequence of fibered links obtained by iterated Hopf plumbing to be even­
tually Salem, and show that for such Salem sequences, the dilatations 
grow or decrease monotonically. 

Section 4 contains examples and speculations. 

§2. Iterated Hopf plumbings 

In this section, we review some basic definitions and properties of 
fibered links, and their monodromy. Any fibered link can be converted 
to any other by a finite sequence of Hopf plumbings and deplumbings 
[Gir]. We recall the definition of Hopf plumbing, and give a formula 
for the Alexander polynomial of the fibered link for sequences of links 
obtained by iterated Hopf plumbing. 

A link K c S3 is fibered, with fiber E, if for a regular neighborhood 
U(K) of Kin S3 , there is a fibration 

S3 \ U(K) ~ S1 

of the complement U(K) in S3 , where E is a general fiber, and the 
boundary of E equals K. Let (K, E) denote the fibered link. There is 
a homeomorphism h: E ~ E, so that S 3 \ U(K) can be identified with 
the mapping torus for E with respect to h. The map h is called the 
(geometric) monodromy of the fibered link (K, E). 

Let h* be the restriction of h to the first homology group H1 (E; ~). 
The transformation h* is the homological monodromy of (K, E), and 
its characteristic polynomial is the Alexander polynomial Ll(K, E) (t) of 
(K, E). This definition of Alexander polynomial is associated to the 
pair (K, E) and not to the link itself; if K has more than one compo­
nent, the fibering structure is not in general unique, and each fibering 
structure gives rise to a different Alexander polynomial. The homologi­
cal dilatation of (K, E) is the maximum among absolute values of roots 
of Ll(K, E) (t), or eigenvalues of h*. 

Let T be a properly embedded path on E. The positive (negative) 
Hopf plumbing on (K, E) along Tis obtained by gluing a positive (neg­
ative) Hopf band onto E along a thickening ofT. Fig. 1 shows the result 



80 E. Hironaka 

) = = 

Fig. 1. Positive Hopf plumbing. 

of a positive Hopf plumbing. The n-th iterated Hopf plumbing on (K, I:) 
based at T is shown in Fig. 2. We will write ( K~, I:~) for the result of the 
n-th iterated Hopf plumbing. By this convention, (K, I:)= (Kf, I:r). 
If (K, I:) is a fibered link, so is the result of any Hopf plumbing [Sta]. 
Thus, ( K~, I:~) is fibered for all n. 

positive plumbing 

~ 
~ 

negative plumbing 

Fig. 2. Fourth iterated Hopf plumbing. 

As we will show, the Alexander polynomials of links resulting via 
iterated Hopf plumbings from a fixed (K, I:) based at a path T satisfy 
a simple formula. Before stating the result, we give some definitions. 

Given two integer polynomials f and g, we write f ~ g if there 
exists cyclotomic polynomials c1, . . . , ck, d1, . . . , de, and an integer r 
such that 
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If f ( t) is a polynomial of degree d, define its reciprocal 

!* ( t) = td f(1/t). 

A polynomial f ( t) is said to be a reciprocal polynomial if f = f*, and 
anti-reciprocal iff = - f*. If f(t) is anti-reciprocal, then f ~ g, where 
g is reciprocal. This is because, if f(t) is anti-reciprocal, then (t- 1) 
divides f(t) and f(t)j(t- 1) is reciprocal. 

The following theorem is proved in [Hir2]. 

Theorem 1. Let (K, ~) be a fibered link, and T a properly em­
bedded path on ~. Then there is a polynomial P = Pet r) depending 
on ~' T and the orientation of the plumbings, such that the Alexander 
polynomials ~n(t) = ~(Kn,En)(t) satisfy 

(1) 

where r is the number of components of K. 

Polynomials of the form given in Equation (1) were studied by Salem 
[Sal], and Boyd [Boyd] in their investigations of Salem and P-V numbers. 
We will call Equation (1), the Salem-Boyd form of the polynomial ~n· 
Given a polynomial f, let N(f) be the number of roots outside the unit 
circle, A. (f) (called the radius of f) the maximum among absolute values 
of roots off, and M (f) the Mahler measure off. The following is proved 
in [Boyd] (see also, [Hir2]). 

Theorem 2. Let P(t) be a monic integer polynomial and 

Then Qn is reciprocal or anti-reciprocal for all n, and furthermore 

(1) N(Qn) :S: N(P) for all n; 
(2) limn-..oo A.(Qn) = A.(P); and 
(3) limn--..00 M(Qn) = M(P). 

Analogously define, for a fibered link (K, ~), N(K, ~) (respectively, 
A.(K, ~), and M(K, ~)), to be N(~(K,E)) (respectively, A.(~(K,E)), 
M ( ~(K, E))). Then Theorem 3 below follows immediately from The­
orem 2. 

Theorem 3. Let (Kn, ~n) be fibered links obtained from (K, ~) 
by iterated Hopf plumbing. Then N(Kn, ~n) is eventually constant, and 
A.(Kn, ~n) and M(Kn, ~n) are convergent sequences. 
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We give two explicit formulae for P(E, r). Before doing this, recall 
that for any link K and Seifert surface :E, there is an associated Seifert 
matrix S with respect to some choice of basis for H 1 (:E; JR) (see, for 
example, [Rolfj for terminology). Then the Alexander polynomial of K 
with respect to :E is given by L).(K, E) ( t) = ItS-str I up to multiplies of ±t, 
where IAI denotes the determinant of A and Atr the transpose of A. This 
definition specializes to our previous definition of Alexander polynomials 
for fibered links. For an invertible matrix A, let s(A) be the sign of the 
determinant of A. For example, if K is a fibered knot with fiber :E, and S 
is any invertible Seifert matrix forK, then s(S) = L).(K,E)(l). Since s(S) 
doesn't depend on the choice of basis, we will define s(K, :E) = s(S). If 
(K, :E) is fibered and Sis a Seifert matrix with respect to some choice of 
basis for H1(:E;JR), then s-1st represents the homological monodromy 
h* with respect to this basis. 

Let (K, :E) be a fibered link, and letT be a properly embedded path 
in :E. Let :ET be the surface in S 3 obtained by taking :E and removing 
a regular neighborhood ofT. Let Kr be the boundary of :E7 • The first 
formula is reminiscent of the skein relations, where one keeps track of 
the associated Seifert surfaces. 

The second formula is given as a determinant: 

(3) 

where v E H1 (:E; JR) is the dual vector to T considered as an element of 
H1 (:E, 8:E; JR). 

Remark. Silver and Williams proved the following related result 
[SW]. 

Theorem 4. Let K be any link, and let C be an unknot disjoint 
from K, whose linking number with K is nonzero. Let K(n) be obtained 
by l/n surgery on a tubular neighborhood of£, and let LS.KCnl be the 
multi-variable Alexa!!der polynomial of K(n). Then the multi-variable 
Mahler measures of L).KCnl converge to the multi-variable Mahler measure 

of LS.Ku£· 

If K is a knot, then K(n) is a knot for all n, and we have LS.K(nJ = L).KCnJ. 

If (K, :E) is a fibered knot, and (Kit', :E;=) is obtained from (K, :E) by 
iterated Hopf plumbing, then K(n) = Kin is a sequence satisfying the 
conditions of Theorem 4. 
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§3. Monotone sequences 

In general, the sequences described in Theorem 2 are not monotone. 
This section contains two large families of examples where monotonicity 
does hold. 

3.1. Coxeter links 

Let (K, E) be the fibered link obtained by positive Hopf plumbing 
along an ordered system of chords .e~, ... , .ek on an oriented disk in 83. 
Let r be the dual graph. We say that (K, E) is a Coxeter link for r, if 

(1) all plumbings are positive; and 
(2) whenever i < j, the intersection of .ei with .ei on the disk is 

negative with respect to the skew-symmetric intersection form 
on the disk. 

Recall that for any ordered finite graph r with no self-or double­
edges, there is an associated simply-laced Coxeter system (see for exam­
ple, [Hum]). Let c(r) be the associated Coxeter element. 

The Coxeter element gives important information about the Coxeter 
link. For example, an irreducible Coxeter system is spherical or affine if 
and only if .X(c(r)) = 1, where .X(c(r)) is the leading eigenvalue of c(f) 
[Hum], [A'C]. It follows that the Coxeter links whose Mahler measure 
equals one are those associated to disjoint unions of spherical and affine 
Coxeter diagrams. In the irreducible case, these are just An, Dn, E6, 
E7 , and Es, and their affine extensions. For the irreducible spherical 
cases, the graphs are trees, and it follows that the Coxeter links are 
uniquely determined (see [Hir 1]), and are the algebraic links associated 
to the A-D-E plane curve singularities. 

For a graph f, let J.t(r) be the leading eigenvalue of the adjacency 
matrix for r, known as the radius of the graph r. Let .X(f) be the leading 
eigenvalue of c(f). Let J.t = J.t(r), and consider the equation 

.X+.X-l=j.t2-2 

The solutions .X are roots of unity if and only if J.t ::::; 2, and we set 
.X(f) = 1. Otherwise the solutions are real and positive, and we set .X(f) 
to be the larger (real) solution. 

An ordered bi-colored graph is a graph with ordered vertices v1, ... , 
vk such that for somes with 1 ::::; s ::::; k, vi and Vj are not connected by an 
edge whenever i, j ::::; s or i, j > s. In the following theorem, McMullen 
shows that .X(c(f)) is bounded from below by .X(f) ([Me] Theorem 1.3). 

Theorem 5. Let f be any Coxeter graph. Then 

.X(f)::::; .X(c(f)), 
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and equality holds if r is bi-colored. 

Since J.t(r) r--t >.(r) is order preserving, one can get information about 
the smallest possible values of >.( c(r)) using properties of graph radii. 

An arm of r' is a chain of edges 6' ... ' ~n and vertices Vo' ... ' Vn' 

so that 

(1) deg(vo) = 1; 
(2) deg(vi) = 2 for i = 1, ... , n- 1; and 
(3) The end vertices of ~i are vi-1 and vi for each i = 1, ... , n. 

Choose an edge ~ on r connecting vertices ')'1 and /'2· A graph 
r e, n is obtained from r by extending the edge ~ if r e, n is obtained by 
replacing ~ on r with n edges 6, ... , ~n and vertices V1, ... , Vn-1 SO 

that 

( 1) 6 connects 1'1 and v1 ; 
(2) ~i connects vi and vi+1 for i = 2, ... , n - 1; and 
(3) ~n-1 connects Vn-1 with /'2· 

Fig. 3 gives an illustration. 

~ 
I \ 

/ .... < 
Fig. 3. Extending an edge of a graph. 

Hoffman proves the following theorem about monotonicty of J.t(r) 
and hence of >.(r) with respect to extending edges [Ho~. 

Theorem 6. Let~ be an edge of a graph r, and let re,n be ob­
tained by extending r along ~. There exists N such that 

if and only if n < N. For n 2: N, J.t(r e, n) is monotone increasing if ~ 
lies on a free arm of r, and J.L(r e, n) is monotone decreasing otherwise. 

The following property is proved in [Hirl]. 

Theorem 7. If (K, E) is a Coxeter link associated tor, then after 
a natural identification of underlying vector spaces, 
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It follows that in this case >..(K, ~) = >..(c(r)). 

Let (K, ~)be a Coxeter link associated to a graph r. Then extend­
ing an edge of r corresponds to performing an iterated Hopf plumbing 
on (K, ~). Thus, Hoffman's theorem implies the following. 

Theorem 8. Let r be a Coxeter graph that is not the union of 
spherical and affine Coxeter graphs. Let (K, ~) be an associated Cox­
eter link, and let (Kn, ~n) be obtained by an iterated Hopf plumbing 
on (K, ~) associated to extending an edge r. Then, for some N, the 
sequence >..(Kn, ~n), n > N, is monotone. 

Lehmer's number O:£ occurs as the Mahler measure of the E 10 Cox­
eter graph, which is also known as the (2, 3, 7) star-like graph (cf. 
[MRS]). The following theorem was proved in greater generality for 
all Coxeter systems in [Me], but we give a simpler version here that 
applies to Coxeter links. 

Theorem 9. If r is any connected Coxeter graph, then either r 
is spherical or affine, or 

M(Ew) = >..(Ew):::; >..(r):::; M(r). 

The ( -2, 3, 7)-pretzel knot K 2, 3, 7 is a Coxeter link associated to 
E 10 (see [Hirl]). Thus, we have the following corollary to Theorem 9. 

Theorem 10. If (K, ~) is a Coxeter link, then either M(K, ~) = 
1, or 

If r is bi-colored, the monodromy of the Coxeter link is pseudo­
Anosov if and only if r is connected and the simply-laced Coxeter system 
associated to r is not spherical or affine [Lei]. Furthermore, the invariant 
stable and unstable foliations are orientable, and hence the homological 
and geometric dilatations are equal. By Rykken's result [Ryk], we have 
the following. 

Theorem 11. If (K, ~) is a Coxeter link associated to a con­
nected bi-colored graph which is not spherical or affine, then the homo­
logical and geometric dilatations of (K, ~) are equal. 

Theorem 12. Let (K, ~) be a Coxeter link associated to a non­
spherical or affine connected Coxeter graph r. Let (Kn, ~n) be obtained 
by iterated Hopf plumbing on (K, ~) associated to extending an edge 
of r. Then for some N > 0, the sequence of geometric dilatations of 
(Kn, ~n) is monotone. 
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3.2. Salem sequences 

A Salem number is a real algebraic integer a > 1 such that all 
other algebraic conjugates lie on or within the unit circle C with at 
least one on C. The minimal polynomial of a Salem number is always 
reciprocal. For convenience, we will also include among Salem numbers 
real quadratic integers a > 1 whose other algebraic conjugate equals 
a- 1 . With this addition, a is a Salem number if and only if it is the 
Mahler measure of a reciprocal monic integer polynomial f and satisfies 
N(f) = 1 (see notation in Section 2). Lehmer's problem is still open 
for Salem numbers, for example, it is not known if there is a Salem 
number smaller than Lehmer's number. Furthermore, it is not known 
whether the minimization problem for Salem numbers is equivalent to 
the minimization problem for Mahler measures greater than one. 

Closely related to Salem numbers are P- V numbers, or Pisot 
- Vijayaraghavan numbers. These are algebraic integers e > 1 all of 
whose other algebraic conjugates lie strictly within the unit circle. For 
our purposes we will redefine P-V numbers to be the Mahler measure 
of a monic integer polynomial f such that f =f. f*, f =f. - f*, and 
N(f) = 1. The set of P-V numbers is closed [Sal] and its smallest 
element is e0 = 1.32472 ... [Sie]. 

If (K, I;) is a fibered link whose homological dilatation is a Salem 
number, we say that (K, I;) is a Salem (fibered} link. If (Kn, I;n) is a 
sequence obtained from (K, I;) by an iteration of Hopf plumbings, and 
if (Kn, I;n) is a Salem link for large enough n, we call (Kn, I;n) a Salem 
sequence. 

The minimal polynomial of a P-V number will be called a P- V poly­
nomial, and the minimal polynomial of a Salem number will be called a 
Salem polynomial. Theorem 2 has a stronger form when restricting to 
the case when P(t) is a P-V polynomial (see [Sal], [Boyd]). 

Theorem 13. If P(t) is a P- V polynomial, then there exist con­
stants N± such that M(Q~) = 1 for n < N±, and N(Q~) = 1 for 
n?: N±. Furthermore, M(Q~) converges monotonically to M(P) from 
below (respectively, above) if and only if ±P(O) > 0 (respectively< 0). 

From Theorem 13 it follows that to each Salem sequence (Kn, I;n) 
there corresponds a P-V number e("f:.,T) ?: eo to which the Salem num­
bers converge. Furthermore, one has an effective way to find the smallest 
Salem number occurring in the sequence, as seen in the following corol­
lary. 

Corollary 14. If (Kn, I;n) is a Salem sequence associated to a P­
V polynomial P, then the values greater than one attained by M(Kn, I;n) 
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are bounded from below by the minimum of Oo, and the first nontrivial 
terms in the sequences M(K2n, E2n) and M(K2n+l, E2n+l)· 

Remark. The role of Salem links in studying Mahler measures 
of fibered links is still mysterious. For Salem links, the homological 
dilatation and the Mahler measure of ~(K, E) are equal. While both 
geometric and homological dilatation can be made arbitrarily close to 
one, a lower bound greater than one for Salem numbers would imply a 
lower bound greater than one for dilatations for Salem links. This leads 
to the following problem, which we leave for further research. 

Problem 15. Give a geometric interpretation for the algebraic 
conjugates of the dilatation of a fibered link, and characterize the Salem 
links. 

§4. Small perturbations of A-D-E singularities 

We make use of the Salem-Boyd equations given in Section 3 to 
find the minimal Mahler measures greater than one occuring in certain 
families. 

The fibered links in this section are obtained by positive or negative 
Hopf plumbings along an ordered system of chords arranged on a disk in 
S 3 . Let r be the dual graph of the chord arrangement. The polynomials 
P£,7 of Theorem 1 are easy to compute from the combinatorics of r 
using Equation 2, especially in the case when r is a tree, and the locus 
of plumbing is one of its nodes. A filled (unfilled) vertex v corresponds 
to positive (negative) Hopf plumbing, as shown in Fig. 4. We will refer 
to r as the plumbing graph for the associated link. 

=® 
0---t·._-•• 

Fig. 4. Graphs and plumbing. 

If r is a tree, then the fibered link associated to any realization is 
an arborescent link with underlying graph r. If r is a tree and has no 
vertices of degree greater than 3, then the link is determined by r. 
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It is not hard to see that for fixed degree, there is a positive gap 
between 1 and the next smallest Mahler measure. In [Leh], Lehmer 
lists polynomials with the smallest Mahler measures for non-cyclotomic 
polynomials in all even degrees up to 10. For degree 2 the minimal 
Mahler measure is attained by the Fig. 8 knot, which can also be thought 
of a (2, 3, I)-pretzel link. This appears in the sequence described in 
Section 4.3. For degrees 4,6,8 and 10, the minimal Mahler measures can 
be obtained by Coxeter links of star graphs (see Section 4.1). 

We end by giving an application of Theorem 1, Theorem 2, and 
Theorem 13, by computing the minimum Salem number occurring for 
certain positive (Section 4.2) and negative (Section 4.3) perturbations 
of the algebraic links associated to An· 

4.1. Coxeter links and pretzel links from star graphs 

The (-2, m, n)-pretzellinks K-2,m,n and more generally the (p1, 
... ,pk, -1, ... , -1)-pretzellinks,wherethenumberof-l'sisk-2,are 
Coxeter links associated to (Pl, ... , Pk )-star graphs [Hirl]. 

The star graphs are defined as follows. Let Ap be the graph con­
sisting of p nodes v0 , ... , Vp and edges between Vi and vi+1 for i = 
1, ... , p - 1. The vertex v0 will be called the base of the Ap. A 
(p1, ... , Pk)-star gmph is a connected tree r that is the union of sub-
graphs isomorphic to Ap,, ... , APk with their bases identified as in 
Fig. 5. 

Fig. 5. The (2, 3, 4)-star graph. 

For star graphs with less than or equal to 3 branches, the Coxeter 
link is an arborescent link completely determined by the graph. If the 
star graph is one of An, Dn, E6, E7 or Es, or their affine extensions, 
then the links are iterated torus links, and the geometric and homo­
logical monodromy equal 1. In all other cases, the fibered links have 
pseudo-Anosov monodromy with orientable stable and unstable invari­
ant foliations [Lei], and hence the homological and geometric dilatations 
are also equal [Ryk]. Furthermore, the dilatations are Salem numbers 
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and hence are equal to the Mahler measures of the Alexander polyno­
mials [MRS]. 

The minimal hyperbolic extensions of D 4 , E6 , E 7 and E 8 are re­
spectively the (2, 2, 2, 3), (3, 3, 4), (2, 4, 5), and (2, 3, 7) star links. 
The Mahler measures for the characteristic polynomials of these links 
are the minimal ones greater than one in degrees 4,6, 8 and 10 (cf. [Me], 
Proposition 7.3 and page 175). 

4.2. Positive perturbations of An 
For the calculations in this Section, and the next, we will make use 

of the following Lemma. Let C denote the unit circle lzl = 1. Let Be, 
known as the golden mean, be the sole root of t2 - t - 1 that is greater 
than one. 

Lemma 16. Consider the polynomials 

Then f;;, has exactly one root B:;;.. outside C for all m ~ 1, and the 
sequences e:;;.. converge to 8e monotonically from above. The roots of 
f;t;, are roots of unity for m = 1, 2, and for m ~ 3, they have exactly 
one root()~ outside C. The sequences()~ converge to Be monotonically 
from below. 

Proof. To show that f;;, has at most one root outside C, we will use 
an argument similar to that of Boyd in [Boyd]. Consider the polynomials 

F;t;,(t, s) = tm(t2 - t- 1) ± s 

where s is a variable ranging in the interval [0, 1]. Let a(s) be any 
branch of F;;(t, s) = 0 considered as curve lying over [0, 1]. Then a(s) 
can never lie on C as long as 0 :::; s < 1, since, on C, 1t2 - t- 11 is 
bounded from below by 1. If such an a= a(s) existed, we would have 

la2 - a- 11 > s = la2 - a- 11 

yielding a contradiction. It follows that the number of roots of f;; ( t) 
outside Cis bounded from above by N(t2 - t- 1) = 1. 

The cases for small m can be checked by hand. Monotonicity follows 
from the fact that as soon as f;; ( t) has a root a outside C, then f;t;,+l ( t) 
is forced to have a root strictly between a and 8e. Q.E.D. 

The Coxeter link K An associated to An is the torus link T ( 2, n + 1), 
and the Alexander polynomial is 

tn+l + ( 1)n 
~A = - =tn-tn-1+···+(-1)n. 

n t + 1 
(4) 
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The ( -2, m, n)-pretzellinks K-2, m, n are obtained by positive iterated 
Hopf plumbing on KAm+l along r, where [r]dual = [0, 1, 0, ... , OJ. The 
link K _2, m, 1 has one component if m is odd and two components if m 
is even. Thus, the Alexander polynomial for K-2,m,n is given by 

where 

Pm(t) = ~Am+l (t) + ~A1 (t)~Am.-1 (t) 
= (tm+l _ tm + ... + ( -l)m+1) 

+ (t -1)(tm-1 _ tm-2 + ... + (-l)m-1) 

= tm+l _ tm-1 + tm-2 _ ... + ( -1)mt. 

The polynomials Pm(t) satisfy 

Pm(t) + Pm+l(t) = tm+2 + tm+l- tm = tm(t2 + t- 1). 

Thus 

m-1 
Pm(t) + ( -1)mP1(t) = L ( -1)m-i-1(Pi(t) + Pi+1(t)) 

i=1 

and 

(tm-1 + ( -1)m)t(t2 + t- 1) + ( -l)m+lt2(t + 1) 
p m ( t) = -'------'---'--~'-------'---'----'---''----'-

t+1 
tm(t2 + t- 1) + ( -1)m+lt 

t+1 

Let (Pm)(t) = Pm( -t). Then 

p (t) = ( -1)m [tm(t2 - t- 1) + t] 
m t+ 1 ' 

and 

By Lemma 16, Pm( -t) is cyclotomic form= 1, 2, and is a P-V poly­
nomial for Om, form~ 3 where Om converges monotonically to Oc from 
below. 
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Replacing t by-tin the formula for ~K-2,m,n' we have 

~K-2,m,n ( -t) ~ tn Pm(t) + (Pm)*(t) 
= tn Pm( -t)- (Pm)*( -t). 

By Theorem 13, all the Salem sequences arising from (2, m, n)-stars are 
monotone increasing. The minimal elements in this family are listed 
below. 

pretzel type Salem number 
(-2, 3, 7) ~ 1.17628 
(-2,4,5) ~ 1.36 

Thus, the ( -2, 3, 7)-pretzel is minimal in this family. 
For the particular case when m = 3, we have 

P3(t) = t4 - t2 + t = t(t3 - t + 1) = tg( -t), 

where g is the Qlinimal polynomial for the smallest P-V number 00 • 

Lehmer's polynomial h(t) can thus be written as 

fL(t) = t8 (g(t))- g*(t) = ~K-2,3,7(-t). 

4.3. Negative perturbations of An 

We now consider the positive (2, m, n)-pretzellinks. These are not 
Coxeter links, since they have a negative twist in their plumbing graph 
as in Fig. 6. Just as in the previous example, these links are arborescent 
links, and the Alexander polynomials are independent of the choice of 
directions on the plumbing graphs. 

Fig. 6. Plumbing graph for the (2, 3, 4)-pretzel. 

We begin with the (2, m, 1)-pretzel links. These have plumbing 
graph as in Fig. 7. 

Let Km be the (2, m, 1)-pretzel link. When m = 1, 3, 5, 7 these 
links are, respectively, denoted by 42, 62, 82, and l02 in Rolfsen's knot 
table ([Rolfj p. 391-429). The knot 42 is more commonly known as the 
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0 ••• 

Fig. 7. Plumbing graph for the (2, 3, I)-pretzel. 

figure eight knot. By Theorem 1, the Alexander polynomials of Kn are 
given by 

where 

P(t) = b,K, + b,Ko 
= (t2 - 3t + 1) + (t- 1) 

=t2 -2t=t(t-2). 

It follows that 

b,Km(t) = tm+1 - 3tm + 3tm- 1 - · · · (-l)m(3t -1). 

Since P(t) has one root outside C, the Km are eventually Salem links. 
Looking at the even and odd subsequences, we see that the only cyclo­
tomic link that occurs is K 2 . Thus, the minimal elements in this family 
are the figure eight knot K 1 , and K 4 . The sequences are decreasing for n 
odd and increasing for n even. Thus, the smallest Salem number arising 
in this sequence is 1.8832 · · · = o:(K4). 

Let Km, n be the (2, m, n )-pretzel link. Then this is an iterated Hopf 
sequence using the index n, and starting with the (2, m, I)-pretzel. We 
find Pm(t) as follows. 

Pm(t) = b,Km (t) + b,A1 (t)b,Am-1 (t) 

= b,Km(t) + (t- l)(tm- 1 - tm-2 + ... + ( -l)m-1) 

= tm+l - 2tm + tm-1 - tm-2 + ... + ( -l)mt 

Adding consecutive functions, yields the formula 

Pm(t) + Pm+1(t) = tm(t2 - t -1). 

Thus, 

m-1 
Pm(t) + ( -l)m-1 P1(t) = L ( -l)m-i-1(Pi(t) + Pi+l(t)) 

i=1 

m-1 
L ( -l)m-i-1ti(t2- t- 1). 
i=1 
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Isolating P m ( t), we get 

(tm-l + ( -1)m)t(t2 - t- 1) + ( -l)m-lt(t- 2)(t + 1) 
Pm(t) = 

t+1 
tm(t2 - t -1) + (-1)mt 

t+1 

By Lemma 16, Pm(t) has exactly one root em outside C form= 1 and 
m :::": 3, and em tends to the root ea of Pa(t) = t 2 - t- 1 from above 
(for odd m) and below (for even m). 

The number r of components of Km is 1 if m is odd and 2 if m is 
even. We thus have, 

and the leading coefficient of ( -1) m+n P m ( t) is ( -1) n. It follows from an 
argument similar to that in the proof of Lemma 16 that M(Km, 2n+l) is 
monotone decreasing and M(Km, 2n) is monotone increasing. 

Since the (2, 4, 4)-and all (2, 2, n)-pretzellinks are cyclotomic, the 
minimal elements of (2, m, n)-pretzel knots with respect to trefoil plumb­
ing are those listed below. 

pretzel type Salem number 
(2, 1, 1) ~ 2.61803 
(2, 1, 4) ~ 1.8832 
(2, 4, 6) ~ 1.36 

Of these only the (2, 4, 6)-pretzel gives Salem number smaller than ea. 
Thus, M(K4, 6 ) ~ 1.36 is the minimal Mahler measure greater than one 
among the (2, m, n)-pretzellinks. 
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