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§0. Introduction 

Zeta functions and functional equations associated with them for 
representations of finite groups were first discussed by Springer [18] and 
Macdonald [14] for certain representations over the complex field C of 
GLn(k) for a finite field k = 1Fq. Their results, with one additional 
assumption, hold for irreducible representations over C of an arbitrary 
finite group G embedded in G L(V), for an n-dimensional vector space 
V over k. In §1, a related functional equation is obtained for irreducible 
representations of Heeke algebras (or endomorphism algebras) 1t of mul
tiplicity free induced representations of finite groups. 

The functional equation 1.2.1 for an irreducible representation 1r of 
G involves an c-factor c(7r, x) which is given by 

c(7r, x) = q-n2 /2(deg7r)-1 :L ,71". (g)x(Tr (g)), 
gEG 

where (71"• is the character of the contragredient representation 7r* of 1r, 

x is a nontrivial additive character of k, and Tr (g) is the trace of g in 
GL(V). The functional equations satisfied by irreducible representations 
f 71" of 1-l, with 1r an irreducible component of the induced representation, 
have the form (see Proposition 1.5, §1) 

with h E 1-l, and h a twisted Fourier transform of h (to be defined in 
§1). The c-factor c(7r, x) is also given by the formula 

c(7r, x) = !11"(-e), 
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where e is the twisted Fourier transform of the identity element e of 1-l. 
In §2, the results are applied to the representations of the Heeke 

algebra 1-l of an arbitrary Gelfand-Graev representation r of a finite 
reductive group G = GF, for a connected reductive algebraic group G 
defined over k, with Frobenius endomorphism F, as in [3]. The Gelfand
Graev representations r of G are multiplicity free induced represen
tations parametrized and decomposed into irreducible components by 
Digne, Lehrer, and Michel [9]. 

In [3] the irreducible representations of1-l were parametrized by pairs 
(T, e) with T an F-stable maximal torus in G, and e an irreducible 
representation of the finite torus T = TF. In §2 we review the main 
theorem of [3], which states that each representation !T,IJ of 1-l has a 
factorization !T,IJ = 0 ofT, with fT a homomorphism of algebras from 
1-l to the group algebra of T = TF, and 0 an extension of e to an 
irreducible representation of the group algebra of the torus T. 

For a general finite reductive group, a formula is obtained in §2 for 
an €-factor e(7r, x) of an irreducible component 7l' of r of the form 7l' = 
(-1)"'(G)+u(T)RT,IJ, where a(G),a(T) are the k-ranks of the reductive 
groups G and T respectively, and RT,IJ is the virtual representation of 
G constructed by Deligne and Lusztig [8], with e a character ofT in 
general position. In this situation, the ~::-factor ~::( 7r, x) is a Gauss sum 
of the representation 7r, and is expressed as a character sum over the 
finite torus T = TF by a result in ([16], Theorem 1.2). Using the known 
structure of the finite tori, the €-factors e(7l', x) have been computed in 
[16] and [17] for some classical groups, and for the exceptional groups 
of type G2 . The formulas obtained in [16] and [17] involve Gauss sums, 
Kloosterman sums, and unitary Kloosterman sums ( cf. [5]) associated 
with finite extensions of k. 

In §3 more complete results concerning ~::-factors are obtained for 
GLn(k). These are based on a formula for !T,o(c,;,) as a character sum 
over the finite torus T = TF, for certain standard basis elements c,;, 

of 1-l. Applications of this result include a formula for /T,o(e) for all 
pairs (T, e). In the case of GLn(k), the ~::-factors t:(7r, x) were computed 
for all irreducible representations by Kondo [11] and Macdonald [15] and 
expressed as products of Gauss sums of finite fields, using Green's results 
on the irreducible characters of G Ln ( k). Our results give formulas for 
the ~::-factors as character sums over the finite tori T = TF. The last 
result in §3 is a formula expressing the twisted Fourier transform of the 
identity element of 1-l in terms of the standard basis elements. In §4 
another application of the formula for JT,o(c,;,), in case G = SLn(k), 
gives a formula for the Gauss sums of unipotent representations. 
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In §5 the formula for !T,e(cw) is applied to the computation of the 
norm map Ll : H' --7 1i ([6]), where 1{' is the Heeke algebra of the 
Gelfand-Graev representation of GLn(k'), and k' is the extension of k 
of degree m. The result is that 

As a corollary, we obtain an extension of the Davenport-Hasse theorem 
for Gauss sums of field extensions to Gauss sums associated with certain 
irreducible components of the Gelfand-Graev representation of G Ln ( k'). 

§1. The zeta function of a representation of a finite group 

1.1. Let G be a finite group. We consider a faithful representation 
p of G, p: G --7 GL(V), where Vis ann-dimensional vector space over 
a finite field k = lFq, so that G can be identified with a subgroup of 
GL(V). We shall identify an element g E G with the corresponding 
linear transformation p(g). Let X = Endk(V) and let C(X) be the 
space of complex valued functions on X. Following Springer, [18], or 
Macdonald, [14], we introduce the notion of the Fourier transform and 
zeta function of complex representations of G as follows. Let x be a 
nontrivial additive character of k, which is fixed throughout this paper. 
Then for <I> E IC(X), the Fourier transform ~ of <I> is defined by 

~(x) = q-n2/2 L <I>(y)x(Tr(xy)). 
yEX 

Then we have ~(x) =<I>( -x) for all x EX. For a finite dimensional com
plex representation 1r of G, and for <I> E IC(X), define the zeta function 
Z(<I>,1r) by 

Z(<I>,7r) = L <I>(g)7r(g); 
gEG 

then Z(<I>, 1r) = 1r(a<I>) where a<I> = LgEG <I>(g)g is the element of the 
group algebra ICG of Gover IC with coefficients <I>(g). 

For x E X, define 

W(7r, x; x) = q-n2/ 2 L x(Tr (gx))7r(g). 
gEG 
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Then 
Z(tll, 7r) = L i( -x)W(7r, Xi x). 

xEX 

For g E G, one has 

W(7r,Xixg) 

W(7r,Xigx) 

= 7r(g)-1W(7r,XiX), 

W(7r, Xi x)7r(g)- 1. 

Putting x = 1, these imply that 7r(g) commutes with W(7r, Xi 1), so if 71" 

is irreducible, 
W(7r, Xi 1) = w(7r, X)7r(1), 

where w(7r,X) E C. Define the c-factor c(7r,X) by 

c(7r, x) = w(7r*, x), 

where 7r* is the contragredient representation of 71". 

Proposition 1.2. Let 71" be an irreducible representation of G and 
let til E C(X) vanish outside G. Then 

{1.2.1) 

Proof. 

xEX 

xEX 

gEG 

gEG 

= L tll(g)7r(g)w(7r*, x). 
gEG 

D 

For all irreducible representations 71" of GLn(k) having no one com
ponent, Macdonald proved that W ( 7r*, Xi x) has support contained in 
GLn(k), so that the functional equation 1.2.1 holds for all functions til 
(see [14], and [18] for the case of an irreducible cuspidal representation of 
G). With the assumption that til has supportinG the formula given in 
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Proposition 1.2 for an arbitrary finite group embedded in GL(V) follows 
from Macdonald's argument, as given above. In case 1rq, is an irreducible 
cuspidal representation of G Ln ( k) associated with a regular character 
¢ of the multiplicative group k;:_ of the extension kn of k of degree n, 
Springer proved that the ~::-factor is a Gauss sum 

( -l)nq-n/2 2: x(Tr k.,.1kx)¢(x). 

xEk~ 

Springer also gave an example to show that no functional equation of 
the above form holds for all irreducible representations 1r of GLn(k) and 
all functions ~- The zeta function is an analogue for finite fields of a 
concept introduced by Godement and Jacquet (SLN 260). 

1.3. Let U be a subgroup of G and 'ljJ a complex linear char-
acter of U. We use the notation concerning the Heeke algebra of the 
induced representation 'ljJ 0 introduced in [3, §2B]. In particular, 'ljJ0 is 
afforded by the left ideal C.Ge,p in the group algebra of G generated by 
the idempotent 

e,p =I U 1-1 L 'l/J(u-1 )u. 
uEU 

The Heeke algebra 1-l associated with the induced representation 'ljJ 0 is 
defined by 

1-l = e,pCGe,p. 

We assume 1-l is commutative (so that (G,H,'ljJ) is a twisted Gelfand 
pair according to [15, p.397]). 

Lemma 1.4. Let~ E C(X) and assume that~ vanishes outside 

G. Then LgEG ~(g)g E 1-l implies LgEG iii(g)g- 1 E 1-l. 

Proof First we notice that LgEG ~(g )g E 1-l if and only if~( ug) = 

~(gu) = 'l/J(u- 1 )~(g) for u E U, g E G. So we have to prove that\]! 
satisfies these conditions where \]!(g) = ili(g-1 ). We have, using the 
assumption that ~is supported on G, 

\]!(ug) = ili(g-1u-1) = q-n2/2 L ~(y)x(Tr (g-1u-1y)). 
yEG 
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Putting z = g- 1u-1y, the right hand side becomes 

q-n2
/ 2 :L ~(ugz)x(Tr (z)) 

zEG zEG 

yEX 

as required. The formula lJ!(gu) = .X(u-1)lJ!(g) follows similarly. 0 

We remark that the converse holds if -1 E G, since ~(x) = ~(-x). 
For h = L:gEG ~(g)g E 1i with ~ supported on G, the element h = 
L:gEG ~(g)g- 1 E 1i will sometimes be called the twisted Fourier trans
form of h. 

Proposition 1.5. Let 1r be an irreducible constituent in 1/P, and 
let !1r be the corresponding representation of1i. Then 

where h = L:gEG ~(g)g E 'H., h = L:gEG ~(g)g-1 , and~ vanishes out

side G, soh E 'H.. 

Proof. Taking traces of (1.2.1), one has 

Then the Proposition follows from the previous Lemma. 0 

- ~ 

We note that h is not related to ~, since ~ is not supported by G 
in general, even if~ is supported by G. 

Corollary 1.6. !1rCe.p) = c(7r, x) and h = e.ph. 

Proof. Putting h = e.p in the above Proposition, we have the first 
assertion. Then we have 

for every irreducible representation /1r of the semisimple algebra 1i, 
which proves the second. 0 
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§2. Zeta functions and Gelfand-Graev representation of a fi
nite reductive group 

2.1. Let G be a connected reductive algebraic group defined over 
a finite field k = lFq with Frobenius map F, and let G = GF be the 
finite group consisting of elements in G fixed by F. We choose an F
stable Borel subgroup B 0 and an F-stable maximal torus To contained 
in B0 ; and denote by U0 the unipotent radical of B0 . We put B 0 = B[, 
To= T[, and Uo = Uif. 

Let p be a faithful representation of G, 

p: G ~ GLn(k), 

with k the algebraic closure of k. We assume that p commutes with 
Frobenius maps as follows: p oF= F' o p, where F'(x) = x(q) = (x'fj) 

for x = ( Xij) E G Ln (k). Thus G can be identified with a subgroup of 
GLn(k). 

2.2. Before discussing representations, it is necessary to change the 
field from <C to Q£> the algebraic closure of the field of £-adic numbers 
with .e a prime different from the characteristic of k, as in the Deligne
Lustzig paper [8]. 

As for Gelfand-Graev representations of G, we shall follow the no
tation and preliminary discussion from [3]. We also carry over the no
tation from the preceding section. In particular' r = '1/P denotes a 
fixed Gelfand-Graev representation of G, parametrized by an element 
z E H 1 (F, Z(G)) as in (3]; while 1i denotes the Heeke algebra of r, 
e = e..p the identity element of 'H, etc. As in [3], fT,O denotes the irre
ducible representation of the Heeke algebra 1i associated with the pair 
consisting of an F -stable maximal torus T and a character 8 ofT = TF. 
We recall the following factorization theorem ([3, Theorem (4.2)]). 

Theorem 2.3. For each pair (T,B) as above, the corresponding 
representation fT,O : 1i ~ Q1 can be factored, 

with fT a homomorphism of algebras from 1i to Q£T, independent of 
8. Let h(c) = 2:: fT(c)(t)t E Q1T, for c E H. Then the value of the 
coefficient function fT(cn)(t), for a standard basis element Cn of 1i and 
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t E T, is given by the following formula: 

{2.3.1) 
gEG,uEUo 

(gung- 1 ) •• =t 

2.3.2. Remark In what follows, we shall denote {-1)u(G)-u(T) by 
c:(T). In case the center of G is connected, we have < Q¥, r >= c:(T) 
from §10 of (8]. In the case of GLn(k) and if T corresponds tow E Bn, 
we have c:(T) = sgn(w). 

Theorem 2.4. Let 7r be an irreducible representation of G. 

{i) The c:-factor corresponding to 7r is given by 

-d 1 'fr W{1r*,x;1) 
eg7r 
-n2 /2 

fJ.___d L (11". (g)x('fr (g)), 
eg1r gEG 

where (11"• is the chamcter of the contmgredient representation 
7r*. 

(ii) In case 1r is a component ofr corresponding to the representation 
fT,o of 1-l, we have 

h,o(h) = c:(1r, x)h,o(h), 

for all hE 1-l, h = E <P(g)g, with iP vanishing outside G. 
{iii) In case the irreducible representation 7r has the form c:(T)~,o 

with () in geneml position, one has 

c:(1r,x) = c:(T)q-n2
/ 2 1 G IP Eo-1 (t)x{'fr{t)). 

tET 

Proof. The first statement follows from the definition of c:( 1r, x) in 
§1.1. Part (ii) follows from {1.5), while (iii) follows from {(16], Theorem 
1.2) and the fact that R.j.,0 = ~.0-1. D 

Corollary 2.5. With 7r corresponding to h,o as in part {ii) of the 
Theorem, we have by {1.6) 

h,o(€) = c:(1r, x). 
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Remarks 2.6. {i) For any irreducible representation 7l" of G, the 
sum 

r(7r) = L Tr (7r(g))x(Tr (g)) 
gEG 

is called a Gauss sum of G associated with ( 7l", x). These have been com
puted in the case of G = GLn(k) for all irreducible representations ([11], 
[15]). In the situation of part {iii) of the Theorem, and also for unipotent 
representations, the Gauss sums have been computed for several other 
classical groups and for G2 ([16], [17]). 

(ii) Let c/>(g) = x(Tr (g)) for g E G and let <, >c be the inner 
product of class functions on G. Then we have 

r(7r) 

c:(7r, x) 

IGI < (1r•, 4> >c 
(deg7r)-1q-n2

/ 2 IGI < (11:, c/> >c · 

We also notice that since the value of 4> depends only on the semisimple 
part of the element g E G, c/> is expressed as a linear combination of 
the virtual characters of Deligne-Lusztig by [8, (7.12.1)] (see also [1, 
Proposition 7.6.4]). 

§3. c:-Factors for GLn(k) 

In this section, let G = G Ln ( k) and let U be the upper triangular 
unipotent subgroup of G. Then G = GF for G = GLn(k) with the usual 
Frobenius endomorphism F. In this case there is, up to equivalence, just 
one Gelfand-Graev representation r = 1/JG, for the linear character 1/J of 
U given by 1/J(u) = X(Ut2 + · · · + Un-ln) with U = (uij) E U. 

We begin with some computations of the homomorphisms /T on 
standard basis elements of Ji. 

Lemma 3.1. For a E k*, let 

(3.1.1) ( 
-1 

w(a) = a) EG. 

-1 

Then for all u E U, uw(a) is a regular element, i.e. (uw(a)),mi is a 
regular unipotent element in Cc((uw(a))88 ). 
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Proof. It is enough to show that the minimal polynomial of uw(a) 
is the characteristic polynomial of uw(a) and for that it is enough to 
show that 

(3.1.2) 
(x1J- uw(a)) · · · (Xn-lf- uw(a)) of; 0, for all XI, ... , Xn-1 E k, 

where I is the identity matrix in G. Let u = (uij) and A= uw(a). Thus 

-u12 -u13 -Uln a 
-1 -U23 -U2n 

A= -1 -U3n 

-1 

Let Ai = xi!- A, (i = 1, ... , n - 1), then it is easy to see that the 
(n, I)-entry of A1 ···An-I is nonzero, which proves (3.1.2). D 

Lemma 3.2. We have 

(i) w(a)'lj; = 'If; on U nw(a) U, and 
(ii) [U : U nw(a) U] = qn-1. 

for all nonzero elements a E k. 

Proof. For u = (uij) E U, we have 

1 0 
-a-1uln 1 

w(a)u= -a-1u2n 0 

-a-1Un-ln 0 

0 0 
u12 

1 

0 1 

Thus the condition for w(a)u E U is uln = U2n = · · · = Un-ln = 0, which 
proves (ii). 

Take any Uo E unw(a) u, then there exists u = (uij) E u such that 
u0 =w(a) u. Therefore, using the first part of the proof, 

w(a)'lf;(uo) '1/;(w(a)-t ua) = '1/;(u) 

X(UI2 + ... + Un-2,n-l) = '1/J(uo), 

which proves the first assertion. D 
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Theorem 3.3. Let G = GLn(k) and let w(a) be defined as in 
{3.1). Then CW(a) is a standard basis element of 'H.. For each F-stable 
maximal torus T of G, we have, for all t E T, 

{3.3.1) h(CW(a))(t) = 0dett,ae{T)x{Tr t), 

where 0dett,a = 1, if det t =a, and= 0, otherwise. Therefore 

{3.3.2) h,e(Cw(a)) = c:(T) L x(Tr t)O(t). 
tET,dett=a 

Proof. By Theorem 2.3, Lemma 3.1, and Lemma 3.2 (2), together 
with the fact that Q¥(u) = 1 if u is regular unipotent by [8, Theorem 
9.16], we have 

gEG,uEU 
(guw(a)g- 1 ) •• =t 

Two semisimple elements, (uw(a))ss and t are conjugate if and only if 
their characteristic polynomials are the same. Let t be conjugate to 
diag(a1, a2, ... ,an) in G = GLn(k), and let u = (uij), where Uij = 0, 
if i > j and uii = 1. Regarding Uij ( i < j) as variables and defin
ing polynomials Pm(u) = Pm(Ul2, U13, ... ) over k by det(xJ- uw(a)) = 
E:::.=oPm(u)xn-m we can show easily that 

Pm(u) = {-1)m+lul,m+l + qm(u), form= 1, ... ,n -1, 

where qm(u) is a polynomial in the variables Ulj (1 < j < m + 1) and 
uij (1 < i < j). In particular Pl(u) = E~:{ Uii+l· 

Thus (uw(a))ss and tare conjugate if and only if 

(3.3.3) (-1)mPm(u)= L lri1lri2 """lrim> form=1, ... ,n. 
l::S:i1 <i2···<im::S:n 

These simultaneous equations have solutions if det t = a and in this 
case the number of solutions is q(n-l)(n-2)/2 since for any values of 
Uij (2 $ i < j $ n), u1i {2 $ j $ n) are uniquely determined by 
the equations (3.3.3). Notice that Tr t = - 2:~:11 Uii+l· Moreover if 
(itw(a))ss and tare conjugate, then the set {g E G I g(uw(a)) 88g- 1 = t} 
is a coset of Ca(t). Putting these facts together we have the equations 
in the theorem. 0 
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Corollary 3.4. If (T, 0) and (T', O') are geometrically conjugate, 
we have 

c(T) L x(Tr t)O(t) = c(T') L x(Tr t)O'(t). 
tET,dett=a tET' ,dett=a 

Proof. If (T, 0) and (T', 0') are geometrically conjugate, we have 
fT,O = fT',O' (cf. [3]). By evaluating them on Cw(a)' the assertion 
follows. D 

We remark that the corollary is a generalization of [2, Lemma (5.1)]. 
In particular if we apply (3.4) to GL2 (q), (Tt, 1) and (Tw, 1) (cf. the 
notation in [5]), we have 

which is (1.3) of [2]. 

To obtain the value of fT on C•w(a)' we consider the following au
tomorphism a on G. Let w0 = (wo,ij) be the matrix in G, with 
Wo,ij = 8i+j,n+l(-1)i-l and put o:(g) = (tg- 1 )wo forgE G. Then 
a is an involutive automorphism of G, G, and U. It can be checked 
easily that '1/J o a = '1/J. The extension of a to an automorphism of CG 
induces an automorphism of 1-l. 

Noting that for an F-stable maximal torus T, T and o:(T) are G
conjugate, and using Theorem 2.3, we obtain without difficulty that 

(3.4.1) 

(3.4.2) 

h( Ca(nJ)(t) 

h,o(ca(n)) 

Lemma 3.5. We have 

where 0 = o-1 • Therefore 

(3.5.1) h,o(c_tw(a)) = c(T) 

fa(T) ( Cn)(o:(t) ), and 

fa(T),I!oa(cn)· 

x(Tr t)O(r 1 ). 
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Proof. From the preceding discussion, we have 

h,e(ca(w(a))) = fa(T),8oa(CW(a)) (by the equation (3.4.2)) 

e:(a(T)) L x(Tr t')O(a(t')) 
t'Eo(T),dett'=a 

e:(T) L x(Tr r 1 )0(t) 
tET,det t=a-l 

= e:(T) L x(Tr t)O(r1 ) 

tET,dett=a 

by Theorem 3.3. The second assertion follows from this and a(w(a)) = 
_t(w(( -1)na-1 )). 

0 

We remark that the equations (3.3.2) and (3.5.1), together with 
Theorem 4.2 in [3], generalize Theorem 4.1 in [2] to GLn(q). 

The following theorem was proved by Kondo [11] for all irreducible 
characters of G = GLn(k), using the results of J. A. Green on the 
irreducible characters of G. Kondo stated the theorem in terms of Gauss 
sums of field extensions of k. Our theorem is stated in terms of character 
sums over a torus, and is proved using the Deligne-Lusztig theory [8]. 

Theorem 3.6. Let ( be an irreducible character of G = GLn(k) 
and let ( be a component of RT,8. Then the Gauss sum of the character 
( is given by 

r(() = L ((g)x(Tr (g))= deg( I G IP e:(T) L x(Tr (t))O(t). 
gEG tET 

Proof. We shall denote by PT,8 the character of the virtual repre
sentation RT,8· From ([13], §3) and ([8], Prop. 5.11) we have 

( = L C(T',8')PT',8'• 
[(T',8')] 

for some C(T' ,B') E Q, where (T', 0') runs over members of the geometric 
conjugacy class of (T, 0). Since r is additive (cf. [16]), we have 

r(()= L C(T',8')r(PT',8'). 
[(T',8')] 
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By [loc.cit.,(1.2)], the Gauss sums of the virtual characters PT',6' are 
given by 

r(PT',IJ') = 
1

1 ~ 1
1 
L B'(t')x(Tr (t')). 

t 1 ET1 

Then by (3.4) we have 

c(T) LX(Tr t)B(t) = c(T') L x(Tr t)B'(t). 
tET tET' 

for pairs (T, B) and (T', B') in the same geometric conjugacy class. 
Therefore 

r(() = {c(T) L B(t)x(Tr t)}{ L c(T',O')c(T') 
1

1 ~ 1
1 
}. 

tET [(T' ,0')] 

Since 

"'""' ( ') I G lv' deg( = ~ c(T',O')c T -1 T' I, 
[(T',O')] 

the result follows. 0 

Corollary 3. 7. Let 7rT,O be an irreducible component of the Gelfand
Graev representation, associated with the representation fT,O of H, for 
an arbitrary pair (T, B) as in {[8], §10}. Then we have 

h,o(e) = c(7rT,O, x) = q-n/2c(T) L B- 1 (t)x(Tr t). 
tET 

Proof. We have 

-n2 /2 
h,o(e) = c(nT,o, x) = qde n L x:J:.,o(g)x(Tr (g)), 

g gEG 

by (2.4), where x:J:. 0 is the character of the contragredient representation 
n:J:.,o· By ([3], Theorem (2.1)), 7rT,o is a component of RT,o, and is 
associated with the geometric conjugacy class [(T, B)]. Then XT,O is a 
linear combination of Deligne-Lusztig characters, so x:J:.,o = XT,o-1 as 
this is true for the Deligne-Lusztig characters. The Corollary now follows 
from the preceding Theorem. 0 
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As an application of Lemma 3.5 and Corollary 3.7, we give a formula 
for the twisted Fourier transform of the identity element e of 1i in terms 
of the standard basis elements of 1i. It would be interesting to know a 
version of this formula for other types of finite reductive groups. 

We recall the notation for the twisted Fourier transform 

h = L ~(g)g- 1 E 1i for h = L iP(g)g E 'H., 
gEG 

with iP vanishing outside G. 

Theorem 3.8. We have 

and 

for all h E 'H. 

e = q-n/2 L C_tw(a)• 
aEkX 

h = q-n/2 ( L C-•w(a)) h, 
aEkX 

Proof. By the above Corollary together with equation (3.5.1), it 
follows that 

h,e(e) = q-n/2 h,e( L C-•w(a)), 
aEkX 

for all pairs (T, 0), and the first equation follows. The second equation 
follows from (1.6). 0 

§4. Gauss sums of unipotent characters of SLn(k) 

For the definitions and notation we refer to [16]. We first notice that 
by Theorem 3.3 above and Theorem 1.2 of [16] we have 

r(RT,e) =[Go: T]c(T)fT,e(c,;,), 

where Go = SLn(k) and w = w(1). Let 

8= 

Then we have 

Xl,X2,•·•,Xn. Ek 
Xt·••Xn=l 

X(Xl + · "· + Xn)· 



136 C. W. Curtis and K. Shinoda 

Theorem 4.1. Let p be any irreducible chamcter ofW = Sn- For 
the unipotent character Rp of SLn(k) defined by 

we have 
w(Rp) = qn(n-l)/2s. 

Proof. If To is a maximal split torus and Tis an arbitrary F-stable 
maximal torus in G 0 , then the pairs (T0 , 1) and (T, 1) are geometrically 
conjugate. Corollary 3.4 holds for G0 , and we haveS= fT, 1 (c,;,), since 
S = fTo,l(c,;,). Therefore, by the additivity ofT, we have 

1 
I WI L Tr p(w)r(RTw,l) 

wEW 
1 

I WI L Tr p(w)[Go: TwJc(Tw)S 
wEW 

qn(n-l)/2s 
I WI L Tr p(w)RTw,l(1) 

wEW 
qn(n-1)/2 SRp(1). 

Since w(Rp) = Rp(1)- 1r(Rp), we have proved the assertion in the the
~m. 0 

We remark that if p is the trivial representation, the above result is 
proved in [12]. 

§5. On the norm map ~ : 1-l' --+ 1-l 

We mention here another application of the preceding results to a 
computation of the norm map ~ : 1-l' --+ 1-l on e! E 7-l', in the case of 
G = GLn(k). In this case the norm map is a homomorphism of algebras 
from the Heeke algebra 7-l' of a Gelfand-Graev representation of G' = 
GLn(k'), k' = k-m = lFq"', to the Heeke algebra 1-l of a Gelfand-Graev 
representation of G = GLn(k) (cf. [6]) and it is known to be surjective. 
Moreover it gives a correspondence of representations of Heeke algebras 
(or spherical functions) fT,O--+ fT,O o ~- LetT be an F-stable maximal 
toru~, T = TF, T' = TF"', NT : T' --+ T be the (usual) norm map, and 

let NT be the extension of NT to a homomorphism of group algebras of 
T' and T. Then the norm map ~ is characterized as the unique linear 
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map A. : 'H.' ~ 'H. with the property that for each F -stable maximal 
torus T, one has 

IT 0 A. = NT 0 ffr. 

Theorem 5.1. Let e' be the identity element of 'H.'. Then 

A.(e') = (-lt<m-l)em. 

Proof. In the discussion to follow, we shall use the notation km 
for the extension of k of degree m, along with Tr a,b = Tr ka/kb and 
Na,b = Nka/kb for trace and norm maps of field extensions, as in [5), 
where b is a divisor of a. 

By the definition of the norm map, it is enough to show that 

NT(/fr(e')) = h((-l)n(m-1)?'), 

for each F -stable maximal torus T. From the known structure of the 
F -stable maximal tori, it is not difficult to verify that it is enough to 
prove the above formula in case T is isomorphic to {diag(ab ... ,an) I 
ai E kx} where the Frobenius map F acts as F(diag(a1 , ... ,an)) = 
diag(a~, ... ,a~, aD. Hence Tis isomorphic to k;_ and T' is isomorphic to 
(k~m/d)d, with d = g.c.d.(m,n). Under this identification ofT and T', 
we have 

Tr (t') = Tr mn/d,m(a~ +···+a~) 

and 
d-1 

NT(t') = Nnm/d,n(aia~q · · ·a~q ) 

with t' = (aL ... ,a~) E (k~m/d)d. Let x' = xoTr m,l and Xn = xoTr n,1· 
Finally, we note that e'(T) = (-l)u'(G)-u'(T) = (-l)n-d, where a'(G), 
a'(T) are the k'-ranks of G and T, and e(T) = (-l)n-1 . Then for each 
irreducible representation() ofT we have by Corollary 3.7, 

0( NT (f!r (e'))) 

= q-nm/2e'(T) L o-1(NT(t'))x'(Tr (t')) 
t'ET' 

= q-nm/2(-l)n-d L o-1(Nnmfd,n(aia~q ... )) 
a~, ... ,a~ 

xxn(Tr nm/d,n(ai + ... +a~)) 
d-1 

q-nm/2( -l)n-d II G(xn 0 Tr nm/d,n, o-1 0 Nnm/d,n 0 F;) 
i=O 

-nm/2( l)n-dG( Tr o-1 1\T )d q - Xn 0 nm/d,n, 0 lVnm/d,n , 
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where Fq(a) = aq for a E k:m/d and G(Xn o Tr nm/d,m () o Nnm/d,n) is 

the Gauss sum over knm/d with Xn o Tr nm/d,n {resp. () o Nnm/d,n) as 
its additive (resp. multiplicative) character. Now the Davenport-Hasse 
theorem implies 

-G(xn o Tr nm/d,m o-1 o Nnm/d,n) = ( -G(xn, o-1 ))m/d. 

Thus we have 

On the other hand we have h,o(e) = q-n/2 ( -l)n-1G(xn, o-1 ), and the 
result follows. 0 

As a corollary we obtain what may be viewed as an extension of the 
Davenport-Hasse relation for Gauss sums of field extensions to Gauss 
sums of irreducible components of the Gelfand-Graev representation of 
GLn(k') and GLn(k). 

Corollary 5.2. Keep the notation of the previous theorem and 
Corollary 3. 7. For each irreducible representation() ofT, we have 

c(7r' - x') = (-l)n(m-1)c(7r x)m 
T,OoNT' T,(J, ' 

for components of the Gelfand-Gmev representations of GLn(k') and 
G Ln ( k) respectively which correspond by the norm map A. 

The proof is immediate by the previous Theorem and Corollary 3.7. 
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