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HOlder continuity of solutions to quasilinear elliptic 
equations with measure data 

Takayori Ono 

Abstract. 

We consider quasi-linear second order elliptic differential equa­
tions with measures date on the right hand side. In this talk, we 
investigate Holder continuity of solutions of such equations. 

§1. Introduction. 

Let G be a bounded open set in RN (N ~ 2) and 1 < p < N. 
Suppose that vis a signed Radon measure on G. We consider quasi­
linear second order elliptic differential equations with measure date of 
the form 

- div A(x, V'u(x)) + B(x, u(x)) = v, 

where A(x,~) : RN x RN---+ RN satisfies structure conditions of p-th 
order and B ( x, t) : R N x R ---+ R is nondecreasing in t (see section 2 
below for more details). 

Holder continuity of a solution to the equation (E11 ) was investigated 
in [17], [8] and [6]. In these papers, they showed that the solution of 
( E11 ) is locally Holder continuous with some exponent if the signed Radon 
measure v satisfies the condition that there exist constants M > 0 and 
0 < f3 < >. with 

lvi(B(xo, r)) ::::; M rN-p+iJ(p-l) 
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whenever B(x, 3r) C G, where >. is a number depending on N, p and 
structure conditions for A and B. Further, in [7], in the case B = 0 in 
the equation ( Ev), namely for the equation 

(1) - div A(x, \7u(x)) = v 

and v is a nonnegative Radon measure, Kilpelainen and Zhong showed 
that a solution to the equation (1) is Holder continuous with the same 
exponent j3. In this talk, we extend this result to the case of the equation 
(Ev)· 

Throughout this paper, we use some standard notation without ex­
planation. 

§2. Preliminaries. 

We assume that A : RN x RN----> RN and B : RN x R----> R satisfy 
the following conditions for 1 < p < N : 

(E) 

(A.1) x ~ A(x,O is measurable on RN for every~ E RN and 
~ ~ A(x, ~) is continuous for a. e. x E R N ; 

(A.2) A(x,~) · ~ 2: a1I~IP for all~ ERN and a.e. x ERN with a 
constant a1 > 0; 

(A.3) IA(x, ~)I ::; a2l~lp- 1 for all~ E RN and a.e. x E RN with a 
constant a2 > 0; 

(A.4) (A(x,6)- A(x,6)) · (6- 6) > 0 whenever 6, 6 ERN, 
6 -I= 6, for a.e. x ERN; 

(B.1) x ~ B(x, t) is measurable on RN for every t E R and t ~ 
B(x, t) is continuous for a.e. x E RN ; 

(B.2) For any open set G ERN, there is a constant a 3 (G) 2:0 such 
that IB(x, t)l ::; a3(G)(ItjP-1 + 1) for all t E Rand a.e. x E G; 

(B.3) t ~ B(x, t) is nondecreasing on R for a.e. x ERN. 

We consider elliptic quasi-linear equations of the form 

- div A(x, \7u(x)) + B(x, u(x)) = 0. 

For an open subset G ofRN, we consider the Sobolev spaces W 1·P(G), 
w~·P(G) and W1~·:(c). 

Let G be an open subset of R N. A function u E wl~·: (G) is said to 
be a (weak) solution of (E) in G if 

fa A(x, \7u) · \7r.p dx +fa B(x, u)r.p dx = 0 

for all r.p E C0 (G). 
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A continuous solution of (E) in an open subset G of RN is called 
(A, B)-harmonic in G. 

We can see the following proposition by the proof of [14; Theorem 
4. 7]. By carefully analyzing the proof of [14; Theorem 4.2 and Theorem 
4. 7], we can choose constants c and 0 < >. ::; 1 independent of the radius 
R if R ::; 1. 

Proposition 2.1. Let G be a bounded open set. Then there are 
constants c and 0 < >. ::; 1 such that for B(xo, R) <S G and for every 
(A, B)-harmonic function h in G with I hi ::; L in B(xo, R), 

osc(h, B(x0 , r)) ::; c (~)'A ( osc(h, B(xo, R)) + R), 

whenever 0 < r < R ::; 1. Here c depends only on N, p, 0:1, 0:2, 0:3 (G) 
and L and >. depends only on N, p, 0:1, 0:2 and 0:3 (G). 

In the case of A(x, ~) = I~IP- 2 ~ and B = 0, namely for the p-Laplace 
equation, we can choose>.= 1 ([4; Lemma 2.1]). 

We recall the following propositions ([13; Theorem 2.2 and putting 
k = 0 in Definition 2.1, and Lemma 3.1]). 

Proposition 2.2. Let G be a bounded open set and M 0 2: 0. Then 
there is a constant c such that, for every (A, B)-harmonic function h in 
G, nonnegative 1] E Cif(G) and constant M with IMI ::; Mo, 

r IV' hiP rl dx ::; c r max(h- M, O)P (1JP + IY'171P) dx 
J{h>M} lc 

+ c (Mo + 1)P { 17P dx, 
j{h>M} 

where c depends only on p, 0:1, 0:2 and 0:3 (G). 

Proposition 2.3. Let G be a bounded open set, M 0 2: 0, 1 E (O,p]. 
Then there is a constant c such that, for every r E (0, 1] with B(xo, r) <S 

G, an (A, B)-harmonic function h in G and a constant M with IMI ::; 
Mo, 

1 ( )
1h 

sup lh- Ml < c lh- Ml'"'~dx + c r, 
B(xo,r/2) - IB(xo, r)ll(x0 ,r) 

where c depends only on p, 0:1, o:2, o:3(G), 1 and Mo. 

Lemma 2.1. Let G be a bounded open set. Then there is a constant 
c depending only on p, N, 0:1, 0:2 and 0:3 (G) such that for B( xo, R) C G 
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with R :::; 1, u E W 1·P(B(x0 , R)) and the (A, B)-harmonic function h 
with h-uE W~'P(B(xo, R)) 

r IY'hiPdx ( ) 

1/p 

JB(xo,R) 

:::; c { ( r luiP dx) 
11

p + ( r IY'uiP dx) 
11

p + RNfp}. 
JB(xo,R) JB(xo,R) 

Proof Fix B = B(xo, R) C G with R :::; 1 and let II · llp,G denote 
the usual LP(G)-norm. It follows from (A.2), (A.3), (B.2) and (B.3) that 

IIY'hii:,B < a11 l A(x, V'h) · V'hdx 

a11 {l A(x, V'h) · V'u dx -l B(x, h)(h- u) dx} 

< a11 a2 IIY'hii::IJ IIY'ullp,B- a11 l B(x, u)(h- u) dx 

< a11 a2 IIY'hii::IJ IIY'ullp,B 

+ a1 1 a3(G) II lui+ 111:1 llu- hllp,B· 

Because h-uE W~'P(B), by the Poincare inequality we have 

where we can take c depending only on N because R:::; 1. Also, 

with c' = c'(p) > 0. Thus, by the above inequalities and Young's in­
equality we have 

IIY'hii:,B :::; c1 IIY'hii::IJ IIY'ullp,B 

+ C2 (lluii::IJ + RN(p-1)/P) (IIY'hllp,B + IIY'ullp,B) 

< ~ IIY'hii:,B + C3 (IIY'uii:,B + lluii:,B + RN). 

Hence IIY'hii:,B :::; 2c3 (IIY'uii:,B + lluii:,B + RN), which implies the de­
sired inequality. 0 

Lemma 2.2. Suppose that G is a bounded open set and B(x0 , R) <S 

G. There exists a number>.= >.(N,p, a1, a2, a3(G)) > 0 such that for 
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every 0 < r < R:::; 1 and (A, B)-harmonic function h in G with I hi :::; L 
in B(x0 , R) it holds that 

Proof. We may assume that 0 < r < lJ. From Proposition 2.2 and 
Proposition 2.1 we obtain 

{ I\? hiP dx:::; CP { {(h- inf h)P + (L + 1)P rP} dx 
jB(x0 ,r) r jB(xo,2r) B(xo,2r) 

:::; ~ {(sup h- inf h)P +(L+1)PrP}rN 
r B(xo,2r) B(xo,2r) 

:::; crN-p 

X [{ (!...) .\ ( sup h- in.f h + R) }P + (L + 1)PrP] 
R B(xo,R/2) B(xo.R/2) 

< c rN -p - sup h - inf h + RP . { r p.\ ( )P } 
- (R) B(xo,R/2) B(xo,R/2) 

On the other hand, setting 

hR = hdx, 1 1 
IB(xo, R)l B(xo,R) 

by Proposition 2.3 and the Poincare inequality, we have 

( sup h - inf h) P 
B(xo,R/2) B(xo,R/2) 

< 2 sup lh- hRIP 
B(xo,R/2) 

< IB( c )I r lh-hRIPdx+cRP 
Xo, R } B(xo,R) 

< IBtRPR)I r l\?hiPdx+cRP. 
Xo, J B(xo,R) 
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Hence, 

< crN-p{(!:...)p>.(!..)N-p r IV'hiPdx+RP} 
R R }B(x0 ,R) 

< c (!:...) N-p+p>. r IV'hiP dx + c RN. 
R JB(x 0 ,R) 

0 

§3. Holder continuity of solutions to (Ev)· 

In this section, we establish Holder continuity of solutions to the 
equation (Ev ). First, we recall the following Adams' inequality ([17; 
Theorem 3.3]). 

Proposition 3.1. Suppose that v is a nonnegative Radon measure 
supported in an open set !1 such that there is a constant M with the 
property that for all x ERN and 0 < r < oo, 

v(B(x, r)) :::; M ra 

where a= q(Njp-1), 1 < p < q < oo andp < N. Ifu E WJ·P(!l), then 

(fo lulq dv) 1/q:::; cM1fq (fo IV'uiP dx) 1/P, 

where c = c(p, q, N). 

Let G be an open subset in RN. A function u : G ---+ R U {oo} 
is said to be (A, B)-superharmonic in G if it is lower semicontinuous, 
finite on a dense set in G and, for each bounded open set U and for 
hE C(U) which is (A, B)-harmonic in U, u:::: h on au implies u:::: h in 
U. (A, B)-subharmonic functions are similarly defined. 

To show Holder continuity of solutions to the equation (Ev), we 
prepare the following lemma. 

Lemma 3.1. Suppose that G is a bounded open set, B(x0 , R) ~ G, 
0 < (3 < 1, v is a signed Radon measure on G such that 

lvi(B(xo, r)):::; co rN-p+f3(p- 1) 

for every 0 < r :::; R and u E W1~·~ (G) is a solution of ( Ev) in G 
with lui :::; L in B(x0 , R). Then for every 0 < r :::; R :::; 1 and c: > 
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0, there exist constants CI = ci(N,p,aba2,a3(G),L) > 0 and c2 = 
c2(N,p,ai,a2,a3(G),{3,eo,c,L) > 0 such that 

where A is the constant in Lemma 2.2. 

Proof We may assume that 0 < r < fl. Let h be an (A, B)­
harmonic function with u- h E W~'P(B(x, R)). First, we will show 
that 

(3.1) lhl :::; L' 

on B(x,R) with L' = L'(A,B,G,L). Let B0 be a ball containing 
G. There exists an (A, B)-harmonic function ho in B 0 belonging to 
W~'P(Bo) (see [10; Theorem 1.4]). Then h0 is continuous on B0 and 
hence bounded in G. Let -mi :::; ho :::; m2 in G with mi ;:::=: 0 and 
m2 2: 0. Then, VI = ho + mi +Lis (A, B)-super harmonic and VI 2: L 
in G; and v2 = ho- m2- Lis (A,B)-subharmonic and v2:::; -Lin G. 
Since 

0 ;:::=: min(O, VI -h) ;:::=: min(O, L- h) ;::::: min(O, u- h) E W~'P(B(x, R)), 

min(O, VI- h) E W~'P(B(x, R)). Hence by the comparison principle (see 
[16; Proposition 5.1.1 and Lemma 2.2.1]), VI;:::=: h, so that h:::; L+mi + 
m2. Similarly, we see that v2 :::; h, which shows h ;::::: -(L + mi + m2). 
Thus, we have (3.1) with L' = L + mi + m2. 

Next, we note that lvl E (W~'P(V))* for any V IE G, that is, lvl is 
in the dual space of W~'P(V). Indeed, there exists an A-superharmonic 
function U in G satisfying 

-divA(x, DU(x)) = lvl 

with min(U, k) E W~'P(G) for all k > 0, where DU is the generalized 
gradient of U (see [5; Theorem 2.4]). Then by [6; Theorem 4.16], U 
is locally bounded in G. Thus, U E W1~,;(G) (see [3; Corollary 7.20]). 
Hence we see that lvl E (W~'P(V))* (cf. [6; p.142]). Thus, by (A.2), 
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(A.3) and (B.3) we have 

< [ A(x, V'u) · V'udx 
JB(xo,r) 

[ (A(x, V'u)- A(x, V'h)) · (V'u- V'h) dx 
JB(xo,r) 

(3.2) + [ A(x, V'h) · (V'u- V'h) dx 
}B(xo,r) 

+ f A(x, V'u) · V'h dx 
JB(xo,r) 

< [ (A(x, V'u)- A(x, V'h)) · (V'u- V'h) dx 
JB(xo,R) 

+a2 [ (IY'hlp-liY'ul + IY'ulp-liY'hl) dx 
JB(xo,R) 

+ [ (B(x, u)- B(x, h)) (u- h) dx 
JB(xo,R) 

[ (u- h) dv 
JB(xo,R) 

+a2 [ (IY'hlp-liY'ul + IY'ulp-liY'hl) dx, 
JB(xo,r) 

in the last inequality we have used that u is a solution of (E.,), I vi E 
(WJ•P(V))*, his (A, B)-harmonic and u- hE WJ·P(B(x, R)). Set 

It = [ (u- h) dv 
JB(x0 ,R) 

and 

h = a2 [ (IY'hlp-liY'ul + IY'ulp-liY'hl) dx. 
JB(xo,r) 

Let q = (N- p + {3(p- 1))/( ![;- 1) and 1/q + 1/q' = 1. Since u- hE 

wJ·P(B(x, R)), by Holder's inequality, Adams' inequality and Young's 
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inequality we have 

r iu- hi divi 
JB(xo,R) 

~ r iu - hiq divi r divi ( ) 
1/q ( ) 1/q' 

} B(xo,R) } B(xo,R) 

1/ ' (1 ) 1/q ~ c ( RN-p+f3(p- 1)) q iu- hiq divi 
B(xo,R) 

~ cRP;'(N-p+f3p) r iV(u- h)IPdx ( ) 

1/p 

} B(xo,R) 

x { ( { iVuiP dx) 1/P + ( { iVhiP dx) 1/P} 
} B(xo,R) J B(xo,R) 

~ cRP;' (N-p+f3p) 

X { ( r iVuiP dx) 1/P + ( r . iuiP dx) 11
p + RNfp} 

} B(xo,R) } B(xo.R) 

~ cRN-p+{3p + 0:1 E r iVuiP dx + c r iuiP dx +eRN, 
2 } B(xo,R) } B(xo,R) 

where we have used Lemma 2.1. Hence we have 

(3.3) h ~ r iu - hi divi 
}B(xo,R) 

~ cRN-p+j3p + 0:1 E r iVuiP dx, 
2 }B(xo,R) 

where we have used that R ~ 1 and N- p + (Jp ~ N imply RN ~ 
RN -p+f3P. Here c depends on N, p, o:1 , o:2 , o:3 (G), (3, c0 , E and L. Also, 
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Young's inequality, Lemma 2.2 and (3.1) yield 

12 < 0!1 r IY'uiP dx + c r IV' hiP dx 
2 J B(xo,r) } B(xo,r) 

< 0!1 r iV'uiPdx+c (~)N-p+pA r IY'hiPdx+cRN 
2 JB(xo,r) JB(xo,R) 

< 0!1 r IY'uiP dx 
2 JB(xo,r) 

(3.4) +c (~)N-p+pA ( { iV'uiPdx+ { iuiPdx) +eRN 
}B(xo,R) JB(xo,R) 

< 0!1 r IY'uiP dx 
2 }B(xo,r) 

+c (..!:.)N-p+pA r IY'uiPdx+cRN-p+i3P, 
R }B(xo,R) 

where again we have used Lemma 2.1, (3.1) and RN ~ RN-v+i3v. It 
follows from (3.2), (3.3) and (3.4) that 

r IY'uiP dx 
JB(xo,r) 

0 

To achieve the aim in this section, we need the following two propo­
sitions in [2; III Lemma 2.1 and III Theorem 1.1]. 

Proposition 3.2. Let A, 1'1 and 1'2 be positive constants such that 
1'2 < 1'1· Then there exists a constant co == co(A,/'1,/'2) > 0 with 
the following property: if f(t) is a nonnegative nondecreasing function 
satisfying 

f(r) ~A { (~f1 + c} f(R) + B R 12 

for all 0 < r ~ R ~ Ro with 0 < c ~co, Ro > 0 and B ~ 0, then 

f(r) ~ c { (~) 12 f(R) + Br12 } 

for all 0 < r ~ R ~ R 0 with a constant c = c(A, ')'1 , ')'2 ) > 0. 
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Proposition 3.3. Let u E W 1·P(B(x0 , R)), 1 ::::; p ::::; N. Suppose 
that for all x E B(xo, R), all r, 0 < r::::; o(x) = R- lx- xol 

IV'uiP dx::::; LP _r_ 1 ( )N-p+pf3 

B(x,r) O(x) 

holds with 0 < (3::::; 1. Then, u is Holder continuous in B(x0 , p) with the 
exponent (3 for all 0 < p < R. 

Theorem 3.1. Let G be a bounded open set and u E W1~'~(G) n 
L't:c (G) is a solution of ( Ev) in G. Suppose that v is a signed Radon 
measure on G such that there exist constants M > 0 and 0 < (3 < .A, 
where .A= .X(N,p, a 1, a 2, a 3(G)) > 0 is the number in Lemma 2.2 above, 
with 

lvi(B(x, r)) ::::; M rN-p+f3(p-l) 

whenever B(x, 3r) C G. Then u is locally Holder continuous in G with 
the exponent (3. 

Proof If B(x0 , 4R) C G with R ::::; 1, then Proposition 3.2 and 
Lemma 3.1 yield that 

whenever x E B(x0 , R) and 0 < r ::::; R, where c > 0 depends on N, p, 
a1, a2, a3(G), M, (3 and supB(xo,2R) lui. Hence, by Proposition 3.3, u 
is Holder continuous in B(x0 , p) with exponent (3 for 0 < p < R. D 
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