
Advanced Studies in Pure Mathematics 43, 2006 
Singularity Theory and Its Applications 
pp. 221-250 

On degree of mobility for complete metrics 

Vladimir S. Matveev 

Abstract. 

The degree of mobility of a Riemannian metric g is the dimension 
of the space of Riemannian metrics sharing the same geodesics with 
g. We prove that the degree of mobility of an irreducible Riemann
ian metric on a closed manifold is at most two, unless the sectional 
curvature is positive constant. 

§1. Introduction 

1.1. Main question 
Let ( Mn, g) be a Riemannian manifold. 

Definition 1. A BM-structure on (Mn, g) is a smooth self-adjoint 
(I, I)-tensor L such that, for every point x E Mn, for every vectors 
u, v, w E TxMn, the following equation holds: 

I I 
g(('V uL)v, w) = "2g(v, u) · dtraceL(w) + "2g(w, u) · dtraceL(v), 

where trace£ is the trace of L. 

Definition 2. Let g, § be Riemannian metrics on Mn. They 
are projectively equivalent, if they have the same (unparameterized} 
geodesics. 

The relation between EM-structures and projectively equivalent met
rics is given by 

Theorem 1 ([9]). Let g be a Riemannian metric. Suppose L is a 
self-adjoint positive-definite (I, I)-tensor. Consider the metric§ defined 
by 

(I) 
I 

§(~,ry) = det(L)g(L- 1~'"7) 
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(for every tangent vectors ~ and ry with the common foot point.} 
Then, the metrics g and g are projectively equivalent, if and only if 

Lis a EM-structure on (Mn,g). 

The set of all EM-structures on (Mn, g) will be denoted by B(Mn, g). 
It is a linear vector space. The dimension of B ( Mn, g) is called the 
degree of mobility of the metric. It is at least one, since B(Mn,g) 

contains the identity tensor Id ~f diag(l, 1, 1, ... , 1). 

Main question: How big can be the dimension of the space B(Mn, g)'? 

In other words, how big is the space of the metrics projectively 
equivalent to the given one? 

1.2. History of the question 

The history of the theory of projectively equivalent metrics goes back 
to works of Beltrami [2], Dini [16], Levi-Civita [29] and Weyl [61, 62]. 
The question how big is the space of the metrics projectively equivalent 
to the given one was considered by Lie [31] and Fubini [18, 19]. 

It is known that, locally, the degree of mobility of a metric is less 
than (n+l)2(n+2) + 1, and is equal to (n+l)t+2) for spaces of constant 
curvature only, see [65, 53, 28]. The most power tools in the local 
study of the degree of mobility are the theory of concircular vector fields 
developed in Yano [65], and the theory of V(K) spaces developed in 
Solodovnikov [54, 55, 56, 57]. Combining these two theories, Shandra 
[52] obtained that, locally, if the dimension n of the manifold is greater 
than two, the degree of mobility of a metric of nonconstant curvature 
can take the values 

m(m+l) l 
2 + 

only, where 1 :::; m :::; n and 1 :::; l :::; [n+1-m]. For every such "ad
missible" value Dmobility there exists a metric on the disk such that the 
degree of mobility is precisely Dmobility· For dimension two, it follows 
from [28, 33] that the degree of mobility can take the values 1, 2, 3, 4, 6. 

A more detailed historical overview of the local side of the question 
can be found in the surveys [1, 50]. 

The goal of this paper is to study the degree of mobility globally, 
i.e. when the manifold is closed or complete. Most results on the degree 
of mobility of closed manifolds require additional geometric assumptions 
written as a tensor equation. A typical result is that, under certain ten
sor assumptions, the degree of mobility is precisely 1, see, for example, 
[14, 63, 64, 20, 51]. 
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1.3. Main Result 

Theorem 2. Let (Mn,g) be a connected complete Riemannian man
ifold of dimension greater than one. Suppose dim(B(Mn,g)) :::0: 3. 

Then, if a complete Riemannian metric g is projectively equivalent 
to g, then g has positive constant sectional curvature, or g is affine 
equivalent to g. 

Recall that two metrics are said to be affine equivalent, if their 
Levi-Civita's connections coincide. 

All assumption in the theorem are important: we can construct 
counterexamples, if one of the assumptions is omitted. 

It is easy to understand whether a complete metric admits affine 
equivalent one which is not proportional to it. In this case, the holonomy 
group of the manifold must be reducible [30, 25], which implies that the 
universal cover of the manifold with the lifted metric is the Riemannian 
product of two Riemannian manifolds. Thus, a direct consequence of 
Theorem 2 is the following 

Corollary 1. Let ( Mn, g) be a closed connected Riemannian man
ifold with irreducible holonomy group. Suppose dim(B(Mn,g)) > 3. 
Then, g has constant positive sectional curvature. 

In dimension 2, in view of Theorem 3, Corollary 1 follows from 
results of [26, 27, 24]. 

It is worse to mention that the converse of Corollary 1 is not always 
true. Of cause, the space B is huge for the round sphere. But for certain 
quotients of the round sphere, the space B can have dimension one. This 
phenomena appears already in dimension 3, see [42]. 

In the present paper we will prove Theorem 2 assuming that the 
dimension n of the manifold is greater than 2. If n = 2, in view of The
orem 3, under the assumption that the manifold is closed, Theorem 2 
follows from [27, 24]. Without this assumption, Theorem 2 (for dimen
sion 2) is nontrivial. It is announced in [44, 45]. Its proof uses methods 
from the global theory of Liouville metrics developed in [7, 8, 22], and 
can be found in [47, 48]. 

Our prove of Theorem 2 (for dimension 2: 3) uses the following 
methods: 

• The classical one is the local theory of projectively equivalent 
metrics. It is due to Beltrami [2], Dini [16], Levi-Civita [29], 
Fubini [18], Eisenhart [17], Cartan [13] , Weyl [61, 62] and 
Solodovnikov [54]. We will formulate a part of their results in 
Theorems 4, 5, 6, 7, 8. 
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• The newer one were introduced in [32, 58, 59, 36, 35]: the 
main observation is that, for a given Riemannian metric g, 
the existence of a projectively equivalent metric allows one to 
construct commuting integrals for the geodesic flow of g, see 
Theorem 3 in Section 2.1. This technique has been used quite 
successfully in finding topological obstruction that prevent a 
closed manifold from possessing (nontrivial) EM-structure, see 
[34, 39, 40, 37, 42, 43, 46, 49], and for the study of the degree 
of mobility for the metric of ellipsoid, see [4I]. 

• And the general idea came from the singularity theory. The 
role of singularities play the points where the eigenvalues of the 
EM-structure bifurcate. In Section 3.I, we describe behavior 
of the metric near the simplest singular points. In Sections 3.2 
and 4, we will show that the simplest singular points always 
exist. In Section 3.3, we will explain how the structure near 
singular points can be extended to the whole manifold. 
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Igarashi, K. Kiyohara, 0. Kowalsky and K. Voss for useful discussions, 
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1154 (Global Differential Geometry) and Ministerium fiir Wissenschaft, 
Forschung und Kunst Baden-Wiirttemberg (Eliteforderprogramm Post
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§2. New and classical instruments of the proof 

2.1. Integrals for geodesic flows of metrics admitting EM
structure. 

The relation between EM-structures and integrable geodesic flows 
is observed on the level of geodesic equivalence in [32] and is as follows: 

Let L be a self-adjoint (I, I)-tensor on (Mn, g). Consider the family 
St, t E JR., of (I, I)-tensors 

(2) St ~f det(L- tId) (L- t Id)- 1 . 

Remark 1. Although (L- t Id)- 1 is not defined fort lying in the 
spectrum of L, the tensor St is well-defined for every t. Moreover, St is 
a polynomial in t of degree n- I with coefficients being (1,1}-tensors. 

We will identify the tangent and cotangent bundles of Mn by g. This 
identification allows us to transfer the natural Poisson structure from 
T*Mn to TMn. 
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Theorem 3 ([58, 32, 59]). If L is a EM-structure, then, for every 
tt, t2 E JR., the functions 

(3) It;: TMn -+JR., It;(v) ~f g(St;(v),v) 

are commuting integmls for the geodesic flow of g. 

Remark 2. Integmble systems of slightly less geneml type were re
cently studied in [3, 4, 5, 21, 15]). 

Since L is self-adjoint, its eigenvalues are real. At every point x E 

Mn, let us denote by >.1 (x) :::; ... :::; >.n(x) the eigenvalues of L at the 
point. 

Corollary 2 ([43, 59, 38]). Let (Mn,g) be a connected Riemannian 
manifold such that every two points can be connected by a geodesic. Sup
pose L is a EM-structure on ( Mn, g). Then, for every i E { 1, ... , n - 1}, 
for every x, y E Mn, the following statements hold: 

(1) >.i(x) :S >.i+l(y). 
(2) If >.i(x) < Ai+l(x), then >.i(z) < >.i+l(z) for almost every point 

zEMn. 

At every point x E Mn, denote by NL(x) the number of different 
eigenvalues of the EM-structure L at x. 

Definition 3. A point x E Mn will be called typical with respect to 
the EM-structure L, if 

Corollary 3 ([36]). Let L be a EM-structure on a connected Rie
mannian manifold ( Mn, g). Then, almost every point of M is typical 
with respect to L. 

2.2. Results of Beltrami, Levi-Civita and Solodovnikov 

Theorem 4. Let Riemannian metrics g and g on Mn be projectively 
equivalent. If g has constant sectional curvature, then g has constant 
sectional curvature as well. 

For dimension two, Theorem 4 was proven by Beltrami [2]. For 
dimension greater than two, a proof can be found in Eisenhart [17]. 

Corollary 4. Let projectively equivalent metrics g and g on Mn 
(of dimension n > 1) be complete. If g has constant negative sectional 
curvature, g is proportional to g. If g is flat, g is affine equivalent to g. 
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This statements is a folklore, in the sense that we did not find a 
classical reference for it, although certain authors use it as a known fact. 
We will be grateful if anybody gives us this reference. 

Let us explain a proof of Corollary 4 by using newer methods. If 
both metrics are flat, Corollary 4 is equivalent to the statement that 
every diffeomorphism of ]Rn that takes straight lines to straight lines is 
a composition of linear transformation and translation. Its proof can be 
found in almost every advanced textbook on linear algebra and analytic 
geometry. 

If g has constant negative sectional curvature, it is sufficient to prove 
Corollary 4 in dimension two only, since in every two-dimensional direc
tion there exists a totally geodesic complete submanifold. If g is flat, 
the statement is trivial, since in the Euclidean space the parallel postu
late of Euclid holds, and in the hyperbolic space not. If both metrics 
have constant negative curvature, Corollary 4 was proven in [10], see his 
lemma on page 59. The geometric idea behind the proof of Bonahon is 
the nontrivial observation from metric geometry (see [11, 12, 23] for the 
proof of this observation) that, for hyperbolic 2-spaces, the only isom
etry that preserves the boundary at infinity is the identity. Since the 
boundary at infinity can be defined by using unparameterized geodesics, 
Corollary 4 becomes to be trivial. 

In view of Theorem 1, the next theorem is equivalent to the classical 
Levi-Civita's Theorem from [29]. 

Theorem 5 (Levi-Civita's Theorem). The following statements hold: 

(1) Let L be a EM-structure on (Mn,g). Let x E Mn be typical. 
Then, there exists a coordinate system x = (x1 , ... , xm) (in 
a neighborhood U ( x) containing x), where Xi = (xi, ... , x7i), 
( 1 ::::; i ::::; m), such that L is diagonal 

(4) diag(</JI, ... , </11, .... , <fim, ... , ¢m), 

(5) 

...__....... ......_____.... 

and the quadratic form of the metric g have the following form: 

g(x,x) PI(x)Al(x1,x1) + P2(x)A2(x2,x2) + · · · + 
+ Pm(x)Am(Xm, Xm), 

where Ai (xi, xi) are positive- definite quadratic forms in the ve
locities xi with coefficients depending on Xi, 

def 
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and 0 < ¢1 < ¢2 < ... < ¢m are smooth functions such that 

¢ { ¢i(xi), if ki = 1 
i = constant, otherwise. 

(2) Let g be a Riemannian metric and L be a {1,1}-tensor. If in a 
neighborhood U C Mn there exist coordinates x = (x1, ... , Xm) 
such that g and L are given by formulae {4, 5}, then the re
striction of L to U is a EM-structure for the restriction of g 
to U. 

Corollary 5 ([9],[39]). The Nijenhuis torsion of a EM-structure 
vanishes. 

Remark 3. In Levi-Civita 's coordinates from Theorem 5, the metric 
g given by ( 1) has the form 

where 

g(x, x) p1P1 (x)A1 (x1, xi)+ P2P2(x)A2(x2, x2) + · · · + 
+ PmPm(x)Am(Xm, Xm), 

Pi 
1 1 

,J,kl ,~,k.,. ,/,. 
'1'1 '"'I'm '+'> 

The metrics g and g are affine equivalent if and only if all functions ¢i 
are constant. 

Let p be a typical point with respect to the EM-structure L. Fix 
i E 1, ... , n and a small neighborhood U of p. At every point of U, 
consider the eigenspace Vi with the eigenvalue ¢i· If the neighborhood 
is small enough, it contains only typical points and Vi is a distribution. 
Denote by Mi (p) the integral manifold containing p. 

Levi-Civita's Theorem says that the eigenvalues ¢j, j -:f. i, are con
stant on Mi (p), and that the restriction of g to Mi (p) is proportional 
to the restriction of g to Mi(q), if it is possible to connect q and p by 
a line orthogonal to Mi. We will need the second observation later and 
formulate it as 

Corollary 6. Let L be a EM-structure for connected ( Mn, g). Sup
pose the curve 'Y : [0, 1] ---+ Mn contains only typical points and is or
thogonal to Mi(P) at every point p E Image("(). Let the multiplicity 
of the eigenvalue ¢i at every point of the curve be greater than one. 
Then, the restriction of the metric to Mi('Y(O)) is proportional to the re
striction of the metric to Mi('Y(1)). {i.e. there exists a diffeomorphism 
of a small neighborhood Ui('Y(O)) C Mi('Y(O)) to a small neighborhood 
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Ui('y(1)) C Mi('y(1)) taking the restriction of the metric g to Mi('y(O)) 
to a metrics proportional to the restriction of the metric g to Mi('y(1))). 

Definition 4. Let ( Mn, g) be a Riemannian manifold. We say 
that the metric g has a warped decomposition near x E Mn, if a 
neighborhood un of X can be split in the direct product of disks Dko X 

... x Dk=, k0 + ... + km = n, such that the metric g has the form 

(6) 

where the ith metric gi is a Riemannian metric on the corresponding 
disk Dk•, and functions O"i are functions on the disk Dko. The metric 

(7) 

on Dko x ]Rm is called the adjusted metric. 

We will always assume that ko is at least 1. 
Comparing formulae (5,6), we see that if L has at least one simple 

eigenvalue at a typical point, Levi-Civita's Theorem gives us a warped 
decomposition near every typical point of Mn: the metric go collects all 
PiA from (5) such that ¢i has multiplicity one, the metrics g1, ... ,gm 
coincide with Ai for multiple ¢J, and O"j =Pi. 

Definition 5 ([54, 55]). Let K be a constant. A metric g is called 
a V(K)-metric near x E Mn (n ~ 3), if there exist coordinates in a 
neighborhood of x such that g has the Levi-Civita form (5) such that the 
adjusted metric has constant sectional curvature K. 

The definition above is independent of the choice of the presentation 
of g in Levi-Civita's form: 

Theorem 6 ([54, 55]). Suppose g is a V(K)-metric near x E Mn. 
Assume n ~ 3. The following statements hold: 

(1) If there exists another presentation of g (near x) in the form 
(5), then the sectional curvature of the adjusted metric con
structed for this other decomposition is constant and is equal 
to K. 

(2) Consider the metric (5). For every i = 1, ... , m, denote 

(S) g(grad(Pi),grad(Pi)) KR 
4Pi + ' 

by Ki· Then, the metric (6) has constant sectional curvature 
if and only if for every i E 0, ... , m such that ki > 1 the metric 
Ai has constant sectional curvature Ki. More precisely, if the 
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metric ( 6) is a V ( K) -metric, if k1 > 1 and if the metric A 1 has 
constant curvature K 1, then the metric go+ P1A 1 has constant 
curvature K. 

(3) For a fixed presentation of g in the Levi-Civita form (5}, for 
every i such that ki > 1, Ki is a constant. 

Since the papers [54, 55] are not widely accessible, we will comment 
the proof of this theorem. The first statement of Theorem 6 is proven 
in §3 of [54]. In the form sufficient for our paper, it appeared already in 
[60]; although it is hidden there. 

The second statement is in §8 of [54]. One can understand the second 
statement with the help of projective Weyl tensor from [62]. We will give 
the definition in Section 3.3, see formula (16) there. It is known [62], that 
(in dimension ~ 3) the projective Weyl tensor vanishes if and only if the 
metric has constant sectional curvature. Now, it is possible to show by 
direct calculations that the projective Weyl tensor vanishes for a metric 
of form ( 5), if and only if the sectional curvatures of all Ai are equal to 
the corresponding Ki· In Section 3.3, we will do these calculations for 
one component of the projective Weyl tensor; the calculations for the 
other components are similar. 

The third statement can be found in §8 of [54]. Its proof is similar 
to the standard proof of the fact that (for dimensions ~ 3) if a metric 
has constant sectional curvature at every point, then the constant does 
not depend on the point. 

The relation between V(K)-metrics and EM-structures is given by 

Theorem 7 ([54, 56, 57]). Let (Dn,g) be a disc of dimension n ~ 3 
with two EM-structures L 1 and L2 such that every point of the disc is 
typical with respect to both structures and the EM-structures Id, £1, £2 

are linearly independent. Then, g is a V(K)-metric near every point. 

Its corollary is 

Theorem 8 (Fubini's Theorem). Let (Dn,g) be a disc of dimension 
n ~ 3 with two EM-structures L1 and L2 such that NL 1 = NL 2 = n at 
every point. If the EM-structures Id, £ 1 , £ 2 are linearly independent, 
then g has constant sectional curvature. 

For dimension 2, Fubini's Theorem is wrong. First counterexamples 
can be found in [28]. We will give new counterexamples in [47]. Fubini's 
Theorem was proven by Fubini [18] for dimension 3, and was announced 
there and in [19] for arbitrary dimension ~ 3. One can check that 
Fubini's proof for dimension 3 can be applied to every dimension ~ 3 
without essential changes. 
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In Section 3.4, we will explain how Solodovnikov's Theorem 7 follows 
from Fubini's Theorem 8. 

§3. Singularity theory for EM-structures 

We will need the following technical lemma. For every fixed v = 
(6,6,---,~n) E TxMn, the function (3) is a polynomial in t. Consider 
the roots of this polynomial. From the proof of Lemma 1, it will be clear 
that they are real. We denote them by 

Lemma 1. Suppose A is an eigenvalue of L of multiplicity k at 
x E Mn. Then, for every v E TxMn, A is a root of It ( v) of multiplicity 
at least k- 1. 

Proof: By definition, the tensor L is self-adjoint with respect to g. 
Then, for every x E Mn, there exist "diagonal" coordinates in TxMn 
where the metric g is given by the diagonal matrix diag(1, 1, ... , 1) and 
the tensor L is given by the diagonal matrix diag(A1, A2 , ... ,An)- Then, 
the tensor (2) reads: 

St det(L- tld)(L- tld)<- 1l 

diag(II1(t), II2(t), ... , IIn(t)), 

where the polynomials IIi ( t) are given by the formula 

Ili(t) ~r (A1- t)(A2- t) ... (Ai-1- t)(Ai+1- t) ... (An-1- t)(An- t). 

Hence, for every v = (6, ... , ~n) E TxMn, the polynomial It(X, v) is given 
by 

(9) 

We see that, if A is an eigenvalue of multiplicity k, every IIi contains the 
factor (A- t)k- 1. Lemma is proven. 

3.1. Behavior of EM-structure near simplest non-typical 
points. 

Within this section we assume that L is a EM-structure on a con
nected (Mn,g). As in Section 2.1, we denote by A1(x) ~ ... ~ An(x) the 
eigenvalues of L, and by NL(x) the number of different eigenvalues of L 
at X E Mn. 
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Theorem 9. Suppose the eigenvalue ..\1 is not constant, the eigen
value ..\2 is constant and N L = 2 in a typical point. Let p be a non-typical 
point. Then, the following statements hold: 

(1) 

(2) 

The spheres of small radius with center in p are orthogonal to 
the eigenvector of L corresponding to ..\1, and tangent to the 
eigenspace of L corresponding to ..\2. In particular, the points 
where ..\1 = ..\2 are isolated. 
The restriction of the metric to the spheres has constant sec
tional curvature. 

Proof: Since ..\1 is not constant, it is a simple eigenvalue in every 
typical point. Since NL = 2, the roots ..\2, ..\3, ... ,An coincide at every 
point and are constant. We denote this constant by .A. By Lemma 1, 
at every point (x, ~) E TxMn, the number .A is a root of multiplicity at 
least n- 2 of the polynomial It(x, ~). Then, 

I '( C) ·= It(X, ~) 
t X,<:. • (.A_ t)n-2 

is a linear function in t and, for every fixed t, is an integral of the geodesic 
flow of g. Denote by l : T M --. IR the function 

l(x, ~) := IHx, ~) := U:(x, ~))It=-\· 

Since .A is a constant, the function l is an integral of the geodesic flow 
of g. At every tangent space TxMn, consider the coordinates such that 
the metric is given by diag(1, ... , 1) and L is given by diag(..\1, >., ... ,.A). 
By direct calculations we see that the restriction of l to TxMn is given 
by (we assume~= (6, 6, ... , ~n)) 

jiTxMn(~) = (..\1(x)- ..\)(~~ + ··· + ~~). 

Thus, for every geodesic 'Y passing through p, the value of i('Y(T),')t(T)) 
is zero. Then, for every typical point of such geodesic, since ..\1 < .A, the 
components 6, ... , ~n of the velocity vector vanish. Then, the velocity 
vector is an eigenvector of L with the eigenvalue ..\1. 

Then, the points where >.1 = >. are isolated: otherwise we can pick 
two such points Pl and P2 lying in a ball with radius less than the radius 
of injectivity. Then, for almost every point q of the ball, the geodesics 
connecting this point with the points Pl and P2 intersect transversally at 
q. Then, the point q is non-typical; otherwise the eigenspace of ..\1 con
tains the velocity vectors of geodesics and is no more one-dimensional. 
Finally, almost every point of the ball is not typical, which contradicts 
Corollary 3. Thus, the points where ..\1 = >. are isolated. 
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It is known (Lemma of Gaufl), that the geodesics passing through 
p intersect the spheres of small radius with center in p orthogonally. 
Since the velocity vectors of such geodesics are eigenvectors of L with 
eigenvalue A1, then the eigenvector with eigenvalue A1 is orthogonal to 
the spheres of small radius with center in p. Since L is self-adjoint, 
the spheres are tangent to the eigenspaces of A. The first statement of 
Theorem 9 is proven. 

The second statement of Theorem 9 is trivial, if n = 2. In order 
to prove the second statement for n 2:: 3, we will use Corollary 6. The 
role of the curve 'Y from Corollary 6 plays the geodesic passing through 
p. We put i = 2. By the first statement of Theorem 9, Mi(x) are 
spheres with center in p. Then, by Corollary 6, for every sufficiently 
small spheres sfl and sf2 with center in p, the restriction of g to the 
first sphere is proportional to the restriction of g to the second sphere. 
Since for very small f. the metric in a f.-ball is very close to the Euclidean 
metric, the restriction of g to the f.-sphere is close to the round metric of 
the sphere. Thus, the restriction of g to every (sufficiently small) sphere 
has constant sectional curvature. Theorem 9 is proven. 

Theorem 10. Suppose N L = 3 at a typical point and there exists a 
point where N L = 1. Then, there exist points Pb Pn such that A1 (pi) < 
A2(P1) = An(P1) and A1(Pn) = A2(Pn) < An(Pn)· 

Proof: Suppose A1(P2) = A2(p2) = ... = An(P2) and the number 
of different eigenvalues of L at a typical point equals three. Then, by 
Corollary 2, the eigenvalues A2 = ... = An-1 are constant. We denote 
this constant by A. Take a ball B of small radius with center in P2· We 
will prove that this ball has a point P1 such that A1 (P1) < A2 = An (pi); 
the proof that there exists a point where A1 = A2 < An is similar. Take 
p E B such that A1 (p) < A and A1 (p) is a regular value of the function 
A1. Denote by M1(p) the connected component of {q E Mn: A1(q) = 
A1 (p)} containing the point p. Since A1 (p) is a regular value, M1 (p) is 
a submanifold of codimension 1. Then, there exists a point p1 E M1(p) 
such that the distance from this point to p2 is minimal over all points 
ofM1(p). 

Let us show that A1(p1) <A= An(pi). The inequality A1(pi) <A is 
fulfilled by definition, since P1 E M1(p). Let us prove that An(Pn) =A. 

Consider the shortest geodesic "( connecting P2 and P1· We will 
assume "f(O) = P1 and "f(l) = P2· Consider the values of the roots 
t1 ::; ... ::; tn-1 of the polynomial It at points of the geodesic orbit 
('Y, i'). Since It are integrals, the roots ti are independent of the point of 
the orbit. Since the geodesic pass through the point where A1 = ... = An, 
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by Lemma 1, we have 

(10) t1 = ... = tn-1 =A. 

Since the distance from P1 to P2 is minimal over all points of M1, the 
velocity vector i'(O) is orthogonal to M 1. In view of Corollary 5, the sum 
of eigenspaces of L corresponding to A and An is tangent to M1. Hence, 
the vector i'(O) is an eigenvector of L with eigenvalue A1. 

At the tangent space Tp 1 Mn, choose a coordinate system such that 
L is diagonal diag(Ab ... ,An) and g is Euclidean diag(1, ... , 1). In this 
coordinate system, It(~) is given by (we assume~= (6, ... , ~n)) 

(A- t)n- 3 ((An- t)(A- t)a +(An- t)(A1- t)(~~ + ... + ~;-d 
+()q- t)(A- t)~;). 

Since i'(O) is an eigenvector of L with eigenvalue A1, the last n - 1 
components of i'(O) vanish, so that tn- 1 = An. Comparing this with 
(10), we see that An(Pl) =A. Theorem 10 is proven. 

3.2. Splitting Lemma 
Definition 6. A local-product structure on Mn is the triple (h, Br, 

Bn-r), where h is a Riemannian metrics and Br, Bn-r are transversal 
foliations of dimensions r and n - r, respectively (it is assumed that 
1 :::; r < n), such that every point p E Mn has a neighborhood U(p) with 
coordinates 

(x, y) =((x1, X2, ... xr), (Yr+l, Yr+2, ... , Yn)) 

such that the x-coordinates are constant on every leaf of the foliation 
Bn-r n U (p), the y-coordinates are constant on every leaf of the foliation 
Br n U (p), and the metric h is block-diagonal such that the first (r x r) 
block depends on the x-coordinates and the last ( ( n - r) x ( n - r)) block 
depends on the y-coordinates. 

A model example of manifolds with local-product structure is the 
direct product of two Riemannian manifolds (M[,g1) and (M:;-r,g2)· 
In this case, the leaves of the foliation Br are the products of M[ and 
the points of M:;-r, the leaves of the foliation Bn-r are the products 
of the points of M[ and M:;-r, and the metric h is the product metric 
g1 + g2. 

Below we assume that 
(a) Lis a EM-structure for a connected (Mn,g). 
(b) There exists r, 1 :::; r < n, such that Ar < Ar+1 at every point 

of Mn. 
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We will show that (under the assumptions (a, b)) we can naturally 
define a local-product structure (h, Er, En-r) such that (the tangent 
spaces to) the leaves of Er and En-r are invariant with respect to L, 
and such that the restrictions LIB,., LIBn-r are EM-structures for the 
metrics hiB,, hiB,._r, respectively. 

At every point X E Mn' denote by v; the subspaces of TxMn 
spanned by the eigenvectors of L corresponding to the eigenvalues >.1, ... , 
>-r· Similarly, denote by vxn-r the subspaces of TxMn spanned by the 
eigenvectors of L corresponding to the eigenvalues Ar+l, ... ,An· By as
sumption, for every i, j such that i :::; r < j, we have Ai =J Aj so that 
v; and vxn-r are two smooth distributions on Mn. By Corollary 5, the 
distributions are integrable so that they define two transversal foliations 
Er and En-r of dimensions r and n- r, respectively. 

By construction, the distributions Vr and Vn-r are invariant with 
respect to L. Let us denote by Lr, Ln-r the restrictions of L to Vr 
and Vn-r, respectively. We will denote by Xr, Xn-r the characteristic 
polynomials of Lr, Ln-r, respectively. Consider the (1,1)-tensor 

C ~f (( -1rxr(L) + Xn-r(L)) 

and the metric h given by the relation 

h(u, v) ~f g(C- 1(u), v) 

for every vectors u, v. (In the tensor notations, the metrics h and g are 
related by% = hiaCj). 

Lemma 2 (Splitting Lemma). The following statements hold: 

(1) 
(2) 

The triple (h, Er, En-r) is a local-product structure on Mn. 
For every leaf of Er, the restriction of L to it is a EM-structure 
for the restriction of h to it. For every leaf of En-r, the re
striction of L to it is a EM-structure for the restriction of h to 
it. 

Proof: First of all, h is a well-defined Riemannian metric. Indeed, take 
an arbitrary point x E Mn. At the tangent space to this point, we can 
find a coordinate system such that the tensor L and the metric g are 
diagonal. In this coordinate system, the characteristic polynomials Xr, 
Xn-r are given by 

(11) ( -1rxr (t- .\1)(t- Az) ... (t- Ar) 
(Ar+l- t)(>.r+2- t) ... (>.n- t). Xn-r 

Then, the (1,1)-tensor 

C ((-1rxr(L) + Xn-r(L)) 
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· is given by the diagonal matrices 

(12) diag ( IT (>-.j- >-.1), ... , IT (>-.j-Ar), 
j=r+1 j=r+1 

}] (~,+' - ~;), ... ,}] (~.- ~;)) ' 

We see that the tensor is diagonal and that all diagonal components are 
positive. Then, the tensor c-1 is well-defined and h is a Riemannian 
metric. 

By construction, Br and Bn-r are well-defined transversal foliations 
of supplementary dimensions. In order to prove Lemma 2, we need to 
verify that, locally, the triple (h, Bn Bn-r) is as in Definition 6, that the 
restriction of L to a leaf is a EM-structure for the restriction of h to the 
leaf. 

It is sufficient to verify these two statements at almost every point of 
Mn. More precisely, it is known that the triple (h, Br, Bn-r) is a local
product structure if and only if the foliations Brand Bn-r are orthogonal 
and totally geodesic. Clearly, if the foliations and the metric are globally 
given and smooth, if the foliations are orthogonal and totally-geodesic 
at almost every point, then they are orthogonal and totally-geodesic at 
every point. 

Similarly, since the foliations and the metric are globally-given and 
smooth, if the restriction of L satisfies Definition 1 at almost every point, 
then it satisfies Definition 1 at every point. 

Consider Levi-Civita's coordinates x1, ... , Xm from Theorem 5. As 
in Levi-Civita's Theorem, we denote by <h < .. . < <Pm the different 
eigenvalues of L. In Levi-Civita's coordinates, the matrix of L is diagonal 

diag (¢1, ... , ¢1, ... , </Jm, ... , <Pm) = diag(>-.1, ... ,An)· 

kl k.,. 

Considers such that <Ps = Ar (clearly, k1 + ... + ks = r). Then, by 
constructions of the foliations Br and Bn-r, the coordinates x1, ... , X8 are 
constant on every leaf of the foliation Bn-r, the coordinates Xs+l, ... , Xm 
are constant on every leaf of the foliation Br. The coordinates x1, ... , x s 
will play the role of x-coordinates from Definition 6, and the coordinates 
Xs+1, ... , Xm will play the role of y-coordinates from Definition 6. 
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Using (12), we see that, in Levi-Civita's coordinates, C is given by 

( 

m m m m 
diag TI (</Jj- </Jdi, ... , I1 (</Jj- <Pdi, ... , TI (</Jj- <Ps)ki, ... , I1 (</Jj- </Js)ki, 

j=s+1 j=s+1 j=s+1 j=s+1 

kt ~ 

s s s s l I1 (¢s+1 - rPj )kj, ... , I1 (¢s+1 - rPj)ki, ... , I1 (</Jm- rPj)kj, ... , I1 (</Jm- rPj )ki • 
]=1 J=1 ]=1 ]=1 

ks+l km 

Thus, h is given by 

(13) h(x,x) 

where the functions F; are as follows: for i ::; r, they are given by 

s 

P; ~f (¢;- ¢1) ... (¢;- </J;-1)(¢i+1- ¢;) ... (¢.- ¢;) I1 I¢;- <Pilki-1. 

For i > r, the functions F; are given by 

F; clef (¢;- rPs+1) ... (¢;- rPi-1)(rPi+1- </J;) ... (</Jm- ¢;) 

j = 1 
j ol i 

m 

I1 
j=s+l 

joli 

Clearly, I¢;- ¢1 lkj-l can depend on the variables x; only; moreover, 
if¢; is multiple, I¢;- ¢1 lk1 - 1 is a constant. Then, the products 

s 

IT I¢;- ¢Jikj-1 

j = 1 
j ~ i 

can be hidden in Ai, so that the the restriction of the metric to the 
leaves of Br has the form from Levi-Civita's Theorem, and, therefore, 
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the restriction of L is a EM-structure for it. We see that the leaves of 
Br are orthogonal to leaves of Bn-n and that the restriction of h to Br 
(Bn-r, respectively) is precisely the first row of (13) (second row of (14), 
respectively) and depends on the coordinates x1, ... ,X8 (x 8 +l, ... ,xm, re
spectively) only. Lemma 2 is proven. 

Let p be a typical point for g with respect to EM-structure L. Fix 
i E 1, ... , n. At every point of Mn, consider the eigenspace Vi with the 
eigenvalue Ai· Vi is a distribution near p. Denote by Mi(P) its integral 
manifold containing p. 

Remark 4. The following statements hold: 

(1) If Ai(P) is multiple, the restriction of g to Mi(P) is proportional 
to the restriction of h to Mi(p). 

(2) The restriction of L to Br does not depend on the coordinates 
Yr+l, ... , Yn (which are coordinates Xs+l, ... , Xm in the notations 
in proof of Lemma 2). The restriction of L to Bn-r does 
not depend on the coordinates X1, ... , Xr (which are coordinates 
x1, ... ,x8 in the notations in proof of Lemma 2). 

Combining Lemma 2 with Theorem 9, we obtain 

Corollary 7. Let L be EM-structure on connected ( Mn, g). Suppose 
there exist i E 1, ... , n and p E Mn such that: 

• Ai is multiple (with multiplicity k 2 2) at a typical point. 
• Ai_l(p) = Ai(P) < Ai+k(P), 
• The eigenvalue Ai-l is not constant. 

Then, for every typical point q E Mn which is sufficiently close to p, 
Mi(q) is diffeomorphic to the sphere and the restriction of g to Mi(q) 
has constant sectional curvature. 

Indeed, take a small neighborhood of p and apply Splitting Lemma 2 
two times: for r = i + k - 1 and for r = i - 1. We obtain a metric h 
such that locally, near p, the manifold with this metric is the Riemann
ian product of three discs with EM-structures, and EM-structure is the 
direct sum of these EM-structures. The second component of such de
composition satisfies the assumption of Theorem 9; applying Theorem 9 
and Remark 4 we obtain what we need. 

Arguing as above, combining Lemma 2 with Theorem 10, we obtain 

Corollary 8. Let L be a EM-structure for connected (M, g). Sup
pose the eigenvalue Ai has multiplicity k at a typical point. Suppose there 
exists a point where the multiplicity of Ai is greater thank. Then, there 
exists a point where the multiplicity of Ai is precisely k + 1. 
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Combining Lemma 2 with Corollary 2, we obtain 

Corollary 9. Let L be a EM-structure for connected (Mn, g). Sup
pose the eigenvalue Ai has multiplicity ki at a typical point and multi
plicity ki + d at a point p E Mn. Then, there exists a point q E Mn 
in a small neighborhood of p such that the eigenvalue Ai has multiplicity 
ki + d in p, and such that 

NL(q) = max (NL(x))- d. 
xEMn· 

We saw that under hypotheses of Theorems 9,10, the set of typical 
points is connected. As it was shown in [34], in dimension 2 the set of 
typical points is connected as well. Combining these observations with 
Lemma 2, we obtain 

Corollary 10. Let L be a EM-structure on connected ( Mn, g). 
Then, the set of typical points of L is connected. 

3.3. If cPi is not isolated and if dim (B(Mn, g)) 2: 3, then Ai 
has constant sectional curvature Ki. 

In this section we assume that ( Mn, g) is connected and complete 
and Lis a EM-structure for Mn. As usual, we denote by >. 1 (x) :::; ... :::; 
An(x) the eigenvalues of L at x E Mn. 

Definition 7. An eigenvalue Ai is called isolated, if Ai(Pl) = >.1 (pl) 
implies >.i(Pz) = AJ(Pz) for every point pz. 

As in Section 3.2, at every point p E Mn, we denote by v; the 
eigenspace of L with the eigenvalue Ai(p). v; is a distribution near every 
typical point; by Corollary 5, it is integrable. We denote by Mi (p) the 
connected component containing p of the intersection of the integral 
manifold with a small neighborhood of p. 

Theorem 11. Suppose Ai is a non-isolated eigenvalue. Then, for 
every typical point p, the restriction of g to Mi (p) has constant sectional 
curvature. 

It could be easier to understand this Theorem using the language 
of Levi-Civita's Theorem 5: denote by ¢1 < ¢z < ... < cPm the differ
ent eigenvalues of L at a typical point. Theorem 11 says that, if cPi is 
non-isolated, then Ai from Levi-Civita's Theorem has constant sectional 
curvature. 
Proof of Theorem 11: If eigenvalue Ai is simple at a typical point, Mi 
is one dimensional and the statement is trivial; below we assume that 
Ai is multiple. Let ki > 1 be the multiplicity of Ai at a typical point. 
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Then, Ai is constant. Take a typical point p. We assume that Ai is not 
isolated; without loss of generality, we can suppose .Xi (PI) = Ai+k; -1 (PI) 
for some point p1. By Corollary 8, without loss of generality, we can 
assume Ai-l(PI) = .Xi(PI) < Ai+k;(PI)· By Corollary 9, we can also 
assume that NL(PI) = NL(P)- 1. 

Consider a geodesic 'Y : [0, 1] __, Mn connecting p1 and p, "f(O) = p 
and "f(1) =PI· Since it is sufficient to prove Theorem 11 at almost every 
typical point, arguing as in proof of Corollary 2 in [43], without loss of 
generality, we can assume that p1 is the only non-typical point of the 
geodesic segment "f(T), T E [0, 1]. 

Take a point q := "((1 - t:) of the segment, where E > 0 is small 
enough. By Corollary 7, the restriction of g to Mi ( q) has constant 
sectional curvature. 

Let us prove that the geodesic segment 'Y( T), T E [0, 1- t:] is orthog
onal to Mi('Y(T)) at every point. 

Indeed, consider the function 

J: T Mn __, lR; f(x, ~) := ( (/t~x,):~ _1 ) 
t t lt=.A, 

Since the multiplicity of .Xi at every point is at least ki, the function 

( (.A~~('D'!} 1 ) is polynomial in t of degree n - ki and is an integral for 

every fixed t; since Ai is a constant, the function i is an integral. 
At the tangent space to every point of geodesic 'Y consider the co

ordinates such that L = diag(.X1, ... ,An) and g = diag(1, ... , 1). In this 
coordinates, It(~) is given by (9). Then, the integral i(~) is the sum (we 
assume~= (6, ... ,~n)) 

(1t~ n (A.- A;)ll (15) IT 
/3=1 

(3 =f. i, i + 1, ... , i + ki - 1 

n n 

+ I: ~; IT (Aa - Ai) 

et=1 /3=1 
a =f. i, i + 1, ... ,i + ki- 1 !3 =f. i + 1, ... , i + ki - 1 

/)=f. a 

Since the geodesic passes through the point where Ai-l = Ai = ... = 
Ai+k; _1, all products in the formulae above contain the factor Ai - Ai, 
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and, therefore, vanish, so that i( r(O), i'(O)) = 0. Since i is an integral, 
i(r(T),i'(T)) = 0 for every T. Let us show that it implies that the 
geodesic is orthogonal to Mi at every typical point, in particular, at 
points lying on the segment r(T), T E [0, 1]. 

Clearly, every term in the sum (16) contains the factor Ai- Ai, and, 
therefore, vanishes. Then, the integral i is equal to (15). 

At a typical point, we have 

Then, all products 

n 

II 
{3=1 

{3 =!- i, i + 1, ... , i + ki - 1 

have the same sign and are nonzero. Then, all components ~<>' a E 

i, ... , ki - 1 vanish. Thus, 1 is orthogonal to Mi at every typical point. 
Finally, by Corollary 6, the restriction of g to Mi(P) is proportional 

to the restriction of g to Mi(q) and, hence, has constant sectional cur
vature. Theorem is proven. 

Theorem 12. Suppose dim(B(Mn, g)) ::=: 3. Let cPi be a non-isolated 
eigenvalue of L such that its multiplicity at a typical point is at least two. 
Then, the sectional curvature of Ai is equal to Ki. 

Recall that the definition of Ki is in the second statement of Theo-
rem 6. 
Proof of Theorem 12: Let us denote by Ki the sectional curvature 
of the metric Ai. By assumptions, it is constant in a neighborhood of 
every typical point. Since by Corollary 10, the set of typical points is 
connected, Ki is independent of a typical point. Similarly, since Ki is 
locally-constant by Theorem 6, Ki is independent of a typical point. 
Thus, it is sufficient to find a point where Ki = Ki. 

Without loss of generality, we can suppose that there exists PI E Mn 
such that Ar(PI) = Ar+l· 

By Corollary 9, without loss of generality we can assume that the 
multiplicity of Ar+I is ki + 1 in PI, and that NL(pi) = m- 1. Take a 
typical point pin a small neighborhood of PI· 

Then, by Corollary 7, the submanifold Mr+I(P) is homeomorphic to 
the sphere. Since it is compact, there exists a set of local coordinates 
charts on it such that there exist constants canst and CONST such that, 
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in every chart (x}, ... , x:' ), for every (3 E {1, .. , ki}, the entry (Ai)/3/3 lies 
between canst and CONST, (i.e. CONST 2:: A( 8~13 , 8~13 ) 2:: canst.) 

By shifting these local coordinates along the ve~tor flelds -fx,., where 
J 

j =f. i, for every typical point p' in a neighborhood of p1 , we obtain 
coordinate charts on MrH(P') such that CONST 2:: (Ai)/3/3 2:: canst. 

Let us calculate the projective Weyl tensor W for g in these local 
coordinate charts. Recall that the projective Weyl tensor is given by the 
formula 

(16) 

We will be interested in the components (actually, in one compo
nent) of W corresponding to the coordinates Xi· In what follows we 
reserve the Greek letter a, (3 for the coordinates from Xi, so that, for 
example, 9af3 will mean the component of the metric staying on the 
intersection of column number r + (3 and row number r +a. 

As we will see below, the formulae will include only the components 
of Ai· To simplify the notations, we will not write subindex i near Ai, 
so for example, 9af3 is equal to Pi Aa/3· 

Let calculate the component W$f3a· In order to do it by formula (16), 
it is necessary to calculate R3f3a and R/3/3· These was done in §8 of [54]. 
Rewriting the results of Solodovnikov in our notations, we obtain 

R3f3a = (ki- (Ki- K Pi)) A13f3, 

R1313 = ((ki -1) Ki + K (n -1) Pi- (ki- 1) Ki) A/3!3· 

Substituting these expressions in (16), we obtain 

We see that, if ki =f. Ki, the component w;13a is bounded from zero. 
Now if we consider a sequence of typical points converging to Pb the 

component w;13a converge to zero, since the length of ~ goes to zero. 

Finally, ki = Ki. Theorem is proven. 

3.4. Geometric sense of the adjusted metric 

Consider the metric (7) on the product 
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Take a point P = (Po, ... , Pm) E Dko x . . . x Dk=. At every disk Dk', 
i = 1, ... , m, consider a geodesic segment /i E Dk' passing through Pi· 
Consider the product 

MA := Dko X /1 X /2 X ... X /m 

as a submanifold of Dko x ... x Dk=. As it easily follows from Definition 4, 

• MA is a totally geodesic submanifold. 
• The restriction of the metric (7) to MA is (isometric to) the 

adjusted metric. 

Now let us explain how one can proof Theorem 7. Our proof is 
slightly different from the original proof of Solodovnikov [54] (which is 
correct and very good written). 

If the dimension of MA is one, Theorem 7 follows from Definition 4. 
Suppose the dimension of MA is two. Consider two EM-structures L1 
and L2 such that L 1, L2 and Id are linearly independent, and such that 
the number of different eigenvalues of each EM-structure at each point 
is precisely two. Then, without loss of generality, locally there exists a 
coordinate system (x1, ... , Xn) such that 

L = diag(.A.1 (xi), .A.2, ... , .A.2), 
'-.,....-' 

n-1 

and g is given by the formula 

(17) 

where A2 is a metric on the disk of dimension (n- 1) with coordinates 
(x2, ... , Xn), .A.2 is a constant, and .A.1 is a function of x1. Consider the 
Ricci-tensor Rj of the metric (17). By direct calculation, it is possible 
to see that 

• At every point, Rj has at most two different eigenvalues. 
• If Rj has two eigenvalues, one eigenvalue has multiplicity 1. 

The corresponding eigenvector is -88 . 
Xl 

• If Rj has precisely one eigenvalue in a neighborhood of a point, 
then the sectional curvature of the adjusted metric is constant 
near the point. 

Combining these three observation, we see that the sectional curvature 
of the adjusted metric is constant, or L 1 and L2 are diagonal in the same 
coordinate system. In the latter case, the formula (17) for the metric 
shows that L1, L2 and Id are linear dependent. Theorem 7 is proven 
under the assumption that MA is two-dimensional. 
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Now let the dimension of MA be greater than 2. Consider two EM
structures L1 and £2 such that £1, L 2 and Id are linearly independent 
and have only typical points on (Dn, g). Without loss of generality, since 
Id is also a EM-structure, we can think that £ 1 and £ 2 are positive
definite. If N L 1 = n, Theorem 7 follows from Theorem 8. Suppose 
N L 1 < n. Then, as we already explained after Definition 4, Theorem 5 
applied to the EM-structure £ 1 gives us a warped decomposition Dn = 
Dko x ... x Dkm. Consider the constructed above submanifold 

MA := Dko X 1'1 X '/'2 X .•. X 'Ym 

for this warped decomposition. 
By construction, every tangent space to MA is invariant with respect 

to £1. By the second part of Levi-Civita's Theorem 5, the restriction of 
L1 to MA is a EM-structure for the restriction giMA of g to MA. The 
number of its different eigenvalues at P coincides with the number of 
different eigenvalues of £ 1 and, therefore, equals the dimension of MA. 

Let us show that £2 generates one more EM-structure on MA. Since 
L2 is positive-definite, by Theorem 1, it generates a metric g2 projec
tively equivalent to g. Since MA is totally geodesic, g2IMA is geodesically 
equivalent to giMA. Then, by Theorem 1, it generates one more EM
structure for giMA. We denote this EM-structure by L2. 

Thus, in view of Fubini's Theorem 8, our goal is to prove that, for a 
certain choice of geodesic segments 1'1, ... , 'Ym, these two EM-structures 
(on MA) and the trivial EM-structure Id are linearly independent. 

By construction, the metric g1IMA does not depend on the choice 
of geodesic segments 'Yk: the results are isometric. Suppose the EM
structures L11MA, L2 and Id are linearly dependent for every choice of 
the geodesic segments. Then, for every choice of the geodesic segments, 
L2 is a linear combination of L11MA and Id. Clearly, the coefficients of 
the linear combination do not depend on the choice of geodesic segments 
'Yk. (To see it, it is sufficient to consider the length of the integral curve of 
the eigenvector Vi corresponding to a nonconstant Ai· The integral curve 
lies in MA and its length does not depend on the choice ofthe geodesic 
segments 'Yk·) Then, the eigenspaces of L are invariant with respect to 
the EM-structure £2. Hence, the metrics g1, g2 have the form from 
Remark 3 in the same coordinate system. Then, L 2 is linear dependent 
of £1 and Id. We obtained a contradiction. Thus, the adjusted metric 
has constant sectional curvature. Theorem 7 is proven. 
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§4. Proof of Theorem 2 

Assume dim(B(Mn,g)) ~ 3, where (Mn,g) is a connected complete 
Riemannian metric of dimension n ~ 3. Suppose a complete Riemannian 
metric g is projectively equivalent to g. Denote by L the EM-structure 
from Theorem 1. By Theorem 7, for every typical point, the sectional 
curvature of the adjusted metric is constant. 

Denote by m the number of different eigenvalues of L in a typical 
point. The number m does not depend on the typical point. If m = n, 
Theorem 2 follows from Fubini's Theorem 8 and Corollary 4. 

Thus, we can assume m < n. Denote by m0 the number of simple 
eigenvalues of Lata typical point. By Corollary 2, the number mo does 
not depend on the typical point. Then, by Levi-Civita's Theorem 5, 
the metric g has the following warped decomposition near every typical 
point p: 

Here the coordinates are (yo, ... , Ym), where Yo = (yJ, ... , y:J'0 ) and for 
i > 1 Yi = (yJ, ... , y:; ). For i > 0, every metric 9mo+i depends on the 
coordinates Yi only. Every function ¢i depends on y~ for i ::; mo and is 
constant for i > mo. 

Let us explain the relation between Theorem 5 and the formula 
above. The term go collects all one-dimensional terms of (5). The co
ordinates Yo = (yJ, ... , y:J'0 ) collect all one-dimensional Xi from (5). For 
i > mo, the coordinate Yi is one of the coordinates Xj with kJ > 1. Every 
metric 9mo+i for i > 1 came from one of the multidimensional terms of 
(5) and is proportional to the corresponding AJ· The functions ¢i are 
eigenvalues of L; they must not be ordered anymore: the indexing can 
be different from (4). Note that, by Corollary 2, this re-indexing can be 
done simultaneously in all typical points. 

Since the dimension of the space B(Mn, g) is greater than two, by 
Theorem 7, g is a V(K) metric. 

According to Definition 7, a multiple eigenvalue ¢i of Lis isolated, 
if there exists no nonconstant eigenvalue ¢J such that ¢J(q) = ¢i at 
some point q E Mn. If every multiple eigenvalue of L is non-isolated, 
then applying Theorems 11,12,6 we obtain that g has constant sectional 
curvature. 

Thus, we can assume that there exist isolated eigenvalues. With
out loss of generality, we can assume that (at every typical point) the 
re-indexing is made in such a way that the first multiple eigenvalues 
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¢mo+1, ... , ¢m1 are non-isolated and the last multiple eigenvalues ¢m1 +1, 

... , ¢m are isolated. By assumption, m 1 < tn. 
We will prove that in this case all eigenvalues of L are constant. By 

Remark 3, it implies that the metrics g, g are affine equivalent. 
Let us show that the sectional curvature of the adjusted metric g is 

nonpositive. We suppose that it is positive and will find a contradiction. 
At every point q of Mn, denote by Vo C TqMn the direct product of 

the eigenspaces of L corresponding to the eigenvalues ¢1, ... , ¢m1 • Since 
the eigenvalues ¢m1 + 1, ... , ¢m are isolated by the assumptions, the di
mension of Vo is constant, and Vo is a distribution. By Corollary 5, Vo is 
integrable. Take a typical point p E Mn and denote by M0 the integral 
manifold of the distribution containing this point. The restriction 91Mo 
of the metric g to Mo is complete. 

Consider the direct product Mo x !Rm-m1 with the metric 

where (tm1 +1, ... , tm) are the standard coordinates on !Rm-m1 • Since the 
eigenvalues ¢m1 +1, ... , ¢m are isolated, (19) is a well-defined Riemannian 
metric. Since 91Mo is complete, the metric (19) is complete. By defi
nition, the metric is the adjusted metric for the warped decomposition 
(18). Hence, the sectional curvature of the adjusted metric is positive 
constant. Then, the product M 0 x JRm-m1 must be compact, which 
contradicts the fact that !Rm-m1 is not compact. Finally, the sectional 
curvature of the adjusted metric is not positive. 

Now let us prove that all eigenvalues of L are constant. With
out loss of generality, we can assume that the manifold is simply con
nected. We will construct a totally geodesic submanifold MA, which 
is a global analog of the submanifold MA from Section 3.4. At every 
point x E Mn, consider Vm1 +b ... , Vm C TxMn, where Vm1 +i is the 
eigenspace of the eigenvalue ¢m1 +i. Since the eigenvalues ¢m1 +i are 
isolated, Vm1 +b ... , Vm are distributions. By Corollary 5, they are in
tegrable. Denote by Mm1 +b Mm1+2, ... , Mm the corresponding integral 
submanifolds. 

Since the manifold is simply connected, then, by [6], it is homeo
morphic to the product Mo X Mm1 +1 X Mm1 +2 X ... X Mm. Clearly, the 
metric g on 
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has the form 

where every 9k is a metric on Mk. Take a point 

On every Mm 1 +k, k = 1, ... , m-m1, pick a geodesic 'Ym1 +k (in the metric 
9m1+k) passing through Pk· Denote by MAthe product 

Mo X 'Ymt+l X ••. X 'Ym· 

MA is an immersed totally geodesic manifold. More precisely, the nat~ 
ural immersion of M0 x R_m-mt (endowed with the metric (19)) into 
Mn is isometric and totally geodesic. Locally, in a neighborhood of ev
ery point, MA coincides with MA from Section 3.4 constructed for the 
warped decomposition (20). The restriction of the metric g to MA is iso
metric to the adjusted metric and, therefore, has nonpositive constant 
sectional curvature. Then, by Corollary 4, the restriction of g to MA is 
affine equivalent to the restriction of g to MA. Then, by Remark 3, all 
cPi are constant. Then, the metric g is affine equivalent to the metric g. 
Theorem 2 is proven. 
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