
Advanced Studies in Pure Mathematics 42, 2004 
Complex Analysis in Several Variables 
pp. 249-261 

Generalization of a precise £ 2 division theorem 

Takeo Ohsawa 

§ Introduction 

The purpose of this article is to generalize the following. 

Theorem 1 (cf. [0-3]). Let D be a bounded pseudoconvex domain 
in en and let z = (zb ... 'Zn) be the coordinate of en. Then there exists 
a constant C depending only on the diameter of D such that, for any 
plurisubharmonic function cp on D and for any holomorphic function f 
on D satisfying 

(1) 

there exists a vector valued holomorphic function g = (gb ... , gn) on D 
satisfying 

n 

(2) f(z) = L Zigi(z) 
i=l 

with 

Here d>.. denotes the Lebesgue measure. 

We generalize this in order to establish an understanding that the 
measure e-'Pizl-2n d>.. in (1) consists of three parts, i.e. e-<p(z) for any 
plurisubharmonic function cp, lzl-2 as the quotient fiber metric associ
ated to the morphism g f---+ I; zigi, and lzl-2n+2 d>.. as the residue of 
a volume form on (D \ {0}) x pn-l with respect to the embedding of 
D \ {0} by z f---+ (z, [z]), where [z] = (zl : · · · : Zn)· 
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In our generalized circumstance there will be given a complex man
ifold M and a surjective morphism "Y : E --> Q, where E and Q are 
holomorphic vector bundles over M. 

It was first asked by H. Skoda [S-2] to find an L 2 surjectivity con
dition for the morphism induced from "Y· More precisely speaking, by 
specifying a coo volume form dVM on M, a coo fiber metric hE of E and 
the fiber metric hQ of Q induced from hE via""(, a surjectivity criterion 
was looked for with respect to the induced morphism 

where A 2 ( M, · ) ( = A 2 ( M, · , dV M)) denotes the space of L2 holomorphic 
sections and "Y*(g) :="Yo g. 

Here we shall relax the L 2 condition by considering another volume 
form dVfvr on M and ask for a surjectivity condition for the induced 
operator 

where "Y* is only defined as a map from a linear subspace of A 2(M,E,dVM)· 
To state our main result, let us introduce some notation. 
Let Qv, Ev denote the duals of Q, E, let "Yv : Qv --> Ev be the 

dual of""(, and let 

P(Qv) = II P(Q~), P(Ev) = II P(E~), 
xEM xEM 

where P(Q~) = {Cv I v E Q~ \ {0}} and P(E~) = {Cw I wEE~\ {0}}. 
We shall indentify P(Qv) as a complex submainfold of P(Ev) via "Yv· 

Let us define a line bundle L(Ev) over P(Ev) by 

L(Ev) = II L(Ev)~ 
t,EP(EV) 

where L(Ev)~ = ~· Then L(Ev)v is, as a holomorphic line bundle over 
P(Ev), naturally indentified with 

II Ex/Ker~ (x EM,~ E P(E~)) 
x,~ 

where Ker ~ := Ker a: for any a: E E~ with ~ = Co:. The line bundle 
("Yv)* L(Ev)v over P(Qv) will be naturally indentified with 

II Qx/Ker~ (x EM,~ E P(Q~)) 
x,~ 
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and denoted simply by L(Ev)viP(Qv). 
Let a- : P(Ev)~ --+ P(Ev) be the monoidal transform of P(Ev) 

along P(Qv). For simplicity we put 

Let p = rank E and q = rank Q. Then the canonical bundles 
KP(EV)- and KP(EV) are related by a canonical isomorphism 

Here I; denotes the line bundle associated to the divisor I;, Hence a 
volume form dVP(Ev)- on P(Ev)~ is induced from dVM, hE and a fiber 
metric of [I;]. There is a canonical fiber metric of [I;] induced from hE, 
but we shall not stick to it for the sake of generality. 

For any Hermitian line bundle L, its curvature form is denoted by 
8 L. For simplicity, the curvature form of the volume form, as a fiber 
metric of the anticanonical bundle K:, is denoted by Ric •. 

In this situation, a generalization of Theorem 1 is 

Theorem 2. Suppose that the following are satisfied. 
1. There exists a closed subset A C M such that 

(La) M \A is a Stein mainfold 

and 

(I. b) For any point x E A and for any neighborhood U 3 x, all the L 2 

holomorphic finctions on U \A extend holomorphically to U. 

2. [I;] admits a fiber metric such that 

(2.a) There exists a bounded canonical section, says, of [I;]. 
(2.b) There exists a constant R1 such that dVM :::; RI(rvoo-)*dVP(Ev)-, 

where rv denotes the projection from P(Ev) toM. 
(2.c) There exists a positive number Eo such that 

Then the operator F* : A 2 (M,E,dVM) --+ A 2 (M,Q,dV{r) admits a 
bounded right inverse if there exists a constant R 2 such that 

Here 1r denotes the projection from P(Qv) to M and dVE denotes the 
volume form on I; induced from dVP(EV)- and the fiber metric of [I;]. 
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Corollary 3. Let D be a pseudoconvex domain in en, let h1, ... , hp 
be bounded holomorphic functions on D, whose first order derivatives are 
also bounded, let <p be a plurisubharmonic function on D and let f be a 
holomorphic function on D satisfying 

where h = ( h1 , ... , hp). Then there exist holomorphic functions g1, ... , gp 
on D such that f = 2::~= 1 gihi and 

£1gl 2 e-'~'d,\:::; Cllfll 2 · 

Here C is a constant depending only on h. Moreover, if the Ricci curva
ture of 1\ n J=I88(izl 2 +log lhl 2 ) is semipositive, then there exist holo
morphic functions h, ... , lp on D such that f = :L~= 1 lihi and 

where C' is a constant depending only on h. 

Obviously the latter part of Corollary 3 contains Theorem 1. 

Corollary 4. Let D, h and <p be as above. Then, for any holo
morphic function f on D satisfying 

£1fl 2 e-'~'lhl- 2k- 2 ldhl 2kd,\ 

where k = inf( n, p -1), there exist holomorphic functions g1 , ... , gp such 
that f = 2::~= 1 gihi and 

£lgl 2 e-'~'d,\:::; C" £1fl 2e-'~'lhl- 2k- 2 ldhl 2kd,\ 

where C" is a constant depending only on h. 

The paper is organized as follows. In Section 1 we briefly review 
the L2 extension theorem for the reader's convenience. Theorem 2 will 
be proved in Section 2. In Section 3, we shall recall Skoda's L 2 division 
theorem and its consequence which is weaker than Theorem 1. We dare 
to do this because we want to show by a counterexample that a na1ve 
improvement of Skoda's theorem, from which Theorem 1 would follow 
immediately, is false. This may well mean that our formulation of a 
generalized L2 division theorem gives a new insight into the division 
properties of holomorphic functions. 
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§1. Preliminaries- L2 extension theorem 

Let N be a complex mainfold of dimension m and let F ~ N be a 
holomorphic line bundle with a coo fiber metric hp. (The symbols M, 
n, E, hE are reserved for the division theory.) 

Let S C N be a closed complex submainfold of codimension one, 
and let [ S] be the holomorphic line bundle defined by a system of tran
sition functions eaf3 = sa/ Sf3, where sa are local defining functions of S 
associated to some open covering of N. Any holomorphic section s of 
[S] is called a canonical section if S = s-1(0) and dsiS is nowhere zero. 
Once for all we fix a coo fiber metric b of [S] and a canonical section 
s ={sa} with Sa= eaf3Sf3. 

Given any coo volume form dVN on N, a volume form dVN,b on S 
is induced from dVN, s and b via the canonical isomorphism 

which is given by 

wAdsa IS 
---=~w. 

Sa 

One may write on S 

Here the fiber metric b is represented by a system of positive coo func
tions ba satisfying ba = lef3al 2bf3. More explicitly writing, let x be any 
point of Sand let (zb ... , zn) be a holomorphic local coordinate around 
x such that Zn =Sa for some a around x, and such that 

holds at x. Then, identifying (z1, ... Zn- 1) with a local coordinate of S 
around x, we have 

at x. 
Besides the induced volume form dVN,b, there is a volume form 

associated to the function log lsl 2 , which turned out to be more natural 
in the £ 2 extension theory. In general, given any continuous function 
'ljJ: N ~ R U { -oo} such that 'ljJ -log lsl 2 is bounded near every point 
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of S, we define a positive Radon measure dVN['¢] on S by 

f fdVN['¢] = lim .!:. f fe-.PdVN. Js t-+oo 7r }.p-1((-t-1,-t)) 

Here f runs through compactly supported nonnegative continuous fuc
tion on N. 

However it is easy to see that 

(t) 

whose verification is left to the reader. 

Let A2(N, F, hF, dVN) (resp. A2(S, F, hF, dVN[loglsl 2])) be the Hilbert 
space of £ 2 holomorphic sections ofF over N (resp. overS) with respect 
to (hF, dVN) (resp. w.r.t. (hF, dVN[log lsl2])). 

Theorem 1.1. Let N, dVN, F, hF, S, b and s be as above, and 
assume that the following are satisfied. 

(1.1) N contains a Stein open subset N' such that 
(l.l.a) N' intersects with every connected component of S 

and 
(1.1. b) For any point x E N \ N' and for any neighborhood U 3 x, 

all the £ 2 holomorphic functions on U n N' extend holo
morphically to U. 

(1.2) SUPN lsi < 00. 

(1.3) There exists a positive number co such that 

H(8F + RicN -(1 + c)8[sj) ~ 0 for all c E [0, co]. 

Then there exists a bounded linear opemtor I from A2(S,F,hF,dVN[log[sj2]) 
to A2(N,F,hF,dVN) such that I (f) IS= f for any f E A2(S,F,hF,dVN(log[s]2]). 

Here the norm of I is bounded by a constant dependly only on supN lsi 
and co. 

This result is essentially contained in [0-2, Theorem 4]. Neverthe
less we want to prove it here because the curvature assumption (1.3) is 
somewhat weaker than that of [0-2]. 

Let us recall first a basic £ 2 existence theorem for the 8-equation 
whose proof is contained in [0-2]. 

Theorem 1.2. Let (N, g) be a complete Kahler manifold of di
mension m, let "' be a bounded positive c= function on N and let c be 
a positive continuous function on ( 0, oo) such that c("') is bounded. Let 
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(F, hF) be a Hermitian holomorphic line bundle over N whose curvature 
form 8 F satisfies 

Then, for any positive integer q and for any 8-closed locally square inte
grable F-valued (m,q) form u on N satisfying ((~A9 )- 1u,u) < oo, there 
exists a square integrable F -valued ( m, q - 1) form v such that 

Here A9 denotes the adjoint of u f-t (the fundamental form of g) 1\ u. 

The proof of Theorem 1.2 is a straightforward application of Hahn
Banach's theorem. (We note that the boundedness assumption on TJ and 
c(ry) was missing in [0-2]. See alse [0-1].) 

Proof of Theorem 1.1. By (1.1) it suffices to prove that, for any rela
tively compact Stein open subset f! c N with 0 2 strongly pseudoconvex 
boundary, there exists a bounded linear operator 

In : A 2(S, F, hF, dVN[log lsl 2]) --+ A2(f!, F, hF, dVN) 

such that In (f) IS n f! =JIB n f! for any f E A 2 (S, F, hF, dVN[log lsl 2]) 

and that lllnll is bounded by a constant that depends only on supN lsl 2 

and co. 
Once for all we fix such n and f. Then, by extending f to a neigh

borhood of n n S as a holomorphic section ofF, say j, we consider a 
c= extension of f to n of the form 

It = x(log lsl 2 + t + 2)j (t » 1) 

where X is a c= function R satisfying x(x) = 1 for X< 1 and x(x) = 0 
for x > 2. 

By solving the equation Bvt = a it! s on n with an L 2 norm estimate 
and by taking a weak limit of ft- SVt on n, we shall obtain a holomorphic 
extension of f with a required L 2 norm bound. 

For that we regard 8ftfs as a K'f.r Q9 F Q9 [8]v-valued (m, 1) form 
on f!, and apply Theorem 1.2 for any complete Kahler metric on f!. 
Note that f! carries a complete Kahler metric because f! is Stein (cf. 
[G]). Multiplying s by a constant if necessary, we may assume that 
supN log lsi< -1. Then we put \If= log lsl 2 , ci> = log(lsl 2 + e-t) and 

1 
TJ = . ( ) + log(lsl 2 + e-t) +log( -log(lsl 2 + e-t)). 

mm co, 1 
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By a straightforward computation we obtain 

and 

- ( 1) 2 - 2 --88ry = 1 - ~ 88if! +if!- 8if! A 8if!. 

Let us choose t0 so that if! < -2 if t > t0 . Then, for all t > to we 
have 

Therefore if we put 

and E1 = min(Eo, 1), on f2 \ S we have 

1 ( 1 )2 - A -
K 2 -8 F®Kv ®(S]V + 1 - - 88if! + --8if! 1\ 8if! 

E1 N if! 8 

1 <I> 2- A -
2 -(8F®Kv®(S]V + E1e- lsi 88\J!) + --8if! 1\ 8if! 

E1 N 8 

1 <I> 2 A -2 -(8F + RicN -(1 + E1e- lsi )8[sJ) + --8if! 1\ 8if!. 
E1 8 

Since e-<I>Isl 2 < 1, the first term in the last inequality is semipositive by 
assumption. Therefore we obtain 

A -
K 2 - 8-8if! 1\ 8if! on f2. 

Hence, for any Hermitian metric g on n we obtain 

((KAg)- 1( 8!t), 8!t)::; Collfll 2 , fort» 1. 

Here the L2 norm IIIII off is with respect to hF and dVN [log lsl 2], the 
inner product on the left hand side is with respect to hF, dVN and g, 
and C0 depends only on sup lx'l· 
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Therefore, choosing g to be a complete Kahler metric on D, we may 
apply Theorem 1.2 and obtain a square integrable F ® K'Jv ® [S]v -valued 
(m, 0) form w satisfying 

a(-/rJ + 1}3w) = u 

and 

Clearly supN Jsv7J + 7}31 :::; cl, where cl depends only in SUPN Jsl 
and c:o. 

Therefore V 1J + 173w ( = y' 1Jt + 1J{Wt) is a wanted solution to the 
a-equation avt = a it! s. 
§2. Proof of Theorem 2 

Let the notation be as in Theorem 2 and let w be the projection 
from P(Ev) toM. Then we have a canonical commutative diagram 

L(Evt r- w* E ~ E 

~ 1 1 
P(Ev) ~ M 

to which an isomorphism 

A2(M, E, dVM) ____:::::__, A2(P(Ev), L(Ev) v) 

(= A2(P(Ev),L(Evt,w*dVM 1\dVps)) 

is associated, which is an isometry up to multiplication by the volume of 
pP- 1 . Here dVps denotes the Fubini-Study volume form on the fibers of 
P(Ev). Identifying L(Ev)vJP(Ev) with L(Qv)v as in the introduction 
we have a commutative diagram 

where p denotes the natural restriction operator. 
Now suppose that (l.a)-(2.c) and R2dV}v1 ~ (1r o a)*(dV~/JdsJ 2 ) 

are satisfied. Then, to prove the existence of the right inverse of '"h, it 
suffices to prove that the restriction operator 
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admits a bounded right inverse. For that we shall verify the conditions 
(1.1)-(1.3) of Theorem 1.1 for N = P(Ev)~ and S =E. 

(1.1): Since M \A is Stein and w- 1(M \A) is a pP- 1-bundle over 
M \A, w-1(M \A) admits a positive line bundle, and therefore so is 
a- 1(w- 1(M\A)), too. Hence a- 1(w- 1(M\A)) contains as ample effec
tive divisor Z which intersects with every component of E transversally. 
One may then put N' = zc. 

(1.2) follows from (2.a). (1.3) follows from (2.c) because RicP(Ev)~ = 
a* Ric P(EV)- (p'-q-1) e [E] by the definition of the volume form dVP(EV)~ 0 

Hence, by Theorem 1.1, the restriction operator from A2 (P(Ev)~, 
a*L(Ev)v) to A2 (E,a*L(Ev)v,dVP(EvJ~[loglsl 2]) admits a bounded 
right inverse. This completes the proof of Theorem 2 because 
dVP(Ev)~ [log lsl 2 ] = dVE by (t). 0 

To deduce Corollary 3 from Theorem 2, we put M = D \ h- 1(0), 
E = M x CP, Q = M x C and 'Y(z,() = L:;(ihi(z). Then we may 
put A = hi 1 (0) for any nonzero hi. As for the fiber metric of [E], we 
may take 1(1-2 L:;i#j l(ihj- (jhil 2 as the squared length of the canonical 

sections= { h1t-hi} i#J where the local expression h1t-hi is effective 
on the completement of the proper transform of the set {hj(i -hi(j = 0} 
in { (1 -1- 0}. Clearly Is I is bounded on M, so what remains is to verify 
(2.c) and the estimates for the volume forms. 

For that we notice that 

where 

From this expression of dVP(Ev)~ it is easy to see that the curvature 
condition (2.c) holds true. 

To see that the required estimates for dVP(Ev)~ and dVE hold, we 
consider an embedding 

D X pP- 1 

w 
(z,() 

<---t D X CP X pP-1 

w 
.......-. (z, h(z), () 
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and the associated commutative diagram between the blow ups 

t: (D X pP- 1 )~ 

la1 
D X pP- 1 

Since supD ldhl < oo by assumption, there exists a constant C such that 

where w denotes the coordinate of CP. 
In particular, dVP(Ev)~ dominates the pull back of a bounded (n + 

p - 1, n + p - 1) form on D x ( CP x pv- 1) ~, so that 

n 

const.(w o a)*dVP(Ev)~ ~ 1\ v'=I88Izl 2 . 

( *) also shows that dVE is quasi-equivalent to the pull back of 
A n+p- 2 w for some smooth positive (1, 1) form, say w, on the excep
tional set of a 2 . 

Clearly 

in the sense of current, so that 

n 

(w o a)*dVE:::; const.f\ v'=Ia8(1zl 2 + lh(zW +log lh(z)l 2 ) 

n 

:::; const.f\ Ra8(1zl 2 +log lh(z)l 2). 

The first part of Corollary 3 follows from this by regarding e-"' as an 
increasing limit of smooth fiber metrices of E whose curvature forms 
are semipositive. To obtain the latter part we have only to set dVM = 
An yCia8(1zl 2 +log lhl 2 ). D 

Corollary 4 follows imediately from Corollary 3. 
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§3. A note on Skoda's division theorem 

It might be worthwhile to compare our results with the following 
which are due to Skoda [S-2] (see also [D]). 

Theorem 3.1. Let M be a complex manifold of dimension n ad
mitting a Kahler metric and a plurisubharmonic exhaustion function of 
class C 2 , let E be a holomorphic Hermitian vector bundle of rank p over 
M whose curvature form is semipositive in the sense of Griffiths, and 
let 'Y : E ---+ Q be a surjective morphism to a holomorphic vector bundle 
Q of rank q. Then, for any holomorphic Hermitian line bundle L whose 
curvature form satisfies 

(S) 

for some k > inf(n,p- q), the induced linear map 

1* : A2 (M, E 0 KM 0 L)----+ A 2 (M, Q 0 KM 0 L) 

is surjective. 

Corollary 3.2. Let D be a pseudoconvex domain in en, let h1, ... ,hp 
be holomorphic functions on D, and let k = inf(n,p -1). Then, for any 
positive number c:, there exists a constant Cc; such that, for any plurisub
harmonic function cp on D and for any holomorphic function f on D 
satisfying 

fv1!12e-'Pihl-2k-2-c;d.X < oo 

there exist holomorphic functions g1, ... gp such that f = I:f=1 gihi and 

fvigi2e-'Pihi-2k-E:d.X :S Cc; fv1fl2e-'Pihl-2k-2-c;d.X. 

There are two points to be noted here. One point is that Corol
lary 3.2 is not contained in Corollary 3 because we had to assume the 
boundedness of h and its first derivative. The other point is that one 
cannot drop the above c: by weaking the inequality k > inf(n,p- q) 
in the hypothesis to k ;::: inf(n,p- q), as the following counterexample 
shows. 

Let O(k) denote the holomorphic line bundle of degree k over P 1 

(0 := 0(0)). 
Define a morphism t : 0 ---+ 0(1) EB 0(1) by t(z, () = (z, (z(, 

(z + 1)()), and let 0 ---+ 0 ~ 0(1) EB 0(1) ---+ 0(2) ---+ 0 be the as
sociated exact sequence. Ten so ring 0 ( -1) to this we have 

0 ----+ 0( -1) ----+ 0 EB 0 ----+ 0(1) ----+ 0. 
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Letting M = P 1, E = 0 EB 0, Q = 0(1), L = 0(1) and k = inf(n,p
q) = 1, we have 

degL = deg(detE)- kdeg(detQ) = 1-0-1 = 0. 

Hence ( S) is satisfied, but 

A2 (M, KM Q9 E Q9 L) = H 0 (P1 , 0( -1) EB 0( -1)) = {0} 

and 

Therefore"~* is not surjective! 

Open Question. Establish a general L 2 division theory that uni
fies Theorem 2 and Theorem 3.1. 
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