# On the behavior at infinity for non-negative superharmonic functions in a cone 

Minoru Yanagishita


#### Abstract

. This paper shows that a positive superharmonic function on a cone behaves regularly outside an $a$-minimally thin set in a cone. This fact is known for a half space which is a special cone.


## §1. Introduction

Let $\mathbf{R}$ and $\mathbf{R}_{+}$be the set of all real numbers and the set of all positive real numbers, respectively. We denote by $\mathbf{R}^{n}(n \geq 2)$ the $n$ dimensional Euclidean space. A point in $\mathbf{R}^{n}$ is denoted by $P=(X, y)$, $X=\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$. The Euclidean distance of two points $P$ and $Q$ in $\mathbf{R}^{n}$ is denoted by $|P-Q|$. Also $|P-O|$ with the origin $O$ of $\mathbf{R}^{n}$ is simply denoted by $|P|$. The boundary and the closure of a set $S$ in $\mathbf{R}^{n}$ are denoted by $\partial S$ and $\bar{S}$, respectively.

We introduce spherical coordinates $(r, \Theta), \Theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n-1}\right)$, in $\mathbf{R}^{n}$ which are related to cartesian coordinates $\left(x_{1}, x_{2}, \ldots, x_{n-1}, y\right)$ by

$$
x_{1}=r\left(\Pi_{j=1}^{n-1} \sin \theta_{j}\right) \quad(n \geq 2), \quad y=r \cos \theta_{1}
$$

and if $n \geq 3$, then

$$
x_{n+1-k}=r\left(\Pi_{j=1}^{k-1} \sin \theta_{j}\right) \cos \theta_{k} \quad(2 \leq k \leq n-1),
$$

where $0 \leq r<+\infty,-\frac{1}{2} \pi \leq \theta_{n-1}<\frac{3}{2} \pi$, and if $n \geq 3$, then $0 \leq \theta_{j} \leq$ $\pi(1 \leq j \leq n-2)$.

The unit sphere and the upper half unit sphere are denoted by $\mathbf{S}^{n-1}$ and $\mathbf{S}_{+}^{n-1}$, respectively. For simplicity, a point $(1, \Theta)$ on $\mathbf{S}^{n-1}$ and the

Received May 30, 2005.
Revised December 1, 2005.
2000 Mathematics Subject Classification. Primary 31B05; Secondary 31B20.

Key words and phrases. cone, superharmonic functions, $a$-minimally thin sets.
set $\{\Theta ;(1, \Theta) \in \Omega\}$ for a set $\Omega, \Omega \subset \mathbf{S}^{n-1}$, are often identified with $\Theta$ and $\Omega$, respectively. For two sets $\Lambda \subset \mathbf{R}_{+}$and $\Omega \subset \mathbf{S}^{n-1}$, the set $\left\{(r, \Theta) \in \mathbf{R}^{n} ; r \in \Lambda,(1, \Theta) \in \Omega\right\}$ in $\mathbf{R}^{n}$ is simply denoted by $\Lambda \times \Omega$. In particular, the half-space $\mathbf{R}_{+} \times \mathbf{S}_{+}^{n-1}=\left\{(X, y) \in \mathbf{R}^{n} ; y>0\right\}$ will be denoted by $\mathbf{T}_{n}$. By $C_{n}(\Omega)$, we denote the set $\mathbf{R}_{+} \times \Omega$ in $\mathbf{R}^{n}$ with the domain $\Omega$ on $\mathbf{S}^{n-1}(n \geq 2)$ having smooth boundary. We call it a cone. Then $\mathbf{T}_{n}$ is a special cone obtained by putting $\Omega=\mathbf{S}_{+}^{n-1}$.

Let $\Omega$ be a domain on $\mathbf{S}^{n-1}(n \geq 2)$ with smooth boundary. Consider the Dirichlet problem

$$
\begin{aligned}
\left(\Lambda_{n}+\tau\right) f=0 & \text { on } \Omega \\
f=0 & \text { on } \partial \Omega,
\end{aligned}
$$

where $\Lambda_{n}$ is the spherical part of the Laplace operator $\Delta_{n}$

$$
\Delta_{n}=\frac{n-1}{r} \frac{\partial}{\partial r}+\frac{\partial^{2}}{\partial r^{2}}+r^{-2} \Lambda_{n}
$$

We denote the least positive eigenvalue of this boundary value problem by $\tau_{\Omega}$ and the normalized positive eigenfunction corresponding to $\tau_{\Omega}$ by $f_{\Omega}(\Theta) ; \int_{\Omega} f_{\Omega}^{2}(\Theta) d \sigma_{\Theta}=1$, where $d \sigma_{\Theta}$ is the surface element on $\mathbf{S}^{n-1}$. We denote the solutions of the equation $t^{2}+(n-2) t-\tau_{\Omega}=0$ by $\alpha_{\Omega},-\beta_{\Omega}\left(\alpha_{\Omega}, \beta_{\Omega}>0\right)$. If $\Omega=\mathbf{S}_{+}^{n-1}$, then $\alpha_{\Omega}=1, \beta_{\Omega}=n-1$ and $f_{\Omega}(\Theta)=\left(2 n s_{n}^{-1}\right)^{1 / 2} \cos \theta_{1}$, where $s_{n}$ is the surface area $2 \pi^{n / 2}\{\Gamma(n / 2)\}^{-1}$ of $\mathbf{S}^{n-1}$.

In the following, we shall assume that if $n \geq 3$, then $\Omega$ is a $C^{2, \alpha_{-}}$ domain $(0<\alpha<1)$ on $\mathbf{S}^{n-1}$ (e.g. see Gilbarg and Trudinger [4] for the definition of $C^{2, \alpha}$-domain).

It is known that the Martin boundary of $C_{n}(\Omega)$ is the set $\partial C_{n}(\Omega) \cup$ $\{\infty\}$, each of which is a minimal Martin boundary point. When we denote the Martin kernel by $\tilde{K}(P, Q)\left(P \in C_{n}(\Omega), Q \in \partial C_{n}(\Omega) \cup\{\infty\}\right)$ with respect to a reference point chosen suitably, we know

$$
\tilde{K}(P, \infty)=r^{\alpha_{\Omega}} f_{\Omega}(\Theta), \quad \tilde{K}(P, O)=\kappa r^{-\beta_{\Omega}} f_{\Omega}(\Theta) \quad\left(P \in C_{n}(\Omega)\right)
$$

where $\kappa$ is a positive constant (Yoshida [8, p.292]).
Let $u(P)$ be a non-negative superharmonic function on $\mathbf{T}_{n}$, and let $c(u)=\inf _{P=(X, y) \in \mathbf{T}_{n}} u(P) / y$. Aikawa [1] introduced the notion of $a$ minimal thinness $(0 \leq a \leq 1)$, which is identical to minimal thinness when $a=1$ and which is identical to rarefiedness when $a=0$, and showed that

$$
\begin{equation*}
\lim _{|P| \rightarrow \infty, P \in \mathbf{T}_{n} \backslash E} \frac{u(P)-c(u) y}{y^{a}|P|^{1-a}}=0 \tag{1.1}
\end{equation*}
$$

with a set $E$ in $\mathbf{T}_{n}$ which is $a$-minimally thin at $\infty$. Aikawa also showed that if $E \subset \mathbf{T}_{n}$ is unbounded and a-minimally thin at $\infty$ in $\mathbf{T}_{n}$, then there exists a non-negative superharmonic function $u$ on $\mathbf{T}_{n}$ such that

$$
\begin{equation*}
\lim _{|P| \rightarrow \infty, P \in E} \frac{u(P)-c(u) y}{y^{a}|P|^{1-a}}=+\infty \tag{1.2}
\end{equation*}
$$

and showed that (1.1) is the best possible as to the size of the exceptional set. The cases of $a=1$ in (1.1) and (1.2) give the result of LelongFerrand [6, pp. 134-143], and the cases of $a=0$ in (1.1) and (1.2) give the result of Essén and Jackson [3, Theorem 4.6].

For a non-negative superharmonic function in a cone, the results corresponding to $a=1$ of (1.1) and (1.2) are showed by the Fatou boundary limit theorem for Martin space (Miyamoto and Yoshida [7, Remark 2]). In detail, for a non-negative superharmonic function $u$ on $C_{n}(\Omega)$, there exists a set $E \subset C_{n}(\Omega)$ which is minimally thin at $\infty$ such that

$$
\begin{equation*}
\lim _{|P| \rightarrow+\infty, P \in C_{n}(\Omega) \backslash E} \frac{u(P)-c_{\infty}(u) \tilde{K}(P, \infty)}{\tilde{K}(P, \infty)}=0 \tag{1.3}
\end{equation*}
$$

where we put $c_{\infty}(u)=\inf _{P \in C_{n}(\Omega)} \frac{u(P)}{\tilde{K}(P, \infty)}$. On the other hand, Miyamoto and Yoshida [7, Theorem 3] introduced the notion of rarefiedness at $\infty$ with respect to $C_{n}(\Omega)$, and showed that for a non-negative superharmonic function $u$ on $C_{n}(\Omega)$, there exists a set $E \subset C_{n}(\Omega)$ which is rarefied at $\infty$ such that

$$
\begin{equation*}
\lim _{|P| \rightarrow+\infty, P \in C_{n}(\Omega) \backslash E} \frac{u(P)-c_{\infty}(u) \tilde{K}(P, \infty)}{|P|^{\alpha_{\Omega}}}=0 \tag{1.4}
\end{equation*}
$$

(1.4) gives the extension of the case $a=0$ in (1.1).

From these results, in this paper we shall introduce the notion of $a$-mimal thinness $(0 \leq a \leq 1)$ at $\infty$ with respect to a cone and extend the above results for a cone ((1.3) and (1.4)). We shall also extend the results (1.1) and (1.2) bacause our main result contains (1.1) and (1.2) as the case $\Omega=\mathbf{S}_{+}^{n-1}$. The results of this paper are proved by modifying the methods of Aikawa [1] and Essén and Jackson [3].

I would like to thank Professor Ikuko Miyamoto and Professor Hidenobu Yoshida for their help in preparing this paper.

## §2. Preliminaries

We denote by $G(P, Q)\left(P \in C_{n}(\Omega), Q \in C_{n}(\Omega)\right)$ the Green function of $C_{n}(\Omega)$, and let $G \mu(P)=\int_{C_{n}(\Omega)} G(P, Q) d \mu(Q)$ be the Green potential at $P \in C_{n}(\Omega)$ of a positive Radon measure $\mu$.

Let $S_{n}(\Omega)$ be the set $\partial C_{n}(\Omega) \backslash\{O\}$. Now we shall define the Martin type kernel $K(P, Q)\left(P=(r, \Theta) \in C_{n}(\Omega), Q=(t, \Phi) \in \overline{C_{n}(\Omega)} \cup\{\infty\}\right)$ as follows:

$$
K(P, Q)= \begin{cases}\frac{G(P, Q)}{t^{\alpha_{\Omega}} f_{\Omega}(\Phi)} & \text { on } C_{n}(\Omega) \times C_{n}(\Omega) \\ \frac{\partial G(P, Q)}{\partial n_{Q}}\left\{t^{\alpha_{\Omega}-1} \frac{\partial}{\partial n_{\Phi}} f_{\Omega}(\Phi)\right\}^{-1} & \text { on } C_{n}(\Omega) \times S_{n}(\Omega) \\ r^{\alpha_{\Omega}} f_{\Omega}(\Theta) & \text { on } C_{n}(\Omega) \times\{\infty\} \\ \kappa r^{-\beta_{\Omega}} f_{\Omega}(\Theta) & \text { on } C_{n}(\Omega) \times\{O\}\end{cases}
$$

where $\partial / \partial n_{Q}$ denotes the differentiation at $Q$ along the inward normal into $C_{n}(\Omega)$. We note that $K_{P}(Q)=K(P, Q)$ is continuous in the extended sence on $C_{n}(\Omega) \cup S_{n}(\Omega)$. Following Brelot [2, p.31], we let $K^{*}(P, Q)=K(Q, P)$ be the associated kernel of $K$ on $\left(\overline{C_{n}(\Omega)} \cup\{\infty\}\right) \times$ $C_{n}(\Omega)$.

If $\mu$ is a measure on $\overline{C_{n}(\Omega)} \cup\{\infty\}$, we abbreviate $\frac{\int}{\overline{C_{n}(\Omega)} \cup\{\infty\}}$ to $K \mu(P)$ and also $\int_{C_{n}(\Omega)} K^{*}(P, Q) d \nu(Q)$ to $K^{*} \nu(P)$ for a measure $\nu$ on $C_{n}(\Omega)$.

Let $u$ be a non-negative superharmonic function on $C_{n}(\Omega)$ and put $c_{O}(u)=\inf _{P \in C_{n}(\Omega)} \frac{u(P)}{K(P, O)}$. Then from Miyamoto and Yoshida [7, Lemma 3], we see that there exists a unique measure $\mu_{u}$ on $\overline{C_{n}(\Omega)} \cup\{\infty\}$ such that $u=K \mu_{u}$. When we denote by $\mu_{u}^{\prime}$ the restriction of the measure $\mu_{u}$ on $C_{n}(\Omega)$, we have $u(P)=c_{\infty}(u) K(P, \infty)+c_{O}(u) K(P, O)+$ $K \mu_{u}^{\prime}(P)$.

For a number $a, 0 \leq a \leq 1$, we define the positive superharmonic function $g_{a}$ by $g_{a}(P)=(K(P, \infty))^{a} \quad\left(P \in C_{n}(\Omega)\right)$.

For a non-negative function $v$ on $C_{n}(\Omega)$ and $E \subset C_{n}(\Omega)$, let $\hat{R}_{v}^{E}$ be the regularized reduced function of $v$ relative to $E$ (Helms [5, p.116]).

Let $E$ be a bounded subset of $C_{n}(\Omega)$. We define the a-mass of $E$ by $\lambda_{E}^{a}\left(\overline{C_{n}(\Omega)}\right)$ for $0 \leq a \leq 1$, where $\lambda_{E}^{a}$ is the measure on $\overline{C_{n}(\Omega)}$ such that $K \lambda_{E}^{a}=\hat{R}_{g_{a}}^{E}$.

Let $E \subset C_{n}(\Omega)$ be bounded. Then there exists a unique measure $\lambda_{E}$ on $C_{n}(\Omega)$ such that $\hat{R}_{\tilde{K}(\cdot, \infty)}^{E}=G \lambda_{E}$ on $C_{n}(\Omega)$. If $0<a \leq 1$, then following Yoshida [8, Corollary 5.3] we see the greatest harmonic
minorant of $\hat{R}_{g_{a}}^{E}$ is zero, so that $\lambda_{E}^{a}\left(\partial C_{n}(\Omega)\right)=0$. Then according to the proof of Aikawa [1, Lemma 2.1] we can similarly have

$$
\begin{equation*}
\lambda_{E}^{a}\left(\overline{C_{n}(\Omega)}\right)=\int_{C_{n}(\Omega)} g_{a} d \lambda_{E} \tag{2.1}
\end{equation*}
$$

In particular $\lambda_{E}^{1}\left(\overline{C_{n}(\Omega)}\right)=\int G \lambda_{E} d \lambda_{E}$ and $\lambda_{E}^{0}\left(\overline{C_{n}(\Omega)}\right)=\lambda_{E}\left(C_{n}(\Omega)\right)$.
Let $E$ be a subset of $C_{n}(\Omega)$ and $E_{k}=E \cap I_{k}$, where

$$
I_{k}=\left\{P \in C_{n}(\Omega) ; 2^{k} \leq|P|<2^{k+1}\right\} \quad(k=0,1,2, \ldots)
$$

We say that $E \subset C_{n}(\Omega)$ is $a$-minimally thin at $\infty$ in $C_{n}(\Omega)$ if

$$
\sum_{k=0}^{\infty} \lambda_{E_{k}}^{a}\left(\overline{C_{n}(\Omega)}\right) 2^{-k\left(a \alpha_{\Omega}+\beta_{\Omega}\right)}<+\infty
$$

Remark 2.1. From Theorems 1 and 2 of Miyamoto and Yoshida [7] and (2.1), we see that the notion of $a$-minimal thinness contains the notions of minimal thinness and rarefiedness.

In the following we set

$$
\begin{array}{rll}
C_{n}(\Omega ; a, b) & =\left\{P=(r, \Theta) \in C_{n}(\Omega) ; a<r<b\right\} & (0<a<b \leq+\infty) \\
S_{n}(\Omega ; a, b) & =\left\{P=(r, \Theta) \in S_{n}(\Omega) ; a<r<b\right\} & (0<a<b \leq+\infty) .
\end{array}
$$

As far as we are concerned with $a$-minimal thinness in the following, we shall restrict a subset $E$ of $C_{n}(\Omega)$ to the set located in $C_{n}(\Omega ; 1,+\infty)$, because the part of $E$ separated from $\infty$ is unessential to $a$-minimal thinness.

## §3. Statements of results

Let $\eta$ be a real number satisfying $(2-n) \frac{1}{\alpha_{\Omega}}-1<\eta \leq 1$. We define the positive superharmonic function $h_{\eta}$ on $C_{n}(\Omega)$ by $h_{\eta}(P)=$ $K(P, \infty)|P|^{\left\{(2-n) \frac{1}{\alpha_{\Omega}}-1-\eta\right\} \alpha_{\Omega}}$. Since $K(P, \infty)$ is a minimal harmonic function on $C_{n}(\Omega)$, we see that there exists a measure $\nu_{\eta}$ on $C_{n}(\Omega)$ such that $G \nu_{\eta}(P)=\min \left(K(P, \infty), h_{\eta}(P)\right)$.

Let $\mathfrak{F}_{\eta}$ be the class of all non-negative superharmonic functions $u$ on $C_{n}(\Omega)$ such that $c_{\infty}(u)=0$ and

$$
\begin{equation*}
\int_{C_{n}(\Omega ; 1,+\infty) \cup S_{n}(\Omega ; 1,+\infty)}|Q|^{\left\{(2-n) \frac{1}{\alpha_{\Omega}}-1-\eta\right\} \alpha_{\Omega}} d \mu_{u}(Q)<+\infty . \tag{3.1}
\end{equation*}
$$

Remark 3.1. If $P \in C_{n}(\Omega)$, then $K^{*} \nu_{\eta}(P)=G \nu_{\eta}(P) / K(P, \infty)$. If $P \in S_{n}(\Omega)$, then $K^{*} \nu_{\eta}(P)=\liminf _{Q \rightarrow P, Q \in C_{n}(\Omega)} K^{*} \nu_{\eta}(Q)$ (cf. Essén and Jackson [3, p.240]). Hence for a point $P \in C_{n}(\Omega) \cup S_{n}(\Omega)$, we have

$$
K^{*} \nu_{\eta}(P)= \begin{cases}1 & \text { for } 0<|P|<1  \tag{3.2}\\ |P|^{\left\{(2-n) \frac{1}{\alpha_{\Omega}}-1-\eta\right\} \alpha_{\Omega}} & \text { for }|P| \geq 1\end{cases}
$$

Let $u \in \mathfrak{F}_{\eta}$. From (3.2) we see that (3.1) is equivalent to the following condition;

$$
\int_{C_{n}(\Omega)}\left\{u(P)-c_{O}(u) K(P, O)\right\} d \nu_{\eta}(P)<+\infty
$$

If $u_{1}, u_{2} \in \mathfrak{F}_{\eta}$ and $c$ is a positive constant, then $u_{1}+u_{2}, c u_{1} \in \mathfrak{F}_{\eta}$.
Let $v \in \mathfrak{F}_{\eta}$ such that $c_{O}(v)=0$, and let $u$ be a non-negative superharmonic function such that $c_{O}(u)=0$. Then $0 \leq u \leq v$ on $C_{n}(\Omega)$ implies $u \in \mathfrak{F}_{\eta}$ (cf. Aikawa [1, Lemma 3.1]).

We define the function $h_{\eta, a}(P)=K(P, \infty)^{a}|P|^{(\eta-a) \alpha_{\Omega}}\left(P \in C_{n}(\Omega)\right)$.
Theorem 3.1. If $u(P) \in \mathfrak{F}_{\eta}$, then there exists a set $E \subset C_{n}(\Omega)$ which is a-minimally thin at $\infty$ with respect to $C_{n}(\Omega)$ such that

$$
\lim _{|P| \rightarrow+\infty, P \in C_{n}(\Omega) \backslash E} \frac{u(P)}{h_{\eta, a}(P)}=0
$$

Conversely, if $E$ is unbounded and a-minimally thin at $\infty$ with respect to $C_{n}(\Omega)$, then there exists $u(P) \in \mathfrak{F}_{\eta}$ such that

$$
\lim _{|P| \rightarrow+\infty, P \in E} \frac{u(P)}{h_{\eta, a}(P)}=+\infty
$$

When $\Omega=\mathbf{S}_{+}^{n-1}$, we obtain the result of Aikawa [1, Theorem 3.2].
Let $u(P)$ be a non-negative superharmonic function on $C_{n}(\Omega)$. Since $u_{1}(P)=u(P)-c_{\infty}(u) K(P, \infty)$ belongs to $\mathfrak{F}_{1}$, we obtain the following Corollary 3.1 by applying Theorem 3.1 of the case $\eta=1$ to $u_{1}$.

Corollary 3.1. Let $u(P)$ be a non-negative superharmonic function on $C_{n}(\Omega)$. Then there exists a set $E \subset C_{n}(\Omega)$ which is a-minimally thin at $\infty$ with respect to $C_{n}(\Omega)$ such that

$$
\lim _{|P| \rightarrow+\infty, P \in C_{n}(\Omega) \backslash E} \frac{u(P)-c_{\infty}(u) K(P, \infty)}{K(P, \infty)^{a}|P|^{(1-a) \alpha_{\Omega}}}=0
$$

Conversely, if $E$ is unbounded and a-minimally thin at $\infty$ with respect to $C_{n}(\Omega)$, then there exists a non-negative superharmonic function $u(P)$
such that

$$
\lim _{|P| \rightarrow+\infty, P \in E} \frac{u(P)-c_{\infty}(u) K(P, \infty)}{K(P, \infty)^{a}|P|^{(1-a) \alpha_{\Omega}}}=+\infty
$$

The case $a=0$ in Corollary 3.1 gives the result of Miyamoto and Yoshida [7, Theorem 3].

## §4. Proof of Theorem 3.1

We remark that

$$
\begin{align*}
G(P, Q) & \leq M_{1} r^{\alpha_{\Omega}} t^{-\beta_{\Omega}} f_{\Omega}(\Theta) f_{\Omega}(\Phi)  \tag{4.1}\\
\text { (resp. } G(P, Q) & \left.\leq M_{2} t^{\alpha_{\Omega}} r^{-\beta_{\Omega}} f_{\Omega}(\Theta) f_{\Omega}(\Phi)\right) \tag{4.2}
\end{align*}
$$

for any $P=(r, \Theta) \in C_{n}(\Omega)$ and any $Q=(t, \Phi) \in C_{n}(\Omega)$ satisfying $0<\frac{r}{t} \leq \frac{1}{2}\left(\right.$ resp. $0<\frac{t}{r} \leq \frac{1}{2}$ ), where $M_{1}$ (resp. $M_{2}$ ) is a positive constant. From (4.1) and (4.2) we have the following inequalities:

$$
\begin{align*}
\frac{\partial G(P, Q)}{\partial n_{Q}} & \leq M_{3} r^{\alpha_{\Omega}} t^{-\beta_{\Omega}-1} f_{\Omega}(\Theta) \frac{\partial}{\partial n_{\Phi}} f_{\Omega}(\Phi)  \tag{4.3}\\
\text { (resp. } \frac{\partial G(P, Q)}{\partial n_{Q}} & \left.\leq M_{4} t^{\alpha_{\Omega}-1} r^{-\beta_{\Omega}} f_{\Omega}(\Theta) \frac{\partial}{\partial n_{\Phi}} f_{\Omega}(\Phi)\right) \tag{4.4}
\end{align*}
$$

for any $P=(r, \Theta) \in C_{n}(\Omega)$ and any $Q=(t, \Phi) \in S_{n}(\Omega)$ satisfying $0<\frac{r}{t} \leq \frac{1}{2}$ (resp. $0<\frac{t}{r} \leq \frac{1}{2}$ ), where $M_{3}$ (resp. $M_{4}$ ) is a positive constant and $\partial / \partial n_{\Phi}$ denotes the differntiation at $\Phi \in \partial \Omega$ along the inward normal into $\Omega$ (Miyamoto and Yoshida [7]).

For two positive functions $u$ and $v$, we shall write $u \approx v$ if and only if there exist constants $A, B, 0<A \leq B$, such that $A v \leq u \leq B v$ everywhere on $C_{n}(\Omega)$.

Lemma 4.1. $E \subset C_{n}(\Omega ; 1,+\infty)$ is a-minimally thin at $\infty$ if and only. if $\sum_{k=0}^{\infty} \hat{R}_{h_{\eta, a}}^{E_{k}} \in \mathfrak{F}_{\eta}$.

Proof. We note that for every $k=0,1,2, \ldots$,

$$
\begin{aligned}
\hat{R}_{g_{a}}^{E_{k}} & \approx 2^{-k(\eta-a) \alpha_{\Omega}} \hat{R}_{h_{\eta, a}}^{E_{k}}, \\
\lambda_{E_{k}}^{a}\left(\overline{C_{n}(\Omega)}\right) & \approx 2^{-k\left\{(2-n) \frac{1}{\alpha_{\Omega}}-1-\eta\right\} \alpha_{\Omega}} \int_{C_{n}(\Omega) \cup S_{n}(\Omega)}|Q|^{\left\{(2-n) \frac{1}{\alpha_{\Omega}}-1-\eta\right\} \alpha_{\Omega}} d \lambda_{E_{k}}^{a}(Q),
\end{aligned}
$$

where the constants of comparison are independent of $k$. Since

$$
\begin{aligned}
& \int_{C_{n}(\Omega)} \hat{R}_{g_{a}}^{E_{k}}(P) d \nu_{\eta}(P)=\int_{C_{n}(\Omega)} K \lambda_{E_{k}}^{a}(P) d \nu_{\eta}(P) \\
= & \int_{C_{n}(\Omega) \cup S_{n}(\Omega)} K^{*} \nu_{\eta}(Q) d \lambda_{E_{k}}^{a}(Q)=\int_{C_{n}(\Omega) \cup S_{n}(\Omega)}|Q|^{\left\{(2-n) \frac{1}{\alpha_{\Omega}}-1-\eta\right\} \alpha_{\Omega}} d \lambda_{E_{k}}^{a}(Q),
\end{aligned}
$$

we have $2^{k\left(-a \alpha_{\Omega}-\beta_{\Omega}\right)} \lambda_{E_{k}}^{a}\left(\overline{C_{n}(\Omega)}\right) \approx \int_{C_{n}(\Omega)} \hat{R}_{h_{\eta, a}}^{E_{k}}(P) d \nu_{\eta}(P)$ where the constants of comparison are independent of $k$, which gives the conclusion.

Lemma 4.2. Let $E$ be a set in $C_{n}(\Omega ; 1,+\infty)$. If $\hat{R}_{h_{\eta, a}}^{E} \in \mathfrak{F}_{\eta}$, then $E$ is a-minimally thin at $\infty$.

Proof. Since $h_{\eta, a}(P)$ satisfies

$$
\liminf _{|P| \rightarrow \infty} \frac{h_{\eta, a}(P)}{K(P, \infty)|P|^{(\eta-1) \alpha_{\Omega}}}>0
$$

we find a positive constant $C^{\prime}$ and a natural number $N_{1}$ such that $h_{\eta, a}(P) \geq C^{\prime} K(P, \infty)|P|^{(\eta-1) \alpha_{\Omega}}$ for $|P|>2^{N_{1}}$. Let $C_{1}=M_{1} / C^{\prime}, C_{2}=$ $M_{2} / C^{\prime}, C_{3}=M_{3} / C^{\prime}$ and $C_{4}=M_{4} / C^{\prime}$. And put $C=\max _{1 \leq i \leq 4}\left\{C_{i}\right\}$.

Let $\hat{R}_{h_{\eta, a}}^{E}=K \mu$, where $\mu$ satisfies (3.1). Noting (3.1), we put $A=\int_{C_{n}(\Omega ; 1,+\infty) \cup S_{n}(\Omega ; 1,+\infty)}|Q|^{\left\{(2-n) \frac{1}{\alpha_{\Omega}}-1-\eta\right\} \alpha_{\Omega}} d \mu(Q)<+\infty$. We take a natural number $N_{2}$ such that $4 A C<2^{-N_{2}\left\{(2-n) \frac{1}{\alpha_{\Omega}}-1-\eta\right\} \alpha_{\Omega}}$. Then there exists a natural number $k_{0}$ such that

$$
C \int_{\left\{Q \in C_{n}(\Omega) \cup S_{n}(\Omega) ;|Q| \geq 2^{k+N_{2}+1}\right\}}|Q|^{\left\{(2-n) \frac{1}{\alpha_{\Omega}}-1-\eta\right\} \alpha_{\Omega}} d \mu(Q)<\frac{1}{4}
$$

for $k \geq k_{0}$. Let $N=\max \left\{N_{1}, N_{2}, k_{0}\right\}$. Hence it is sufficient to prove $\sum_{k>N} \hat{R}_{h_{\eta, a}}^{E_{k}} \in \mathfrak{F}_{\eta}$ beacause $\sum_{k=0}^{N} \hat{R}_{h_{\eta, a}}^{E_{k}} \leq(N+1) \hat{R}_{h_{\eta, a}}^{E} \in \mathfrak{F}_{\eta}$. We set $J_{k}=I_{k-N_{2}} \cup \cdots \cup I_{k} \cup \cdots \cup I_{k+N_{2}}$. Let $k>N$ and let $P=(r, \Theta) \in E_{k}$. If $Q \in C_{n}(\Omega)$ and $|Q| \leq 2^{k-N_{2}}$, then from (4.2) we have

$$
K(P, Q)=\frac{G(P, Q)}{t^{\alpha_{\Omega}} f_{\Omega}(\Phi)} \leq M_{2} r^{-\beta_{\Omega}} f_{\Omega}(\Theta)
$$

Hence

$$
\begin{aligned}
\int_{\left\{Q \in C_{n}(\Omega) ;|Q| \leq 2^{k-N_{2}}\right\}} K(P, Q) d \mu(Q) & \leq C_{2} h_{\eta, a}(P) r^{-\left(\eta \alpha_{\Omega}+\beta_{\Omega}\right)} \int_{1 \leq|Q| \leq 2^{k-N_{2}}} d \mu(Q) \\
& \leq C_{2} h_{\eta, a}(P) \int_{1 \leq|Q| \leq 2^{k-N_{2}}}|P|^{\left\{(2-n) \frac{1}{\alpha_{\Omega}}-1-\eta\right\} \alpha_{\Omega}} d \mu(Q)
\end{aligned}
$$

On the other hand, if $Q \in C_{n}(\Omega)$ and $|Q| \geq 2^{k+N_{2}+1}$, then from (4.1) we have

$$
\begin{aligned}
\int_{\left\{Q \in C_{n}(\Omega) ;|Q| \geq 2^{k+N_{2}+1}\right\}} K(P, Q) d \mu(Q) & \leq C_{1} h_{\eta, a}(P) r^{-(\eta-1) \alpha_{\Omega}} \int_{|Q| \geq 2^{k+N_{2}+1}}|Q|^{-\left(\alpha_{\Omega}+\beta_{\Omega}\right)} d \mu(Q) \\
& \leq C_{1} h_{\eta, a}(P) \int_{|Q| \geq 2^{k+N_{2}+1}}|Q|^{\left\{(2-n) \frac{1}{\alpha_{\Omega}}-1-\eta\right\} \alpha_{\Omega}} d \mu(Q)
\end{aligned}
$$

If $Q \in S_{n}(\Omega)$ and $|Q| \leq 2^{k-N_{2}}$ or $Q \in S_{n}(\Omega)$ and $|Q| \geq 2^{k+N_{2}+1}$, then from (4.4) or (4.3) we have similar inequalities. From these inequalities, we have

$$
\begin{gathered}
C^{-1} \frac{C_{n}(\Omega) \backslash \bar{J}_{k}}{C_{n}(P, Q) d \mu(Q) \leq h_{\eta, a}(P)} \int_{|Q| \leq 2^{k-N_{2}}}|P|^{\left\{(2-n) \frac{1}{\alpha_{\Omega}}-1-\eta\right\} \alpha_{\Omega}} d \mu(Q) \\
+h_{\eta, a}(P) \int_{|Q| \geq 2^{k+N_{2}+1}}|Q|^{\left\{(2-n) \frac{1}{\alpha_{\Omega}}-1-\eta\right\} \alpha_{\Omega}} d \mu(Q)
\end{gathered}
$$

Since $4 A C<2^{-N_{2}\left\{(2-n) \frac{1}{\alpha_{\Omega}}-1-\eta\right\} \alpha_{\Omega}}$, we see that

$$
\begin{aligned}
& C \int_{|Q| \leq 2^{k-N_{2}}}|P|^{\left\{(2-n) \frac{1}{\alpha_{\Omega}}-1-\eta\right\} \alpha_{\Omega}} d \mu(Q) \leq \frac{1}{4 A} \int_{|Q| \leq 2^{k-N_{2}}}\left(\frac{|P|}{2^{N_{2}}}\right)^{\left\{(2-n) \frac{1}{\alpha_{\Omega}}-1-\eta\right\} \alpha_{\Omega}} d \mu(Q) \\
\leq & \frac{1}{4 A} \int_{|Q| \leq 2^{k-N_{2}}}|Q|^{\left\{(2-n) \frac{1}{\alpha_{\Omega}}-1-\eta\right\} \alpha_{\Omega}} d \mu(Q) \leq \frac{1}{4}
\end{aligned}
$$

So we have $\int_{\overline{C_{n}(\Omega)} \backslash \bar{J}_{k}} K(P, Q) d \mu(Q) \leq \frac{1}{2} h_{\eta, a}(P)$ on $E_{k}$, which implies that

$$
h_{\eta, a}(P) \leq \hat{R}_{h_{\eta, a}}^{E}(P) \leq \int_{\bar{J}_{k}} K(P, Q) d \mu(Q)+\frac{1}{2} h_{\eta, a}(P)
$$

q.e. on $E_{k}$. Hence $h_{\eta, a}(P) \leq 2 \int_{\bar{J}_{k}} K(P, Q) d \mu(Q)$ q.e. on $E_{k}$. Therefore $\hat{R}_{h_{\eta, a}}^{E_{k}}(P) \leq 2 \int_{J_{k}} K(P, Q) d \mu(Q)$ on $C_{n}(\Omega)$, by the definition of $\hat{R}_{h_{\eta, a}}^{E_{k}}$. If we sum up $\hat{R}_{h_{\eta, a}}^{E_{k}}$ over $k>N$, we obtain $\sum_{k>N}^{\infty} \hat{R}_{h_{\eta, a}}^{E_{k}} \leq 2\left(2 N_{2}+1\right) \hat{R}_{h_{\eta, a}}^{E}$. By Remark 3.1 we see $\sum_{k>N} \hat{R}_{h_{\eta, a}}^{E_{k}} \in \mathfrak{F}_{\eta}$. Thus the lemma follows from Lemma 4.1.

Proof of Theorem 3.1. Let $u_{1}(P)=u(P)-c_{O}(u) K(P, O)(P \in$ $C_{n}(\Omega)$ ), then we see $u_{1} \in \mathfrak{F}_{\eta}$. For each non-negative integer $j$, we set $A_{j}=\left\{P \in C_{n}(\Omega ; 1,+\infty) ; u_{1}(P) / h_{\eta, a}(P) \geq(j+1)^{-1}\right\}$. Since $\hat{R}_{h_{\eta, a}}^{A_{j}} \leq$
$(j+1) u_{1} \in \mathfrak{F}_{\eta}$, we see from Remark 3.1 that $\hat{R}_{h_{\eta, a}}^{A_{j}} \in \mathfrak{F}_{\eta}$, and then $A_{j}$ is a-minimally thin by Lemma 4.2. Following Aikawa [1, Lemma 3.4], we can similarly find an increasing sequence $\{m(j)\}$ of natural numbers such that $\sum_{j} \hat{R}_{h_{\eta, a}}^{\cup_{k \times m(j)}\left(A_{j} \cap I_{k}\right)} \in \mathfrak{F}_{\eta}$. Set $\cup_{j=0}^{\infty} \cup_{k \geq m(j)}\left(A_{j} \cap I_{k}\right)=E$. Since $\hat{R}_{h_{\eta, a}}^{E} \leq \sum_{j} \hat{R}_{h_{\eta, a}}^{\cup_{k \geq m(j)}\left(A_{j} \cap I_{k}\right)}, E$ is a-minimally thin by Lemma 4.2. If $P \notin E$, then $P \notin \cup_{k \geq m(j)}\left(A_{j} \cap I_{k}\right)$ for every $j$. It follows that if $|P| \geq 2^{m(j)}$, then $P \notin A_{j}$. This implies that $u_{1}(P) / h_{\eta, a}(P)<(j+1)^{-1}$. Hence we have $u_{1}(P) / h_{\eta, a}(P) \rightarrow 0$ as $|P| \rightarrow \infty, P \in C_{n}(\Omega) \backslash E$. On the other hand, we see $K(P, O) / h_{\eta, a}(P)=\kappa r^{\left\{(2-n) \frac{1}{\alpha_{\Omega}}-1-\eta\right\} \alpha_{\Omega}} f_{\Omega}(\Theta)^{1-a} \rightarrow$ 0 as $|P| \rightarrow \infty$. Thus we have

$$
\frac{u(P)}{h_{\eta, a}(P)}=\frac{u_{1}(P)+c_{O}(u) K(P, O)}{h_{\eta, a}(P)} \rightarrow 0 \quad\left(|P| \rightarrow \infty, P \in C_{n}(\Omega) \backslash E\right)
$$

For the converse we take an unbounded and a-minimally thin set $E$. As in the proof of Aikawa [1, Lemma 2.4 (iv)], we see that if $U$ is bounded, then $\lambda_{U}^{a}\left(\overline{C_{n}(\Omega)}\right)=\inf \left\{\lambda_{O}^{a}\left(\overline{C_{n}(\Omega)}\right) ; U \subset O, O\right.$ is open $\}$. By applying the above property to $E_{k}(k=0,1,2, \ldots$,$) , we obtain$ an open set $O \supset E$ such that O is a-minimally thin. By Lemma 4.1 we have $\sum_{k=0}^{\infty} \hat{R}_{h_{\eta, a}}^{O_{k}}(P) \in \mathfrak{F}_{\eta}$, where $O_{k}=O \cap I_{k}$, which implies $\sum_{k} \int \hat{R}_{h_{\eta, a}}^{O_{k}}(P) d \nu_{\eta}(P)<+\infty$. We find an increasing sequence $\left\{c_{k}\right\}$ of positive numbers such that $c_{k} \nearrow \infty$ and $\sum_{k} c_{k} \int \hat{R}_{h_{\eta, a}}^{O_{k}}(P) d \nu_{\eta}(P)<$ $+\infty$. Set $u(P)=\sum_{k=0}^{\infty} c_{k} \hat{R}_{h_{\eta, a}}^{O_{k}}(P)$. By Lebesgue's monotone convergence theorem, we see that $u \in \mathfrak{F}_{\eta}$. Since $O_{k}$ is included in the interior of $O_{k-1} \cup O_{k}$,

$$
\hat{R}_{h_{\eta, a}}^{O_{k-1}}(P)+\hat{R}_{h_{\eta, a}}^{O_{k}}(P) \geq \hat{R}_{h_{\eta, a}}^{O_{k-1} \cup O_{k}}(P) \geq h_{\eta, a}(P)
$$

for $P \in O_{k}$. Hence, if $P \in E_{k} \subset O_{k}$, then

$$
u(P) \geq c_{k-1} \hat{R}_{h_{\eta, a}}^{O_{k-1}}(P)+c_{k} \hat{R}_{h_{\eta, a}}^{O_{k}}(P) \geq c_{k-1} h_{\eta, a}(P)
$$

Therefore

$$
\lim _{|P| \rightarrow+\infty, P \in E} \frac{u(P)}{h_{\eta, a}(P)}=+\infty
$$

## References

[1] H. Aikawa, On the behavior at infinity of non-negative superharmonic functions in a half space, Hiroshima Math. J., 11 (1981), 425-441, MR0620547.
[2] M. Brelot, On topologies and boundaries in potential theory, Lect. Notes in Math., 175, Springer-Verlag, 1971, MR0281940.
[3] M. Essén and H. L. Jackson, On the covering properties of certain exceptional sets in a half-space, Hiroshima Math. J., 10 (1980), 233-262, MR0577853.
[4] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer Verlag, Berlin, 2001, MR1814364.
[5] L. L. Helms, Introduction to potential theory, Wiley, New York, 1969, MR0261018.
[6] J. Lelong-Ferrand, Étude au voisinage de la frontière des fonctions surharmoniques positives dans un demi-espace, Ann. Sci. Ecole Norm. Sup., 66 (1949), 125-159, MR0031603.
[7] I. Miyamoto and H. Yoshida, Two criterions of Wiener type for minimally thin sets and rarefied sets in a cone, J. Math. Soc. Japan, 54 (2002), 487-512, MR21900954.
[8] H. Yoshida, Nevanlinna norm of a subharmonic function on a cone or on a cylinder, Proc. London Math. Soc., 54 (1987), 267-299, MR0872808.

Minoru Yanagishita<br>Graduate School of Science and Technology<br>Chiba University<br>1-33 Yayoi-cho, Inage-ku<br>Chiba 263-8522<br>Japan<br>email:myanagis@g.math.s.chiba-u.ac.jp

