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Proportionality of indices of 1-forms 
on singular varieties 

Jean-Paul Brasselet, Jose Seade* and Tatsuo Suwat 

§0. Introduction 

M.-H. Schwartz in [20, 21] introduced the technique of radial ex­
tension of stratified vector fields and frames on singular varieties, and 
used this to construct cocycles representing classes in the cohomology 
H*(M, M \ V), where V is a singular variety embedded in a complex 
manifold M; these are now called the Schwartz classes of V. A ba­
sic property of radial extension is that the index of the vector fields (or 
frames) constructed in this way is the same when measured in the strata 
or in the ambient space; this is called the Schwartz index of the vector 
field (or frame). MacPherson in [15] introduced the notion of local Euler 
obstruction, an invariant defined at each point of a singular variety using 
an index of an appropriate radial 1-form, and used this (among other 
things) to construct the homology Chern classes of singular varieties. 
Brasselet and Schwartz in [3] proved that the Alexander isomorphism 
H*(M, M\ V) ~ H.(V) carries the Schwartz classes into the MacPher­
son classes; a key ingredient for this proof is their proportionality theorem 
relating the Schwartz index and the local Euler obstruction. 

These were the first indices of vector fields and 1-forms on singular 
spaces, in the literature. Later in [8] was introduced another index for 
vector fields on isolated hypersurface singularities, and this definition 
was extended in [23] to vector fields on complete intersection germs. 
This is known as the GSV-index and one of its main properties is that it 
is invariant under perturbations of both, the vector field and the func­
tions that define the singular variety. The definition of this index was 
recently extended in [4] for vector fields with isolated singularities on 
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hypersurface germs with non-isolated singularities, and it was proved 
that this index satisfies a proportionality property analogous to the one 
proved in [3] for the Schwartz index and the local Euler obstruction, the 
proportionality factor being now the Euler-Poincare characteristic of a 
local Milnor fiber. 

In [5] Ebeling and Gusein-Zade observed that when dealing with 
singular varieties, 1-forms have certain advantages over vector fields, as 
for instance the fact that for a vector field on the ambient space the con­
dition of being tangent to a (stratified) singular variety is very stringent, 
while every 1-form on the ambient space defines, by restriction, one on 
the singular variety. They adapted the definition of the GSV-index to 
1-forms on complete intersection germs with isolated singularities, and 
proved a very nice formula for it in the case when the form is holomor­
phic, generalizing the well-known formula of LE\-Greuel for the Milnor 
number of a function. 

This article is about 1-forms on complex analytic varieties and it is 
particularly relevant when the variety has non-isolated singularities. We 
show in Section 2 how the radial extension technique of M.-H. Schwartz 
can be adapted to 1-forms, allowing us to define the Schwartz index of 
1-forms with isolated singularities on singular varieties. Then we see 
(Section 3) how MacPherson's local Euler obstruction, adapted to 1-
forms in general, relates to the Schwartz index, thus obtaining a propor­
tionality theorem for these indices analogous to the one in [3] for vector 
fields. We then extend (in Section 4) the definition of the GSV-index to 
1-forms with isolated singularities on (local) complete intersections with 
non-isolated singularities that satisfy the Thorn a 1-condition (which is 
always satisfied if the variety is a hypersurface), and we prove the corre­
sponding proportionality theorem for this index. When the form is the 
differential of a holomorphic function h, this index measures the number 
of critical points of a generic perturbation of h on a local Milnor fiber, 
so it is analogous to invariants studied by a number of authors (see for 
instance [9, 11, 22]). Section 1 is a review of well-known facts about real 
and complex valued 1-forms. 

The radial extension of 1-forms can be made global on compact 
varieties, and it can also be made for frames of differential1-forms. One 
gets in this way the dual Schwartz classes of singular varieties, which 
equal the usual ones up to sign. One also has the dual Chern-Mather 
classes of V, already envisaged in [17], and the proportionality formula 
3.3 can be used as in [3] to express the dual Chern-Mather classes as 
"weighted" dual Schwartz classes, the weights been given by the local 
Euler obstruction. Similarly, in analogy with Theorem 1.1 in [4], the 
corresponding GSV-index and the proportionality Theorem 4.4 extend 
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to frames and can be used to express the dual Fulton-Johnson classes of 
singular hypersurfaces embedded with trivial normal bundle in compact 
complex manifolds, as ''weighted" dual Schwartz classes, the weights 
been now given by the Euler-Poincare characteristic of the local Milnor 
fiber. 

This work was done while the second and third named authors were 
visiting the "Institut de Mathematiques de Luminy", France; they ac­
knowledge the support of the CNRS, France and the "Universite de la 
Mediterranee". 

The authors thank J. Schi.irmann for his comments and suggestions 
on the first version of the paper. In particular, he gave us an alternative 
proof of Theorem 3.3 in the case of the differential form associated to a 
Morse function, using stratified Morse theory and the micro-local index 
formula i:n [19]. 

§1. Some basic facts about 1-forms 

In this section we study some basic facts about the geometry of 
1-forms and the relation between real and complex valued 1-forms on 
(almost) complex manifolds, which plays an important role in the sequel. 
The material here is all contained in the literature; we include it for 
completeness and to set up our notation with no possible ambiguities. 
We give precise references when appropriate. 

Let M be an almost complex manifold of real dimension 2m > 0. Let 
T M be its complex tangent bundle. We denote by T* M the cotangent 
bundle of M, dual of T M; each fiber (T* M)x consists of the C-linear 
maps T Mx ~ C. Similarly, we denote by TJRM the underlying real 
tangent bundle of M; it is a real vector bundle of fiber dimension 2m, 
endowed with a canonical orientation. Its dual T.;_M has as fiber the 
IR-linear maps (TJRM)x ~ R 

1.1 Definition. Let A be a subset of M. By a real (valued) 1-
form 1J on A we mean the restriction to A of a continuous section of the 
bundle T.;_M, i.e., for each x E A, 1Jx is an IR-linear map (TJRM)x ~ R 
We usually drop the word "valued" and say simply real 1-forms on A. 
Similarly, a complex 1-form w on A means the restriction to A of a 
continuous section of the bundle T* M, i.e., for each x E A, Wx is a 
C-linear map (TM)x ~C. 

Notice that the kernel of a real form 1J at a point x is either the 
whole fiber (TJRM)x or a real hyperplane in it. In the first case we say 
that x is a singular point (or zero) of 17· In the second case the kernel 
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ker 17x splits (TIRM)x in two half spaces (TIRM±)x; in one of these the 
form takes positive values and negative in the other. 

We recall that a vector field v in JRN is radial at a point X0 if it 
is transverse to every sufficiently small sphere around x 0 in JRN. The 
duality between real 1-forms and vector fields assigns to each tangent 
vector a 1 axi the form dxi (extending it by linearity to all tangent vec­
tors). This refines the classical duality that assigns to each hyperplane 
in lR N the line orthogonal to it and motivates the following definition 
(c.f. [5, 6]): 

1.2 Definition. A real1-form 17 on M is radial (outwards-point­
ing) at a point X 0 E M if, locally, it is dual over lR to a radial outwards­
pointing vector field at X 0 • Inwards-pointing radial vector fields are 
defined similarly. 

In other words, 17 is radial at a point x 0 if it is everywhere positive 
when evaluated in some radial vector field at x 0 . 

Thus, for instance, if for a fixed x 0 E M we let Pxo ( x) be the function 
llx- xall 2 (for some Riemmanian metric), then its differential is a radial 
form. 

1.3 Remark. The concept of radial forms was introduced in [5]. 
In [6] radial forms are defined using more relaxed conditions than we do 
here. However this is a concept inspired by the corresponding notion of 
radial vector fields, so we use Definition 1.2. 

A complex 1-form w on A C M can be written in terms of its real 
and imaginary parts: 

w = Re(w) + iim(w). 

Both Re(w) and Im(w) are real 1-forms, and the linearity of w implies 
that for each tangent vector one has: 

Im(w)(v) =- Re(w)(iv), 

thus 

w(v) = Re(w)(v) - i Re(w)(iv). 

In other words the form w is determined by its real part and one has a 1-
to-1 correspondence between real and complex forms, assigning to each 
complex form its real part, and conversely, to a real1-form 17 corresponds 
the complex form w defined by: 

w(v) = 17(v)- i17(iv). 



Proportionality of indices of 1-forms on singular varieties 53 

This statement (noted in [6]) refines the obvious fact that a complex 
hyperplane P in em, say defined by a linear form H, is the intersection 
of the real hyperplanes fi := {ReH = 0} and iH. This justifies the 
following definition: 

1.4 Definition. A complex 1-form w is radial at a point x EM 
if its real part is radial at x. 

Recall that the Euler class of an oriented vector bundle is the pri­
mary obstruction to constructing a non-zero section [24]. In the case 
of the bundle T.;_M, this class equals the Euler class Eu(M) of the un­
derlying real tangent bundle TJRM, since they are isomorphic. Thus, if 
M is compact then its Euler class evaluated on the orientation cycle 
of M gives the Euler-Poincare characteristic x(M). We can say this in 
different words: let 7J be a real1-form on M with isolated (hence finitely 
many) singularities x~, ... , Xr· At each Xi this 1-form defines a map, 

§" 'll~ll § 2m-l, from a small sphere in M around Xi into the unit sphere 
in the fiber (T.;_M)x· The degree of this map is the Poincare-Hop£ 
local index of TJ at xi, that we may denote by IndpH(TJ, xi)· Then the 
total index of 7J in M is by definition the sum of its local indices at the 
xi and it equals x(M). Its Poincare dual class in H 2m(M) is the Euler 
class of T.;_M ~ TJRM. 

More generally, if M is a compact, coo manifold of real dimen­
sion 2m with non-empty boundary 8M and a complex structure in its 
tangent bundle, one can speak of real and complex valued 1-forms as 
above. Elementary obstruction theory (see [24]) implies that one can 
always find real and complex 1-forms on M with isolated singularities, 
all contained in the interior of M. In fact, if a real 1-form 7J is defined 
in a neighborhood of 8M in M and it is non-singular there, then we can 
always extend it to the interior of M with finitely many singularities, 
and its total index in M does not depend on the choice of the extension. 

1.5 Definition. Let M be an almost complex manifold with 
boundary 8M and let w be a (real or complex) 1-form on M, non­
singular on a neighborhood of 8M; let Rew be its real part if w is a 
complex form, otherwise Re w = w. for real forms. The form w is radial 
at the boundary iffor each vector v(x) E TM, x E 8M, which is normal 
to the boundary (for some metric), pointing outwards of M, one has 
Rew(v(x)) > 0. 

By the theorem of Poincare-Hopf for manifolds with boundary, if a 
real1-form 7J is radial at the boundary and M is compact, then the total 
index of TJ is x(M). 
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We now make similar considerations for complex 1-forms. We let 
M be a compact, C 00 manifold of real dimension 2m (with or without 
boundary oM), with a complex structure in its tangent bundle T M. Let 
T* M be as before, the cotangent bundle of M, i.e., the bundle of complex 
valued continuous 1-forms. The top Chern class cm(T* M) is the primary 
obstruction to constructing a section of this bundle, i.e., if M has empty 
boundary, then cm(T* M) is the number of points, counted with their 
local indices, of the zeroes of a section w of T* M (i.e., a complex 1-
form) with isolated singularities (i.e., points where it vanishes). It is 
well known (see for instance [16]) that one has: 

This corresponds to the fact that at each isolated singularity Xi of w 
one has two local indices: one of them is the index of its real part 
defined as above, IndpH(Rew, xi); the other is the degree of the map 

§ 6 w~ll § 2m-1, that we denote by IndpH(w, Xi)· These two indices are 
related by the equality: 

IndpH(w, Xi)= ( -l)m IndpH(Rew, Xi), 

and the index on the right corresponds to the local Poincare-Hopf index 
of the vector field defined by duality near Xi· For instance, the form 
w = 2:: ZidZi in em has index 1 at 0, while its real part L:(xidXi- YidYi) 
has index ( -1)m. 

If we take M as above, compact and with possibly non-empty bound­
ary, and w is a complex 1-form with isolated singularities in the interior 
of M and radial on the boundary, then (by the previous considerations) 
the total index of w in M is ( -l)mx(M). We summarize some of the 
previous discussion in the following theorem (c.f. [5, 6]): 

1.6 Theorem. Let M be a compact, C00 manifold of real dimen­
sion 2m (with or without boundary 8 M), with a complex structure in its 
tangent bundle T M. Let T~ M and T* M be as before, the bundles of 
real and complex valued continuous 1-forms on M, respectively. Then: 
i) Every real 1-form TJ on M determines a complex 1-form w by the 
formula 

w(v) = TJ(v)- iTJ(iv); 

so the real part of w is TJ. 
ii) The local PoincanS-Hopf indices at an isolated singularity of a com­
plex 1-form and its real part are related by: 

IndpH(w, Xi)= (-l)mlndpH(Rew, Xi)· 
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iii) If a real1-form on M is radial at the boundary 8M, then its total 
Poincare-Hop! index in M is x(M). In particular, a radial real1-form 
has local index 1. 
vi) If a complex 1-form on M is radial at the boundary 8M, then its 
total Poincare-Hop! index in M is ( -1)mx(M). 

1.7 Remark. One may consider frames of complex 1-forms on 
M instead of a single 1-form. This means considering sets of k complex 
1-forms, whose singularities are the points where these forms become 
linearly dependent over C. By definition (see [24]) the primary obstruc­
tion to constructing such a frame is the Chern class cm-k+l(T* M), so 
these classes also have an expression similar to 1.6 but using indices of 
frames of 1-forms. One always has ci(T*M) = (-1)ici(TM). Thus the 
Chern classes, and all the Chern numbers of M, can be computed using 
indices of either vector fields or 1-forms. 

§2. Radial extension and the Schwartz index 

In the sequel we will be interested in considering forms defined on 
singular varieties in a complex manifold, so we introduce some standard 
notation. Let V be a reduced, equidimensional complex analytic space 
of dimension n in a complex manifold M of dimension m, endowed with 
a Whitney stratification {V0 J adapted to V, i.e., Vis a union of strata. 

The following definition is an immediate extension for 1-forms of the 
corresponding (standard) definition for functions on stratified spaces in 
terms of its differential (c.f. [6, 7, 12]). 

2.1 Definition. Let w be a (real or complex) 1-form on V, i.e., a 
continuous section of either T~Miv or T* Mlv· A singularity of w with 
respect to the Whitney stratification {VaJ means a point x where the 
kernel of w contains the tangent space of the corresponding stratum. 

This means that the pull back of the form to Va vanishes at x. 
In Section 1 we introduced the notion of radial forms, which is dual 

to the "radiality" for vector fields. We now extend this notion relaxing 
the condition of radiality in the directions tangent to the strata. From 
now on, unless it is otherwise stated explicitely, by a singularity of a 
1-form on V we mean a singularity in the stratified sense, i.e., in the 
sense of 2 .1. 

2.2 Definition. Let w be a (real or complex) 1-form on V. The 
form is normally radial at a point X 0 E Va C V if it is radial when 
restricted to vectors which are not tangent to the stratum Va that con­
tains x0 . In other words, for every vector v(x) tangent toM at a point 
x fj_ Va, x sufficiently close to X 0 and v(x) pointing outwards a tubular 
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neighborhood of the stratum Va, one has Rew(v) > 0 (or Rew(v) < 0 
for all such vectors; if w is real then it equals Rew). 

Obviously a radial 1-form is also normally radial, since it is radial 
in all directions. 

For each point x in a stratum Vw one has a neighborhood Ux of x in 
M which is diffeomorphic to the product Ua X ]J))C>l where Ua = Ux n Va 
and ]J))a is a small disc in M transverse to Va. Let 7r be the projection 
7r: Ux ---+ Ua and p the projection p: Ux ---+ ]J))a· One has an isomorphism: 

That a (real or complex) 1-form w be normally radial at x means 
that up to a local change of coordinates in M, w is the direct sum of the 
pull back of a (real or complex) form on Ua, i.e., a section of the (real or 
complex) cotangent bundle T*Ua, and a section of the (real or complex) 
cotangent bundle T*]J))a which is a (real or complex) radial form in the 
disc. 

It is possible to make for 1-forms the classical construction of radial 
extension introduced by M.-H. Schwartz in [20, 21] for stratified vector 
fields and frames. Locally, the construction can be described as follows. 
We consider first real 1-forms. Let T/ be a 1-form on Ua, denote by fj 
its pull back to a section of 7r*T~RUa. This corresponds to the parallel 
extension of stratified vector fields done by Schwartz. Now look at the 
function p given by the square of the distance to the origin in ]J))a· The 
form p* dp on U x vanishes on U a and away from U a its kernel is transverse 
to the strata of V by Whitney conditions. The sum 'f/1 = fj + p* dp defines 
a normally radial1-form on Ux which coincides with T/ on Ua; away from 
Ua its kernel is transverse to the strata of V. Thus, if T/ is non-singular 
at x, then 'f/1 is non-singular everywhere on Ux. If T/ has an isolated 
singularity at x E Va, then 'f/1 also has an isolated singularity there. In 
particular, if the dimension of the stratum Va is zero then Tl' is a radial 
form in the sense of Section 1. 

Following the terminology of [20, 21] we say that the form 'f/ 1 is ob­
tained from T/ by radial extension. Since the index in M of a normally 
radial form is its index in the stratum times the index of a radial form 
in the disc ]J))a, we obtain the following important property of forms 
constructed by radial extension. 

2.3 Proposition. LetT/ be a real1-form on the stratum Va with 
an isolated singularity at a point x with local Poincare-Hop/ index 
lndpH('f/, Va; x). Let 'f/ 1 the 1-form on a neighborhood of x in M ob­
tained by radial extension. Then the index ofT/ in the stratum equals the 
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index of r/ in M: 

IndpH(17, Va;x) = lndpH(17', M;x). 

2.4 Definition. The Schwartz index of the continuous real 1-
form 17 at an isolated singularity x EVa C V, denoted lndsch(17, V;x), 
is the Poincar&Hopf index of the 1-form 17' obtained from 17 by radial 
extension; or equivalently, if the stratum of x has dimension more than 
0, Indsch(17, V; x) is the Poincare-Hop£ index at x of 17 in the stratum 
Va. 

If x is an isolated singularity of V then every 1-form on V must be 
singular at x since its kernel contains the "tangent space" of the stratum. 
In this case the index of the form in the stratum is defined to be 1, and 
this is consistent with the previous definition since in this case the radial 
extension of 17 is actually radial at x, so it has index 1 in the ambient 
space. 

The previous process is easily adapted to give radial extension for 
complex 1-forms. Let w be such a form on Va; let 17 be its real part. 
We extend 17 as above, by radial extension, to obtain a real 1-form 17' 
which is normally radial at x. Then we use statement i) in Theorem 
1.6 above to obtain a complex 1-form w' on Ux that extends w and is 
also normally radial at x. If we prefer, we can make this process in a 
different but equivalent way: first make a parallel extension of w to Ux 
as above, using the projection 1r; denote by w this complex 1-form. Now 
use 1.6.i) to define a complex 1-form dp on Ux whose real part is dp, and 
take the direct sum of w and dP at each point to obtain the extension 
w'. We say that w' is obtained from w by radial extension. 

We have the equivalent of Proposition 2.3 for complex forms, mod­
ified with the appropriate signs: 

(-1) 8 1ndpH(w, Va;x) = (-1)mlndpH(w', M;x), 

where 2s is the real dimension of Va and 2m that of M. 

2.5 Definition. The Schwartz index of the continuous complex 
1-form w at an isolated singularity x EVa C V, denoted lndsch(w, V; x), 
is ( -1)n-times the index of its real part: 

lndsch(w, V; x) = ( -1)n lndsch(Rew, V; x)~ 

§3. Local Euler obstruction and the Proportionality Theorem 

We are now concerned only with a local situation, so we take V to 
be embedded in an open ball lffi c em centered at the origin 0. On 
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the regular part of V one has the map a: Vreg --+ Gn, m into the Grass­
mannian of n(= dim V)-planes in em, that assigns to each point the 
corresponding tangent space of Vreg· The Nash blow up V ~ V of Vis 
by definition the closure in lB\ x Gn, m of the graph of the map a. One 

- p - -
also has the Nash bundle T --+ V, restriction to V of the tautological 
bundle over lB\ X Gn, m· 

The corresponding dual bundles of complex and real 1-forms are 
- p - - p -denoted by T* --+ V and T!R--+ V, respectively. Observe that a point in 

T* is a triple (x, P, w) where xis in V, Pis ann-plane in the tangent 
space Txlll\ which is limit of a sequence { (TVreg)x; }, where the Xi are 
points in the regular part of V converging to x, and w is a C-linear map 
P --+ C. (Similarly for T~R.) 

Let us denote by p the function given by the square of the distance 
to 0. We recall that MacPherson in [15] observed that the Whitney 
condition (a) implies that the pull-back of the differential dp defines a 
never-zero section dp of T~R over v- 1 (§en V) C V, where §"' is the bound­
ary of a small balllll\e in lB\ centered at 0. The obstruction to extending 
dp as a never-zero section of T!R over v- 1 (lll\e n V) C V is a cohomology 
class in H 2n(v- 1 (lll\e n V), v- 1 (§e n V); Z), and MacPherson defined the 
local Euler obstruction Euv(O) ofV at 0 to be the integer obtained by 
evaluating this class on the orientation cycle [v-1 (lll\e n V), v- 1(§e n V)]. 

More generally, given a section rJ ofTIRJB\IA, A c V, there is a canoni­
cal way of constructing a section fJ ofT!RI.A, A= v- 1 A, which is described 
in the following. The same construction works for complex forms. First, 
taking the pull-back v* rJ, we get a section of v* T~R lB\ I v. Then fJ is o b­
tained by projecting v*ry to a section of T~R by the canonical bundle 
homomorphism 

Thus the value of fJ at a point (x, P) is simply the restriction of the 
linear map ry(x): (TJRJB\)x --+~to P. We call fJ the canonical lifting of 

"1· 
By the Whitney condition (a), if a E Va is the limit point of the 

sequence {xi} E Vreg such that P = lim(TVreg)x; and if the kernel of rJ 
is transverse to Va, then the linear form if will be non-vanishing on P. 
Thus, if rJ has an isolated singularity at the point 0 E V (in the stratified 
sense), then we have a never-zero section if of the dual Nash bundle T!R 
over v- 1 (§e n V) C V. Let o(ry) E H 2n(v- 1(Be n V), v- 1 (§e n V); Z) be 
the cohomology class of the obstruction cycle to extend this to a section 
of T~R over v- 1 (Be n V). Then define (c.f. [2, 6]): 



Proportionality of indices of !-forms on singular varieties 59 

3.1 Definition. The local Euler obstruction of the real differ­
ential form 'T/ at an isolated singularity is the integer Euv('T/, 0) obtained 
by evaluating the obstruction cohomology class o('TI) on the orientation 
cycle [v- 1 (Iffi., n V), v- 1 (§., n V)]. 

The local Euler obstruction Euv(O) of MacPherson corresponds to tak­
ing the differential of the squared function distance to 0. In the complex 
case, one can perform the same construction, using the corresponding 
complex bundles. If w is a complex differential form, section of T*IffiiA 
with an isolated singularity, one can define the local Euler obstruction 
Euv(w, 0). Notice that it is equal to that of its real part up to sign: 

(3.2) Euv(w, 0) = ( -1)n Euv(Rew, 0). 

This is an immediate consequence of the relation between the Chern 
classes of a complex vector bundle and those of its dual (see for instance 
[16]). 

We note that the idea to consider the (complex) dual Nash bun­
dle was already present in [17], where Sabbah introduces a local Euler 
obstruction Euv(O) that satisfies Euv(O) = ( -l)n Euv(O). See also 
Schiirmann [18], sec. 5.2. 

Just as for vector fields (see [3]), one has in this situation the fol­
lowing: 

3.3 Theorem. Let Va C V be the stratum containing 0, Euv(O) 
the local Euler obstruction of V at 0 and w a (real or complex) 1-form on 
Va with an isolated singularity at 0. Then the local Euler obstruction of 
the radial extension w' of w and the Schwartz index of w at 0 are related 
by the following proportionality formula: 

Euv(w', 0) = Euv(O) · Indsch(w, V; 0). 

Proof. By 3.2 and Theorem 1.6 above, it is enough to prove 3.3 for 
either real or complex 1-forms, each case implying the other. We prove 
it for real forms. 

Let w and w' be as above. Also, let 'T/rad denote a real radial form 
at 0. 

By construction and definition, we have 

(3.4) IndpH(w, Va; 0) = IndpH(w', Iffi; 0) = Indsch(w, V; 0). 

By definition oflndpH(w', Iffi; 0), there is a homotopy 
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such that its image satisfies: 

(3.5) 8Im 1lF = w'(§,o}- IndpH(w', Ill\; 0) ·7Jrad(§c) 

as chains in T~IB\Iss. The restriction of 1lF gives a homotopy 

1j;: [0, 1] X (§c n V) ---4 T~IB\IssnV 

such that (c.f. (3.4)) 

8Im 1j; = w'(§c n V)- Indsch(w, V; 0) ·7Jrad(§c n V). 

Now we can lift 'lj;, w' and 1'/rad to sections v*'lj;, v*w' and v*7Jrad of 
v*T~IB\ to get a homotopy 

v*'lj;: [0, 1] X v- 1 (§c n V) ---4 v*T~IB\Iv-l(SenV) 

and, since v is an isomorphism away from the singularity of V, we still 
have 

as chains in v*T~IB\1 11 -l(S,nV)· Recall that we get the canonicalliftings 

~' w' and iirad of 'lj;, w' and 1'/rad by taking the images of v*'lj;, v*w' and 
v*7Jrad by the canonical bundle homomorphism v*T~IB\ ----> T~. Thus we 
have 

as chains in T~lv-l(SenV)· The sections w' and iirad are non-vanishing on 
v- 1 (§c n V), by the Whitney condition, and by definition of the Euler 
obstructions, we have the theorem by the Whitney condition, and by 
definition of the Euler obstructions, we have the theorem. Q.E.D. 

§4. The GSV-index 

We recall ([8, 23]) that the GSV-index of a vector field v on an 
isolated complete intersection germ V can be defined to be the Poincare­
Hop£ index of an extension of v to a Milnor fiber F. Similarly, the GSV­
index of a 1-form won V can be defined to be the Poincare-Hop£ index 
of the form on F, i.e., the number of singularities of w in F counted 
with multiplicities [5]. When V has non-isolated singularities one may 
not have a Milnor fibration in general, but one does if V has a Whitney 
stratification with Thorn's a1-condition, f = (h, ... , fk) being the 
functions that define V (c.f. [13, 14, 4]). 
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Let (V, 0) be a complete intersection of complex dimension n defined 
in a ball B in cn+k by functions f = (!I, . . . , fk), and assume 0 is a 
singular point of V (not necessarily an isolated singularity). As before, 
we endow B with a Whitney stratification adapted to V, and we assume 
that we can choose {Va} so that it satisfies the at-condition of Thorn 
(see for instance [14]). In particular one always has such a stratification 
if k = 1, by [10]. 

Let w be as before, a (real or complex) 1-form on B, and assume its 
restriction to V has an isolated singularity at 0. This means that the 
kernel of w(O) contains the tangent space of the stratum V0 containing 
0, but everywhere else it is transverse to each stratum Va c V. Now 
let F = Ft be a Milnor fiber of V, i.e., F = f- 1(t) n Be:, where Be: is a 
sufficiently small ball in B around 0 and t E Ck is a regular value of f 
with lit II sufficiently small with respect to c. Notice that the at-condition 
implies that for every sequence tn of regular values converging to 0, and 
for every sequence {xn} of points in the corresponding Milnor fibers 
converging to a point X 0 E V so that the sequence of tangent spaces 
{(TF)xn} has a limit T, one has that T contains the space (TVa)xo, 
tangent to the stratum that contains X 0 • By transversality this implies 
that choosing the regular value t sufficiently close to 0 we can assure 
that the kernel of w is transverse to the Milnor fiber at every point in 
its boundary oF. Thus its pull-back to F is a 1-form on this smooth 
manifold, and it is never-zero on its boundary, thus w has a well defined 
Poincare-Hop£ index in F as in Section 1. This index is well-defined and 
depends only on the restriction of w to V and the topology of the Milnor 
fiber F, which is well-defined once we fix the defining function f (which 
is assumed to satisfy the a !-condition for some Whitney stratification). 

4.1 Definition. The GSV-index of w at 0 E V relative to J, 
Indasv(w, 0), is the Poincare-Hop£ index of win F. 

In other words this index measures the number of points (counted 
with signs) in which a generic perturbation of w is tangent to F. In 

fact the inclusion F ~ M pulls the form w to a section of the (real or 
complex, as the case may be) cotangent bundle ofF, which is never-zero 
near the boundary because w has an isolated singularity at 0 and, by 
hypothesis, the map f satisfies the a rcondition of Thorn. If the form w 
is real then 

(4.2) Indasv(w, 0) = Eu(F; w)[F], 

where Eu(F;w) E H 2n(F, oF) is the Euler class of the real cotangent 
bundle TR F relative to the section defined by w on the boundary, and 
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[F] is the orientation cycle of the pair (F, 8F). If w is a complex form, 
then one has: 

( 4.3.i) lndGsv(w, 0) = cn(T*F;w)[F], 

where cn(T* F; w) is the top Chern class of the cotangent bundle ofF 
relative to the form w on its boundary. In this case one can, alternatively, 
express this index as the relative Chern class: 

(4.3.ii) lndGsv(w, 0) = cn(T* MIF; n)[F], 

where n is the frame of k + 1 complex 1-forms on the boundary ofF 
given by 

n = (w, dfl, dh, ... ' dfk), 

since the forms (dft, ... , dfk) are linearly independent everywhere on F. 
Notice that if the form w is holomorphic, then this index is necessarily 
non-negative because it can be regarded as an intersection number of 
complex submanifolds. For every complex 1-form one has: 

IndGsv(w, 0) = ( -l)n IndGsv(Rew, 0). 

We remark that if V has an isolated singularity at 0, this is the index 
envisaged in [5], i.e., the degree of the map from the link K of V into 
the Stiefel manifold of complex (k + I)-frames in the dual cn+k given 
by the map (w, dfl, ... , dfk)· Also notice that this index is somehow 
dual to the index defined in [4] for vector fields, which is related to the 
top Fulton-Johnson class of singular hypersurfaces. 

So, given the (non-isolated) complete intersection singularity (V, 0) 
and a (real or complex) 1-form w on V with an isolated singularity at 
0, one has three different indices: the Euler obstruction (Section 2), the 
GSV-index just defined and the index of its pull back to a 1-form on 
the stratum of 0. One also has the index of the form in the ambient 
manifold M. For forms obtained by radial extension, the index in the 
stratum equals its index in M, and this is by definition the Schwartz 
index. The following proportionality theorem is analogous to the one in 
[4] for vector fields. 

4.4 Theorem. Let w be a (real or complex) 1-form on the stratum 
Va ofO with an isolated singularity at 0. Then the GSV index of its radial 
extension w' is proportional to the Schwartz index, the proportionality 
factor being the Euler-Poincare characteristic of the Milnor fiber F: 

lndGsv(w', 0) = x(F) · lndsch(w, V; 0). 
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Proof. It is enough to prove 4.4 either for complex forms or for real 
forms, each one implying the other. The proof is similar to that of 3.3. 
Let w' and "lrad be as in the proof of Theorem 3.3. Then 4.4 is proved by 
taking the retriction to F of each section in (3.5) as a differential form, 
noting that Indcsv('T/rad, 0) = x(F). Q.E.D. 

4.5 Remark. We notice that 4.4 and 3.3 can also be proved using 
the stability of the index under perturbations; this works for vector fields 
too. More precisely, one can easily show that the Euler obstruction 
Euv(w, x) and the GSV-index are stable when we perturb the 1-form 
(or the vector field) in the stratum and then extend it radially; then the 
sum of the indices at the singularities of the new 1-form (vector field) 
give the corresponding index for the original singularity. This implies 
the proportionality of the indices. 
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