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The cohomology groups 
of stable quasi-abelian schemes 

and degenerations associated with the E8-lattice 

lku Nakamura1 and Ken Sugawara 

Abstract. 

We study certain degenerate abelian schemes (Qo, Lo) that are 
CIT-stable in the sense that their SL-orbits are closed in the semistable 
locus. We prove the vanishing of the cohomology groups Hq ( Qo, L0) = 
0 for q, n > 0 for a naturally defined ample invertible sheaf Lo on Qo. 
When n ;= 1, this implies that H 0 (Q0 , L0 ), the space of global sec
tions, is an irreducible module of the noncommutative Heisenberg 
group of (Qo,Lo). 

§1. Introduction 

In 1970's Namikawa [Nw76] and Nakamura [Nr75] studied the prob
lem of compactifying the moduli A9 of abelian varieties over C, and 
their papers introduced a certain class of degenerate abelian varieties. 
In 1990's in their joint work [AN99] Alexeev and Nakamura again dis
cussed the same problem of compactifying A9 over any field in an alge
braic manner, and the objects they studied are nearly the same as those 
studied by Namikawa and Nakamura in 1970's. 

After their joint work [AN99] Alexeev and Nakamura independently 
constructed respectively reasonable compactifications, using almost the 
same cla!;is of degenerate abelian varieties or schemes as above. Alex
eev's moduli A9 [A02] is a coarse moduli of a certain kind of principally 
polarized reduced, possibly degenerate, abelian varieties with ( contin
uous) group action. On the other hand Nakamura's moduli [Nr99] is 
a fine moduli SQ9,K of polarized, possibly nonreduced, possibly de
generate, abelian schemes which are GIT-stable in the sense that their 
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SL-orbits are closed in the semistable locus, though their stabilizer sub
groups of SL could be of infinite order. The moduli SQ9,K compactifies 
the moduli scheme Ag,K of abelian varieties with certain noncommu
tative level K -structures (to be more precise, of abelian varieties, each 
with a very ample invertible sheaf linearized with regards to the Heisen
berg group G(K)) where K is a certain symplectic, sufficiently large 
finite abelian group. We note that both A9 and SQ9 ,K are projective 
over Z or Z[(N, ~]respectively where N = .JiKi. Since SQ9,K is a fine 
moduli, there is a universal family over SQ9,K of polarized generalized 
abelian schemes of dimension g so that any fibre of the family over a geo
metric point of SQ9,K represents an isomorphism class corresponding to 
the geometric point. We call any fibre of the family a projectively stable 
quasi-abelian scheme, or simply a PSQAS. We note that a PSQAS is 
singular if and only if the PSQAS lies over the boundary SQ g,K \ Ag,K. 

The purpose of this article is first of all to prove the vanishing of 
certain cohomology groups of PSQASes. This solves a conjecture raised 
by [Nr99, section 9] in the affirmative. The second purpose of this arti
cle is to study PSQASes associated with the Es lattice. The structures 
of some of PSQASes over the boundary of SQ9,K are very complicated 
when they are nonreduced. Any even unimodular definite lattice pro
vides us with a nonreduced PSQAS. Since there are at least 8 · 107 

inequivalent even unimodular definite lattice for g = 32, there could be 
a lot of nonreduced PSQASes. The first nontrivial example of a nonre
duced PSQAS is provided by E 8 [AN99], which we will study in detail 
in the second half of the article. As a matter of fact, this detailed study 
of the Es-case removes the last psychological obstacle for our complete 
computation of the cohomology groups of PSQASes in the general case. 

The article is organized as follows. The first two sections 2 and 3 
recall the basic facts about Delaunay decompositions and degenerating 
families of abelian varieties. We. construct a particular class of degen
erating families ( Q, L) of polarized abelian varieties over complete dis
crete valuation rings, whose closed fibres ( Q0 , L 0 ) are nothing but the 
PSQASes mentioned above. The sections 4, 5 and 6 are devoted to 
studying closed fibres ( Qo, Lo) of the families ( Q, L), in particular, their 
cohomology groups Hq(Qo, L0) in the general case including the case 
where Qo is nonreduced. In the section 5, the following Theorem 1 is 
proved, while in the section 4 an outline of the proof is explained. A key 
result for proving Theorem 1 is proved in the section 6. 

Theorem 1. Let (Qo, Lo) be a PSQAS. Then Hq(Q0 , L0) = 0 for q >0 
and n > 0. 

An important corollary to it is the following 
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Theorem 2. Let K be a finite symplectic abelian group of order N 2 . 

Let k be any field over Z[(N, -kl· Let G(K) be a noncommutative fi
nite Heisenberg group, namely a central extension of K by the group 
J.LN of N-th roots of unity. Let (Qo, L 0 ) be a PSQAS over k with a 
level G(K)-structure in the sense of [Nr99]. Then H 0 (Q 0 , L0 ) is an 
irreducible G(K)-module of weight one. 

Let L be the natural polarization of the universal family of PSQASes 
over SQg,K· By Theorem 1 the 0-th direct images of Ln (n ;::: 1) are 
locally free sheaves over SQ g,K, whose determinant bundles are expected 
to give rise to the most natural ample invertible sheaves of SQg,K· 

The second half of the article starting from the section 7 is devoted 
to studying a PSQAS Q0 associated with E8 . Among other things the 
nilradical of Oo,Qo is calculated completely in the section 11. This cal
culation helps us to get convinced that nilpotent elements of Oo,Qo have 
large support and that therefore the cohomology groups Hq ( Q0 , L~) will 
behave in the same manner as those of nonsingular abelian varieties. 
This was psychologically a key step to the proof of Theorem 1. 

We would like to thank Professor K. Shinoda for his many advices 
on E 8 during the preparation of the article. 

§2. Basic facts about Delaunay decompositions 

Let Z be the set of integers, Z0 the set of nonnegative integers, Q 
the set of rational numbers, R the set of real numbers, and R 0 the set 
of nonnegative real numbers. Let X be a lattice of rank g, B an integral 
positive definite symmetric bilinear form on X x X. Let Xq =X 0z Q 
and XR =X 0z R. The bilinear form B determines a distance II liB on 
XR by llxiiB := JB(x,x) (x E XR)· For an arbitrary a E XR we say 
that a lattice element a E X is a-nearest if 

We define a (closed) B-Delaunay cell CJ (or simply a Delaunay cell 
if B is understood) to be the closed convex hull of all lattice elements 
which are a-nearest for some a E XR for a fixed a. Note that for a 
given Delaunay cell CJ, a E CJ is uniquely determined by CJ, which we call 
the hole of CJ and denote by a(CJ). All the B-Delaunay cells constitute a 
locally finite decomposition of XR into infinitely many bounded convex 
polyhedra, which we call the Delaunay decomposition DelE. 

Definition 2.1. In what follows we fix the bilinear form B, so 
we denote B(x, y) simply by (x, y), B(x, x) by x 2 and the norm llxiiB 
by llxll if no confusion is possible. Let Del := DelE be the Delaunay 
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decomposition on XR defined by the distance llxll := y'B(x, x). For any 
subset T of XR let Del(T) be the set of all Delaunay cells containing 
T, and Star (T) the union of all u E Del(T). In particular, for any 
c E X, Del( c) is the set of all the Delaunay cells containing c E X and 
Star (c) is the union of all u E Del( c). We note Del( c) = c + Del(O), 
the translate of Del(O) by c. We denote by Del(k) the set of Delaunay 
cells u E Del such that dim u = k. Let Del(k) (T) = Del(T) n Del(k). For 
a u E Del, we define Dela to be the set of all faces of u and Del~k) := 

Del(k) nDela· ForT E Del, we define Dela(T) := Dela nDel(T) and 
Del~k) ( T) := Del(k) n Dela( T). 

Definition 2.2. Let D be a subset of XR. If D contains the origin. 
0, we define C(O, D) to be the cone over R 0 generated by D, and define 
Semi(O, D) to be the cone over Z0 generated by D n X. For any subset 
S of D we define X(S) to be the subgroup of X generated by s - t, 
(Ys, t E S). We denote X(S) ® R by X(S)R· We also define 

C(s, D):= s + C(O, D- s) (for sED) 

C(S, D):= U (a+ C(s, D)) 
aEX(S),sESnX 

= X(S) + C(so, D) (Yso E S). 

If S is a one-codimensional face of a g-dimensional convex polytope 
D of XR, then S spans a hyperplane of XR, which we denote by H(S), 
and C ( S, D) is a closed half space of X R containing D bounded by H ( S). 

In order to make this article as self-contained as possible. we give 
proofs for basic facts about Delaunay /Voronoi decompositions. See also 
[Nr99]. 

Definition 2.3. The Voronoi cell V(O) at 0 is defined to be 

V(O) = {a E XR; IIY- ail 2: II all for any y E X}. 

Lemma 2.4. For any x E X the following are equivalent: 

(i) x E 2V(O) n X, namely, (y, y) 2: (x, y) for any y EX, 
(ii) x E Star (0) n X, namely, there is u E Del(O) such that x E 

u n X. 

Proof Assume (i). Then IIY- (x/2)11 2: llx/211 for any y E X, 
where the minimum of IIY- (x/2)11 is attained at y = 0 and x. Hence 
(ii) follows. 

Conversely if there is a Delaunay cell u E Del(O) such that x E unX, 
then there is an a E XR such that lly-all 2 2: liall 2 and llx-all 2 = ilall 2 . 
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Hence a E V(O). By the first inequality we have JJ-y+x-all 2 ~ lla2 11 for 
any y, from which it follows that IIYII 2 ~ 2(x-a, y), namely, x-a E V(O). 
Hence x = a + (x - a) E 2V(O). This proves (i). This proves the 
lemma. Q.E.D. 

Lemma 2.5. Let ai E Star (0) (1 ::; i ::; n). Assume that there is 
z (# 0) EX such that a 1 +···+an= mz. Then n ~ m, equality holding 
if and only if (z, z) = (ai, z) for any i. 

Proof. Since ai E Star (0), we have y2 ~ (ai, y) for any y E X by 
Lemma 2.4. In particular, z2 ~ (ai, z). It follows that nz2 ~ (a1 + · · · + 
an, z) = mz2 • Hence n ~ m. If n = m, then any inequality in the above 
is equality. This proves the lemma. Q.E.D. 

Definition 2.6. We say that X1, · · · , Xm E X (xi # x1) are cell
mates if there is a Delaunay cell a E Del that contains all of Xi· We say 
that x 1 , · · · , Xm E Star (0) are cellmates at 0 if there is a Delaunay cell 
a E Del(O) that contains all of Xi. 

Lemma 2. 7. Let a be a Delaunay cell and z ( # 0) E X. Then 

(i) an(mz+a)=0form~2. 
(ii) Star (0) n (mz +Star (0)) = 0 if m ~ 3. 

Proof. Suppose that c E a n X and d = c + mz E a for some 
nonzero z E X. Since c and d are cellmates, we have c- d E Star (0). 
Hence mz E Star (0). It follows from Lemma 2.5 that m = 1. This 
proves (i). 

Next we prove (ii). Suppose Star (0) n (mz +Star (0)) =.F 0. Then 
there are a, band z EX such that a- b = mz and a, bE Star (0). Then 
by Lemma 2.5 we have m ::; 2. This proves the assertion. Q.E.D .. 

Lemma 2.8. (i) Let a E Del(O) and b E C(O, a) n X. If 
b ~ a n X, then there is a E a n X such that ( b - a, a) > 0. 

(ii) If x ~ Star (0) n X, then there exists a E Star (0) n X such 
that llxll 2 > llx- all 2 + llall 2 · 

Proof. We prove (i). Let bE C(O, a) n X and a( a) the hole of a. 
We assume (b, a) ::; (a, a) for any a E an X. Then we prove bEan X. 
For this let b = I.:~=l riai for ai E an X and some ri ~ 0. We see 

r r r 

(b, b) = :Lri(b, ai) ::; :Lri(ai, ai) = 2 :Lri(a(a), ai) = 2(a(a), b) 
i=l i=l i=l 

whence (b, b) = 2(a(a), b). It follows bEan X. 
We shall prove (ii). Let x E X. Since Star (0) contains an open 

neighborhood of the origin in XR, there is a E Del(O) such that x E 
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C(O, a) n X\ a. By (i) there exists a E an X such that (x- a, a) > 0. 
Hence llxll 2 > llx- all 2 + llall 2 • Q.E.D. 

Definition 2.9. We set 

1 m 
v(x) = min{ 2 ~)xi, xi); x = x1 + · · · + Xm,Xi E X,m 2:: 1} 

i=l 
v(x, c) = v(x) + (x, c). 

Lemma 2.10. Let a E Del(O) and a( a) E a the hole of a. Then 
v(x) 2:: (x,a(a)) for any x EX, equality holding iffx E Semi(O,a). 

Proof. Choose Xi E X such that x = x1 + · · · + Xm and v(x) = 
~ E:':1 (xi, xi)· Then 

m m 

~)xi, xi) 2:: 2 :~:)xi, a( a)) = 2(x, a(a)). 
i=l i=l 

This proves v(x) 2:: (x,a(a)). If v(x) = (x,a(a)), then we have 
(xi,Xi) = 2(xi,a(a)) for any i. The equality (xi, xi)= 2(xi,a(a)) im
plies that Xi E an X. This proves x E Semi(O, a). Q.E.D. 

§3. Oegenerating families of abelian varieties - general case 

Let R be a complete discrete valuation ring, q a uniformizing pa
rameter of R, k(O) = RjqR and k(TJ) the fraction field of R, 0 the closed 
point and TJ the generic point of Spec R. The purpose of this section is 
to recall the (simplified) Mumford construction over R [AN99]. See also 
[M72]. 

Let X be a free Z-module of rank g and a(x) E k(TJ)x := k(TJ) \ {0} 
for any x EX. 

Definition 3.1. Let b(x,y) := a(x+y)a(x)- 1a(y)- 1 . If the follow
ing conditions are satisfied, { a(x); x E X} is called a (Faltings-Chai's) 
degeneration data : 

(i) a(O) = 1, 
(ii) b(x, y) is a (multiplicatively) bilinear form on X x X with 

values in k(TJ) x, 

(iii) B(x, y) := valq b(x, y), a positive definite symmetric bilinear 
form of X x X. 

Definition 3.2. Let {a(x);x E X} be a degeneration data and 
A(x) = valq a(x). Let {) be an indeterminateover R, R[fJ][X] the group 
algebra over R[fJ] of the additive group X (~ ZY). The algebra R[fJ][X] 
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is regarded as a graded algebra by setting deg(t?) = 1 and deg(a) = 0 
for any a E R[X]. 

We define a graded subalgebra R of R[t?][X] by 

R: = R[a(x)wxt?; X EX]= R[~xt?; X EX], ~x := qA(x)Wx. 

Let Q ~ Proj(R) Let Y be a sublattice of X of finite index. Then 
Y acts on Q by 

s;(a(x)wxt?) = a(x + y)wx+yt? for y E Y. 

The invertible sheaf 0 Q (1) is kept invariant by the action of Y. 

Let Qror be the formal c~pletion of Q along Qo := Proj(RjqR). 
The induced action of Y on Qror, which we denote also by Sy, is free. 
The invertible sheaf OQ- (1) descends to an invertible sheaf Lror on the 

for 

formal quotient Qror/Y. This turns out to be ample on QrorfY. In fact, 
it is very ample on Qror/nY for any n 2: 3. See [Nr99, Theorem 6.2]. 

Hence by the algebrization theorem of Grothendieck we have 

Theorem 3.3. There is a projective R-scheme Q with an ample 
invertible sheaf L such that the formal completion of (Q, L) along the 

closed fibre is isomorphic to the pair (Qror/Y, OQtor (1)/Y). The generic 
fibre (Q'TI, L'TI) is a polarized abelian scheme by enlarging k(TJ) if neces
sary. 

Proof. The last assertion about the generic fibre follows from [M72]. 
We omit the details because they are more or less well known. See also 
[AN99, Remark 3.10]. Q.E.D. 

Proposition 3.4. Let (Q, L) = (Proj R, OProj _R(1)). Then 

(i) Q is covered with open affine subschemes W(c) := Spec S(c) 
where 

S(c) := R[~x,c; X EX] (c EX), ~x,c := ~x+cf~c 

(ii) The coordinate ring S(c) of W(c) is an R-algebra of finite 
type generated by ~x,c (x E Star (0) n X). All the ring S(c) 
are isomorphic to each other as R-algebras. The isomorphism 
¢c,d : S(d) ---+ S(c) is given by ¢c,d(~x+d/~d) = ~x+cf~c for 
any x EX. 

Remark 3.5. For a given abelian scheme G over R with Go a split 
torus over k(O), we can construct a degeneration data {a(x); x E X} 
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by taking a finite base change when necessary. Let Gror be the formal 
completion of G along the closed fibre Go. Then Gror is proved to be 
isomorphic to a formal split torus G;, for over R. In that case, X is 
the character group of Gror while Y is the character group of the formal 
completion of the dual abelian scheme of G. Letting A(x) = valq a(x), we 
see A(x+y) -A(x) -A(y) = B(x, y). Hence A(x)- ~B(x, x) is linear in 
x, which we can write as ~r for some r E Hom(X, Z). By furthermore 
taking pull back of the family by replacing R by R[s] with s2 = q if 
necessary, we may assume B(x, x) and r(x) are even-integers for any 
x EX. Then by choosing ux = wxsr(x) instead of wx (the coordinates 
of the formal torus G 9 , ), we may assume A(x) = -21 B(x, x) and it m,tor 
is integer-valued on X. This assumption is harmless for our study of 
the closed fibres ( Q0 , L 0 ) because the closed fibres are unchanged by 
the pull back and we study only cohomology groups of the closed fibres. 
Therefore in what follows we assume 

(i) B(x, x) is even for any x EX 
(ii) A(x) = ~B(x, x), r(x) = 0. 

Definition 3.6. With the notation in Definition 2.9, we define 

~(x, c) = qv(x,c)Wx = qv(x)+(x,c)Wx E r(W(c), OQ), 

~(x, c) := ~(x, c) 0 k(O), ~(x) := ~(x, 0) E r(W(O), OQ). 

We define R(c) = S(c) 0 k(O) and U(c) = W(c) 0 k(O) =Spec R(c). 
We also set ~(x) := ~(x) 0 k(O). It is clear that 

r(U(c), Ou(c)) = R(c) = ffixEX k(O) · ~(x, c). 

With the above notation, c/Jc,d(~(x, d)) = ~(x, c) for any x EX. 

Lemma 3.7. Let ~(x) := ~(x) 0 k(O) E S(O) 0 k(O) (x EX). 

(i) If X Ei Star (0) n X, then ~(x) = 0. 
(ii) If x1, · · · , Xm E Star (0) are not cellmates at 0, then the prod

uct ~(x!) · · · ~(xm) is either zero or nilpotent. 

Proof. By Lemma 2.8 (ii) ~x is divisible by q~x-a~a in S(O), which 
proves (i). Next we prove (ii). Let x = x 1 + · · · + Xm. Choose a E Del(O) 
such that x E C(O, a), and let a:( a) E a be the hole of a. Then there 
exist some positive integers n E Z+, ni E Z+ and ai E a n X such that 
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m m 

i=l i=l 
r r 

= 2 L ni(a(o-), ai) = L ni(ai, ai)· 
i=l i=l 

Since xi are not cellmates at 0, there is at least an Xi such that 
Xi rf. a-, hence (xi, xi) > 2(a(a-), xi)· Therefore the above inequality is 
strict. This proves (ii). Q.E.D. 

Lemma 3.8. U(co) n U(cl) n · · · n U(cq) -=/= 0 iff co, c1 , · · · , Cq are 
cellmates. 

Proof If c0 , c1 , · · · , Cq are cellmates, then it is clear that U(co) n 
U(cl) n · · · n U(cq) -=/= 0. We shall prove the converse. We suppose 
that U(c0 ) n U(c1) n · · · n U(cq) -=/= 0 and that co, c1, · · · , cq are not 
cellmates to derive a contradiction. We may assume c0 = 0 without loss 
of generality. We note any eCi is invertible on u (Co) n u ( Cl) n ... n u ( Cq). 
If there is some Ci (i > 0) such that Ci rf. Star (0), then eCi = 0 by 
Corollary 3.7, a contradiction. If ci E Star (0) for any i > 0, the product 
ec1 • · · ecq is zero or nilpotent by Corollary 3. 7, which contradicts that 
eci is invertible on the nonempty set U(co) n U(c1) n · · · n U(cq)· This 
proves the lemma. Q.E.D. 

From Lemma 2.7 (ii) and Lemma 3.8 we infer 

Corollary 3.9. (i) U(c) (c EX) is an affine covering ofQo. 
(ii) If Y C mX for some m ~ 3, then U(c) n U(c + y) = 0 for 

nonzero y E Y, and U(c) (c E X/Y) is an affine covering of 
Qo. 

Lemma 3.8 gives a direct proof of the following 

Theorem 3.10. Let G~ :=Spec k(O)[wx; x EX]. Then there is a 
natural action of G~ on Q0 . For any Delaunay cell a- we define 

Then 

V(a-) : = Proj k(O)[ea; a E a-n X], 

O(a-): =Spec k(O)[ea/eb; a, bEa-n X]. 

(i) O(a-) is the unique closed G~-orbit in ncEanX U(c)red, 

(ii) Qo,red = UaEDel O(a-) with O(o-) n O(T) = 0 for a- -=/= T and 
a-, T E Del. 
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(iii) V(u) is naturally a closed reduced subscheme ofQo of dim V(u) 
=dim u, which is the closure of O(u). 

(iv) Let r, a- E Del. Then V(r) C V(u) iff rCa-. 

Proof. We may assume eo = 0 E a- n X without loss of generality. 
First we note G~ acts on Q0 by S~(qAwx) = axqAwx for any T-valued 
point a E G~(T). By the definition 

r(Oo(u)) = k(O)[ta/tb; a, bEa-n X]. 

By Lemma 3.8 

n U(c)red =Spec k(O)[tx/tb; x EX, bEa-n X]/ J(O} 
cEunX 

=Spec r(Oo(u))[tx; X E Star (a-) n X]/ J(O) 
=Spec r(Oo(u)Htx; X E (Star (a-)\ a-) n X]/ J(O). 

Its unique closed orbit is given by the equations 

tx = 0 (Vx E (Star (a-) \a-) n X). 

Thus the assertions (i) and (ii) are clear from the above description. 
The assertion (iii) except its reducedness is clear from the definition of 
Proj. 

We prove that V(u) is a reduced subscheme of Q0 . Because the affine 
coordinate ring r(Ov(u)nU(o)) of V(u) n U(O) is k(O)[tx; x E a-n X]. 
Any nontrivial monomial of weight x E X in it is a product of tx. 
with cellmates Xi E (T n X. By Corollary 3.7 it is q(x,o(u))wx, whence 
r(Ov(u)nu(o)) has no nilpotent elements. 

Next we prove (iv). Let {eo= O,c1,··· ,cq} = rnX. Let U(r) := 
ncErnX U(c). Suppose T c (T. First we note V(u) n U(r) = V(u)red n 
U(r) = V(u)red n U(r)red· We also see 

r(Ou(r)reJ = r(Oo(r))[tx; X E (Star (r) \ r) n X]/ J(O) 
The closed subscheme V(u) n U(r) of U(r) is defined by the ideal 

(tx; X E (Star (r) \a-) n X), while O(r) is defined by the ideal (tx; X E 
(Star (r) \ r) nX) By the assumption r C a-, V(u) n U(r) contains O(r), 
whence V(u) :l V(r). 

Next we assume r C/- a- to prove V(r) C/- V(u). Then there is a E 

rnX such that a¢. a-. Then V(r)nU(a) =Spec k(O)[txlta,x E rnX]. 
Let Pa be a closed point ofU(a) defined by tx/ta = 0 for any x (~a) E 
X. Hence Pa ¢. U(x) for any x ~ a. Since V(u) is covered with U(b) 
(bE unX), this shows that Pa ¢. V(u). This implies V(r) C/- V(u). This 
completes the proof of (iv), hence of the lemma. Q.E.D. 
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§4. Outline of the proof of Theorem 1 

The purpose of this section is not to give a proof of Theorem 1 
(Theorem 5.17), but to explain the outline of it. 

For simplicity we assume Y C mX for some m ~ 3. 
Under the assumption Sy(U(c)) n U(c) = 0 for any c E X and 

y E Y \ {0} and U(c) (c E X/Y) is an affine covering of Q0 in view 
of Corollary 3.9. Therefore the cohomology groups Hq(Q0 , L0) are 
computed by using the Cech cohomology relative to the covering U(c) 
(c E X/Y). 

4.1. The particular case where Q0 is reduced 

First we consider the particular case when k(O) C R and (Q, L) is 
the pull back of a normal torus embedding locally of finite type over 
k(O) by the inclusion of Spec R into Spec k(O)[q]. Then (Q, L) = (P, L) 
with the notation of [Nr99]. We recall the proof of Hq(Q 0 , L0) = 0 for 
q, n > 0 from [Nr99]. 

First we have an exact sequence of OQ0 -modules 

0 0 ag a2 0 a1 0 (1) 0----+ Qo ----+ EB V(a 9 )----+ · · ·----+ EB V(al) ----+ EB V(ao)----+ 0 

where ai ranges over the set of all i-dimensional Delaunay cells mod Y. 
The homomorphism 8i : EBOv(a,) ----+ EBOv(a,~d in the above is defined 
by 

where the summation LTca runs over the set of all i-dimensional De
launay cells a containing a fixed T as a face of codimension one, and any 
Delaunay cell a is oriented and [a: T] (= ±1) is the incidence number 
of a relative to T. Then by tensoring (1) with L0 we have an exact 
sequence 

Now the proof of Hq(Q 0 , L0) = 0 goes as follows. 

(i) Since V(a) is a normal torus embedding with Lo ample, we 
have 

if q = 0 

if q > 0 

where [x] is a certain monomial in RjqR of weight x. 
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(ii) By (i) H*(P0 , L0) is the cohomology of the complex 

H 0 (a9 ) H 0 (a1) 
0--> EBf(V(u9 ), L 0) --> · · · --> EBf(V(uo), L0) --> 0. 

(iii) By (i) and (ii) 

E9 Hq(Star(.:_)0 ,k(O)) = 0 for q,n > 0 
n 

*E~ mod Y 

where Star (a) denotes the union of u E Del( a), and Star (a) 0 

denotes the relative interior of Star (a). The subset Star (a) 0 

of XR is connected and contractible. 

4.2. The general case 

In the case where Q0 is possibly nonreduced or ( Q, L) may not 
come from a torus embedding, we have no exact sequences like (1). 
Nevertheless we can imitate the above proof of Hq(Q0 , L0) = 0. 

We will construct a double complex (nC", ~;.,) for each positive in
teger n such that 

nC" = EBnCP, nCP = E9 nFk,q, ~~ = E9 (8k,q + (-l)q8~·q), 
k+q=p k+q=p 

nFk,q = EB nF!:•q = EB (EBnF!:·q[x]) 
aEDe!(g-k) mod Y aEDe!(g-k) mod Y xEX 

where nF/:·q [x] is the weight x-part of nF/:·q. We see 

~~+1 . ~~ = o, ak+l,q . ak,q = o, 8~,q+1 . 8~,q = o. 

Then our new proof goes as follows. 

(a) 

(b) 

if k = 0 

if k > 0 

{ 
EB k(O) · [x] 

Hq( pk.· 8k,·) = "'-EanK 
n (j ' n. n n 

0 

if q = 0 

if q > 0 

where [x] is a certain monomial in R)qR of weight x. 
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(c) By (b) 

o-EDeJ(g-k) mod Y 

if q = 0 

if q > 0. 

(d) By (c) 

if q = 0 

if q > 0. 

(e) By (a) and (d) 

Hq(Qo, Lg) = "Eg,q = Hq(nC", ~~) = 'Ei'0 

Efj Hq(Star(~)0 ,k(O)) = 0 if q > 0. 
n 

~E~ mod Y 

The hardest in the above is the part (b), which is an alternative for 
the part (i) in the first particular case. The assertion (b) is proved by 
using Lemma 4.3 (or Theorem 5.15) 

H q( k,·[] >k,·) _ q("( ) (x)) _ {k(O) nF.,- X, un - H u a , Bt:J.(o-) - -
n 0 

if q = 0, ~ E a 

otherwise 

where nF;o,q[x] is the weight x-part of nF;,q. See also Theorem 6.11. 

Lemma 4.3. Let a E Del(g-k). Let ~(a) be the abstract simplex 
with vertices a n X. Then there is a subset B t:J.( .,-) ( ~)) of~ (a) such that 

Moreover 

(i) if B t:J.(o-) ( ~) is nonempty, then it is connected and contractible. 
(ii) Bt:J.(o-)(~) is empty iff~ Ea. 

This lemma is obtained by combining Lemma 6.10 and Theorem 6.11. 
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§5. Proof of Theorem 1 

The purpose of this section is to prove Theorem 1 (Theorem 5.17). 
For simplicity we first assume 

Y C mX for some m 2: 3. 

In what follows we denote ~(x, c) by ~(x, c) if no confusion is possible. 

Definition 5.1. Let c E X. Let R(c) = S(c) 0 k(O) = f(Ou(cJ)· 
For a Delaunay cell IJ' containing c, we define k(O)-modules 

k(O) · ~(x, c), 
xEC(O,cr-c)nX 

o-EDel(g-k) (c) 

It should be mentioned that Fcr(c) is not an R(c)-module in general, 
though Fk(c) is an R(c)-module. Nevertheless we imitate the way of 
computing Hq(P0 , L0) in [Nr99, Theorem 3.9] and construct, by replac
ing Op0 -modules L 0 0 Ov(cr)nU(c) [ibid.] by analogous k(O)-modules, a 
double complex pk,q whose first row Fk•0(c) at cis a resolution of R(c) 
(c EX). 

Any ¢cr E Fer (c) is written 

ao-(x, c)~(x, c), (ao-(x, c) E k(O)). 
xEC(O,cr-c)nX 

Then we define 

ao-(x, c)~(x, c). 
xEC(O,T-c)nX 

o-EDel(g-k) (c) TEDel(g-k-1) (c) TCcr 

where ¢cr E Fcr(c), and the summation in RHS ranges over the set of all 
IJ' containing a fixed T as a face of codimension one. 

Lemma 5.2. There is an exact sequence of k(O)-modules 

where F9(c) = k(O) · ~(0, c). 
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Proof Let f E F 0 (c). Then f is written as 

f = L ( L a,. (x, c)~(x, c)) . 
uEDe!(g) (c) xEC(O,u-c)nX 

Then we see that f E Ker(a0 ) if and only if a,.(x,c) = a,.,(x,c) for 
any adjacent pair a, a' E Del(9)(c) and any x E C(O, (an a')- c) n X. 
It follows that R(c) = Ker(a0 ). We denote R(c)x = k(O)~(x, c). 

The exactness of the rest of the sequence is proved as follows. Now 
we choose and fix any x EX for all. For a E Del(g-k)(c) we define 

and 

F,.(c)x := {k(O) · ~(x, c) if x E C(O, a- c) n X 
· 0 (otherwise) 

rr E Del(g-k) (c) 
x E C(O,rr- c) 

F,.(c)x· 

Note that ag-k(Fk(c)x) c pk+l(c)x· Now we define the complex 
(F'(c)x, ajY(c)J by 

It remains to prove the exactness of the complex (F'(c)x,ajY(c)J 
for each x EX. 

There is a Delaunay cell a E Del( c) such that the relative interior of 
C(O, a- c) contains x. The Delaunay cell a is uniquely determined by 
the given x, which we denote amin(x, c). We note that for a E Del( c), x E 

C(O, a-c) if and only if amin(x, c) C a. Let Del(x, c) be the set of Delau
nay cells a E Del( c) such that amin(x) C a, and Del(k)(x, c)= Del(x, c)n 
Del(k). Let Star (x, c) be the union of a E Del(x, c), amin(x, c).l the affine 
linear subspace of XR passing through x, perpendicular to amin(x, c). 
Let Star.i(x, c) be the intersection Star (x, c) n a min (x, c).i, a Star.i (x, c) 
the boundary of Star.l(x, c). We note Star (x, c) =Star (amin(x, c)). Let 
B be a closed ball of dimension g- dimamin(x,c), aB its boundary. 
Since (Star.i(x, c), a Star.i(x, c)) is homeomorphic to (B, aB), we have 
an isomorphism 

if q = g- dim amin(x, c) 

(otherwise) 
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For the chosen and fixed x and c, we introduce a new complex (G., 8.) 
by 

k(O) · cr 
a- E Del(q) (x, c) 

8q ( E9 aacr) = E9 (:2:::: [cr : r]aa) r. 
aEDeJ(q) (x,c) rEDeJ(q-l) (x,c) rCa 

When cr ranges over Del(x, c), cr n O"min(x, c).i gives a cell decomposition 
ofStar.i(x,c). Since (G.,8.) istherelativechaincomplexof 

(Star.i(x, c), a Star.i(x, c)) 

with coefficients in k(O) whose degree is shifted by dim O"min (x, c), we 
have an isomorphism 

Hq(G., 8.) ~ Hq-dimam,n(x,c)(Star.i(x, c), a Star.i(x, c), k(O)) 

{
k(O) if q=g 

- 0 (otherwise) 

Suppose cr E Del(q). By the definition of G., 

Fg-q(c)x = k(O)~(x, c) {::::==} x E C(O, cr- c) n X 

{::::==} 0" min (X, C) C 0" 

{::::==} cr E Del(q)(x, c){::::==} k(O) · cr c Gq 

Hence (Gq, 8q) = (F9 -q(c)x, ag-q). It follows 

q . . {k(O) if q = 0 
H (F (c)x,a) = H9 -q(G.,8.) = 0 if q > O. 

This proves the exactness of (Y(c)x, a·) except at q = 0, which 
completes the proof of the lemma. We note H 0 (Y(c)x, a·)= R(c)x := 
k(O)~(x, c). Q.E.D. 

Definition 5.3. Let c = (eo, c1, · · · , cq) ( Ci =f. c1) be an ordered set 
of cellmates, and jcj = {co,c1,··· ,cq} an unordered set of cellmates. 
Then we define 

U(c) = U(co, c1, · · · , cq) := U(co) n U(c1) n U(c2) n · · · n U(cq), 

R(c) = R(co, cl, ... 'Cq) := r(U(c), Ou(c)) 
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(co,ct,··· ,cq) 
cj : cellmates 
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We denote the set {co,c1,··· ,cq} by lei. Let X(c) := X(lcl) 
Z(c1 -co)+···+ Z(cq- co) and we define 

- ±1 - ±1 

k(O)[X(c)] = k(O)[(~c1 ) , • • • , (~cq) ] (resp. 0) 
~co ~co 

if co, c1, · · · , Cq are cellmates ( resp. if co, c1, · · · , Cq are not cellmates). 

Remark 5.4. We denote the set { c0 , c1, · · · , Cq} by lei. Lemma 3.8 
shows that U (c) =I- 0 iff c0 , c1, · · · , cq are cellmates. Hence if c1 are cell
mates and if lei =an X for some a E Del, then by Theorem 3.10, O(a) 
is the unique closed G~-orbit in U(c)red with f(Oo(aJ) = k(O)[X(c)]. If 
co,c1, · · · ,cq are not cellmates, then the product f := I1~= 1 (~cj/~co) 
is nilpotent. This contradicts that f has the inverse in k(O)[X(c)]. 
This is why we define k(O)[X(c)] := 0 in the case. We also note that 
dima:::: rankX(c) if lei C a E Del, where equality may not be true in 
general. 

Lemma 5.5. Let 7 be a Delaunay cell and a(7) E 7 the hole of 7. 
Let c =(co, c1, · · · , cq)· Assume lei C 7. Then 

k(O)[X(c)] = k(O)[q(a,a(T))wa; a EX( c)]. 

Proof. By the assumption, II co- a(7)11 = llcJ- a(7)11, whence c;-
2(cj, a( 7)) = c6-2(co, a( 7)) for any j. Hence ~cj Nco = q(c1 -co,a(T))wcj-co. 

Q.E.D. 

Lemma 5.6. Let c =(co, c1, · · · , cq) with Ci cellmates, Star (c) := 
Star (lei). Let a E Del and C(c0 , a) 0 the relative interior of C(c0 , a). 
For any class (xmod X(c)) 

(i) there is x' E C(O, Star (c)- c0 ) 0 such that x' = x mod X( c). 
(ii) /fx'+c0 EC(c0 ,Star(c))0 andx'=x modX(c), thenthere 

is the unique Delaunay cell a such that lei c a and x' + c0 E 
C(co, a) 0 . 

(iii) The above Delaunay cell a is uniquely determined by the given 
class x mod X (c), independent of the choice of x' with x' + 
co E C(co,a)0 . 

We denote by amin(x, c) the unique Delaunay cell satisfying the con
dition (ii). 
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Proof. We recall Star ( c1) is the union of all the Delaunay cells 
containing Cj' which is bounded convex. Hence Star (c) = n;=O Star ( Cj) 

is a bounded convex subset of XR. Therefore C(c0 , Star (c)) is a convex 
closed subset of XR given by finitely many (affine-)linear inequalities: 

C(c0 , Star (c))= {x E XR; FJ(x) ~ 0 (j = 1, · · · , N)} 

where F1(c0 ) = 0, F1(q) ~ 0 (Vj, k). We note Fj(ck) > 0 (:3 k ~ 1) for 
each j because Star (c) is bounded with dim Star (c) = g. Since F1 ( x) is 
linear in x- c0 , F1(x) = (A1, x- c0 ) for some A1 E XR. For x EX, we 
set 

x N = x + N ( c1 - co) + N ( c2 - co) + · · · + N ( cq - co). 

If N is large enough, then 

This implies that x N +co E C( c0 , Star (c) )0 . It suffices to choose x' = x N 

for (i). 
Next we prove (ii). Suppose x' + c0 E C(c0 , Star (c)) 0 and x' = x 

mod X (c). Since Star (c) is the union of all the Delaunay cells CJ with 
lei c CJ and since Del is a polyhedral decomposition of XR, there is 
the minimal Delaunay cell CJ such that lei C CJ and x' + c0 E C(co, CJ). 
If x' +co ~ C(co, CJ) 0 , then x' + c0 E C(co, r) for a faceT of 0'. Since 
x' +co E C ( c0 , Star (c)) 0 , T intersects Star (c) 0 , hence the relative interior 
r 0 of T intersects the interior of Star (c). Hence T c Star( c), whence 
lei c T. This contradicts that CJ is minimal. This proves (ii). 

Finally we prove (iii). Suppose x' + c0 E C(c0 , 0'1 ) 0 and x" + 
co E C(c0 ,CJ")0 and that x' = x" = x mod X(c). Then x' = x" + 
l:j=1 aJ(cj-co) forsomea1 E Z. Sincex'+co+l:j=1 Nj(cj-co) (resp. 
x" +co+ l:j=1 Nj'(cj- co)) stays inside C(c0 , 0'1 ) 0 (resp. C(c0 , 0'11 ) 0 ) 

for any large Nj > 0 and Nj' > 0, C(c0 , 0'1 ) 0 and C(c0 , 0'11 ) 0 , two cones 
at c0 of Delaunay cells, have common relative interior points. It follows 
C( co, 0'1 ) = C( co, a") and dim 0'1 = dim 0' 11 • Since c0 E 0'1 C C( co, 0'1), 

co E 0'11 C C(co, 0'11 ), two Delaunay cells 0' 1 and 0' 11 have common relative 
interiors. Therefore 0'1 = 0' 11 • It is clear that 0'1 depends only on the class 
(xmodX(c)), and is independent of the choice of x EX. Q.E.D. 

Definition 5.7. Let c =(co,··· , cq) with c1 EX cellmates. Were
call I c I = {co, .. · , cq } . We define Del (c) to be Del (I c I). Let Del (g- k) (c) = 

Del( c) n Del(g-k). We define C(c, CJ) := C(lcl, CJ), which is the union of 
all the translates C(c0 , CJ) by a E X(c). See Definition 2.2. This depends 
only on the unordered set c, independent of the order of c1. 
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Lemma 5.8. Let eo, c1, · · · , Cq be cellmates, c =(eo,··· , cq) ordered 
cellmates, and lei unordered cellmates. Let 

R(c) := ffik(O) · ~(x, c) 
xEX 

for some nonzero monomials ~(x, c). Then 

(i) If there is some a E Del( c) such that x E C(O, a- c0 ) n X, 
then 

~(x, c) = ~(x, co). 

(ii) If there are a E X(c) and a E Del(c) such that x - a E 
C(O, a- co) n X, 

(iii) 

~(x, c) = q(a,a(u))wa . ~(x- a, eo). 

R(c) = 
u E Del( c), x EX/ X(c) 

X+ co E C(c,u) nx 

k(O)[X(c)]· ~(x,eo) 

Proof. Suppose that some a E Del( c) such that x E C(O, a-eo)nX. 
The element ~(x, c) is nonzero on U(c), hence it is nonzero on U(eo) 
because U(c) C U(c0 ). Thus it restricts to a nonzero element of R(eo) 
of weight x, which is ~(x, co). Hence ~(x, c) = ~(x, c0 ). This proves (i). 

Next we prove (ii). We choose T E Del such that lei CT. It is clear 
that 

R(c) := E9 k(O) · ~(x, c) = E9 k(O)[X(c)]· ~(x, c) 
xEX xEX/X(c) 

for some nonzero element ~(x, c) of weight x E X. Suppose that a E 
X( c), a E Del( c) and x- a E C(O, a- eo) n X. Let ( = q(a,a(u))wa E 
k(O)[X(c)]. Since ( is a unit in k(O)[X(c)] by Lemma 5.5, we have 
~(x, c) = ~(x - a, c)( for any x E X. It is equal to ~(x - a, c0 )( = 
~(x- a, c0 )q(a,a(u))wa by (i). This proves (ii). 

Next we prove (iii). We choose T E Del(c). We choose and fix any 
x EX and let x E X/X(c) be the class of x. We define 

R(c)x := E9 k(O) · ~(z, c)= k(O)[X(c)] · ~(x, c). 
zEx+X(c) 

If necessary, by multiplying ~(x,c) by a product of ~cj/~c0 , which 
is of the form qCa,a(r))wa for some a E X( c), we can choose e(x, c) · 
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q(a,a(r))wa E R(co) as a generator of k(O) [X( c)]-module k(O)[X(c)]~(x, c). 
Hence we may assume ~(x, c) E R(co) from the start. The element 
~(x, c) is nonzero on U(c), hence ~(x, c) = ~(x, co) by (i). Next for N 
large enough we choose XN instead of x with the notation of Lemma 5.6. 
Then by Lemma 5.6 there is 13 E Del such that XN E C(O, 13- co)0 n X, 
lei C 13 and 

R( c)x = k(O) [X( c)] · ~(x, c0 ) = k(O) [X( c)] · ~(xN, c0 ) 

where 

IIq ~c N 
~(xN, co) = ~(x, co) · ( (/-) . 

j=l <,co 

Hence X+ Co = XN +Co-N LJ=l (cj -co) E C(c, 13) n X. This proves 
(iii). Q.E.D. 

Definition 5.9. Let c = (c0 , .. · , cq) with c1 E X cellmates. We 
define £(c)= q. For a Delaunay cell 13 E Del(g-k)(c), we define 

pk,q = 

X+ co E C(c, u) n X 
f(c) = q 

k(O) · ~(x, c), 

lei CuE Del(g-k) 
f(c) = q 

u E Del(g-k) (c) 
f(c) = q 

pk,q(c) = EB ( EB F;•q(c)) . 
c: cellmates c: cellmates U' E Del(g~k) (c) 

f(c) = q f(c) = q 

where Fk·0(c) = Fk(c) forcE X. 
The definition of F;•q(c) is independent of the choice of c0 E lei. We 

note that if c = (c0 , c1 , · · · , cq) are not cellmates or if c = (c0 , c1 , · · · , cq) 
are cellmates but lei ct 13, then pk,q(c) = 0. For 13 E Del(g-k) we also 
define 

pk = ffi 00 pk,q 
a Wq=O a ' 

pk,q = 
a 

lei C u,f(c) = q 

Finally we define ak,q: pk,q(c) ____, pk+l,q(c) by 

aEDei(g-k) (c) rEDei(g-k-ll(c) JcJCrCa 
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where ¢" E Fj;,q(c), and the summation in RHS ranges over the set 
of all a containing a fixed T as a face of codimension one. We note 
ak+1,q . ak,q = o. 

Lemma 5.10. Suppose q 2: 1 and that eo,··· , Cq- 1 , Cq are cellmates. 
Let c' =(co,··· ,cq_ 1 ), c =(co,··· ,cq) and a E Del(g-k)(c). Let 

k(O) · ~(x, c') 
x+co E C(c',o-)nX 

k(O) · ~(x, c). 
x +co E C(c, o-) n X 

Then ~(x, c') = ~(x, c). 

Proof. It is clear from a E Del( c) that a E Del(c'). If x E C(O, a
c0 ) n X, then ~(x, c') = ~(x, c) = ~(x, c0 ) by Lemma 5.8. Otherwise we 
choose a E X(c') such that x-a E C(O,a-c0 )nX. Then ~(x-a,c') = 
~(x-a, c) = ~(x-a, c0 ). Let ( = q(a,a(c;))wa for the hole a( a) Ea. Since 
(is a unit in both R( c') and R( c), by the definition of generators ~(x, c') 
and ~(x, c) we have ~(x, c') = ~(x- a, c')( and ~(x, c) = ~(x- a, c)(. It 
follows ~(x, c') = ~(x, c). Q.E.D. 

Lemma 5.11. Let c = (c0 , · · · , cq) be cellmates with €(c) = q. Then 
the following sequence of k(O)[X(c)]-modules is exact, 

ao,q ag-l,q 
0---> R(c)---> F 0,q(c) ---> F 1,q(c)---> · · ·---> F 9 - 1,q(c) ---> Fg,q(c)---> 0. 

Proof. The proof is similar to that of Lemma 5.2. Imitating the 
proof of Lemma 5.2, for each class x EX/X( c), we choose by Lemma 5.2 
a Delaunay cell amin(x,c) E Del(c) such that x+co E C(co,amin(x,c))0 

and x Ex+ X(c), which is uniquely determined by x. In what follows, 
for each x we choose and fix the pair (x, amin(x, c)) such that x +co E 
C(co,amin(x,c))0 and x Ex+ X(c). Let g- k = dimamin(x,c). We 
note a E Del(c) iff amin(x,c) Ca. For any a E Del(c), we have x E 
C(O,a-co) becausex E C(O,amin(x,c)-co). Inwhatfollow, for any a E 
Del( c) we choose the same ~(x, c0 ) as a common generator of k(O)[X(c)]
modules Fj;(c)x and R(c). 

For a fixed x E X (or a fixed class x E X/ X( c)) we define 

Fj;(c)x := {k(O)[X(c)
0
]· ~(x, co) if x E C(O, a- co) n X 

(otherwise) 
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and 

"E Del(g-k) (c) 
x +co E G(c, <7) n X 

We also denote R(c)x by R(c)x. We define ak,q : pk,q(c)x ---> 

Fk+ 1,q(c)x by restriction of ak,q in Definition 5.9. Thus we have a 
complex of k(O)[X(c)]-modules with coboundary operators ak,q 

o ao,. 1 8 1 ·• a•- 2 ·• 1 a•- 1 ·• F ,q(c)x ---t F ,q(c)x ---t • • • ---t F 9 - ,q(c)x ---> Fg,q(c)x---> 0. 

The exactness of the sequence as well as R( c) ~ Ker( ao,q) is proved 
in a manner entirely analogous to Lemma 5.2. Q.E.D. 

Definition 5.12. Let Bed be the one cocycle associated with Lo: 

In order to compute Hq(Qo, L~) we define a complex nR" by 

nRq = E9 R(c) 
l(c) = q 

where f(co, · · · , cq) E R(c) and g(d0 , • · · , dq) E R(d) are identified iff 

lei = ldl, ~~0 j(co, · · · , cq) = ~'J0 g(do, · · · , dq)· 

We define the twisted coboundary operator 8~ : nRq---> nRq+1 by 

~~0 9(Co, CI, · • • , Cq+1) = ~~J(cb C2, · · · , Cq+l) 
q+1 

+ :~:) -1)3~~0 f(co, · · · , s, · · · , Cq+1)· 

j=1 

where f = 'L.J(eo,cb · · · ,cq) E nRq, g = 8~! E nRq+l. 

Definition 5.13. Now we define nFk,q and the twisted coboundary 
operator 8k,q · pk,q ---> pk,q+1 so that the definitions of 8k,q for Rq n ·n n . n n 
and nFk,q are compatible. Let c = (eo, ... , cq) be ordered cellmates, 
nFk,q (c) = pk,q (c). We define 

nFk,q = E9 nFk,q(c) 
l(c) = q 

where f(co, · · · , cq) E nFk,q(c) and g(d0 , · · · , dq) E nFk,q(d) are identi
fied iff 
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For f E nFk,q, we define 8~,q : nFk,q ~ nFk,q+l as follows. 
Let f = ffi !(eo, C1, • • • , Cq) E nFk,q and g = 8~,q f E nFk,q+l. Then 

e:;-og(co, Cl, ... 'Cq+l) = CJ(cl, C2, ... 'Cq+l) 
q+l 

+ 2)-I)ie:;-of(co,··· ,s,··· ,cq+l)· 
j=l 

If c = (co, c1 , · · · , cq) are not cellmates, then we have nFk,q(c) = 0 
and !(eo, c1, • · · , cq) = 0 by definition. We note 8~,q · 8~,q-l = 0. Since 
we have 8k,q( pk,q) C pk,q+l we have a complex nnu nu' 

Definition 5;14. For each positive integer n, we define a double 
complex (nC", ~~) by 

F k,q-
n -

Cp·- ffi pk,q 
n -'\J7n' 

k+q=p k+q=p 

nF:,q = EB (EBnF;,q[x]), 
uEDel(g-k) mod Y uEDel(g-k) mod Y xEX 

nF;'q[x] = E]1 nF;'q(c)[x] 
lei C u 

l(c) = q 

where nF;,q [x] is the weight x-part of nF;,q, and ak,q on nF;,q is defined 
to be Bk,q on F;,q . We easily check 

~p+l. ~p = 0 
n n ' 

ak+l,q . ak,q = o, 8k,q+l . 8k,q = o 
n n ' 

8k+l,q . 8k,q = 8k,q+l . 8k,q 
n n ' 

ak,q (nFk,q) c nFk+l,q, 8~,q (nFk,q) C nFk,q+l. 

We also check that 8k+l,q · res17 = res17 ·8k,q n r T n · 

The following theorem will be proved in the section 6. 

Theorem 5.15. For any a E Del(g-k), there is a natural isomor
phism 

{ 
ffi k(O) · [x] 

H q( pk,- >k,-) = £EunK mod Y n u 'Un n n 

0 

if q = 0 

if q > 0 
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where [x] denotes the monomial generator ~~~(x - nc, c) of weight x, 
which is independent of the choice of c E (]" n X. 

Remark 5.16. When Q0 is reduced, the cohomology group in The
orem 5.15 coincides with Hq(V((J"), L~ ® Ov(o-))· However there might 
be no subscheme of Qo which properly corresponds to (]" when Qo is 
nonreduced. 

Theorem 5.17. Let (Q 0 , Lo) be a PSQAS with a level G(K)-structure, 
the closed fibre of ( Q, L). Then 

(i) Hq(Qo, L~) = 0 for q 2: 1 and n 2: 1. 
(ii) dimH0 (Q0 ,L~) = n 9 JiKT for n 2: 1. 

Proof We note that the assertion (i) is always true for any PSQASes. 
We prove (i). First we consider the case where (Q0 , L 0 ) is to-

tally degenerate, in which case JiKT = IX/YI by [Nr99, Lemma 5.12, 
Lemma 7.11]. We use the complex (nC",~~) to prove Hq(Q0 ,L~) = 0. 

First we compute the spectral sequences for the above complex. By 
Theorem 5.15 

, k,q _ { EB ( EB k(o) · [x]) 
El - crEDei(g-k) mod: '!(-Ecrncif 

' kq It follows E 2 ' = 0 for q > 0. 
In view of Lemma 5.2 and Lemma 5.11 

" k q {nRq if k = 0 
E 1 ' = 0 if k > 0 

Therefore we have 

"E;,q = { Hq(n0R,J~) 

= { Hq(~o, L~) 

because U (c) is affine for any cellmates c. 

if k = 0 

if k > 0 

if k = 0 

if k > 0 

if q = 0 

if q > 0. 

Since the spectral sequences degenerate at E 2-terms, we see 

Hq(Q Ln) = "E0'q = Hq( C" ~- ) = 'Eq,o o, 0 2 n ' n 2 · 

Since the co boundary operator of the complex ( E/, J;.;0 ) is (re
garded as) homogeneous (see the proof of Theorem 6.11), it suffices to 
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compute the weight x-part of the cohomology' E~·0 [x] of the complex. 
Let Star ( ~) be the union of u E Del such that ~ E u and Star ( ~ )0 

the relative interior of Star(~). We see H 0 (Star (~ )0 , k(O)) = k(O) and 
Hq(Star(~)0 ,k(O)) = 0 for q > 0. It is also easy to see that the weight 
x-part of the complex ( Ei'0 , 8;;_0 ) is isomorphic to the cochain complex 
of Star ( ~ )0 indexed by Delaunay cells. Hence for q > 0 

Since Q is flat over R, we have dim H 0 (Q0 , L~) =dim H 0 (Q.,, L~) = 
nYIX/YI where (Q.,, L~) is the generic fibre of (Q, Ln). This completes 
the proof in the totally-degenerate case when Y C mX for some m ;:::: 3. 

Next we consider the case where Y is not a subgroup of mX for 
any m ;:::: 3. We note that (Q0 , Lo) has an etale covering (Q~, L~) = 
(Qo, Lo)/Y' where we chooseY' = 3Y. The second PSQAS (Q~, L~) 
satisfies the assumption Y' = 3Y C 3X, from which we infer that 
dimHq(Q~, (L~)n) = 0 for any q > 0. Since Hq(Q0 , L~) is a direct 
summand of Hq(Q~, (L~)n) = 0, we have Hq(Q0 , L~) = 0 for q > 0. 
Once we prove Hq(Q0 , L~) = 0 for q > 0, then since Q is flat over R, we 
have dimH0(Q0 ,L~) = dimH0 (Q.,,L~) = nYIX/YI = nYJTKT. Thus 
we complete the proof of the theorem in the totally degenerate case. 
The vanishing in the partially degenerate case follows easily from it by 
the standard argument. See [Nr99, Theorem 4.10]. Q.E.D. 

The following is a corollary to Theorem 5.17. 

Theorem 5.18. Let k(O) be a field of characteristic prime to IKI, 
and (Qo, Lo) be a PSQAS over k(O) with a level G(K)-structure. Then 

(i) dim H 0 (Qo, Lo) = JiKT 
(ii) H 0 (Q0 , L 0 ) is an irreducible G(K)-module of weight one. 

Proof. Since Hq(Q 0 , L 0 ) = 0 for q > 0 by Theorem 5.17, we see 
H 0 (Q0 , Lo) = r(Q, L) 0 k(O). Therefore r(Q, L) 0 k(O) is an irreducible 
G(K)-module of weight one in view of [Nr99, Lemma 5.12]. This proves 
the theorem. Q.E.D. 

Corollary 5.19. Let K be a finite symplectic abelian group and 
1r : (Q, L) ~ SQ9 ,K the universal family of PSQASes over SQg,K· 
Then 1r*(Ln) is locally free for any n > 0. 
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Proof Since SQ9 ,K is reduced by the definition of [Nr99, § 12], 
1r*(Ln) is locally free by Theorem 5.17 and [M74, Corollary 2, p. 51]. 

Q.E.D. 

§6. Proof of Theorem 5.15 

Lemma 6.1. Let a E Del(g) and c = (eo,··· , cq) cellmates such 
that lei C a. Suppose 0 E lei. Let fi (1 :::; j :::; N) be linear functions 
on XR such that C(O, a) = {x E XR; fj(x) ~ 0 (1 :::; j :::; N)}, fi(ck) = 
0 (Vj:::; n,Vk) and /j(cki) > 0 (Vj > n,3kj)· Then we have 

C(c, a) = {x E XR; fj(x) ~ 0 (Vj :::; n)}. 

Proof. First we note that /j (1 :::; j :::; n) is the set of all /j whose 
restriction to lei is identically zero. Let S = {x E XR; /j(x) ~ 0 (Vj :::; 
n)}. Let a E X(c)R and x E C(O, a). Then since fi is linear, /j(x+a) = 
/j(x) + /j(a) = /j(x) ~ 0 for j :::; n. Therefore C(c, a) C S. We shall 
prove the converse. Let (c) be the convex closure of lei. By the choice of 
fk (1 :::; k:::; N) there is an a E (c) such that /j(a) > 0 for any j ~ n+ 1. 
Hence if xES, then /j(x + Aa) = /j(x) + A/j(a) > 0 for a large A> 0. 
Hence x + Aa E C(O, a). Since Aa = A( a- 0), a E (c) and 0 E lei, we 
see Aa E X(c)R· This proves x E X(c)R + C(O, a)= C(c, a). Q.E.D. 

Lemma 6.2. Let a E Del(g), c = (eo,··· , cq) cellmates such that 
lei C a, and T(c) the minimal Delaunay cell containing lei. Then 
C(c,a) = C(T(c),a). 

Proof It should be cautioned that X( c) i=- X(T(c)) in general. We 
may assume co = 0 without loss of generality. Then by Lemma 6.1 
C(c, a) = {x E XR; /j(x) ~ 0 (Vj :::; n)}. Let H be a hyperplane of XR 
defined by /j = 0 for some j (1 :::; j :::; n). Then H n a is a face of a. 
Since lei c H n a, T(c) c H n a by the definition of T(c). Hence fi = 0 
on T(c), hence /j = 0 on X(T(c)). It follows that X(T(c)) c C(c, a). 
This proves the lemma. Q.E.D. 

Lemma 6.3. Let a E Del(g) and T and T1 faces of a with TnT' i=- 0. 
Then C(T, a) n C(T',a) = C(T n T',a). 

Proof We may assume 0 E T n T 1 without loss of generality. It 
suffices to prove C(T, a) n C(T', a) c C(T n T1 , a). By the proof of 
Lemma 6.1 we have linear functions fi (1 :::; j :::; N) such that 

C(O, a) = {x E XR; fi(x) ~ 0 (1 :::; j :::; N)}, 

C(O, T) = {x E C(O, a); /j(x) = 0 (1:::; j :::; n)}, 

C(O, T 1 ) = {x E C(O, a); /j(x) = 0 (1 :::; j:::; k and n + 1 :::; j:::; m)}. 
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It follows C(O, T n r') = {x E C(O, a); IJ(x) = 0 (Vj ~ m)}. Hence 

C(r n r', a)= {x E XR; fi(x) 2:: 0 (Vj ~ m)}. 

By Lemma 6.1 we see 

C(r, a) = {x E XR; /j(x) 2:: 0 (1 ~ j ~ n)}, 

C ( r', a) = { x E X Ri fJ ( x) 2:: 0 ( 1 ~ j ~ k and n + 1 ~ j ~ m)}. 

It follows that 

C(r, a) n C(r', a)= {x E XR; IJ(x) 2:: 0 (1 ~ j ~ m)}. 

This completes the proof. Q.E.D. 

Example 6.4. Let g = 2 and B(x, x) = x~+x~ for x = x1e1 +x2e2 E 

X. Let a= (0, et, e1 + e2, e2), T = {0} and r' = {e1 + e2}. In this case, 

C(r,a) = {x1e1 +x2e2 ;x1,x2 2:: 0}, 

C(r',a) = {x1e1 +x2e2;Xt,X2 ~ 1}. 

Hence C(r, a) n C(r', a)= a=/=- 0, while T n r' = 0. 
Next let p = (0, e1) and p' = (e2, e1 + e2). We note p n p' = 0. Then 

C(p,a) = {x1e1 +x2e2;x2 2:: 0}, C(p',a) = {x1e1 +x2e2;x2 ~ 1}, 

C(p, a) n C(p', a)= {x1e1 + x2e2; 0 ~ x2 ~ 1}. 

Thus Lemma 6. 3 is true only when T n r' is nonempty. 

Definition 6.5. We choose and fix a E Del(g). For each p E 

Del~-1), C(p, a) is a closed half-space of XR. Let C(p, a)c be the com
plement of C(p, a) in XR. Let 1i := 1i(a) be the set of all hyperplanes 
of XR of the form H(p) := p + X(p)R for some p E Del~-l). For any 
subset 'H' of 1i(a) we define 

D(1i') = ( n C(p, a)) n ( n C(p, a)c) . 
H(p)E'H\'H' H(p)E'H' 

We note that the expression in RHS could be redundant because the in
tersection of some C(p, a)'s could be a proper subset of another C(p', a). 
Let D(1i') be the closure of D('H') in XR and D(1i')0 the relative in
terior of D('H'). Each D(1i')0 is an open connected domain of XR. If 
1{' = 0, then D(1i') =a, while if 'H' = 1i(a), then D(1i') = 0. 

Let I'H(a)l be the union of all H(p) E 'H(a). The complement of 
I'H(a)l in XR is the disjoint union of D(1i')0 , while XR is the disjoint 
union of D(1i'). 
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Lemma 6.6. Let a E Del(g) and x E XR. Let Bo-(x) be the union 
of all faces T of a such that x E C( T, a )c. Then B" (x) is the union of 
all (g- I)-dimensional faces p of a such that x E C(p, a)c. 

Proof. Let 7* be a face of a. Then we remark that by the definition 
of Bo-(x), x E C(T*,a)c iff 7* C Bo-(x). LetT be a face of a. Then T 
is the intersection of all (g- I)-dimensional faces of a containing T. By 
Lemma 6.3 

C(T, a) = n C(p, a). 
pEDel~-l)(T) 

Hence x E C(T,a)c iff x E C(p,a)c (::Jp E Del~- 1 )(7)), and by the 
above remark, iff T c p c Bo-(x) (::Jp E Del~- 1 >). This proves the 
lemma. Q.E.D. 

Lemma6.7. LetaEDel(g)_ lfxEa, thenBo-(x)=0. 

Proof. 
Bo-(x) = 0. 

If x E a, then x E C(T,a) for any T E Del". It follows that 
Q.E.D. 

Lemma 6.8. Let a E Del(g) and x E XR \a. Then Bo-(x) is 
nonempty, connected and contractible. 

This is a corollary to the following more general lemma. 

Lemma 6.9. Let .6. be a bounded convex polytope in XR = R 9 , 1{ 

the set of one-codimensional faces of .6.. For a one-codimensional face 
p of .6. we define H(p) a hyperplane of XR spanned by p, C(p, .6.) the 
closed half space of XR bounded by H(p) containing .6., C(p, .6.)c the 
complement of C(p, .6.) in XR. For any point x of XR \ .6.. Let Bt:.(x) 
be the union of one-codimensional faces of .6. with x E C(p, .6.)c. Then 
Bt:.(x) is connected and contractible. 

Proof. To explain our idea let us first suppose that .6. is a closed 
ball of dimension g. Let 8.6. be the boundary of .6., and x a point outside 
of .6.. Set a source of light at x and light the ball up from x. Let Bt:.(x) 
be the part of 8.6. illuminated by the light. It is clear that Bt:.(x) is 
homeomorphic to a hemisphere, hence homeomorphic to a closed ball of 
dimension g - 1. 

Now we turn to the proof of our lemma. Let .6. be a convex polytope 
of dimension g, 8.6. the boundary of it and x a point outside of .6.. Set 
a source of light at x and light the polytope .6. up from x. Then for 
a one-codimensional face p of .6., x E C(p, .6.)c iff p is illuminated by 
the light whose source is set at the point x. Here we regard that p is 
not illuminated by the light if the source of the light is set at a point x 
on the hyperplane H (p) spanned by p. Since .6. is convex, the part of 
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aD. illuminated by the light is the union of p with X E C(p, b,.)C' that 
is, B ~ ( x). This proves that B ~ ( x) is homeomorphic to a hemisphere, 
hence it is a nonempty connected contractible subset of aD.. Q.E.D. 

Lemma6.10. Letcr E Del(g) andx E XR. Letrt(crnX) = N+l and 
D.( cr) an abstract N -dimensional simplex with vertices cr n X. For any 
subsetS ofcrnX, we define D..(S) to be the subsimplex of D..(cr) spanned 
by S, and B~(a-)(x) be the union of all D..(S) such that x E C(S, cr)c and 
S c cr n X. Then 

(i) B~(a-)(x) is the union of D..(pnX) for all (g -!)-dimensional 
faces p of cr such that x E C(p, cr )c. 

(ii) B ~(a-) (x) is nonempty, connected and contractible. 

Proof. Let e be cellmates and r( e) the minimal face of cr such that 
lei C T(e). LetS= lei. By Lemma 6.2, C(S, cr) = C(e, cr) = C(r(e), cr). 
Hence by Lemma 6.6 

D..(S) C B~(a-)(x) {=} x E C(S, cr)c 

{=} x E C(r(e), cr)c 

¢==? -r(e) C Ba-(x) 

¢==? T(e) C p C Ba-(x) (3p E Del~- 1)) 

¢==? S C p C B 17 (x) (3p E Del~- 1 )) 

¢==? D..(S) c D..(p n X) c B~(a-)(x) (3p E Del~- 1)). 

This proves (i). Next we prove (ii). By (i) B~(a-)(x) is the union of 
D..(p n X) such that p C Ba-(x). For simplicity we denote D..(p n X) by 
D..(p). 

Let p E Del~- 1 ) such that p C Ba-(x). Since D..(p) is an abstract 
simplex with vertices p n X, we have a natural map Trp from D..(p) onto 
p. Thus for any vertex P of p, we have a vertex of D..(p) mapped to P, 
which we denote by D..(P). Let p n X = { P0 , · · · , Pr }. Then the natural 
map Trp from D..(p) onto pis given by 

where t0 + · · · + tr = 1. When p ranges over the set of the faces contained 
in Ba-(x), the natural maps Trp glue together to give rise to a natural 
surjective continuous polytope map 1r : B~(a-)(x) ___, B 17 (x). We prove 
that any fibre of 1r is connected and contractible. Let p be the above 
Delaunay cell and P any point of p. Then the inverse image 1r-1(P) is 
the intersection of D..(p) with an affine linear subspace Hp :to Po +iiP1 + 
··· +trPr = P, (to+··· +tr = 1) in the (to,··· ,tr)-space Rr+1. The 
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simplex b.(p) is just the subset of Rr+l defined by to+···+ tr = 1 and 
0:::; tj :::; 1 for any j = 0, 1, · · · , r. Since b.(p) is convex, the intersection 
Hp n b.(p) = n- 1 (P) is connected and contractible. Since Ba(x) is 
connected and contractible, so is Bb..(a)(x). This proves (ii). Q.E.D. 

Theorem 6.11. Let x E X, a E Del(g-k) and let nF/;' be the 
complex defined in Definition 5.13. Let b.(a) be the abstract simplex 
with vertices a n X. Then 

Hq(nF:··[x], J~··) ~ Hq(C'(b.(a), Bb..(a)(::_ ))) 
n 

= { k(O) if q = 0 and~ E a 
0 otherwise 

Proof. Since the coboundary operator J~,q of the complex nFk,. 
is (regarded as) homogeneous in the sense we are going to explain, it 
suffices to compute the cohomology of the complex for a fixed weight 
X EX. 

Let f E npk,q and g = b~,q (f). Then by the definition of the 
coboundary operator J~,q we have the equality as 

~~0 g(co, c1, · · · , Cq+I} = ~~J(cl, c2, · · · , Cq+l) 

q+l 

+ ~) -l)j~~0 /(co, · · · , s, · · · , Cq+l), 

j=l 

which is homogeneous with regard to the weights X. 
Let a E Del(g-k). Let nF/;·q(c)[x] be the weight x-part of nF/;·q(c) 

in the above sense. For brevity we first consider the case ~ E a n ~. 
Let c = (co,··· , cq) be cellmates with lei Ca. Then ~(x- nco, c) = 

~(x- nco, co) by Lemma 5.10. We see that 

X X X X 
- E an-{===}- E C(c,a) n- ('Vc E an X) 
n n n n 

X X 
{===} - - c E C(O, a- c) n - ('Vc E an X) 

n n 
{===} x- nc E C(O, a- c) n X ('Vc E an X) 

{===} (x- nc) + c E C(c, a) n X ('Vc E an X). 

If ~ E a n ~, then ( x - nc) + c E C ( c, a) n X c C ( c, a) n X. Hence 

nF:·q(c)[x] = k(O) · ~(x- nc0 ,c) = k(O) · ~(x- nc0 ,c0 ) 
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by Definition 5.9. Hence we have 

lei C <7 

l(e) = q 
lei C <7 

l(e) = q 

253 

where A(c):" is the dual cochain of an abstract q-simplex A(c) with 
vertices lei and f(c) = q. Thus we see that the complex (F;'[x],Jk,.) 
is isomorphic to the standard cochain complex over k(O) of an abstract 
N-simplex A( a) with vertices an X. 

Let N =~(an X)- 1. We note that N could be different from the 
real dimension of a. Since the N-simplex A(a) is contractible to one 
point, we have 

where [x] denotes the (unique) monomial generator ~-:;~(x - nc, c) of 
weight x, independent of the choice of c (c E an X). This proves the 
theorem when~ E an~-

Now we consider the general case. For a E Del(g-k) we define 
H(a) :=a+ X(a) l8l R. Note that dimH(a) = g- k =dim a. First we 
prove that for any x E H(a) n X 

nF:·q(c)[x] = { 0k(O) · ~(x- nco, c) if ~ E C(c, a) 
otherwise 

where c = (eo,··· , cq)· In fact, nF:·q(c)[x] = k(O) · ~(x -nco, c) iff 
x- neo + c0 E C(c, a) by the definition of nF;,q. We also see 

x- neo + c0 E C(c, a) ~ x- neo E C(O, a- co)+ X(c)R 
X 

~--Co E C(O,a- Co)+ X(c)R 
n 
X 

~- E C(c,a). 
n 

Therefore nF:·q(c)[x] ~ k(O) iff~ E C(c, a). 
We recall the modified generator ~-;;0~(x- nco, c) = ~-;;0 ~(x- nco, co) 

is independent of the choice of both c0 E c and c, and it depends only 
on a (Lemma 5.10) because ~-;;0 ~(x - neo, eo) and ~-:;1 ~(x- nc1, c1) are 
identified in npk,q by Definition 5.13. 
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Let a E Del(g-k) and cellmates e such that lei C a. Then by 
Lemma 6.2 we see 

nF:'q(e)[x] = 0 {=::} :!:. E C(e, a)c {=::} :!:. E C(T(e), a)c 
n n 

X X 
{=::} T(e) C Bu(-) {=::}lei C Bu(-) 

n n 

where q = f(e), T(c) is the minimal face of a such that lei CT. It follows 
that 

Thus there is an isomorphism of k(O)-modules 

nF:'q[x] := EB nF:'q(e)[x] ~ Cq(~(a), Bt.(u)(;)) 
L(c) = q 
lei C cr 

It is easy to see that this induces an isomorphism between the com
plex nF;•[x] and the relative cochain complex C'(~(a),Bt.(u)(~)). By 
Lemma 6.10 if Bt.(u)(~) is nonempty, then Hq(~(a),Bt.(u)(~)) = 0 for 
any q. If Bt.(u)(~) is empty({=::}~ E a), then Hq(~(a),Bt.(u)(~)) = 
k(O) (resp. 0) for q = 0 (resp. q > 0). It follows that 

Hq(nF:•[x]) = Hq(C'(~(a),Bt.(u)(:!:.))) 
n 

= {k(O) if q = 0 and ~ E a 
0 otherwise . 

This completes the proof of Theorem 6.11, hence of Theorem 5.15. 
Q.E.D. 

Example 6.12. Here is an example. Let k = k(O), g = 2, X = 
Ze1 + Ze2 and B(x, x) = 2(x~- x 1x2 + x~) for x = x1e1 + x2e2 EX. 
Let 

Let a (resp. a') be the convex closure (co, c1, c2) (resp. (eo, c2, c3) ). 

Any Delaunay two-cell is a translate by X of either a or a'. Star (0) is 
the convex closure of Cj (j = 1, · · · , 6), which is a hexagon with the six 
vertices cj. 

There are essentially different three cases 

(i) xEa, 
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(ii) x E C(co, a-)\ a-, 
(iii) X E C(co, cl, 0") \ ui=O,l C(ci, 0"). 

In the case (i) Ba(x) = 0. In the case (ii) Ba(x) = (c1, c2). In the 
case (iii) Ba(x) = (co, c2) U (c1, c2). In the cases (ii) and (iii) Ba(x) is 
connected and contractible. 

§7. The E8 lattice 

In this section we recall the notation for E 8 [Bourbaki, pp. 268-
270]. Let Z8 be the lattice ofrank 8 with the standard inner product, e1 
(1 ::; j ::; 8) an orthogonal basis of it, and ( ~Z)8 the over lattice spanned 
by ~ej (1 ::; j ::; 8) with inner product induced naturally from that of 
Z8 . Then the sublattice X of ( ~ Z)8 is defined to be 

8 8 

{~:=xiei; 2xi E Z, Xi +xj E Z, LXi E 2Z} 
i=l i=l 

with bilinear form inherited from ( ~Z)8 . This is the lattice E8 . 

Let { CXj, j = 1, · · · , 8} be a positive root system 

1 
0:1 = 2(e1 + e8- (e2 + · · · + e7)), 

0:2 = e1 + e2, CXj = ej-1 - ej-2 (3 :S: j :S: 8) 

The maximal root cx0 of the root system is given by 

We define mj (1 ::; j ::; 8) to be the multiplicity of CXj in cxo. Thus 
for instance, m 1 = 2, m2 = 3 and m3 = 4. The root diagram of CXj 

(1 ::; j ::; 8) is E8 , while the root diagram of CXj (0 ::; j :S: 8) is the 

extended Dynkin diagram E8 given below 

E8 
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We also define the dual roots Wk EX by (aj,wk) = Ojk· Hence we 
have 

1 
w1 = 2es, w2 = 2(e1 + e2 + · · · + e1 + 5es), 

1 
W3 = 2( -e1 + e2 + · · · + e7 + 7es), W4 = e3 + e4 + · · · + e7 + 5es, 

w5 = e4 + · · · + e7 + 4es, w6 = e5 + · · · + e7 + 3es, 

W7 = e6 + e7 + 2es, ws = e7 + eg. 

For any a EX (# 0) we define a hyperplane H0 of X 0 R to be 
Ha = {x E XR; a(x) = 0} and the linear transformation T0 of X 0 R 
to be the reflection with regards to H 0 : 

be 

2(a, x) 
T0 (x) =x- -(-)a. 

a, a 

If a is a root of Es, then T0 (x) = x- (a,x)a. We also define To to 

To(x) = x + (1- (ao, x))ao. 

Then To is a reflection of XR with regards to the hyperplane Ho := 
{x E XR;(a0 ,x) = 1}. The seven reflections To.; (1::; j::; 7) generate 
the Weyl group W(Es), while the eight reflections To and To.; (1 ::; j ::; 7) 

generate the affine Weyl group W(Es). The order of W(Es) equals 
214 · 35 ·52 · 7, while W(E8) is of infinite order. We note that To.; keeps 
Wk (k #= j) invariant because (aj,wk) = 0. 
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The diagram D7 is a subdiagram of E 8 obtained by deleting o:1. 
Therefore W(D7) is a subgroup of W(E8 ) naturally. Similarly since A 7 
is Es with 0:2 deleted, W(A7) is a subgroup of W(E8 ). For a group 
W acting on X, let Stabw(w) (resp. Stabw(w,w')) be the stabilizer 
subgroup of W of w E X (resp. of both w and w' E X). Then 
Stabw(Es)(~1 ) = W(D7) where D7 = Es \ {o:I} because by [Bourbaki, 
Ch. 5, Prop. 2. p. 75] it is generated by the reflections ra with roots 
o: orthogonal to w1. Similarly we see Stabw(Esl(7) = W(A7) where 
A1 = Es \ {o:2}. 

§8. Elements of the lattice E8 

Let X be the lattice Es, a, bE X, (a, b) the bilinear form of E 8 and 
a2 = (a, a). We call ..JO:i the length of a, which we denote llall- An 
element a EX is called a root (of E8 ) if a2 = 2, equivalently, the length 
of a equals v'2. 

Lemma 8.1. Any element a EX with a2 = 2 is one of 240 roots: 

(i) ±ei ± e1 (1 :::; i < j :::; 8), 
(ii) HL:~=l ( -1 t(j) e1) with L:1 v(j) even. 

Any of them is W(Es)-equivalent. 

Proof. Any root o: E X with o:2 = 2 is one of (i) and (ii). The 
number of these elements totals 112 + 128 = 240, as is seen easily. Let 
o:o = e7 + es be the maximal root. Then Stabw(Es)(o:o) = W(E7) by 
[Bourbaki, p. 75], whence the number of roots is equal to IW(E8 )/W(E7 )I 
( = 214 .35 .52 · 7/210 · 34 · 5 · 7 = 240). Hence the set of roots is transitive 
under W(E8 ). Q.E.D. 

Lemma 8.2. Any element a E X with a2 = 4 is one of the following 

(i) ±2ek (1 :::; k:::; 8), 
(ii) ±ei ± ej ± ek ± ec (1 :::; i < j < k <I!:::; 8), 

(iii) ±~(3ei + L:#i( -1)v(j)eJ) with L:#i v(j) odd. 

Any of them is W(E8 )-equivalent. 

Proof. Let ao = 2es. By [Bourbaki, p. 75] Stabw(Es)(ao) = W(D7), 
the subgroup of W(Es) generated by ra3 (j 2: 2) because (ao, o:J) = 0 
for j =/:: 1. Hence the orbit W(E8 ) · a0 consists of 2160 elements where 
2160 = IW(E8 )/W(D7)1. Meanwhile the number of the elements of type 
(i), (ii) and (iii) are respectively 16, 1120 = 24 . m and 1024 = 27 . m 
which totals 2160. This shows that the above 2160 elements are in the 
single W(Es)-orbit of ao. Q.E.D. 

Lemma 8.3. Any element a E X with a2 = 6 is one of the following 
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(i) ±e; ± e1 ± 2ek fori, j, k all distinct 

(ii) 2:~= 1 ±e;k (1 ~ ik ~ 8) for ik all distinct 
(iii) ±~(3e; + 3ei + Lk#i,j( -1)v(k)ek) with Lk#i,j v(k) even. 

Any of them is W(E8 )-equivalent. 

Proof Let ao = e6+e7+2es. By [Bourbaki, p. 75] Stabw(Es)(ao) = 
W(A 1 x E6), where the subgroup of W(E6 ) is generated by r011 (1 ~ j ~ 
6) and W (A 1 ) is generated by r 018 because ( a0 , a 1) = 0 for j =/= 7. Hence 
the orbit W(E8 ) · a0 consists of IW(E8 )/W(A1)IIW(E6)1 = 214 · 35 ·52 · 

7/28 · 34 · 5 = 6720 elements. Meanwhile the number of the elements of 
type (i), (ii) and (iii) are respectively 1344 = 23 . m . G)' 1792 = 26 . m 
and 3584 = 27 · m which totals 6720. This shows that the above 6720 
elements are in the single W(E8 )-orbit of a. Q.E.D. 

Lemma 8.4. Any pair of a, bE X with a 2 = b2 = 2 and (a, b) = 0 
is W(E8 )-equivalent. 

Proof We may assume a= e7 + e8 (= o:0 ). Then bE X satisfying 
the conditions b2 = 2 and (a, b) = 0 are one of the following 

(i) ±e; ± e1 for i, j E {1, 2, 3, 4, 5, 6} and i < j, 
(ii) ±(e7- es), 

(iii) ~(L~=1 (-l)v1 ej) with 2:1 vi even, V7 + vs = 1. 

One counts the number of elements of ( i), ( ii) and (iii) respectively as 
60, 2 and 64. These total126. Meanwhile let f3 = -e7 + e8 . Then f3 is a 
root with (o:o,/3) = 0 and Stabw(Es)(o:o) = W(E7), Stabw(Es)(o:o,/3) = 
Stabw(E7 )(f3) = W(D6) by [Bourbaki, p. 75] because the subspace of X 
orthogonal to o:0 and f3 is spanned by a1 (2 ~ j ~ 7). Let F be the 
subset of roots b of E8 with (a, b) = 0. We want to prove that there is u E 

W(Es) such that a= u(o:0 ) and b = u(f3). Since a is in the W(E8 )-orbit 
of o:o by Lemma 8.1, we may assume a= o:o. We see I Stabw(Es)(o:o) · 
/31 = I Stabw(E8 )(o:o)/ Stabw(E8 )(o:o, /3)1 = IW(E7 )/W(D6)1 = 210 · 34 · 

5 · 7/25 · 6! = 2 · 32 · 7 = 126. It follows that the orbit Stabw(Es)(o:o) · f3 
consists of 126 elements. Hence Stabw(Es) ( o:0 ) acts transitively on the 
set F. This completes the proof. Q.E.D. 

Lemma 8.5. Any pair of a, bE X with a2 = 4, b2 = 2 and (a, b)= 0 
is W(Es)-equivalent to a= 2es and b = -e6 + e7. 

Proof We may assume a = 2e8 by Lemma 8.2. Let F be the set 
of all b with b2 = 2 and (a, b) = 0. It is the set of all roots of D7 , 

F = {±e; ± e1 ; 1 ~ i < j ~ 7} where D7 = E 8 \ {o:l}. It follows 
Stabw(Es) (2es) = W(D7 ). Since W(D7) acts on F transitively, so acts 
Stabw(Es) (2es) on F. This proves the lemma. Q.E.D. 



Stable quasi-abelian schemes 259 

Lemma8.6. Anypairofa,b EX witha2 = 4, b2 = 2 and(a,b) = 1 
is W(Es)-equivalent to a= 2es and b = ~(E;=l eJ)· 

Proof. We may assume a = 2es by Lemma 8.2. Let F be the set 
of all bE X with b2 = 2 and (a, b) = 1. Then F = H(E;=l ( -1)vieJ + 

es); E;=l Vj even}. We see IFI = 64. Let b = ~(e1 + e2 + · · · +e8 ). 

Then we see Stabw(Es)(a) = W(D7) and Stabw(Es)(a,b) = W(A6) 
where A6 = D1 \ { a2} because the subspace of X orthogonal to a and b 
is spanned by a1 (3:::; j :::; 8). It follows that the orbit Stabw(Es)(a) · b 
consists of I Stabw(Es)(a)/ Stabw(Es)(a, b)l = IW(D7 )/W(A6)1 = 26 · 
7!/7! = 64 elements. This implies that the action of Stabw(Es)(a) on F 
is transitive. Q.E.D. 

Corollary 8.7. Any pair of a,b E X with a2 = 4, b2 = 2 and 
(a, b) = 1 is W(Es)-equivalent to a= es + e6 + e7 + es and b = e4 + eg. 

Lemma 8.8. Any pair of a, bE X with a2 = 4, b2 = 2 and (a, b)= 2 
is W(Es)-equivalent to a= 2es and b = e7 + eg. 

Proof. We may assume a= 2es by Lemma 8.2. Let F be the set of 
all bE X with b2 = 2 and (a, b) = 2. Then F = {±e1 + e8 ; 1 :::; j :::; 7} 
and IFI = 14. Let b = e7 + es. Then b E F and Stabw(Es)(a) = 
W(D7), Stabw(Es)(a, b)= W(D6) where D6 = D1\ {as}. It follows that 
the orbit Stabw(Es) (a) · b consists of I Stabw(Es) (a)/ Stabw(E8 y(a, b)l = 
IW(D7)/W(D6)1 = 26 · 7!/25 • 6! = 14 elements. This implies that the 
action of Stabw(Es)(a) on F is transitive. Q.E.D. 

Lemma 8.9. Let {ak,ak+b··· ,a7} (1:::; k:::; 7) be a set of roots 
such that (ai,a1) = 1 for any i of=j. Up to W(E8 ), 

(i) if k 2: 2, it is equivalent to the set { ek + es, ek+l + es, · · · , e7 + 
es}. 

(ii) if k = 1, then it is equivalent to either { e1 +es, e2+es, · · · , e1+ 
es} or { -e1 + es, e2 + es, · · · , e7 + es}. 

Proof. We prove the lemma by the descending induction on k. The 
case k = 7 follows from Lemma 8.2. Let {31 = e1 + e8 (1 :::; j :::; 7). Next 
we consider the case k = 6. We may assume a7 = {37 by Lemma 8.2. Let 
F be the set of all a with (a, a) = 2 and (a, a7) = 1. Then IFI =56. Then 
f36 E F. Since Stabw(Es)(f37) = W(E7) and Stabw(E7 )(f36) = W(E6) 
where E6 = Es \ {a6,a7}, we see W(E7) · !36 = IW(E7)/W(E6)1 = 
210 . 34 . 5 . 7 j27 . 34 . 5 = 56. This shows that W(E7 ) acts transitively 
on F. This proves the lemma fork= 6. 

Next we consider the case k = 5. We may assume a6 = {36 and 
a7 = {37 by the induction hypothesis. There are exactly 27 roots a 
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with (a,/35) (a,/37) = 1. Meanwhile Stabw(E6 )(/35) = W(D5) and 
JW(E6 )/W(D5)1 = 27 · 34 · 5/24 · 5! = 27 where D5 = {aj; 1::::; j::::; 5}. 
This proves the case k = 5. 

There are exactly 16 roots a with (a, (31) = 1 (j = 5, 6, 7). Mean
while Stabw(D5 J(/34) = W(A4) and jW((D5)/W(A4)j = 24 · 5!/5! = 16 
where A4 = {a1 ; 1 ::::; j ::::; 4}. This proves the case k = 4. Sim
ilarly there are exactly 10 roots a with (a, (31) = 1 for 4 ::::; j ::::; 7, 
while Stabw(A4 J(/33 ) = W(A2 x AI) and jW(A4)jW(A2 x Al)J = 10 
where A2 x A1 = {a1,o:2,a3 }. This proves the case k = 3. When 
k = 2, there are exactly 6 roots a with (a,/31) = 1 for 3 ::::; j ::::; 7, 
and Stabw(A2 xA1)(!32) = W(Al) and jW(A2 x Al)/W(Al)l = 6 where 
A1 = { o:1}. Hence the case of k = 2 is proved. 

If k = 1, we may suppose a1 = (31 for 2 ::::; j ::::; 7 by the induction 
hypothesis. Then there are three choices a 1 = ±e1 + es and ~ ( e1 + · · · + 
es). Since A1 = {o:l}, W(Al) is generated by rn 1 and rn 1 ( -e1 + es) = 
-e1 + es, rn 1 (e1 + es) = ~(e1 + · · · + es). This shows that there are two 
W(Al)-orbits. This completes the proof of the lemma. Q.E.D. 

Corollary 8.10. Any sublattice As-k of Es is W(Es)-equivalent 
to the sub lattice { ak, · · · , as, -ao} if k ~ 2. If k = 1 and if there 
is no root orthogonal to the sublattice, then it is W(Es)-equivalent to 
{ 0:3, a4, · · · , as, -a0 }. If k = 1 and if there is a root orthogonal to the 
sublattice, then it is W(Es)-equivalent to {a2, a4, · · · , as, -a0 }. 

Proof. Let Xk be the sublattice of X = Es isomorphic (as a lat
tice) to As-k· Hence there is a basis b1 of Xk (k ::::; j ::::; 7) such 
that (b1, b1+l) = -1, (b1, b1) = 2 and (bi, b1) = 0 (otherwise). Let 

/7 = -b7 and rJ = - L~=J be (k::::; j ::::; 7). We note that b7 = -17 and 
bi = rj+l -11 (k::::; j::::; 6). Then we see (ri,/i) = 2 and (ri,IJ) = 1 
for any i =I j. Hence if k ~ 2, the ordered set {r1 ; k ::::; j ::::; 7} is 
W(Es)-equivalent to { ek + es, ek+l + es, · · · , e7 + es} by Lemma 8.9. 
It follows that the ordered set {b1 ; k ::::; j ::::; 7} is W(Es)-equivalent to 
{ ak+2, ak+3, · · · , as, -o:o}. When k = 1, then the ordered set { rJ; k ::::; 
j ::::; 7} is W(Es)-equivalent to either {e1 + es, e2 + es, · · ·, e7 + es} or 
{ -e1 +es, e2+es, · · · , e7+es} by Lemma 8.9. It follows that the ordered 
set {b1 ; 1 ::::; j ::::; 7} is W(Es)-equivalent to either { 0:3, a4, · · · , as, -ao} 
or {a2,a4, ···,as, -o:o}. This proves the corollary. Q.E.D. 

Lemma 8.11. For a given set { a1, a 2 , · · · , a 7 } as in Lemma 8. 9 
there are at most two elements w E X such that w 2 = 4 and ( w, a1) = 2 
for any j::::; 7. IfaJ = e1+es (1 ::::; j::::; 7), then w = 2es. Ifal = -e1 +es 
and aj = e1+es (2::::; j::::; 7), then w = 2es orw = ~( -e1 +e2+· · ·+3es). 
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Proof It suffices to prove the lemma up to W(E8 )-equivalence. 
Hence by Lemma 8.9 we may assume a1 = ±e1 + es and aj = ej + es 
(j 2: 2). In either case w = 2es satisfies the conditions. If a1 = -e1 + es 
and aj = ej+es (j 2: 2), then w = !( -e1 +e2+· · ·+3e8 ) also satisfies the 
conditions. Suppose w satisfies the conditions. Let s = w- a1. It follows 
from (w, w) = 4 that (s, s) = 2. Moreover (s, aj) = 1 for any j:::; 7, which 
implies s = ±e1 + es or s = !(el + · · · + es). Hence if a1 = e1 + es, 
then s = -e1 + es and w = 2es. If a1 = -e1 + es, then s = e1 + es or 
s = !(el +· · ·+es). Therefore w = 2es or!( -e1 +e2+· · +3e8 ). Q.E.D. 

We note that if we let Sj := w - aj (1 :::; j :::; 7) in Lemma 8.11, 
then Sj satisfies (sj, sk) = 1 + 8jk and (sj, ak) = 1- 8jk· We call a EX 
primitive if a is not an integral multiple of any element of X. 

Lemma 8.12. There are 17280 primitive elements a E X with 
a2 = 8. Any element a EX with a2 = 8 is one of the following 

(i) L:!=1(-1)v(ik)eik + (-l)v(m)2em (ik,m all distinct), 

(ii) L:~= 1 (-1) 11 (ilei with L:~= 1 v(i) odd, 
(iii) ±!(Li#( -1)v(i)ei + 5ek) with Li¥k v(i) even, 

(iv) !(Lifj,k,e( -1)v(i)ei) + !(Li=j,k,e( -l)v(i)ei) with L:~= 1 v(i) 
odd. 

Any of them is W(Es)-equivalent. 

Proof Let Stabw(Es) (w2) be the stabilizer subgroup of w2. By 
[Bourbaki, p. 75] it is the subgroup of W(E8 ) generated by ra (a EX) 
with a 2 = 2 and (w2, a) = 0. The roots orthogonal to w2 is the root 
system A1 spanned by aj for j =I 2. Thus Stabw(Es)(w2) is W(A7). 
Hence the orbit W(Es) · w2 consists of IW(Es)/W(A7)1 = 17280 ele
ments. Meanwhile if a2 = 8 and a E X, then either a = 2b for some root 
b E X or a is primitive. If b is a root and it is not in the lattice Z8, then 
b equals !(L:~=l (-l)v(i)ei) with L:~= 1 v(i) even. Hence if a is primitive 
and a2 = 8, then it is one of the elements of type (i)-(iv). The number 
of elements of type (i), (ii), (iii) and (iv) are respectively 8960, 128, 1024 
and 7168, which totals 17280. This shows that the above l7280elements 
are in the single W(Es)-orbit of w2. Q.E.D. 

Lemma 8.13. Any pair of a, bE X with a 2 = b2 = 4 and (a, b)= 3 
is W(E8 )-equivalent. 

Proof We may assume a= 2es by Lemma 8.2. Let F be the set 
of all b with b2 = 4 and (2e8 ,b) = 3. Then F = {!(L:}=1(-1)11(ilej + 

3es); L:}=1 v(j) even} and IFI = 64. Let bo = !(L:}=1 ej + 3es). Then 
we see W(D7) = Stabw(Es)(2es) and W(AB) = Stabw(Es)(2es,bo). 
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Thus the orbit W(D7) · bo consists of IW(D7)/W(A6)1 = 26 · 7!/7! = 64 
elements. This proves that W(D7 ) acts transitively on F. Q.E.D. 

Lemma 8.14. Any pair of a, b E X with a 2 = 4, b2 = 8 and 
(a, b)= 5 is W(Es)-equivalent. 

Proof. We may assume a = 2e8 by Lemma 8.2. Let F be the set 
of all b with b2 = 8 and (2es, b) = 5. Then F = HC~::::;=l ( -1Y(Jlej + 
35es) ; L::;=l v(j) even} and IFI = 64. Let bo = ~ (L::;=l ej + 5es). Then 
we see W(D7) = Stabw(Es)(2es) and W(A6) = Stabw(E8 J(2es,bo). 
Thus the orbit W(D7) · bo consists of IW(D7)/W(A6)1 = 26 · 7!/7! = 64 
elements. This proves that W(D7 ) acts transitively on F. Q.E.D. 

Table 1. The elements of Es 

a2 W(Es) number 

a 2 = 2 (root) transitive 240 

a2 = 4 transitive 2160 

a 2 = 6 transitive 6720 

a 2 = 8 (prim. ) transitive 17280 

a2 = 8 (not prim.) transitive 240 

Table 2. The pairs of E 8 elements 

a,b W(Es) 

a2 = b2 = 2, ab = 0 transitive 

a 2 = 4, b2 = 2, ab = k (k = 0, 1, 2) transitive 

a 2 = 4, b2 = 4, ab = 3 transitive 

a 2 = 4, b2 = 8, ab = 5 transitive 

Ak C Es (2 :::; k :::; 6) transitive 

Example 8.15. Examples of the pairs in Table 2 are given as fol
lows. The pair a = e1 + e2, b = e3 + e4 resp. a = e1 + e2 + e3 + 
e4, b = £4-k + £5-k satisfies satisfies a2 = b2 = 2 and ab = 0, resp. 
a 2 = 4, b2 = 2 and ab = k (k = 0, 1, 2). 
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The pair a= e1 +ez+e3+e4, b = ez+e3+e4+es satisfies a 2 = b2 = 4 
and ab = 3, while the pair a= e1 +ez+e3+e4, b = 2e1 +ez+e3+e4+es 
satisfies a2 = 4, b2 = 8 and ab = 5. Similarly an example of Ak for 
2 :::; k :::; 6 is given by the sublattice of E 8 spanned by a1 (9- k :::; j :::; 8). 

However we note that for k = 7 there are two W(E8 )-orbits of 
sublattices spanned either by (1) a1 (3:::; j:::; 8 and j = 0) or by (2) a1 
( 4 :::; j :::; 8 and j = 0, 2). See Lemma 10.3. 

§9. Decorated diagrams and the Wythoff construction 

The purpose of this section is to recall the notions of decorated 
diagrams of a Dynkin diagram from [MP92], and then the Wythoff con
struction, due to Coxeter, of Delaunay cells associated with decorated 
diagrams. 

Definition 9.1. A decorated diagram ~ of E8 is by definition a 
decomposition of Es into two subdiagrams ~Vor and ~Del such that 

(i) IEsl = 1~1 =~~Vorl U I~Del1 
(ii) ~Vor is a subdiagram of Es with square nodes D, crossed 

unless the square node is connected to ~Del by an edge, 
(iii) ~Del is a connected subdiagram of Es with circle nodes con

taining the node 8 

where I~AI is the support of ~A, that is, the set of nodes and edges. 

Definition 9.2. We define the Voronoi cell V(q) by 

V(q) ={a E XR; IIY- all ?: llq- all for any y EX} 

for q E X. A Voronoi cell V is defined to be a face of V(q) for some 
qE X. 

Let Ho be the reflection hyperplane of r0 (see section two), that is, 
the hyperplane of XR defined by Ho = {x E XR; (ao,x) = 1}. Define 
F to be the closed domain 

F = {x E XR; (a1,x)?: 0 (1:::; j:::; 8), (ao,x):::; 1} 

and define F0 to be the intersection ofF and Ho. 

We quote a few basic facts from [MP92, pp. 5095 and section 4]. 

Lemma 9.3. (i) F is the convex closure of the origin 0 and 
'::,ii (1 :::; i :::; 8). 

(ii) F is a fundamental domain for W(Es) in the sense that 

(a) XR is the union ofwF (w E W(Es)), 
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Fig. 1. Decorated diagrams 

(b) if x E F and wE W(Es), then wx E F {:=:::} wx = x, 
(c) if x E F, then StabW(Es)(x) is generated by the reflec

tions with regards to the walls {=one-codimensionalfaces) 
ofF containing x. 

(iii) The Voronoi cell V(O) is the union of wF (wE W(Es)). 
(iv) Any Voronoi cell V is the intersection of all V(q) which con

tains V. 
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The Wythoff construction of Delaunay cells due to Coxeter is de
scribed as follows: Let ~be a decorated diagram of Es. Let s~ (resp. 
s,;;.) be the set of nodes of Es contained in ~Vor (resp. ~Del\ {-no}). 
Let Wa,~ be the reflection subgroup of W(Es) generated by ro and ra 
( n E S_;;.). Then vg is defined to be the convex closure of ~ ( ni E S ~) 
and V~ the minimal face of V(O) containing vg. Hence V~ is the inter
section of all V(q) such that vg c V(q), while vg = V~ n F0 . We define 
D~ to be the convex closure of Wa,~(O). Since any Delaunay cell is the 
convex closure of some points of X, this implies that the Delaunay cell 
D~ is the convex closure of all q with q E Wa,~(O) n X. 

For instance, let~= ~2 • Then ~Voris the disjoint union of A2 and 
A1 with square nodes, crossed or uncrossed, while ~Del is A6 with the 
extreme node 8. Thus s~ = { nt, n2, n3} and s,;;. = { n4, ns, n6, n7, ng}. 

The following theorem is a summary for the Wythoff construction. 
See [MP92, Lemma 3-Lemma 5 and (4.29)-(4.31), pp. 5108-5111]. 

Theorem 9.4. Let~ be a decorated diagram of Es. Then 

(i) V~ is a Voronoi cell of Es, whileD~ is a Delaunay cell of Es 
dual to V~ in the sense that D ~ is the convex closure of all 
a EX such that lla- Yll = minbEX lib- Yll for any y E V~. 

(ii) V~ is the intersection of all V(q) with q E Wa,~(O), whileD~ 
is the convex closure of all q with q E Wa,~(O). 

(iii) If~= ~k or ~L then dim v~ = k and dimD~ = 8- k. 
(iv) Any Delaunay cell a of Es is a W(Es)-transform of D~ for a 

decorated diagram ~ of Es. If a contains the origin, then it 
is a W(Es)-transform of D~. 

(v) For a subset A of XR, we define 

Stabw(Es)(A) ={wE W(Es);wA c A}, 

Stabw(Es)(A) ={wE W(Es); wAc A}. 

Let W,i (resp. WJ.} be the subgroup of W(Es) generated 
by raj with nj E S_;;. (resp. by raj with nj orthogonal to both 
S_;;. and no). Then 
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9.5. Wythoff construction for E8 

In this subsection we give examples of the Wythoff construction for 
Es. Let ho = 2es, hi = ei + es and his-j = -ei + es (1 :::; j :::; 7). We 
recall WI = 2es and w2 = ~(ei + e2 + · · · + e7 + 5es). 

9.5.1. Dl:l.A = D(':!f ). Let ~ = ~fi. Then we see ~Vor = 0 and 
vl:l. = {'='f}. First we note Toc·n = ~1 , hence ToE StabW(Es)('='f). 
The stabilizer subgroup Stabw(Es) ( T) is the reflection subgroup of 

W(.Es) generated by To and Ta with (a,wi) = 0, hence it is gener
ated by To and TOI.j (j = 2, ... ,8). We note wa,l:l.A = StabW(Es)('T) 
and Stabw(EsJ(':!f) = W(D7) where D7 = Es \{ad because it is 
generated by T a with roots a orthogonal to WI, hence it is generated 
by Tai (j = 2, · · · , 8). Since (a0 , hj) = 1 for any 1 :::; j :::; 14 and 
j # 7, 8, we have To(hj) = hi, while To(h7) = 0, To(hs) = ho. Let 
8 = {0, ho, hi, his-j; 1 :::; j :::; 7}. Then To(8) = 8. 

As is well known, W(D7 ) is a semi-direct product of (Z/2Z)6 and 
87. There is a natural surjection 1r : W(D7) -+ 87. Let a E W(D7 ). 
Then 1r(a) E 87. Let hi = ei + es (1 :::; j :::; 7). For a E W(D7 ), 
a(es) = es, a(ej) = ( -1) 11(1r(a)(j))e1r(a)(j) with I:J=I v(1r(a)(j)) even. 
For instance, for 3:::; k:::; 8 we have Tak (ek-I) = ek-2, Tak (ek-2) = ek-I 
and T ak ( ei) = ej (otherwise). Therefore T ak ( 8) = 8 for any 2 :::; k :::; 8. 
It follows that W(D7 )(8) = 8. Hence D('='f) is the convex closure of 
W(D7)(8) = 8. This can be shown directly as we see in Lemma 10.2. 

9.5.2. Dl:l.5 = D(~ ). Let ~ = ~~. Then we see ~Vor = 0 and 
Vl:l. = {~ }. The stabilizer group Stabw(EsJ(T) = W(A1) because 
it is generated by Ta with (a,w2) = 0, hence it is generated by Taj 
(j = 1,3, · · · ,8). We also see Wa,l:l. = StabW(Es)(T) is generated by To 

and Stabw(Es)(T)· Let go= ~(ei +e2+" ·+es) and 8 = {O,go, hi (1:::; 
j :::; 7)}. Then To(go) = Tak (go) = go (3 :::; k :::; 8). We also see 
Ta 1 (h!) =go, Ta1 (go) = hi and Ta 1 (hj) = hj (otherwise). Though 
{ak (3:::; k:::; 8)} = A6, W(AB) = 87 acts on the set {hi (1 :::; j:::; 7)} 
as standard permutations. It follows that D(~) is the convex closure 
of 0, hi (1 :::; j :::; 7) and go. See Lemma 10.8. 

9.5.3. Dl:l.t· For ~ = ~L Wa,l:l. is generated by To and Tai (3 :::; 
j :::; 8). Hence Dl:l. is the convex closure of 0 and hi (1 :::; j :::; 7). For 
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~ = ~i, Wa,tl is generated by ro and raj (j = 2, 4, 5, · · · , 8). Hence Dtl 
is the convex closure of 0, h 14 and hj (2 :::; j :::; 7). 

9.5.4. Dtlk· For a fixed k we let~= ~k (2 :S k :S 7). Then Wa,tl 
is generated by ro and raj (j = k + 2, · · · , 8). Hence Dtl is the convex 
closure of 0 and hj (k :::; j :::; 7). 

§10. Delaunay cells 

By Theorem 9.4 any 8-dimensional Delaunay cell is either D(~') or 

D(wn up to W(.Es) where y = es and ~2 = i(e1 +e2+ .. ·+e7+5es). 
We recall 

10.1. The Delaunay cell D('T) 
Lemma 10.2. The Delaunay cell D( '3-) = D( e8 ) is the convex 

closure of the origin 0, ±ej + es (1 :S j :S 7) and 2e8 • For 0 < E < 1, 
D( T) consists of 0 only. 

The polytope D( ~1 ) is called a 8-cross polytope. 

Proof. The cell D(y) = D(e8 ) is the convex closure of a E X 
with lla- esll = 1. If a (# 0) E X and lla- esll = 1, then writing 
a= 2::~= 1 xiei we have EJ=1 x7 + (xs -1)2 = 1. If xs tf. Z, then xs = ~' 
or ~ and there are exactly three xi's such that Xi = ~ and otherwise 
Xj = 0 for j :::; 8. But in either case there is a pair xi+ Xj tf. Z, which is 
absurd. If xs E Z, then xs = 1 or 2. If xs = 1, then Xi = 1 for a unique 
i and Xj = 0 for the other j. The rest is clear. Q.E.D. 

Lemma 10.3. Let ho = 2es, hi = ei + es and h1s-j = -ei + es 
(1 :S j :S 7). Let a-0 (resp. a-1 , To, T1 , T2 ) be the convex closure 

Then 

a-o = (0, h1, h2, · · · , h7, ho), a-1 = (0, h1, h2, · · · , h6, hs, ho), 

To = (0, h1, h2, · · · , h7), T1 = (0, h1, h2, · · · , h6, hs), 

T2 = (ho, h1, h2, · · · , h6, h7). 

(i) a-0 and a-1 are 8-dimensional. They are not Delaunay cells. 
The Delaunay cell D(y) is the union of26 W(D7 )-transforms 
of a-o and a-1. 

(ii) Let k :S 7. Any k-dimensional face of D(y) is a W(D7)
transform of a face of a-o. No k-dimensional face of D(~') 

contains both the origin and ho. There are exactly 2k+l. (k!1) 
k-dimensional faces of D(~' ). 
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(iii) Any k-dimensional face of D(T) is W(Es)-equivalent to Dtl.k 

for 1 :::; k :::; 6. 
(iv) Any 7-dimensional face of D(T) is W(Es)-equivalent to ei

ther Dfl.1 or Dfl.2· r 1 (resp. To) is a Delaunay cell and it is 
1 1 

a face of D(w21 ), W(E8)-equivalent to Dfl.1 (resp. Dfl.2) and 
1 1 

T2 = ro(r1)· 

Proof. W(D7) (= Stabw(Es)(T)) isasemi-directproductof(Z/2Z)6 

and the symmetry group 81, where 81 keeps both ao and a1 respectively 
invariant. Let 1r: W(D7 ) --+ 87 be the natural surjection. If 1r(w) is 
the identity, then w(hj) = hj or h15-j (1 ::=; j ::=; 7) according as v(j) 
even or odd. Thus if 1r(w) is the identity, we define w(j) := j or 15- j 
according as v(j) even or odd. Then we have 

w · (0, h1, · · · , h1, ho) = (0, hw(1)' · · · , hw(7)' ho). 

For wE W(D1), we have w(es) = es, w(ej) = ( -l)v(1r(w)(j))e ... (w)(j) 

with L:;=1 v(1r(w)(j)) even. See Subsection 9.5. Then we have 

w · (0, ht, · · · , h1, ho) = (0, hk17 • • • , hk7 , ho) 

where kj = 1r(w)(j) or 15- 1r(w)(j) according as v(1r(w)(j)) = 0 or 1. 

Note that L:;=1 v(1r(w)(j)) is even. Hence there are exactly 26 W(D7)

transforms of a0 . Similarly there are exactly 26 W(D7)-transforms of 
a1. Thus the convex closure (0, hi1 , • • • , hi7 , ho) is a W(D7 )-transform 
of either ao or a1 for any ik E { k, 15 - k },. 

Next let z E D(T ). Since D(T) is the convex closure of 0, ho and 

hj (1 ::=; j ::=; 14), we write z = xoho+ L:~~ 1 xihi where xo+ L:~~ 1 Xi ::=; 1 
and Xj 2: 0 (0 ::=; j ::=; 14). Then we have 

z = L (xi - X15-i)hi + L (xi - X15-i)h15-i 

7 

+ (xo + L min(xi,X15-i))ho. 
i=1 

The sum of the coefficients of hi is equal to 

7 

L (xi- X15-i) + L (xi- X15-i) + xo + L min( xi, X15-i)) 
Xi~X15-i i=1 

which is equal to Xo + L:J=1 max(xi,x15-i)). By our assumption on Xi 
it is not greater than 1. This implies z E (0, ho, hi1 , • • • , hi7 ) for some 
ikE {k, 15- k} (1:::; k:::; 7). This proves (i). 
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Next we prove that the convex closure (0, h0 ) of 0 and ho = 2e8 

intersects the interior of D( ~1 ) • To see this it suffices to prove e8 : = ~o 
is in the interior of D ( ~1 ) • In fact, we choose x j > 0 ( 0 ::;:; j ::;:; 7) such 

that z := 2:;=0 Xj = !· Then we have 

1 1 7 

es =- · 0 +- ""'Xj(hj + h1s-j) + xoho. 
2 2~ 

j=1 

Since 0 < Xj < 1 for any j and 0 < z < 1, e8 is in the interior of D(~1 ). 

It follows that the line segment (0, h0 ) intersects the interior of D(~1 ). 

In particular, (0, ho) is not a Delaunay cell. 
If any lower dimensional face of O"o contains both the origin and 

ho, then it is contained in the interior of D( T ), which is impossible. 
Therefore no lower dimensional face of O"o contains both the origin and 
h0 . Hence any lower dimensional face of D( ~1 ) is a face of the simplex 
either w · (O,h1,··· ,h7) or w · (ho,h1,··· ,h7) for some wE W(D7). 
Hence any lower dimensional face of D( ~1 ) is a W(D7 )-transform of 
a face of To or T2 . If any k-dimensional face of D(y) contains the 
origin, it is (0, hi1 , • • • , hik) where ij + ic =J 15 and ij =J 0. There are 
these 2k G) faces in total. If it contains h0 , then it is (h0 , hi1 , • • • , hik) 

where ij + ic =J 15 and ij =J 0. There are these 2k G) faces in total. 
If it contain neither the origin nor ho, then it is (hi1 , · · · , hik+ 1 ) where 
ij + ic =J 15 and ij =J 0. These total 2k+1 (k:1). Thus we see that there 

are 2k+1 ( 8 ) = 2k+1 (7) +2k+1 ( 7 ) k-dimensional faces of D(w1 ) This k+l k k+l 2 . 
proves (ii). 

Since T2 = ro(TI), T2 is a W(E8 )-transform of T1 . By (ii) any k
dimensional face of D( ~1 ) is a W(D7 )-transform of a face of To or T2 

for k ::;:; 7. Therefore it is a W(E8 )-transform of a face of To or T1 . We 
note that there are exactly the same number of lower-dimensional faces 
of D(':!!,f) containing h0 as those containing the origin. The assertions 
(iii) and (iv) follow from Subsection 9.5 and the proof of Lemma 8.9 or 
Corollary 8.10. Q.E.D. 

Lemma 10.4. There are exactly 2160 W(E8 )-transforms of D('T) 
containing the origin. Each W(E8 )-transform is of the form D(~) for 
some a EX with a 2 = 4 and vice versa. 

Proof. Any W(E8 )-transform of D(~1 ) is of the form D(w · ~1 ) 
(w E W(E8 )). Hence the number of W(E8 )-transforms of D(':!!,f) is 
equal to JW(E8 )/W(D7 )J(= 2160), which is the number of a EX with 
a 2 = 4 by Lemma 8.2. Q.E.D. 
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Proposition 10.5. There are exactly 135 W(Es)-transforms of 
D( 'T) up to translation by X. 

Proof. Those 2160 copies of D( ~1 ) are of the form D( ~) with a E X 
and a2 = 4 by Lemma 10.4. Since D( ~) has 16 vertices, there are 16 
translates-by-X of D( ~) containing the origin. Hence there are exactly 
135 (= 2160/16) W(E8 )-transforms of D(T) up to translation by X. 

Q.E.D. 

Remark 10.6. D(~) is a translate of D(~) by X if and only if 
a- a' = 2x for some root x. By Lemma 8.2, we assume a= 2es. By 
Lemma 8.2 we see readily a'= ±2ek. It follows that there are precisely 
16 translates D(~) by X of ne~B ). 

10.7. The Delaunay cell D(~) 

Lemma 10.8. The Delaunay cell D( ~) is the convex closure of 
the origin 0, hj = ej + es (1:::; j:::; 7) and go:= 1(el + e2 + · · · + es). 

Proof. D(~) is the convex closure of a EX with lla- ~11 2 = 
11~11 2 = &· Let a= "L:~=l Xjej and suppose lla- ~11 2 = &· If xs E Z, 
then xs = 0 or 1. If xs = 0, then a = 0. If xs = 1, then a = ej + es 
for some j :::; 7. If xs is not an integer, then xs = 1 or ~ and Xj = ! 
for 1 :::; 7. If xs = 1, then a = go. If xs = ~, then no a E X is 
possible. Q.E.D. 

Corollary 10.9. There are exactly m k-dimensionalfaces of D(~ ). 

Proof. Clear because the 8-dimensional cell D( ~) has only nine 
vertices. Q.E.D. 

We call a E X primitive if a is not an integral multiple of any element 
of X. 

Lemma 10.10. There are exactly 17280 W(Es)-transforms of D(~) 
containing the origin. Each W(Es)-transform is of the form D(~) for 
some primitive a E X with a 2 = 8 and vice versa. 

Proof. Any W(Es)-transform of D(T) is of the form D(w · ~) 
(w E W(E8 )), hence of the form D(~) with a primitive and a2 = 
8. Therefore the number of W(E8 )-transforms of D(~) is equal to 
IW(Es)/W(A7)1 = 17280, the number of a E X with a 2 = 8 by 
Lemma 8.12. Q.E.D. 

Proposition 10.11. There are exactly 1g20 W(Es)-transforms of 
D( ~) up to translation by X. 
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Proof Those 17280 copies are of the form D( ~) with a E X and 
a2 = 8. Each copy has 9 vertices, hence there are exactly 1920 ( = 
17280/9) W(E8 )-transforms of D(~2 ) up to translation by X. Q.E.D. 

Remark 10.12. Since any vertex of D(1f) other than 0 is a root, 

D( ~) is a translate of D( ~) by X if and only if a- a' = 3x for some root 
x EX or x = 0. If a- a' = 3x =1- 0, then 2aa' = -9x2 + a2 + (a')2 = -2. 
Hence aa' = -1. Therefore x is a root with ax = 3. Conversely if x is a 
root with ax= 3, then a'= a- 3x gives a translateD(~) of D(~). By 
Lemma 8.12, we may assume a= e1 + e2 + e3 + e4 + 2e8 . Suppose xis 
a root with ax = 3. Then by Lemma 8.12, x = ek + e8 (1 :-::; k :-::; 4) or 
x = ~(e1 + e2 + e3 + e4 ± es ± e6 ± e7 + es). Hence there are precisely 9 

(= 1 + 4 + 4) X-translates D(~) of D(~). 

Thus we see the following table by applying Lemma 10.3 and Corol
lary 10.9. 

Table 3. The number of faces of 8-dim Delaunay cells 

d 

D(T) 

D(~) 

7 6 54 3 2 10 

256 1024 1792 1792 1120 448 112 16 

9 36 84 126 126 84 36 9 

10.13. Adjacency of 8-dimensional Delaunay cells 

Lemma 10.14. No pair of a, b E X with a2 = 4, b2 = 2 and 
(a, b)= 0 belong to the same 8-dimensional Delaunay cells. 

Proof By Lemma 8.5 they are equivalent to a = 2es and b = 
-e6 + e7 . They could belong to one of the Delaunay cells D(~) with 
a2 = 4. Since ho is the unique vertex of D( T) with h~ = 4, there 
are no vertex z (=I- 0) of D(T) with (h0 , z) = 0. This proves the 
lemma. Q.E.D. 

Proposition 10.15. Let a, a', band b' EX with a2 = (a') 2 = 4 and 
b2 = (b') 2 = 8. 

(i) D(~) and D(~) are adjacent iff(a,a') = 3. 
(ii) D(~) and D(~) are adjacent iff (a, b)= 5. 

(iii) D(~) and D(~) are not adjacent. 

Proof By Theorem 9.4 there are precisely two W(Es) equivalence 
classes of 7-dimensional Delaunay cells. By Lemma 10.3, each class is 
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represented by either (0, h1, · · · , h7) or (0, h1, · · · , h6, hs). In the first 
case, the face (0, h1, .. · , h7) is a common face of D( T) and D( '!1f) by 
Lemma 10.2 and Lemma 10.8. We have w1w2 = 5. Any pair a and b with 
a2 = 4, b2 = 8 and (a, b) = 5 is unique up to W(E8 ) by Lemma 8.14. 
This proves (ii). 

In the second case let o: = !(e7 + e8 - (e1 + · · · + e6)). Then 
since (o:, hj) = (o:, hs) = 0 (1 ::; j :S 6), ra keeps the face 71 = 
(O,h1, ... ,h6 ,h8 ) invariant. Therefore 71 is a common face of D(y) 

and raD(~1 ) = D(~) where w = ra(w1) = !(e1 + · · · + e6- e7 + 3es). 
We have w1w = 3. Any pair a and b with a2 = b2 = 4 and ab = 3 is 
unique up to W(E8 ) by Lemma 8.14. This proves (i). 

There are 17280 copies of D( ~2 ). Hence there are 8 ·17280 = 138240 
7-dimensional faces of copies of D('!1f ). Meanwhile there are 2160 copies 
of D(y ), hence there are 128 · 2160 = 276480 7-dimensional faces of 
copies of D( '!1f), the half of which are faces of copies of D( ~1 ) and the 
other half of which are faces of copies of D( ~2 ). It follows that there are 

no common faces of D(~) and D(~ ). This proves (iii). Q.E.D. 

Corollary 10.16. (i) Any 8-dimensional cell adjacent to D( ~1 ) 
is either D(wra 1 ~1 ) or D(w'=(f) (wE Stabw(Es)(wl) = W(D7)). 
There are exactly 128 copies of D(~1 ) adjacent to D(~1 ) and 
exactly 128 copies of D( T) adjacent to D( T). 

(ii) Any 8-dimensional cell adjacent to D('=(f) is D(w~1 ) where 
wE Stabw(Es)(w2) = W(A7). There are exactly 8 copies of 
D( ~1 ) adjacent to D( '!1f). 

Proof. By Lemma 10.15, D('3') is adjacent to D(~) and D(~2 ) 

where w = !(e1 + · · · + e6 - e7 + 3es) = ra(w1)· Therefore any 8-
dimensional Delaunay cell adjacent to D('3') is either D(w ·~)or D(w · 
~2 ) for any w E Stabw(Es) (w1) = W(D7 ). We note 

W W1 W1 
D( 2) = Wo · Ta 1 • wo(D( 2 )) = Wo · Ta 1 (D( 2 )) 

Hence any 8-dimensional Delaunay cell adjacent to D( ~1 ) is either 
D(w · ra 1 ~1 ) or D(wT) for any w E Stabw(Es)(w1) = W(D7). The 
number of D(w · ra 1 T) adjacent to D('3') is equal to the number of 
7 -dimensional Delaunay faces of D ( T), W ( E8 )-equivalent to 71 by the 
proof of Proposition 10.15, hence it is equal to 28 · m /8 = 128 where 8 
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in the denominator is the number of vertices of r 1 . Similarly the number 
of D(w'1-) adjacent to D(y) is equal to 28 · (~)/8 = 128. The assertion 
(ii) is clear. Q.E.D. 

10.17. Inclusion relation of Delaunay cells 

Proposition 10.18. Let a, b E X with a2 = 4, b2 = 8 and let 
{ ak, ak+l, · · · , a7} (1 ~ k ~ 7) be a set of roots such that a~ = 2 and 
(ai, a3) = 1 for any i =/= j. Let D be the convex closure of the origin and 
ak, · · · , a7 . Then D is a Delaunay cell and 

(i) DC D(~) iff(ai,a) = 2 for any i. 
(ii) D C D( ~) iff (ai, b) = 3 for any i. 

Proof Since D is the convex closure of 0 and ai, D C D( ~) iff 0 
and ai are closest to the hole~· Hence 11~11 = llai- ~II· This proves (i). 
The proof of (ii) is similar. Q.E.D. 

Corollary 10.19. Let D be the convex closure of the origin and 
ak,·· · ,a7 as in Proposition 10.18. Then Dis the intersection of D(~) 
and D( ~) for all a and b such that a 2 = 4 and (ai, a) = 2 for any i, or 
b2 = 6 and (ai, b)= 3 for any i respectively. 

Proof Since any Delaunay cell is the intersection of all maximal 
dimensional Delaunay cells containing it, Corollary follows from Propo
sition 10.18. Q.E.D. 

Corollary 10.20. For a Delaunay cell D of dimension 8-k given in 
1 0.18, there are exactly the following number given in Table 4 of D( ~) 's 
and D(~) 's containing D: 

Table 4. The number of 8-dim. cells containing a fixed De-
launay cell 

k 7 6 5 4 3 2 ~1 
1 

~2 
1 

D(~) 126 27 10 5 3 2 1 2 

D(~) 576 72 16 5 2 1 1 0 

total 702 99 26 10 5 3 2 2 

Proof. Suppose k ~ 2. Then by Lemma 8.9 we may assume ai = 
ei+e8 (k ~ i ~ 7). Let D(k) be the convex closure of ai = ei+es (k ~ i ~ 
7). In view of Lemma 10.18 D(k) CD(~) iff (ai, a)= 2 for any i. Sup
pose k = 7. Then D(7) c ve~· ). We see Stabw(Es) ( e7 + es) = W(E7) 
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and Stabw(Es) (e7 + es, 2es) = W(D6)· Thus in view of Lemma 8.8 the 
number of D(~) with D(7) C D(~) is equal to IW(E7)1/IW(D6)1 = 
210 . 3. 5 . 7/29 . 32 · 5 = 126. Similarly If k = 6, then D(6) C D( ~) iff 

a= 2es, ±ei+e6+e7+es, or ~(EJ=1 ±ej+e6+e7+3es). Hence there are 
exactly 1 + 10 + 24 = 27 cells D(~) which contain D(6). This is checked 
by computing IW(E6)1/IW(Ds)l = 27. If k = 5, then D(5) CD(~) iff 

a= 2es, es+e6+e7+es, or ~(E;=l ±ej+es+e6+e7+3es). Hence there 
are exactly 1 + 1 + 8 = 10 cells D ( ~) which contain D( 5). This is checked 
by computing IW(Ds)I/IW(D4)1 = 10. If 2:::; k:::; 4, then D(k) CD(~) 

iff a= 2e8 or ~(E~:{ ±ej +ek + · · · +e7 +3es). Hence there are exactly 
1 + 2k- 2 cells D(~) which contain D(k). This is checked by computing 
IW(A4)1/IW(A3)1 = 5, IW(AI) x W(A2)I/IW(A1) x W(AI)I = 3 and 
IW(AI))I = 2. If k = 1, then there is a unique D(~) which contain D. 

Next we consider D( ~ ). Let G(k) = Stabw(Es) (ek + es, · · · , e7 + es) 
and H(k) = Stabw(Es)(w2) n G(k). Then though it is nontrivial, by ex
plicit computation we see the number of D( ~) containing D(k) is equal to 
IG(k)I/IH(k)l. We see G(k) = W(E7), W(E6), W(Ds), W(A4), W(A1 x 
A2) and W(AI), while H(k) = W(Ak-d for any k. Hence the number 
of D(~) containing D(k) is equal to 576, 72, 16, 5, 2 and 1 respectively. 
The case k = 1 is clear from Proposition 10.15. Q.E.D. 

§11. A PSQAS associated with E8 

Now we return to the situation in the section three. Let B(x, y) be 
the bilinear form on the lattice X in Definition 3.1. We assume that 
(X, B) is the E 8-lattice. Let (Q,L) be the fiat projective R-scheme in 
Theorem 3.3, (Qo, L 0 ) the closed fibre of it. Let R(c) be the coordinate 
ring of an affine chart U(c) (c E X/Y) of Q0 in Definition 3.6. The 
purpose of this section is to show that there are actually nilpotent ele
ments in R(O). For this purpose we determine the function v on X in 
Definition 2.9 explicitly. 

Let D be a convex polytope containing the origin, C(O, D) the cone 
over Ro generated by D n X, and Semi(O, D) the cone over Z0 of D n X. 

Recall (and define) 

ho = 2es, hj = ej + es, h1s-j = -ej + es (1 :::; j :::; 7) 

1 1 7 

go= 2(e1 + e2 + · · · + es), goo= go+ ho = 2(2:.>j + 5es), 
j=l 

uo = (0, h1, h2, · · · , h1, ho), u1 = (0, h1, h2, · · · , h6, hs, ho). 
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Lemma 11.1. Let h((Jo) = !O::::;=o hJ) and h((Jl) = !(L~=l hJ + 
hs). Then 

(i) we have 

Semi(O, (Jo) = Zoh1 + · · · + Zoh6 + Zoh7 + Zoho, 

Semi(O, (Jl) = Zoh1 + · · · + Zoh6 + Zohs + Zoho. 

(ii) h((Jk) E C(O, (Jk) n X but h(o-k) (j. Semi(O, (Jk) (k = 0, 1). 
(iii) C(O, D( T)) nx is the union of all C(O, W·(Jo) nx and C(O, w. 

(Jl) n X where w ranges over W ( D 7 ). 

(iv) C(O, (Jo) n X is generated by Semi(O, (Jo) and h(a0 ). It is the 
disjoint union of Semi(O, (Jo) and h((Jo) + Semi(O, (Jo): 

C(O, (Jo) n X= Semi(O, (Jo) U (h((Jo) + Semi(O, ao)). 

(v) C(O,(J1) nX is generated by Semi(O,(Jl) and h((Jl). It is the 
disjoint union of Semi(O, (Jl) and h( (Jl) + Semi(O, (J1 ): 

C(O, (J1) n X= Semi(O, (J1) u (h((Jl) + Semi(O, (Jl)). 

(vi) C(O, w · (Jk) n X = w · (C(O, ak) n X) where k = 0, 1 and 
wE W(D7). 

Proof. By Lemma 10.2, (J0 nX c D(T )nX = {0, hJ (0 :S: j :S: 14)} 
and (Jl nX c D(~' )nX, which implies (i). Since h((Jo) = go+2ho EX, 
(ii) is clear for (Jo because hj (0 :::; j :::; 7) are linearly independent and 
(Jon X = {0, hj (0 :S: j :S: 7)}. Since h((Jl) =go+ ho + hs EX (ii) is 
also clear for (J1. (iii) follows from the fact that D('3-) is the union of 
w · (Jo and w · (J1 (wE W(D7 )). See Lemma 10.3 (i). Next we prove (iii). 
Let x E C(O, (Jo) n X. Then we write x = L;=O ajhj with aj 2: 0. If 
aj = 0 for any j ::::: 1, then X = aoho, ao E z+. Hence X E Semi(O, (Jo). 
So we may assume a 1 > 0 (by transforming x by S7 if necessary). If 
a 1 E Z+, then x E Semi(O, (J0 ). So we assume a 1 is not an integer, hence 
a 1 = ! mod z. Hence aj = ! mod Z for any j 2: 2. Since x E X, 

L;=O aj is integral, hence ao = ! mod Z. Hence aj 2: ! for any j 2: 0. 
Let z = x- h((J0 ). Since h((Jo) E X, we have z E C(O, (Jo) n X and 

z = L;=O bjhj for some bj E Zo, namely, z E Semi(O, (Jo). This proves 
(iv). 

Next we prove (v). Let x E C(O, (Jo) n X. Then we write x = 
L~=O ajhj + ashs with aj 2: 0. If aj = 0 for any j 2: 1, then x = 

a0 h0 , a0 E Z+· Hence x E Semi(O, (Jo). So we may assume a1 > 0 
(by transforming x by Stabw(D7 )((Jl) if necessary). If a1 E Z+, then 
x E Semi(O, (J0 ). So we assume a1 is not an integer, hence a1 = ! 
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mod Z. Hence a1 = ! mod Z for any j 2': 2. Since x E X, I:~=O a1 
is integral, hence ao is integral. Let z = x- h(crl). Since h(crl) E X, 
we have z E C(O, crl) n X and z = aoho + I:~=l bjhj + bshs for some 
b1 E Z0 . Since a0 E Zo, we have z E Semi(O, cr0 ). This proves (v). The 
remaining assertions are clear. Q.E.D. 

Lemma 11.2. Let g00 = go + ho = !(I:;=l ej + 5es)- Then 
C(O, D(~2 )) n X is generated by h 1 , h2, · · ·, h7, go and g00 • It is 
the disjoint union of Semi(O, D(y )), g00 + Semi(O, D(T )) and 2g00 + 
Semi(O, D(~2 )): 

W2 . W2 
C(O, D( 3 )) n X= Uk=o,1,2(kg00 + Sem1(0, D( 3 )) 

where we note that g00 does not belong to D( y) n X. 

Proof. First we note that 3g00 = h1 + h2 + · · · + h7 + g0 and hence 
g00 E C(O, D(~2 )) n X. Let Co = Zoh1 + · · · + Zoh7 + Zogo. Then 
Co= Semi(O, D(T )). Suppose x E C(O, D(y )) n X. Then we write 

where x1 2': 0, x1 - x1 E Z, 2x1 + x 0 E Z and 7x1 + 2x0 E Z. It follows 
that 3xo E Z and Xk = xo mod Z for any 1 ::; k ::; 7. Suppose x 0 E Z. 
Then any x1 E Z and x E C0 . Suppose next x 0 = ~ mod Z. Then let 
Zj = x1 - ~ and z = x - g00 • Since Xj 2': 0 and x1 = ~ mod Z, we 
have z1 E Zo. It follows z E C0 . Suppose finally x 0 = ~ mod Z. Then 
z = x- 2g00 E Co. This proves the lemma. Q.E.D. 

Lemma 11.3. Let D = D(~') and let a(D) = T = e8 be the hole 
of D. Then 

(x, a( D)) if x E Semi(O, D) 
(x- h(cro), a( D))+ 5 if x E h(cro) + Semi(O, cr0 ) 

v(x) = (x- h(crl), a( D))+ 4 if x E h(crl) + Semi(O, crl) 

(x- w · h(cro), a( D))+ 5 if x E w · h(cr0 ) + Semi(O, w · cr0 ) 

(x- w · h(crl), a( D))+ 4 if x E w · h(cr1) + Semi(O, w · cr!) 

where wE W(D7) = Stabw(E8 J('T)-

Proof. If x E Semi(O, D), then v(x) = (x, a(D)) by Lemma 2.10. 
Next suppose x = h(cro). Then h(cr0 ) = g0 + h0 + h0 where g0 

!(I:~=l e1). Therefore v(h(cro))::; !(g5 + 2h5) = 5. 
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Meanwhile (2h(ao), a( D)) = (E;=O hi, es) = 9, whence v(h(ao)) ;:::: 
5 by Lemma 2.10 and Lemma 11.1. This proves v(h(a0 )) = 5. This also 
proves the second equality for x = h(ao). Next suppose x = h(a0 ) + z 
for some z E Semi(O, a0 ). Then v(x) ::; v(h(a0 )) + v(z) = v(z) + 5. 
Meanwhilev(x);:::: (h(ao))+z,a(D)) = ~+v(z). Thisprovesthesecond 
equality for x = h(ao) + z, z E Semi(O, a0 ). 

We see h(al) =go+ ho + hs and v(h(at)) ::; 4. On the other hand 
(2h(al), a( D)) = (E~=l hj+hs, a( D)) = (E~=l hi+hs, es) = 7, whence 
v(h(at)) ;:::: 4 by Lemma 2.10 and Lemma 11.1. This proves v(h(al)) = 4. 
This also proves the third equality for x E h(a1 ) + Semi(O, al). The 
remaining assertions are clear. Q.E.D. 

Lemma 11.4. Let D = D(~) anda(D) =~the hole of D. Then 
v(x + kg00 ) = (x, a( D))+ 3k fork= 0, 1, 2 and x E Semi(O, D). 

Proof Let aoo = !(et + e2 + e3 + e4 - es - e6 + e7 + es). Then 
goo = hs + h6 + a00 and v(g00 ) ::; 3. Since (3g00 , a( D)) = 8, we have 
v(g00 ) ;:::: (g00 , a( D)) = ~- This proves v(g00 ) = 3. This also proves the 
lemma in the case k = 1. Similarly we see v(g00 ) ::; 6 while v(2g00 ) ;:::: 

(2g00 , a( D)) = 136 . Since v(2g00 ) is an integer, we have v(2g00 ) = 6. 
This also proves the lemma in the case k = 2. Q.E.D. 

Theorem 11.5. Let D E Del(O) and a(D) its hole. For x E 
C(O, D) n X we have 

v(x) = f(x, a(D))l := -[-(x, a(D))], the round-up of (x, a( D)). 

In particular, x E Semi(O, D) iff (x, a(D)) E Z. 

Proof. We may assumeD is 8-dimensional. If D = D(T ), then 

v(x) = {(x,.a(D)) if x E Semi(O, D) 
(x, a(D)) +! (otherwise). 

This also proves the corollary when D E Del(O) is an 8-dimensional 
Delaunay cell W(Es)-equivalent to D = D(T ). If D = D('=ff ), then 

{ 
(x, a(D)) if x E Semi(O, D) 

v(x) = (x, a( D))+! if x E g00 + Semi(O, D) 
(x, a( D))+~ if x E 2g00 + Semi(O, D). 

This also proves the corollary when D E Del(O) is an 8-dimensional 
Delaunay cell W(E8 )-equivalent to D = D(~ ). The above proof also 
proves the second assertion of the corollary. This completes the proof. 

Q.E.D. 
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Theorem 11.6. Let Qo be the closed fibre of Q and rad( Oo,Qa) the 
radical of the algebra Oo,Q0 • Then rad( Oo,Qa) is generated over k(O) 
by the monomials [(x) with v(x) > (x, a( D)) and x E C(O, D) n X for 
some DE Del(O). It is also generated by [(x) with x E C(O, D) n X and 
(x,a(D)) not integral. 

Proof Let z E Oo,Qa. We write z as a k(O)-linear irredundant 
combination of [(x), (x E X). Then if z E Oo,Qa is nilpotent, each 
monomial component [(x) of z is also nilpotent because the algebra 
Oo,Qa is X-graded. The monomial [(x) = qv(x)wx E rad(Oo,Q 0 ) iff 
qnv(x)wnx = 0 for some positive n, iff q 6nv(x)w6nx = 0 for some positive 
n. We see by Lemma 2.10 that q 6nv(x)w6nx = 0 iff 6nv(x) > v(6nx). Let 
DE Del(O) such that x E C(O, D) n X. In the E8-case, 6x E Semi(O, D) 
iff x E C(O, D) n X because 2x E Semi(O, D 1) iff x E C(O, Dl) n X, 
while 3x E Semi(O, D2) iff x E C(O, D2) n X. It follows that 6nv(x) > 
v(6nx) iff 6nv(x) > (6nx, a( D)). Thus [(x) = qv(x)wx E rad(Oo,Qa) 
iff v(x) > (x, a( D)). This proves the first part of the theorem. By 
Theorem 11.5 v(x) = i(x, a(D))l. Hence v(x) > (x, a( D)) iff (x, a( D)) 
is not an integer. This proves the second part of the theorem. Q.E.D. 

Corollary 11.7. Oc,Qa is nonreduced for any c EX. 

Corollary 11.8. Let f = [(a) and g = [(b) E Oo,Qa. Assume that 
a, b E C(O, D) for the same Delaunay cell D E Del(O). If b E Semi(O, D), 
then f g =f. 0 in Oo,Qa. 

Proof By Theorem 11.5, v(a) = i(a, a(D))l, while v(b) = (b, a(D)) 
is an integer. Hence v(a+b) = i(a+b, a(D))l = i(a, a(D))l +(b, a( D)) = 
v(a)+v(b). It follows from Theorem 11.5 that fg =f. 0 in Oc,Qa· Q.E.D. 

Example 11. 9. We give examples of nilpotent elements of Oo,Qa. 
Let D1 = D(~1 ) and D2 = D(T)· Consider ~(h(a0 )). Then h(a0 ) E 
C(O, D1) n X, (h(ao), a(D!)) = ~ and v(h(ao)) = l~l = 5. Consider 
next ~(h(al)). Then we see h(al) E C(O, Dl) n X, (h(al), a(Dl)) = ~ 
and v(h(al)) = l~l = 4. Finally consider ~(goo)· Then we see g00 E 
C(O, D2) n X, (goo, a(D2)) = i and v(g00 ) = lil = 3. It follows from 
these that 

To be more precise, since 

h(ao) =go+ 2ho, h(al) =go+ ho + hs, goo= go+ ho, 

~(h(ao)) = ~g0 ~~o' ~(h(al)) = ~g0 ~ho~h8 , ~(goo)= ~g0 ~ho· 
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~(h(ao)) 2 = q · ~ho II ~h1 , ~(h(o-1)) 2 = q. ~hB II ~hj, 
j=l 

7 

~(g=) 3 = q ·~go II ~h1· 
j=l 

j=l 

279 

We note that h(ao) E C(O, DI) and ho E D1, while go tj_ D 1 by 
Proposition 10.18 (i) because (go, w1) = 1 -1- 2. Let a0 = ~ (3e8 -

e6 + l:k#6,8 ek). Then a5 = 4, (ao,wi) = 3 and (ao,go) = 2, which 
implies that D( a2o) is adjacent to D1 = D( ~1 ) and g0 E D( an by 
Proposition 10.15 (i) and Proposition 10.18 (i). In other words, though 
go tj_ D1, go belongs to D(an adjacent to D1. We also note go E D2, 
which is adjacent to D 1. 

Similarly h(o-I) E C(O, D1) and ho, hs E D1, while go tj_ D1 and 
g0 E D( a2o) n D2 as we saw above. We see h0 tj_ D2 because D 2 is a 
convex closure of 0, go and hj (1 :::; j :::; 7), and g5 = hJ = 2, but h5 = 4. 
Since ho E D 1, ho belongs to a Delaunay cell D1 adjacent to D2. See 
Proposition 10.15 (ii). Finally we note that g= E C(O, D 2), g0 E D2, 
while h0 tj_ D2 but ho E D 1, which is adjacent to D2. 

Corollary 11.10. The (reduced) support of ~(h(ak)) (resp. ~(g=)) 
contains one of the irreducible components ofQ0 , V(D(3" ))nU(O) (resp. 
V(D(y) n U(O)). 

Proof. Let Z = V(D(~1 ))nU(O). Then Z is reduced by definition, 
whose coordinate ring r( Oz) is k(O) [Semi(O, D( T ))], the ring generated 
by the semi-group Semi(O, D(~1 )). No element of this ring except 0 
annihilates ~(h(ak)) in R(O) by Theorem 11.5. Similarly the coordinate 
ring of V(D(~2 ) n U(O)) is k(O)[Semi(O, D( y) )], none of whose elements 
except 0 annihilate ~(g=)· This proves the corollary. Q.E.D. 

11.11. Degrees of irreducible components of Q0 

Let D1 = D(~1 ) or D2 = D(w:n. Let V(Dk) be the closure of 
G;;,-orbit O(Dk) with reduced structure. By Lemma 11.1 and Theo
rem 11.2, at a generic point of V(a), we have rankk(V(Dl)) nFJ;~ = 2 and 

rankk(V(D2 )) nFJ;~ = 3. Thus by Proposition 10.5 and Proposition 10.11 
we have an equivalence 

Q0 = 2 · 135[X : Y]V(DI) + 3 · 1920[X : Y]V(D2). 
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modulo identification of the irreducible components of Qo of the same 
type. By Theorem 5.15 we have 

Since Hq(nF,:>, 8~') = 0 (q > 0), we have 2 · (L~(Dl)) = vol(Dt) = 
28 , and 3 · (L~(D2 )) = vol(D2) = 3. Thus we have 

L~0 = (L8Qo)(Q,8Q) 

= L 8 (2. 135[X : Y]V(Dl) + 3. 1920[X: Y]V(D2))(Q,8Q) 

= [X: Y] ( 135 · 2 · (LhDl)) + 1920 · 3 · (LhD2 ))) 

=[X: Y](135 · 28 + 1920 · 3) = 8! ·[X: Y] 

which is compatible with L~0 = L~., = 8! · [X : Y]. 
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