Advanced Studies in Pure Mathematics 42, 2004
Complex Analysis in Several Variables
pp. 249-261

Generalization of a precise L^{2} division theorem

Takeo Ohsawa

§ Introduction

The purpose of this article is to generalize the following.
Theorem 1 (cf. [O-3]). Let D be a bounded pseudoconvex domain in \mathbf{C}^{n} and let $z=\left(z_{1}, \ldots, z_{n}\right)$ be the coordinate of \mathbf{C}^{n}. Then there exists a constant C depending only on the diameter of D such that, for any plurisubharmonic function φ on D and for any holomorphic function f on D satisfying

$$
\begin{equation*}
\int_{D}|f(z)|^{2} e^{-\varphi(z)}|z|^{-2 n} d \lambda<\infty \tag{1}
\end{equation*}
$$

there exists a vector valued holomorphic function $g=\left(g_{1}, \ldots, g_{n}\right)$ on D satisfying

$$
\begin{equation*}
f(z)=\sum_{i=1}^{n} z_{i} g_{i}(z) \tag{2}
\end{equation*}
$$

with

$$
\begin{equation*}
\int_{D}|g(z)|^{2} e^{-\varphi(z)}|z|^{-2 n+2} d \lambda \leq C \int_{D}|f(z)|^{2} e^{-\varphi(z)}|z|^{-2 n} d \lambda \tag{3}
\end{equation*}
$$

Here $d \lambda$ denotes the Lebesgue measure.
We generalize this in order to establish an understanding that the measure $e^{-\varphi}|z|^{-2 n} d \lambda$ in (1) consists of three parts, i.e. $e^{-\varphi(z)}$ for any plurisubharmonic function $\varphi,|z|^{-2}$ as the quotient fiber metric associated to the morphism $g \mapsto \sum z_{i} g_{i}$, and $|z|^{-2 n+2} d \lambda$ as the residue of a volume form on $(D \backslash\{0\}) \times \mathbf{P}^{n-1}$ with respect to the embedding of $D \backslash\{0\}$ by $z \mapsto(z,[z])$, where $[z]=\left(z_{1}: \cdots: z_{n}\right)$.

In our generalized circumstance there will be given a complex manifold M and a surjective morphism $\gamma: E \rightarrow Q$, where E and Q are holomorphic vector bundles over M.

It was first asked by H. Skoda [S-2] to find an L^{2} surjectivity condition for the morphism induced from γ. More precisely speaking, by specifying a C^{∞} volume form $d V_{M}$ on M, a C^{∞} fiber metric h_{E} of E and the fiber metric h_{Q} of Q induced from h_{E} via γ, a surjectivity criterion was looked for with respect to the induced morphism

$$
\gamma_{*}: A^{2}(M, E) \longrightarrow A^{2}(M, Q)
$$

where $A^{2}(M, \cdot)\left(=A^{2}\left(M, \cdot, d V_{M}\right)\right)$ denotes the space of L^{2} holomorphic sections and $\gamma_{*}(g):=\gamma \circ g$.

Here we shall relax the L^{2} condition by considering another volume form $d V_{M}^{\prime}$ on M and ask for a surjectivity condition for the induced operator

$$
\gamma_{*}: A^{2}\left(M, E, d V_{M}\right) \longrightarrow A^{2}\left(M, Q, d V_{M}^{\prime}\right)
$$

where γ_{*} is only defined as a map from a linear subspace of $A^{2}\left(M, E, d V_{M}\right)$.
To state our main result, let us introduce some notation.
Let Q^{\vee}, E^{\vee} denote the duals of Q, E, let $\gamma^{\vee}: Q^{\vee} \rightarrow E^{\vee}$ be the dual of γ, and let

$$
P\left(Q^{\vee}\right)=\coprod_{x \in M} P\left(Q_{x}^{\vee}\right), \quad P\left(E^{\vee}\right)=\coprod_{x \in M} P\left(E_{x}^{\vee}\right)
$$

where $P\left(Q_{x}^{\vee}\right)=\left\{\mathbf{C} v \mid v \in Q_{x}^{\vee} \backslash\{0\}\right\}$ and $P\left(E_{x}^{\vee}\right)=\left\{\mathbf{C} w \mid w \in E_{x}^{\vee} \backslash\{0\}\right\}$. We shall indentify $P\left(Q^{\vee}\right)$ as a complex submainfold of $P\left(E^{\vee}\right)$ via γ^{\vee}.

Let us define a line bundle $L\left(E^{\vee}\right)$ over $P\left(E^{\vee}\right)$ by

$$
L\left(E^{\vee}\right)=\coprod_{\xi \in P\left(E^{\vee}\right)} L\left(E^{\vee}\right)_{\xi}
$$

where $L\left(E^{\vee}\right)_{\xi}=\xi$. Then $L\left(E^{\vee}\right)^{\vee}$ is, as a holomorphic line bundle over $P\left(E^{\vee}\right)$, naturally indentified with

$$
\coprod_{x, \xi} E_{x} / \operatorname{Ker} \xi \quad\left(x \in M, \xi \in P\left(E_{x}^{\vee}\right)\right)
$$

where $\operatorname{Ker} \xi:=\operatorname{Ker} \alpha$ for any $\alpha \in E_{x}^{\vee}$ with $\xi=\mathbf{C} \alpha$. The line bundle $\left(\gamma^{\vee}\right)^{*} L\left(E^{\vee}\right)^{\vee}$ over $P\left(Q^{\vee}\right)$ will be naturally indentified with

$$
\coprod_{x, \xi} Q_{x} / \operatorname{Ker} \xi \quad\left(x \in M, \xi \in P\left(Q_{x}^{\vee}\right)\right)
$$

and denoted simply by $L\left(E^{\vee}\right)^{\vee} \mid P\left(Q^{\vee}\right)$.
Let $\sigma: P\left(E^{\vee}\right)^{\sim} \rightarrow P\left(E^{\vee}\right)$ be the monoidal transform of $P\left(E^{\vee}\right)$ along $P\left(Q^{\vee}\right)$. For simplicity we put

$$
\Sigma=\sigma^{-1}\left(P\left(Q^{\vee}\right)\right)
$$

Let $p=\operatorname{rank} E$ and $q=\operatorname{rank} Q$. Then the canonical bundles $K_{P\left(E^{\vee}\right) \sim}$ and $K_{P\left(E^{\vee}\right)}$ are related by a canonical isomorphism

$$
K_{P\left(E^{\vee}\right) \sim} \simeq \sigma^{*} K_{P\left(E^{\vee}\right)} \otimes[\Sigma]^{p-q-1}
$$

Here Σ denotes the line bundle associated to the divisor Σ. Hence a volume form $d V_{P\left(E^{\vee}\right)^{\sim}}$ on $P\left(E^{\vee}\right)^{\sim}$ is induced from $d V_{M}, h_{E}$ and a fiber metric of $[\Sigma]$. There is a canonical fiber metric of [Σ] induced from h_{E}, but we shall not stick to it for the sake of generality.

For any Hermitian line bundle L, its curvature form is denoted by Θ_{L}. For simplicity, the curvature form of the volume form, as a fiber metric of the anticanonical bundle K_{\bullet}^{\vee}, is denoted by Ric. .

In this situation, a generalization of Theorem 1 is
Theorem 2. Suppose that the following are satisfied.

1. There exists a closed subset $A \subset M$ such that
(1.a) $M \backslash A$ is a Stein mainfold and
(1.b) For any point $x \in A$ and for any neighborhood $U \ni x$, all the L^{2} holomorphic finctions on $U \backslash A$ extend holomorphically to U.
2. $[\Sigma]$ admits a fiber metric such that
(2.a) There exists a bounded canonical section, say s, of $[\Sigma]$.
(2.b) There exists a constant R_{1} such that $d V_{M} \leq R_{1}(\varpi \circ \sigma)_{*} d V_{P\left(E^{\vee}\right) \sim,}$ where ϖ denotes the projection from $P\left(E^{\vee}\right)$ to M.
(2.c) There exists a positive number ε_{0} such that
$\sqrt{-1}\left(\sigma^{*} \Theta_{L\left(E^{\vee}\right)^{\vee}}+\sigma^{*} \operatorname{Ric}_{P\left(E^{\vee}\right)}-(p-q+\varepsilon) \Theta_{[\Sigma]}\right) \geq 0 \quad$ for all $\varepsilon \in\left[0, \varepsilon_{0}\right]$.
Then the operator $\gamma_{*}: A^{2}\left(M, E, d V_{M}\right) \rightarrow A^{2}\left(M, Q, d V_{M}^{\prime}\right)$ admits a bounded right inverse if there exists a constant R_{2} such that

$$
R_{2} d V_{M}^{\prime} \geq(\pi \circ \sigma)_{*} d V_{\Sigma}
$$

Here π denotes the projection from $P\left(Q^{\vee}\right)$ to M and $d V_{\Sigma}$ denotes the volume form on Σ induced from $d V_{P\left(E^{\vee}\right) \sim}$ and the fiber metric of $[\Sigma]$.

Corollary 3. Let D be a pseudoconvex domain in \mathbf{C}^{n}, let h_{1}, \ldots, h_{p} be bounded holomorphic functions on D, whose first order derivatives are also bounded, let φ be a plurisubharmonic function on D and let f be a holomorphic function on D satisfying

$$
\|f\|^{2}:=\int_{D}|f|^{2} e^{-\varphi}|h|^{-2} \bigwedge^{n} \sqrt{-1} \partial \bar{\partial}\left(|z|^{2}+\log |h|^{2}\right)<\infty
$$

where $h=\left(h_{1}, \ldots, h_{p}\right)$. Then there exist holomorphic functions g_{1}, \ldots, g_{p} on D such that $f=\sum_{i=1}^{p} g_{i} h_{i}$ and

$$
\int_{D}|g|^{2} e^{-\varphi} d \lambda \leq C\|f\|^{2}
$$

Here C is a constant depending only on h. Moreover, if the Ricci curvature of $\bigwedge^{n} \sqrt{-1} \partial \bar{\partial}\left(|z|^{2}+\log |h|^{2}\right)$ is semipositive, then there exist holomorphic functions l_{1}, \ldots, l_{p} on D such that $f=\sum_{i=1}^{p} l_{i} h_{i}$ and

$$
\int_{D}|l|^{2} e^{-\varphi} \bigwedge^{n} \sqrt{-1} \partial \bar{\partial}\left(|z|^{2}+\log |h|^{2}\right) \leq C^{\prime}\|f\|^{2}
$$

where C^{\prime} is a constant depending only on h.
Obviously the latter part of Corollary 3 contains Theorem 1.
Corollary 4. Let D, h and φ be as above. Then, for any holomorphic function f on D satisfying

$$
\int_{D}|f|^{2} e^{-\varphi}|h|^{-2 k-2}|d h|^{2 k} d \lambda
$$

where $k=\inf (n, p-1)$, there exist holomorphic functions g_{1}, \ldots, g_{p} such that $f=\sum_{i=1}^{p} g_{i} h_{i}$ and

$$
\int_{D}|g|^{2} e^{-\varphi} d \lambda \leq C^{\prime \prime} \int_{D}|f|^{2} e^{-\varphi}|h|^{-2 k-2}|d h|^{2 k} d \lambda
$$

where $C^{\prime \prime}$ is a constant depending only on h.
The paper is organized as follows. In Section 1 we briefly review the L^{2} extension theorem for the reader's convenience. Theorem 2 will be proved in Section 2. In Section 3, we shall recall Skoda's L^{2} division theorem and its consequence which is weaker than Theorem 1. We dare to do this because we want to show by a counterexample that a naïve improvement of Skoda's theorem, from which Theorem 1 would follow immediately, is false. This may well mean that our formulation of a generalized L^{2} division theorem gives a new insight into the division properties of holomorphic functions.

$\S 1$. Preliminaries $-L^{2}$ extension theorem

Let N be a complex mainfold of dimension m and let $F \rightarrow N$ be a holomorphic line bundle with a C^{∞} fiber metric h_{F}. (The symbols M, n, E, h_{E} are reserved for the division theory.)

Let $S \subset N$ be a closed complex submainfold of codimension one, and let $[S]$ be the holomorphic line bundle defined by a system of transition functions $e_{\alpha \beta}=s_{\alpha} / s_{\beta}$, where s_{α} are local defining functions of S associated to some open covering of N. Any holomorphic section s of [S] is called a canonical section if $S=s^{-1}(0)$ and $d s \mid S$ is nowhere zero. Once for all we fix a C^{∞} fiber metric b of $[S]$ and a canonical section $s=\left\{s_{\alpha}\right\}$ with $s_{\alpha}=e_{\alpha \beta} s_{\beta}$.

Given any C^{∞} volume form $d V_{N}$ on N, a volume form $d V_{N, b}$ on S is induced from $d V_{N}, s$ and b via the canonical isomorphism

$$
\left(K_{M} \otimes[S]\right) \mid S \simeq K_{S}
$$

which is given by

$$
\left.\frac{\omega \wedge d s_{\alpha}}{s_{\alpha}} \longmapsto \omega \right\rvert\, S
$$

One may write on S

$$
d V_{N, b}=\frac{d V_{N}}{\sqrt{-1} b_{\alpha} d s_{\alpha} \wedge d \bar{s}_{\alpha}}
$$

Here the fiber metric b is represented by a system of positive C^{∞} functions b_{α} satisfying $b_{\alpha}=\left|e_{\beta \alpha}\right|^{2} b_{\beta}$. More explicitly writing, let x be any point of S and let $\left(z_{1}, \ldots, z_{n}\right)$ be a holomorphic local coordinate around x such that $z_{n}=s_{\alpha}$ for some α around x, and such that

$$
d V_{N}=\sqrt{-1}^{n} d z_{1} \wedge d \bar{z}_{1} \wedge \ldots d z_{n} \wedge d \bar{z}_{n}
$$

holds at x. Then, identifying $\left(z_{1}, \ldots z_{n-1}\right)$ with a local coordinate of S around x, we have

$$
d V_{N, b}=\sqrt{-1}^{n-1} b_{\alpha}^{-1} d z_{1} \wedge d \bar{z}_{1} \wedge \ldots d z_{n-1} \wedge d \bar{z}_{n-1}
$$

at x.
Besides the induced volume form $d V_{N, b}$, there is a volume form associated to the function $\log |s|^{2}$, which turned out to be more natural in the L^{2} extension theory. In general, given any continuous function $\psi: N \rightarrow \mathbf{R} \cup\{-\infty\}$ such that $\psi-\log |s|^{2}$ is bounded near every point
of S, we define a positive Radon measure $d V_{N}[\psi]$ on S by

$$
\int_{S} f d V_{N}[\psi]=\varlimsup_{t \rightarrow \infty} \frac{1}{\pi} \int_{\psi^{-1}((-t-1,-t))} f e^{-\psi} d V_{N}
$$

Here f runs through compactly supported nonnegative continuous fuction on N.

However it is easy to see that

$$
d V_{N}\left[\log |s|^{2}\right]=\frac{d V_{N}}{\sqrt{-1} b_{\alpha} d s_{\alpha} \wedge d \bar{s}_{\alpha}}=d V_{N, b}
$$

whose verification is left to the reader.
Let $A^{2}\left(N, F, h_{F}, d V_{N}\right)\left(\right.$ resp. $\left.A^{2}\left(S, F, h_{F}, d V_{N}\left[\log |s|^{2}\right]\right)\right)$ be the Hilbert space of L^{2} holomorphic sections of F over N (resp. over S) with respect to $\left(h_{F}, d V_{N}\right)\left(\right.$ resp. w.r.t. $\left(h_{F}, d V_{N}\left[\log |s|^{2}\right]\right)$).

Theorem 1.1. Let $N, d V_{N}, F, h_{F}, S, b$ and s be as above, and assume that the following are satisfied.
(1.1) N contains a Stein open subset N^{\prime} such that
(1.1.a) N^{\prime} intersects with every connected component of S and
(1.1.b) For any point $x \in N \backslash N^{\prime}$ and for any neighborhood $U \ni x$, all the L^{2} holomorphic functions on $U \cap N^{\prime}$ extend holomorphically to U.
(1.2) $\sup _{N}|s|<\infty$.
(1.3) There exists a positive number ε_{0} such that

$$
\sqrt{-1}\left(\Theta_{F}+\operatorname{Ric}_{N}-(1+\varepsilon) \Theta_{[S]}\right) \geq 0 \quad \text { for all } \varepsilon \in\left[0, \varepsilon_{0}\right]
$$

Then there exists a bounded linear operator I from $A^{2}\left(S, F, h_{F}, d V_{N}\left[\log [s]^{2}\right]\right)$ to $A^{2}\left(N, F, h_{F}, d V_{N}\right)$ such that $I(f) \mid S=f$ for any $f \in A^{2}\left(S, F, h_{F}, d V_{N}\left[\log [s]^{2}\right]\right)$. Here the norm of I is bounded by a constant dependly only on $\sup _{N}|s|$ and ε_{0}.

This result is essentially contained in [O-2, Theorem 4]. Nevertheless we want to prove it here because the curvature assumption (1.3) is somewhat weaker than that of [O-2].

Let us recall first a basic L^{2} existence theorem for the $\bar{\partial}$-equation whose proof is contained in [O-2].

Theorem 1.2. Let (N, g) be a complete Kähler manifold of dimension m, let η be a bounded positive C^{∞} function on N and let c be a positive continuous function on $(0, \infty)$ such that $c(\eta)$ is bounded. Let
$\left(F, h_{F}\right)$ be a Hermitian holomorphic line bundle over N whose curvature form Θ_{F} satisfies

$$
\kappa:=\sqrt{-1}\left(\eta \Theta_{F}-\partial \bar{\partial} \eta-c(\eta)^{-1} \partial \eta \wedge \bar{\partial} \eta\right) \geq 0
$$

Then, for any positive integer q and for any $\bar{\partial}$-closed locally square integrable F-valued (m, q) form u on N satisfying $\left(\left(\kappa \Lambda_{g}\right)^{-1} u, u\right)<\infty$, there exists a square integrable F-valued $(m, q-1)$ form v such that

$$
\bar{\partial}(\sqrt{\eta+c(\eta)} v)=u \quad \text { and } \quad\|v\|^{2} \leq\left(\left(\kappa \Lambda_{g}\right)^{-1} u, u\right)
$$

Here Λ_{g} denotes the adjoint of $u \mapsto($ the fundamental form of $g) \wedge u$.
The proof of Theorem 1.2 is a straightforward application of HahnBanach's theorem. (We note that the boundedness assumption on η and $c(\eta)$ was missing in [O-2]. See alse [O-1].)

Proof of Theorem 1.1. By (1.1) it suffices to prove that, for any relatively compact Stein open subset $\Omega \subset N$ with C^{2} strongly pseudoconvex boundary, there exists a bounded linear operator

$$
I_{\Omega}: A^{2}\left(S, F, h_{F}, d V_{N}\left[\log |s|^{2}\right]\right) \longrightarrow A^{2}\left(\Omega, F, h_{F}, d V_{N}\right)
$$

such that $I_{\Omega}(f)|S \cap \Omega=f| S \cap \Omega$ for any $f \in A^{2}\left(S, F, h_{F}, d V_{N}\left[\log |s|^{2}\right]\right)$ and that $\left\|I_{\Omega}\right\|$ is bounded by a constant that depends only on $\sup _{N}|s|^{2}$ and ε_{0}.

Once for all we fix such Ω and f. Then, by extending f to a neighborhood of $\overline{\Omega \cap S}$ as a holomorphic section of F, say \tilde{f}, we consider a C^{∞} extension of f to $\bar{\Omega}$ of the form

$$
\tilde{f_{t}}=\chi\left(\log |s|^{2}+t+2\right) \tilde{f} \quad(t \gg 1)
$$

where χ is a C^{∞} function \mathbf{R} satisfying $\chi(x)=1$ for $x<1$ and $\chi(x)=0$ for $x>2$.

By solving the equation $\bar{\partial} v_{t}=\bar{\partial} \tilde{f}_{t} / s$ on Ω with an L^{2} norm estimate and by taking a weak limit of $\tilde{f}_{t}-s v_{t}$ on Ω, we shall obtain a holomorphic extension of f with a required L^{2} norm bound.

For that we regard $\bar{\partial} \tilde{f}_{t} / s$ as a $K_{N}^{\vee} \otimes F \otimes[S]^{\vee}$-valued $(m, 1)$ form on Ω, and apply Theorem 1.2 for any complete Kähler metric on Ω. Note that Ω carries a complete Kähler metric because Ω is Stein (cf. [G]). Multiplying s by a constant if necessary, we may assume that $\sup _{N} \log |s|<-1$. Then we put $\Psi=\log |s|^{2}, \Phi=\log \left(|s|^{2}+e^{-t}\right)$ and

$$
\eta=\frac{1}{\min \left(\varepsilon_{0}, 1\right)}+\log \left(|s|^{2}+e^{-t}\right)+\log \left(-\log \left(|s|^{2}+e^{-t}\right)\right)
$$

By a straightforward computation we obtain

$$
\partial \bar{\partial} \Phi=e^{-\Phi}|s|^{2} \partial \bar{\partial} \Psi+e^{-2 \Phi-t}|s|^{2} \partial|s|^{2} \wedge \bar{\partial}|s|^{2} \quad \text { on } \Omega \backslash S
$$

and

$$
-\partial \bar{\partial} \eta=\left(1-\frac{1}{\Phi}\right)^{2} \partial \bar{\partial} \Phi+\Phi^{-2} \partial \Phi \wedge \bar{\partial} \Phi
$$

Let us choose t_{0} so that $\Phi<-2$ if $t>t_{0}$. Then, for all $t>t_{0}$ we have

$$
\begin{aligned}
& \sqrt{-1}\left(\Phi^{-2} \partial \Phi \wedge \bar{\partial} \Phi-\eta^{-3} \partial \eta \wedge \bar{\partial} \eta\right) \\
& \quad=\sqrt{-1}\left(\Phi^{-2} \partial \Phi \wedge \bar{\partial} \Phi-\frac{1}{(\Phi+\log (-\Phi))^{3}}\left(1-\frac{1}{\Phi}\right)^{2} \partial \Phi \wedge \bar{\partial} \Phi\right) \\
& \quad \geq \sqrt{-1}\left(\Phi^{-2}-\Phi^{-3}\right) \partial \Phi \wedge \bar{\partial} \Phi \geq \frac{\sqrt{-1}}{8} \partial \Phi \wedge \bar{\partial} \Phi
\end{aligned}
$$

Therefore if we put

$$
\kappa=\sqrt{-1}\left(\eta \Theta_{F \otimes K_{N}^{\vee} \otimes[S]^{\vee}}-\partial \bar{\partial} \eta-\eta^{-3} \partial \eta \wedge \bar{\partial} \eta\right)
$$

and $\varepsilon_{1}=\min \left(\varepsilon_{0}, 1\right)$, on $\Omega \backslash S$ we have

$$
\begin{aligned}
\kappa & \geq \frac{1}{\varepsilon_{1}} \Theta_{F \otimes K_{N}^{\vee} \otimes[S]^{\vee}}+\left(1-\frac{1}{\Phi}\right)^{2} \partial \bar{\partial} \Phi+\frac{\sqrt{-1}}{8} \partial \Phi \wedge \bar{\partial} \Phi \\
& \geq \frac{1}{\varepsilon_{1}}\left(\Theta_{F \otimes K_{N}^{\vee} \otimes[S]^{\vee}}+\varepsilon_{1} e^{-\Phi}|s|^{2} \partial \bar{\partial} \Psi\right)+\frac{\sqrt{-1}}{8} \partial \Phi \wedge \bar{\partial} \Phi \\
& \geq \frac{1}{\varepsilon_{1}}\left(\Theta_{F}+\operatorname{Ric}_{N}-\left(1+\varepsilon_{1} e^{-\Phi}|s|^{2}\right) \Theta_{[S]}\right)+\frac{\sqrt{-1}}{8} \partial \Phi \wedge \bar{\partial} \Phi .
\end{aligned}
$$

Since $e^{-\Phi}|s|^{2}<1$, the first term in the last inequality is semipositive by assumption. Therefore we obtain

$$
\kappa \geq \frac{\sqrt{-1}}{8} \partial \Phi \wedge \bar{\partial} \Phi \quad \text { on } \Omega
$$

Hence, for any Hermitian metric g on Ω we obtain

$$
\left(\left(\kappa \Lambda_{g}\right)^{-1}\left(\frac{\bar{\partial} \tilde{f}_{t}}{s}\right), \frac{\bar{\partial} \tilde{f}_{t}}{s}\right) \leq C_{0}\|f\|^{2}, \quad \text { for } t \gg 1
$$

Here the L^{2} norm $\|f\|$ of f is with respect to h_{F} and $d V_{N}\left[\log |s|^{2}\right]$, the inner product on the left hand side is with respect to $h_{F}, d V_{N}$ and g, and C_{0} depends only on $\sup \left|\chi^{\prime}\right|$.

Therefore, choosing g to be a complete Kähler metric on Ω, we may apply Theorem 1.2 and obtain a square integrable $F \otimes K_{N}^{\vee} \otimes[S]^{\vee}$-valued $(m, 0)$ form w satisfying

$$
\bar{\partial}\left(\sqrt{\eta+\eta^{3}} w\right)=u
$$

and

$$
\|w\|^{2} \leq C_{0}\|f\|^{2}
$$

Clearly $\sup _{N}\left|s \sqrt{\eta+\eta^{3}}\right| \leq C_{1}$, where C_{1} depends only in $\sup _{N}|s|$ and ε_{0}.

Therefore $\sqrt{\eta+\eta^{3}} w\left(=\sqrt{\eta_{t}+\eta_{t}^{3}} w_{t}\right)$ is a wanted solution to the $\bar{\partial}$-equation $\bar{\partial} v_{t}=\bar{\partial} \tilde{f}_{t} / s$.

§2. Proof of Theorem 2

Let the notation be as in Theorem 2 and let ϖ be the projection from $P\left(E^{\vee}\right)$ to M. Then we have a canonical commutative diagram

to which an isomorphism

$$
\begin{aligned}
A^{2}\left(M, E, d V_{M}\right) \xrightarrow{\sim} & A^{2}\left(P\left(E^{\vee}\right), L\left(E^{\vee}\right)^{\vee}\right) \\
& \left(=A^{2}\left(P\left(E^{\vee}\right), L\left(E^{\vee}\right)^{\vee}, \varpi^{*} d V_{M} \wedge d V_{F S}\right)\right)
\end{aligned}
$$

is associated, which is an isometry up to multiplication by the volume of \mathbf{P}^{p-1}. Here $d V_{F S}$ denotes the Fubini-Study volume form on the fibers of $P\left(E^{\vee}\right)$. Identifying $L\left(E^{\vee}\right)^{\vee} \mid P\left(E^{\vee}\right)$ with $L\left(Q^{\vee}\right)^{\vee}$ as in the introduction we have a commutative diagram

where ρ denotes the natural restriction operator.
Now suppose that (1.a)-(2.c) and $R_{2} d V_{M}^{\prime} \geq(\pi \circ \sigma)_{*}\left(d V_{\Sigma} /|d s|^{2}\right)$ are satisfied. Then, to prove the existence of the right inverse of γ_{*}, it suffices to prove that the restriction operator

$$
\tilde{\rho}: A^{2}\left(P\left(E^{\vee}\right)^{\sim}, \sigma^{*} L\left(E^{\vee}\right)^{\vee}\right) \longrightarrow A^{2}\left(\Sigma, \sigma^{*} L\left(E^{\vee}\right)^{\vee}, d V_{\Sigma} /|d s|^{2}\right)
$$

admits a bounded right inverse. For that we shall verify the conditions (1.1)-(1.3) of Theorem 1.1 for $N=P\left(E^{\vee}\right)^{\sim}$ and $S=\Sigma$.
(1.1): Since $M \backslash A$ is Stein and $\varpi^{-1}(M \backslash A)$ is a \mathbf{P}^{p-1}-bundle over $M \backslash A, \varpi^{-1}(M \backslash A)$ admits a positive line bundle, and therefore so is $\sigma^{-1}\left(\varpi^{-1}(M \backslash A)\right)$, too. Hence $\sigma^{-1}\left(\varpi^{-1}(M \backslash A)\right)$ contains as ample effective divisor Z which intersects with every component of Σ transversally. One may then put $N^{\prime}=Z^{c}$.
(1.2) follows from (2.a). (1.3) follows from (2.c) because $\operatorname{Ric}_{P\left(E^{\vee}\right)} \sim=$ $\sigma^{*} \operatorname{Ric}_{P\left(E^{\vee}\right)}-(p-q-1) \Theta_{[\Sigma]}$ by the definition of the volume form $d V_{P\left(E^{\vee}\right) \sim}$.

Hence, by Theorem 1.1, the restriction operator from $A^{2}\left(P\left(E^{\vee}\right)^{\sim}\right.$, $\left.\sigma^{*} L\left(E^{\vee}\right)^{\vee}\right)$ to $A^{2}\left(\Sigma, \sigma^{*} L\left(E^{\vee}\right)^{\vee}, d V_{P\left(E^{\vee}\right)^{\sim}}\left[\log |s|^{2}\right]\right)$ admits a bounded right inverse. This completes the proof of Theorem 2 because $d V_{P\left(E^{\vee}\right) \sim}\left[\log |s|^{2}\right]=d V_{\Sigma}$ by (\dagger).

To deduce Corollary 3 from Theorem 2, we put $M=D \backslash h^{-1}(0)$, $E=M \times \mathbf{C}^{p}, Q=M \times \mathbf{C}$ and $\gamma(z, \zeta)=\sum \zeta_{i} h_{i}(z)$. Then we may put $A=h_{i}^{-1}(0)$ for any nonzero h_{i}. As for the fiber metric of [Σ], we may take $|\zeta|^{-2} \sum_{i \neq j}\left|\zeta_{i} h_{j}-\zeta_{j} h_{i}\right|^{2}$ as the squared length of the canonical section $s=\left\{h_{j} \frac{\zeta_{i}}{\zeta_{j}}-h_{i}\right\}_{i \neq j}$ where the local expression $h_{j} \frac{\zeta_{i}}{\zeta_{j}}-h_{i}$ is effective on the completement of the proper transform of the set $\left\{h_{j} \zeta_{i}-h_{i} \zeta_{j}=0\right\}$ in $\left\{\zeta_{j} \neq 0\right\}$. Clearly $|s|$ is bounded on M, so what remains is to verify (2.c) and the estimates for the volume forms.

For that we notice that

$$
d V_{\Sigma}=\frac{|\zeta|^{2} d V_{P\left(E^{\vee}\right) \sim}}{\sqrt{-1}\left(\sum_{i \neq j}\left|\zeta_{i} h_{j}-\zeta_{j} h_{i}\right|^{2}\right) d\left(h_{l}-\frac{\zeta_{l}}{\zeta_{k}} h_{k}\right) \wedge d\left(\bar{h}_{l}-\frac{\bar{\zeta}_{l}}{\zeta_{k}} \bar{h}_{k}\right)}
$$

where
$d V_{P\left(E^{\vee}\right) \sim}=\frac{|\zeta|^{2 p-4}}{\left(\sum_{i \neq j}\left|\zeta_{i} h_{j}-\zeta_{j} h_{i}\right|^{2}\right)^{p-2}} \bigwedge^{n+p-1} \sigma^{*}\left(\sqrt{-1} \partial \bar{\partial}\left(|z|^{2}+\log |\zeta|^{2}\right)\right)$.
From this expression of $d V_{P\left(E^{\vee}\right) \sim}$ it is easy to see that the curvature condition (2.c) holds true.

To see that the required estimates for $d V_{P\left(E^{\vee}\right)^{\sim}}$ and $d V_{\Sigma}$ hold, we consider an embedding

and the associated commutative diagram between the blow ups

Since $\sup _{D}|d h|<\infty$ by assumption, there exists a constant C such that
(*) $\quad C^{-1} d V_{P\left(E^{\vee}\right) \sim}<$
$\iota^{*}\left\{\frac{|\zeta|^{2 p-4}}{\left(\sum_{i \neq j}\left|\zeta_{i} w_{j}-\zeta_{j} w_{i}\right|^{2}\right)^{p-2}} \bigwedge^{n+p-1} \sigma_{2}^{*}\left(\sqrt{-1} \partial \bar{\partial}\left(|z|^{2}+|w|^{2}+\log |\zeta|^{2}\right)\right)\right\}$

$$
<C d V_{P\left(E^{\vee}\right)^{\sim}}
$$

where w denotes the coordinate of \mathbf{C}^{p}.
In particular, $d V_{P\left(E^{\vee}\right) \sim}$ dominates the pull back of a bounded $(n+$ $p-1, n+p-1)$ form on $D \times\left(\mathbf{C}^{p} \times \mathbf{P}^{p-1}\right)^{\sim}$, so that

$$
\text { const. }(\varpi \circ \sigma)_{*} d V_{P\left(E^{\vee}\right) \sim} \geq \bigwedge^{n} \sqrt{-1} \partial \bar{\partial}|z|^{2}
$$

(*) also shows that $d V_{\Sigma}$ is quasi-equivalent to the pull back of $\bigwedge^{n+p-2} \omega$ for some smooth positive $(1,1)$ form, say ω, on the exceptional set of σ_{2}.

Clearly

$$
\sigma_{2 *} \omega \leq \text { const. } \sqrt{-1} \partial \bar{\partial}\left(|z|^{2}+|w|^{2}+\log |\zeta|^{2}\right)
$$

in the sense of current, so that

$$
\begin{aligned}
(\varpi \circ \sigma)_{*} d V_{\Sigma} & \leq \text { const. } \bigwedge_{n}^{n} \sqrt{-1} \partial \bar{\partial}\left(|z|^{2}+|h(z)|^{2}+\log |h(z)|^{2}\right) \\
& \leq \text { const. } \bigwedge^{n} \sqrt{-1} \partial \bar{\partial}\left(|z|^{2}+\log |h(z)|^{2}\right)
\end{aligned}
$$

The first part of Corollary 3 follows from this by regarding $e^{-\varphi}$ as an increasing limit of smooth fiber metrices of E whose curvature forms are semipositive. To obtain the latter part we have only to set $d V_{M}=$ $\bigwedge^{n} \sqrt{-1} \partial \bar{\partial}\left(|z|^{2}+\log |h|^{2}\right)$.

Corollary 4 follows imediately from Corollary 3.

§3. A note on Skoda's division theorem

It might be worthwhile to compare our results with the following which are due to Skoda [S-2] (see also [D]).

Theorem 3.1. Let M be a complex manifold of dimension n admitting a Kähler metric and a plurisubharmonic exhaustion function of class C^{2}, let E be a holomorphic Hermitian vector bundle of rank p over M whose curvature form is semipositive in the sense of Griffiths, and let $\gamma: E \rightarrow Q$ be a surjective morphism to a holomorphic vector bundle Q of rank q. Then, for any holomorphic Hermitian line bundle L whose curvature form satisfies

$$
\begin{equation*}
\sqrt{-1}\left(\Theta_{L}-\Theta_{\operatorname{det} E}-k \Theta_{\operatorname{det} Q}\right) \geq 0 \tag{S}
\end{equation*}
$$

for some $k>\inf (n, p-q)$, the induced linear map

$$
\gamma_{*}: A^{2}\left(M, E \otimes K_{M} \otimes L\right) \longrightarrow A^{2}\left(M, Q \otimes K_{M} \otimes L\right)
$$

is surjective.
Corollary 3.2. Let D be a pseudoconvex domain in \mathbf{C}^{n}, let h_{1}, \ldots, h_{p} be holomorphic functions on D, and let $k=\inf (n, p-1)$. Then, for any positive number ε, there exists a constant C_{ε} such that, for any plurisubharmonic function φ on D and for any holomorphic function f on D satisfying

$$
\int_{D}|f|^{2} e^{-\varphi}|h|^{-2 k-2-\varepsilon} d \lambda<\infty
$$

there exist holomorphic functions $g_{1}, \ldots g_{p}$ such that $f=\sum_{i=1}^{p} g_{i} h_{i}$ and

$$
\int_{D}|g|^{2} e^{-\varphi}|h|^{-2 k-\varepsilon} d \lambda \leq C_{\varepsilon} \int_{D}|f|^{2} e^{-\varphi}|h|^{-2 k-2-\varepsilon} d \lambda
$$

There are two points to be noted here. One point is that Corollary 3.2 is not contained in Corollary 3 because we had to assume the boundedness of h and its first derivative. The other point is that one cannot drop the above ε by weaking the inequality $k>\inf (n, p-q)$ in the hypothesis to $k \geq \inf (n, p-q)$, as the following counterexample shows.

Let $\mathcal{O}(k)$ denote the holomorphic line bundle of degree k over \mathbf{P}^{1} ($\mathcal{O}:=\mathcal{O}(0)$).

Define a morphism $\iota: \mathcal{O} \rightarrow \mathcal{O}(1) \oplus \mathcal{O}(1)$ by $\iota(z, \zeta)=(z,(z \zeta$, $(z+1) \zeta)$), and let $0 \rightarrow \mathcal{O} \xrightarrow{\iota} \mathcal{O}(1) \oplus \mathcal{O}(1) \rightarrow \mathcal{O}(2) \rightarrow 0$ be the associated exact sequence. Tensoring $\mathcal{O}(-1)$ to this we have

$$
0 \longrightarrow \mathcal{O}(-1) \longrightarrow \mathcal{O} \oplus \mathcal{O} \longrightarrow \mathcal{O}(1) \longrightarrow 0
$$

Letting $M=\mathbf{P}^{1}, E=\mathcal{O} \oplus \mathcal{O}, Q=\mathcal{O}(1), L=\mathcal{O}(1)$ and $k=\inf (n, p-$ $q)=1$, we have

$$
\operatorname{deg} L=\operatorname{deg}(\operatorname{det} E)-k \operatorname{deg}(\operatorname{det} Q)=1-0-1=0
$$

Hence (S) is satisfied, but

$$
A^{2}\left(M, K_{M} \otimes E \otimes L\right)=H^{0}\left(\mathbf{P}^{1}, \mathcal{O}(-1) \oplus \mathcal{O}(-1)\right)=\{0\}
$$

and

$$
A^{2}\left(M, K_{M} \otimes Q \otimes L\right)=H^{0}\left(\mathbf{P}^{1}, \mathcal{O}\right) \neq\{0\}
$$

Therefore γ_{*} is not surjective!
Open Question. Establish a general L^{2} division theory that unifies Theorem 2 and Theorem 3.1.

References

[D] J.-P. Demailly, Scindage holomorphe d'un morphisme de fibrés vectoriels semi-positifs avec estimation L^{2}, Séminaire P. Lelong-H. Skoda (Analyse) années 1980/81 et Colloque de Wimereux, LNM 919 (1982), 77-107.
[G] H. Grauert, Charakterisierung der Holomorphiegebiete durch die vollständige Kählerische Metrik, Math. Ann. 131 (1956), 38-75.
[O-1] T. Ohsawa, On the extension of L^{2} holomorphic function III - negligible weights, Math. Z. 219 (1995), 215-225.
$[\mathrm{O}-2] \quad$ _ On the extension of L^{2} holomorphic function V - effects of generalization, Nagoya Math. J. 161 (2001), 1-21.
[O-3] , A precise L^{2} division theorem, to appear in Complex Geometry, Collection of Papers Decicated to Hans Grauert, Springer 2002.
[O-T] T. Ohsawa and K. Takagoshi, On the extension of L^{2} holomorphic functions, Math. Z. 195 (1987), 197-204.
[S-1] H. Skoda, Applications des techniques L^{2} à la theorie des idéaux d'une algèbre de fonctions holomorphes avec poids, Ann. Sci. Ec. Norm. Sup. 5 (1972), 545-579.
[S-2] , Morphismes surjectifs de fibrés vectoriels semi-positifs, Ann. Sci. Ec. Norm. Sup. 11 (1978), 577-611.
[S-3] , Relèvement des sections globales dans les fibrés semi-positifs, Séminaires P. Lelong-H. Skoda (Analyse) 19e année, 1978-1979, LNM 822 (1980), 259-303.

[^0]
[^0]: Graduate school of Mathematics
 Nagoya University
 Chikusa-ku, 464-8602
 Japan

