# Zeta Functions and Functional Equations Associated with the Components of the Gelfand-Graev Representations of a Finite Reductive Group 

Charles W. Curtis and Ken-ichi Shinoda

## §0. Introduction

Zeta functions and functional equations associated with them for representations of finite groups were first discussed by Springer [18] and Macdonald [14] for certain representations over the complex field $\mathbb{C}$ of $G L_{n}(k)$ for a finite field $k=\mathbb{F}_{q}$. Their results, with one additional assumption, hold for irreducible representations over $\mathbb{C}$ of an arbitrary finite group $G$ embedded in $G L(V)$, for an $n$-dimensional vector space $V$ over $k$. In $\S 1$, a related functional equation is obtained for irreducible representations of Hecke algebras (or endomorphism algebras) $\mathcal{H}$ of multiplicity free induced representations of finite groups.

The functional equation 1.2 .1 for an irreducible representation $\pi$ of $G$ involves an $\varepsilon$-factor $\varepsilon(\pi, \chi)$ which is given by

$$
\varepsilon(\pi, \chi)=q^{-n^{2} / 2}(\operatorname{deg} \pi)^{-1} \sum_{g \in G} \zeta_{\pi^{*}}(g) \chi(\operatorname{Tr}(g))
$$

where $\zeta_{\pi^{*}}$ is the character of the contragredient representation $\pi^{*}$ of $\pi$, $\chi$ is a nontrivial additive character of $k$, and $\operatorname{Tr}(g)$ is the trace of $g$ in $G L(V)$. The functional equations satisfied by irreducible representations $f_{\pi}$ of $\mathcal{H}$, with $\pi$ an irreducible component of the induced representation, have the form (see Proposition 1.5, §1)

$$
f_{\pi}(\widetilde{h})=\varepsilon(\pi, \chi) f_{\pi}(h)
$$

with $h \in \mathcal{H}$, and $\widetilde{h}$ a twisted Fourier transform of $h$ (to be defined in $\S 1)$. The $\varepsilon$-factor $\varepsilon(\pi, \chi)$ is also given by the formula

$$
\varepsilon(\pi, \chi)=f_{\pi}(\widetilde{e})
$$

Received February 27, 2002.
Revised September 5, 2002.
where $\tilde{e}$ is the twisted Fourier transform of the identity element $e$ of $\mathcal{H}$.
In $\S 2$, the results are applied to the representations of the Hecke algebra $\mathcal{H}$ of an arbitrary Gelfand-Graev representation $\Gamma$ of a finite reductive group $G=\mathbf{G}^{F}$, for a connected reductive algebraic group $\mathbf{G}$ defined over $k$, with Frobenius endomorphism $F$, as in [3]. The GelfandGraev representations $\Gamma$ of $G$ are multiplicity free induced representations parametrized and decomposed into irreducible components by Digne, Lehrer, and Michel [9].

In [3] the irreducible representations of $\mathcal{H}$ were parametrized by pairs ( $\mathbf{T}, \theta$ ) with $\mathbf{T}$ an $F$-stable maximal torus in $\mathbf{G}$, and $\theta$ an irreducible representation of the finite torus $T=\mathbf{T}^{F}$. In §2 we review the main theorem of [3], which states that each representation $f_{\mathbf{T}, \theta}$ of $\mathcal{H}$ has a factorization $f_{\mathbf{T}, \theta}=\hat{\theta} \circ f_{\mathbf{T}}$, with $f_{\mathbf{T}}$ a homomorphism of algebras from $\mathcal{H}$ to the group algebra of $T=\mathbf{T}^{F}$, and $\hat{\theta}$ an extension of $\theta$ to an irreducible representation of the group algebra of the torus $T$.

For a general finite reductive group, a formula is obtained in $\S 2$ for an $\varepsilon$-factor $\varepsilon(\pi, \chi)$ of an irreducible component $\pi$ of $\Gamma$ of the form $\pi=$ $(-1)^{\sigma(\mathbf{G})+\sigma(\mathbf{T})} R_{\mathbf{T}, \theta}$, where $\sigma(\mathbf{G}), \sigma(\mathbf{T})$ are the $k$-ranks of the reductive groups $\mathbf{G}$ and $\mathbf{T}$ respectively, and $R_{\mathbf{T}, \theta}$ is the virtual representation of $G$ constructed by Deligne and Lusztig [8], with $\theta$ a character of $T$ in general position. In this situation, the $\varepsilon$-factor $\varepsilon(\pi, \chi)$ is a Gauss sum of the representation $\pi$, and is expressed as a character sum over the finite torus $T=\mathbf{T}^{F}$ by a result in ([16], Theorem 1.2). Using the known structure of the finite tori, the $\varepsilon$-factors $\varepsilon(\pi, \chi)$ have been computed in [16] and [17] for some classical groups, and for the exceptional groups of type $G_{2}$. The formulas obtained in [16] and [17] involve Gauss sums, Kloosterman sums, and unitary Kloosterman sums (cf. [5]) associated with finite extensions of $k$.

In $\S 3$ more complete results concerning $\varepsilon$-factors are obtained for $G L_{n}(k)$. These are based on a formula for $f_{\mathbf{T}, \theta}\left(c_{\dot{w}}\right)$ as a character sum over the finite torus $T=\mathbf{T}^{F}$, for certain standard basis elements $c_{\dot{w}}$ of $\mathcal{H}$. Applications of this result include a formula for $f_{\mathbf{T}, \theta}(\tilde{e})$ for all pairs $(\mathbf{T}, \theta)$. In the case of $G L_{n}(k)$, the $\varepsilon$-factors $\varepsilon(\pi, \chi)$ were computed for all irreducible representations by Kondo [11] and Macdonald [15] and expressed as products of Gauss sums of finite fields, using Green's results on the irreducible characters of $G L_{n}(k)$. Our results give formulas for the $\varepsilon$-factors as character sums over the finite tori $T=\mathbf{T}^{F}$. The last result in $\S 3$ is a formula expressing the twisted Fourier transform of the identity element of $\mathcal{H}$ in terms of the standard basis elements. In $\S 4$ another application of the formula for $f_{\mathbf{T}, \theta}\left(c_{\dot{w}}\right)$, in case $G=S L_{n}(k)$, gives a formula for the Gauss sums of unipotent representations.

In $\S 5$ the formula for $f_{\mathbf{T}, \theta}\left(c_{\dot{w}}\right)$ is applied to the computation of the norm $\operatorname{map} \Delta: \mathcal{H}^{\prime} \rightarrow \mathcal{H}([6])$, where $\mathcal{H}^{\prime}$ is the Hecke algebra of the Gelfand-Graev representation of $G L_{n}\left(k^{\prime}\right)$, and $k^{\prime}$ is the extension of $k$ of degree $m$. The result is that

$$
\Delta\left(\tilde{e^{\prime}}\right)=(-1)^{n(m-1)} \tilde{e}^{m}
$$

As a corollary, we obtain an extension of the Davenport-Hasse theorem for Gauss sums of field extensions to Gauss sums associated with certain irreducible components of the Gelfand-Graev representation of $G L_{n}\left(k^{\prime}\right)$.

## §1. The zeta function of a representation of a finite group

1.1. Let $G$ be a finite group. We consider a faithful representation $\rho$ of $G, \rho: G \rightarrow G L(V)$, where $V$ is an $n$-dimensional vector space over a finite field $k=\mathbb{F}_{q}$, so that $G$ can be identified with a subgroup of $G L(V)$. We shall identify an element $g \in G$ with the corresponding linear transformation $\rho(g)$. Let $X=\operatorname{End}_{k}(V)$ and let $\mathbb{C}(X)$ be the space of complex valued functions on $X$. Following Springer, [18], or Macdonald, [14], we introduce the notion of the Fourier transform and zeta function of complex representations of $G$ as follows. Let $\chi$ be a nontrivial additive character of $k$, which is fixed throughout this paper. Then for $\Phi \in \mathbb{C}(X)$, the Fourier transform $\widehat{\Phi}$ of $\Phi$ is defined by

$$
\widehat{\Phi}(x)=q^{-n^{2} / 2} \sum_{y \in X} \Phi(y) \chi(\operatorname{Tr}(x y))
$$

Then we have $\widehat{\hat{\Phi}}(x)=\Phi(-x)$ for all $x \in X$. For a finite dimensional complex representation $\pi$ of $G$, and for $\Phi \in \mathbb{C}(X)$, define the zeta function $Z(\Phi, \pi)$ by

$$
Z(\Phi, \pi)=\sum_{g \in G} \Phi(g) \pi(g)
$$

then $Z(\Phi, \pi)=\pi\left(a_{\Phi}\right)$ where $a_{\Phi}=\sum_{g \in G} \Phi(g) g$ is the element of the group algebra $\mathbb{C} G$ of $G$ over $\mathbb{C}$ with coefficients $\Phi(g)$.

For $x \in X$, define

$$
W(\pi, \chi ; x)=q^{-n^{2} / 2} \sum_{g \in G} \chi(\operatorname{Tr}(g x)) \pi(g)
$$

Then

$$
Z(\Phi, \pi)=\sum_{x \in X} \widehat{\Phi}(-x) W(\pi, \chi ; x)
$$

For $g \in G$, one has

$$
\begin{aligned}
& W(\pi, \chi ; x g)=\pi(g)^{-1} W(\pi, \chi ; x) \\
& W(\pi, \chi ; g x)=W(\pi, \chi ; x) \pi(g)^{-1}
\end{aligned}
$$

Putting $x=1$, these imply that $\pi(g)$ commutes with $W(\pi, \chi ; 1)$, so if $\pi$ is irreducible,

$$
W(\pi, \chi ; 1)=w(\pi, \chi) \pi(1)
$$

where $w(\pi, \chi) \in \mathbb{C}$. Define the $\varepsilon$-factor $\varepsilon(\pi, \chi)$ by

$$
\varepsilon(\pi, \chi)=w\left(\pi^{*}, \chi\right)
$$

where $\pi^{*}$ is the contragredient representation of $\pi$.
Proposition 1.2. Let $\pi$ be an irreducible representation of $G$ and let $\Phi \in \mathbb{C}(X)$ vanish outside $G$. Then

$$
\begin{equation*}
{ }^{t} Z\left(\widehat{\Phi}, \pi^{*}\right)=\varepsilon(\pi, \chi) Z(\Phi, \pi) \tag{1.2.1}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
{ }^{t} Z\left(\widehat{\Phi}, \pi^{*}\right) & =\sum_{x \in X} \widehat{\hat{\Phi}}(-x)^{t} W\left(\pi^{*}, \chi ; x\right) \\
& =\sum_{x \in X} \Phi(x)^{t} W\left(\pi^{*}, \chi ; x\right) \\
& =\sum_{g \in G} \Phi(g)^{t} W\left(\pi^{*}, \chi ; g\right) \\
& =\sum_{g \in G} \Phi(g)^{t} \pi^{*}\left(g^{-1}\right)^{t} W\left(\pi^{*}, \chi ; 1\right) \\
& =\sum_{g \in G} \Phi(g) \pi(g) w\left(\pi^{*}, \chi\right)
\end{aligned}
$$

For all irreducible representations $\pi$ of $G L_{n}(k)$ having no one component, Macdonald proved that $W\left(\pi^{*}, \chi ; x\right)$ has support contained in $G L_{n}(k)$, so that the functional equation 1.2 .1 holds for all functions $\Phi$ (see [14], and [18] for the case of an irreducible cuspidal representation of $G)$. With the assumption that $\Phi$ has support in $G$ the formula given in

Proposition 1.2 for an arbitrary finite group embedded in $G L(V)$ follows from Macdonald's argument, as given above. In case $\pi_{\phi}$ is an irreducible cuspidal representation of $G L_{n}(k)$ associated with a regular character $\phi$ of the multiplicative group $k_{n}^{\times}$of the extension $k_{n}$ of $k$ of degree $n$, Springer proved that the $\varepsilon$-factor is a Gauss sum

$$
(-1)^{n} q^{-n / 2} \sum_{x \in k_{n}^{\times}} \chi\left(\operatorname{Tr}_{k_{n} / k} x\right) \phi(x) .
$$

Springer also gave an example to show that no functional equation of the above form holds for all irreducible representations $\pi$ of $G L_{n}(k)$ and all functions $\Phi$. The zeta function is an analogue for finite fields of a concept introduced by Godement and Jacquet (SLN 260).
1.3. Let $U$ be a subgroup of $G$ and $\psi$ a complex linear character of $U$. We use the notation concerning the Hecke algebra of the induced representation $\psi^{G}$ introduced in [3, §2B]. In particular, $\psi^{G}$ is afforded by the left ideal $\mathbb{C} G e_{\psi}$ in the group algebra of $G$ generated by the idempotent

$$
e_{\psi}=|U|^{-1} \sum_{u \in U} \psi\left(u^{-1}\right) u
$$

The Hecke algebra $\mathcal{H}$ associated with the induced representation $\psi^{G}$ is defined by

$$
\mathcal{H}=e_{\psi} \mathbb{C} G e_{\psi}
$$

We assume $\mathcal{H}$ is commutative (so that $(G, H, \psi)$ is a twisted Gelfand pair according to [15, p.397]).

Lemma 1.4. Let $\Phi \in \mathbb{C}(X)$ and assume that $\Phi$ vanishes outside G. Then $\sum_{g \in G} \Phi(g) g \in \mathcal{H}$ implies $\sum_{g \in G} \widehat{\Phi}(g) g^{-1} \in \mathcal{H}$.

Proof. First we notice that $\sum_{g \in G} \Phi(g) g \in \mathcal{H}$ if and only if $\Phi(u g)=$ $\Phi(g u)=\psi\left(u^{-1}\right) \Phi(g)$ for $u \in U, g \in G$. So we have to prove that $\Psi$ satisfies these conditions where $\Psi(g)=\widehat{\Phi}\left(g^{-1}\right)$. We have, using the assumption that $\Phi$ is supported on $G$,

$$
\Psi(u g)=\widehat{\Phi}\left(g^{-1} u^{-1}\right)=q^{-n^{2} / 2} \sum_{y \in G} \Phi(y) \chi\left(\operatorname{Tr}\left(g^{-1} u^{-1} y\right)\right)
$$

Putting $z=g^{-1} u^{-1} y$, the right hand side becomes

$$
\begin{aligned}
q^{-n^{2} / 2} \sum_{z \in G} \Phi(u g z) \chi(\operatorname{Tr}(z)) & =\psi\left(u^{-1}\right) q^{-n^{2} / 2} \sum_{z \in G} \Phi(g z) \chi(\operatorname{Tr}(z)) \\
& =\psi\left(u^{-1}\right) q^{-n^{2} / 2} \sum_{y \in X} \Phi(y) \chi\left(\operatorname{Tr}\left(g^{-1} y\right)\right) \\
& =\psi\left(u^{-1}\right) \widehat{\Phi}\left(g^{-1}\right)=\psi\left(u^{-1}\right) \Psi(g)
\end{aligned}
$$

as required. The formula $\Psi(g u)=\lambda\left(u^{-1}\right) \Psi(g)$ follows similarly.
We remark that the converse holds if $-1 \in G$, since $\widehat{\widehat{\Phi}}(x)=\Phi(-x)$. For $h=\sum_{g \in G} \Phi(g) g \in \mathcal{H}$ with $\Phi$ supported on $G$, the element $\widetilde{h}=$ $\sum_{g \in G} \widehat{\Phi}(g) g^{-1} \in \mathcal{H}$ will sometimes be called the twisted Fourier transform of $h$.

Proposition 1.5. Let $\pi$ be an irreducible constituent in $\psi^{G}$, and let $f_{\pi}$ be the corresponding representation of $\mathcal{H}$. Then

$$
f_{\pi}(\widetilde{h})=\varepsilon(\pi, \chi) f_{\pi}(h)
$$

where $h=\sum_{g \in G} \Phi(g) g \in \mathcal{H}, \widetilde{h}=\sum_{g \in G} \widehat{\Phi}(g) g^{-1}$, and $\Phi$ vanishes outside $G$, so $\widetilde{h} \in \mathcal{H}$.

Proof. Taking traces of (1.2.1), one has

$$
\sum_{g \in G} \widehat{\Phi}(g) \operatorname{Tr}\left(\pi\left(g^{-1}\right)\right)=\varepsilon(\pi, \chi) \sum_{g \in G} \Phi(g) \operatorname{Tr}(\pi(g))
$$

Then the Proposition follows from the previous Lemma.
We note that $\widetilde{\widetilde{h}}$ is not related to $\widehat{\widehat{\Phi}}$, since $\widehat{\Phi}$ is not supported by $G$ in general, even if $\Phi$ is supported by $G$.

Corollary 1.6. $\quad f_{\pi}\left(\widetilde{e}_{\psi}\right)=\varepsilon(\pi, \chi)$ and $\widetilde{h}=\widetilde{e}_{\psi} h$.
Proof. Putting $h=e_{\psi}$ in the above Proposition, we have the first assertion. Then we have

$$
f_{\pi}(\widetilde{h})=f_{\pi}\left(\widetilde{e}_{\psi} h\right)
$$

for every irreducible representation $f_{\pi}$ of the semisimple algebra $\mathcal{H}$, which proves the second.

## §2. Zeta functions and Gelfand-Graev representation of a finite reductive group

2.1. Let $\mathbf{G}$ be a connected reductive algebraic group defined over a finite field $k=\mathbb{F}_{q}$ with Frobenius map $F$, and let $G=\mathbf{G}^{F}$ be the finite group consisting of elements in $\mathbf{G}$ fixed by $F$. We choose an $F$ stable Borel subgroup $\mathbf{B}_{0}$ and an $F$-stable maximal torus $\mathbf{T}_{0}$ contained in $\mathbf{B}_{0}$; and denote by $\mathbf{U}_{0}$ the unipotent radical of $\mathbf{B}_{0}$. We put $B_{0}=\mathbf{B}_{0}^{F}$, $T_{0}=\mathbf{T}_{0}^{F}$, and $U_{0}=\mathbf{U}_{0}^{F}$.

Let $\rho$ be a faithful representation of $\mathbf{G}$,

$$
\rho: \mathbf{G} \rightarrow G L_{n}(\bar{k})
$$

with $\bar{k}$ the algebraic closure of $k$. We assume that $\rho$ commutes with Frobenius maps as follows: $\rho \circ F=F^{\prime} \circ \rho$, where $F^{\prime}(x)=x^{(q)}=\left(x_{i j}^{q}\right)$ for $x=\left(x_{i j}\right) \in G L_{n}(\bar{k})$. Thus $G$ can be identified with a subgroup of $G L_{n}(k)$.
2.2. Before discussing representations, it is necessary to change the field from $\mathbb{C}$ to $\overline{\mathbb{Q}}_{\ell}$, the algebraic closure of the field of $\ell$-adic numbers with $\ell$ a prime different from the characteristic of $k$, as in the DeligneLustzig paper [8].

As for Gelfand-Graev representations of G, we shall follow the notation and preliminary discussion from [3]. We also carry over the notation from the preceding section. In particular, $\Gamma=\psi^{G}$ denotes a fixed Gelfand-Graev representation of $G$, parametrized by an element $z \in H^{1}(F, Z(\mathbf{G}))$ as in [3]; while $\mathcal{H}$ denotes the Hecke algebra of $\Gamma$, $e=e_{\psi}$ the identity element of $\mathcal{H}$, etc. As in [3], $f_{\mathbf{T}, \theta}$ denotes the irreducible representation of the Hecke algebra $\mathcal{H}$ associated with the pair consisting of an $F$-stable maximal torus $\mathbf{T}$ and a character $\theta$ of $T=\mathbf{T}^{F}$. We recall the following factorization theorem ([3, Theorem (4.2)]).

Theorem 2.3. For each pair $(\mathbf{T}, \theta)$ as above, the corresponding representation $f_{\mathbf{T}, \theta}: \mathcal{H} \rightarrow \overline{\mathbb{Q}}_{l}$ can be factored,

$$
f_{\mathbf{T}, \theta}=\widehat{\theta} \circ f_{\mathbf{T}}
$$

with $f_{\mathbf{T}}$ a homomorphism of algebras from $\mathcal{H}$ to $\overline{\mathbb{Q}}_{\ell} T$, independent of $\theta$. Let $f_{\mathbf{T}}(c)=\sum f_{\mathbf{T}}(c)(t) t \in \overline{\mathbb{Q}}_{l} T$, for $c \in \mathcal{H}$. Then the value of the coefficient function $f_{\mathbf{T}}\left(c_{n}\right)(t)$, for a standard basis element $c_{n}$ of $\mathcal{H}$ and
$t \in T$, is given by the following formula:

$$
\begin{align*}
f_{\mathbf{T}}\left(c_{n}\right)(t)= & \text { ind } n<Q_{\mathbf{T}}^{\mathbf{G}}, \Gamma>^{-1}\left|U_{0}\right|^{-1}\left|C_{\mathbf{G}}(t)^{\circ}{ }^{\circ}\right|^{-1} \\
& \times \sum_{\substack{g \in G, u \in U_{0} \\
\left(g u n g^{-1}\right)_{s s}=t}} \psi\left(u^{-1}\right) Q_{\mathbf{T}}^{C_{\mathbf{G}}(t)^{\circ}}\left(\left(g u n g^{-1}\right)_{u n i}\right) \tag{2.3.1}
\end{align*}
$$

2.3.2. Remark In what follows, we shall denote $(-1)^{\sigma(\mathbf{G})-\sigma(\mathbf{T})}$ by $\varepsilon(\mathbf{T})$. In case the center of $\mathbf{G}$ is connected, we have $<Q_{\mathbf{T}}^{\mathbf{G}}, \Gamma>=\varepsilon(\mathbf{T})$ from $\S 10$ of [8]. In the case of $G L_{n}(k)$ and if $\mathbf{T}$ corresponds to $w \in S_{n}$, we have $\varepsilon(\mathbf{T})=\operatorname{sgn}(w)$.

Theorem 2.4. Let $\pi$ be an irreducible representation of $G$.
(i) The $\varepsilon$-factor corresponding to $\pi$ is given by

$$
\begin{aligned}
\varepsilon(\pi, \chi) & =\frac{1}{\operatorname{deg} \pi} \operatorname{Tr} W\left(\pi^{*}, \chi ; 1\right) \\
& =\frac{q^{-n^{2} / 2}}{\operatorname{deg} \pi} \sum_{g \in G} \zeta_{\pi^{*}}(g) \chi(\operatorname{Tr}(g))
\end{aligned}
$$

where $\zeta_{\pi^{*}}$ is the character of the contragredient representation $\pi^{*}$.
(ii) In case $\pi$ is a component of $\Gamma$ corresponding to the representation $f_{\mathbf{T}, \theta}$ of $\mathcal{H}$, we have

$$
f_{\mathbf{T}, \theta}(\widetilde{h})=\varepsilon(\pi, \chi) f_{\mathbf{T}, \theta}(h)
$$

for all $h \in \mathcal{H}, h=\sum \Phi(g) g$, with $\Phi$ vanishing outside $G$.
(iii) In case the irreducible representation $\pi$ has the form $\varepsilon(\mathbf{T}) R_{\mathbf{T}, \theta}$ with $\theta$ in general position, one has

$$
\varepsilon(\pi, \chi)=\varepsilon(\mathbf{T}) q^{-n^{2} / 2}|G|_{p} \sum_{t \in T} \theta^{-1}(t) \chi(\operatorname{Tr}(t))
$$

Proof. The first statement follows from the definition of $\varepsilon(\pi, \chi)$ in §1.1. Part (ii) follows from (1.5), while (iii) follows from ([16], Theorem 1.2 ) and the fact that $R_{\mathbf{T}, \theta}^{*}=R_{\mathbf{T}, \theta^{-1}}$.

Corollary 2.5. With $\pi$ corresponding to $f_{\mathbf{T}, \theta}$ as in part (ii) of the Theorem, we have by (1.6)

$$
f_{\mathbf{T}, \theta}(\widetilde{e})=\varepsilon(\pi, \chi)
$$

Remarks 2.6. (i) For any irreducible representation $\pi$ of $G$, the sum

$$
\tau(\pi)=\sum_{g \in G} \operatorname{Tr}(\pi(g)) \chi(\operatorname{Tr}(g))
$$

is called a Gauss sum of $G$ associated with $(\pi, \chi)$. These have been computed in the case of $G=G L_{n}(k)$ for all irreducible representations ([11], [15]). In the situation of part (iii) of the Theorem, and also for unipotent representations, the Gauss sums have been computed for several other classical groups and for $G_{2}$ ([16], [17]).
(ii) Let $\phi(g)=\chi(\operatorname{Tr}(g))$ for $g \in G$ and let $<,>_{G}$ be the inner product of class functions on $G$. Then we have

$$
\begin{aligned}
\tau(\pi) & =|G|<\zeta_{\pi^{*}}, \phi>_{G} \\
\varepsilon(\pi, \chi) & =(\operatorname{deg} \pi)^{-1} q^{-n^{2} / 2}|G|<\zeta_{\pi}, \phi>_{G}
\end{aligned}
$$

We also notice that since the value of $\phi$ depends only on the semisimple part of the element $g \in G, \phi$ is expressed as a linear combination of the virtual characters of Deligne-Lusztig by [8, (7.12.1)] (see also [1, Proposition 7.6.4]).

## §3. $\varepsilon$-Factors for $G L_{n}(k)$

In this section, let $G=G L_{n}(k)$ and let $U$ be the upper triangular unipotent subgroup of $G$. Then $G=\mathbf{G}^{F}$ for $\mathbf{G}=G L_{n}(\bar{k})$ with the usual Frobenius endomorphism $F$. In this case there is, up to equivalence, just one Gelfand-Graev representation $\Gamma=\psi^{G}$, for the linear character $\psi$ of $U$ given by $\psi(u)=\chi\left(u_{12}+\cdots+u_{n-1 n}\right)$ with $u=\left(u_{i j}\right) \in U$.

We begin with some computations of the homomorphisms $f_{T}$ on standard basis elements of $\mathcal{H}$.

Lemma 3.1. For $a \in k^{*}$, let

$$
\dot{w}(a)=\left(\begin{array}{cccc} 
& & & a  \tag{3.1.1}\\
-1 & & & \\
& \ddots & \\
& & -1
\end{array}\right) \in G
$$

Then for all $u \in U, u \dot{w}(a)$ is a regular element, i.e. $(u \dot{w}(a))_{u n i}$ is a regular unipotent element in $C_{G}\left((u \dot{w}(a))_{s s}\right)$.

Proof. It is enough to show that the minimal polynomial of $u \dot{w}(a)$ is the characteristic polynomial of $u \dot{w}(a)$ and for that it is enough to show that

$$
\begin{equation*}
\left(x_{1} I-u \dot{w}(a)\right) \cdots\left(x_{n-1} I-u \dot{w}(a)\right) \neq 0, \quad \text { for all } x_{1}, \ldots, x_{n-1} \in \bar{k} \tag{3.1.2}
\end{equation*}
$$

where $I$ is the identity matrix in $G$. Let $u=\left(u_{i j}\right)$ and $A=u \dot{w}(a)$. Thus

$$
A=\left(\begin{array}{rrrrr}
-u_{12} & -u_{13} & \cdots & -u_{1 n} & a \\
-1 & -u_{23} & \cdots & -u_{2 n} & \\
& -1 & \cdots & -u_{3 n} & \\
& & \ddots & \vdots &
\end{array}\right)
$$

Let $A_{i}=x_{i} I-A,(i=1, \ldots, n-1)$, then it is easy to see that the ( $n, 1$ )-entry of $A_{1} \cdots A_{n-1}$ is nonzero, which proves (3.1.2).

## Lemma 3.2. We have

(i) $\dot{\dot{w}(a)} \psi=\psi$ on $U \cap^{\dot{w}(a)} U$, and
(ii) $\left[U: U \cap^{\dot{w}(a)} U\right]=q^{n-1}$.
for all nonzero elements $a \in k$.
Proof. For $u=\left(u_{i j}\right) \in U$, we have

$$
\dot{w(a)} u=\left(\begin{array}{rrrrr}
1 & 0 & 0 & \cdots & 0 \\
-a^{-1} u_{1 n} & 1 & u_{12} & \cdots & u_{1 n-1} \\
-a^{-1} u_{2 n} & 0 & 1 & \cdots & u_{2 n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-a^{-1} u_{n-1 n} & 0 & 0 & \cdots & 1
\end{array}\right)
$$

Thus the condition for $\dot{w}^{(a)} u \in U$ is $u_{1 n}=u_{2 n}=\cdots=u_{n-1 n}=0$, which proves (ii).

Take any $u_{0} \in U \cap^{\dot{w}(a)} U$, then there exists $u=\left(u_{i j}\right) \in U$ such that $u_{0}={ }^{\dot{w}(a)} u$. Therefore, using the first part of the proof,

$$
\begin{aligned}
{ }^{\dot{w}(a)} \psi\left(u_{0}\right) & =\psi\left({ }^{\dot{w}(a)^{-1}} u_{0}\right)=\psi(u) \\
& =\chi\left(u_{12}+\cdots+u_{n-2, n-1}\right)=\psi\left(u_{0}\right)
\end{aligned}
$$

which proves the first assertion.

Theorem 3.3. Let $G=G L_{n}(k)$ and let $\dot{w}(a)$ be defined as in (3.1). Then $c_{\dot{w}(a)}$ is a standard basis element of $\mathcal{H}$. For each $F$-stable maximal torus $\mathbf{T}$ of $\mathbf{G}$, we have, for all $t \in T$,

$$
\begin{equation*}
f_{\mathbf{T}}\left(c_{\dot{w}(a)}\right)(t)=\delta_{\operatorname{det} t, a} \varepsilon(\mathbf{T}) \chi(\operatorname{Tr} t) \tag{3.3.1}
\end{equation*}
$$

where $\delta_{\operatorname{det} t, a}=1$, if $\operatorname{det} t=a$, and $=0$, otherwise. Therefore

$$
\begin{equation*}
f_{\mathbf{T}, \theta}\left(c_{\dot{w}(a)}\right)=\varepsilon(\mathbf{T}) \sum_{t \in T, \operatorname{det} t=a} \chi(\operatorname{Tr} t) \theta(t) \tag{3.3.2}
\end{equation*}
$$

Proof. By Theorem 2.3, Lemma 3.1, and Lemma 3.2 (2), together with the fact that $Q_{\mathbf{T}}^{\mathbf{G}}(u)=1$ if $u$ is regular unipotent by $[8$, Theorem 9.16], we have

$$
f_{\mathbf{T}}\left(c_{\dot{w}(a)}\right)(t)=q^{n-1} \varepsilon(\mathbf{T})|U|^{-1}\left|C_{G}(t)\right|^{-1} \sum_{\substack{g \in G, u \in U \\\left(g u \dot{w}(a) g^{-1}\right)_{s s}=t}} \psi\left(u^{-1}\right)
$$

Two semisimple elements, $(u \dot{w}(a))_{s s}$ and $t$ are conjugate if and only if their characteristic polynomials are the same. Let $t$ be conjugate to $\operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ in $\mathbf{G}=G L_{n}(\bar{k})$, and let $u=\left(u_{i j}\right)$, where $u_{i j}=0$, if $i>j$ and $u_{i i}=1$. Regarding $u_{i j}(i<j)$ as variables and defining polynomials $p_{m}(u)=p_{m}\left(u_{12}, u_{13}, \ldots\right)$ over $k$ by $\operatorname{det}(x I-u \dot{w}(a))=$ $\sum_{m=0}^{n} p_{m}(u) x^{n-m}$ we can show easily that

$$
p_{m}(u)=(-1)^{m+1} u_{1, m+1}+q_{m}(u), \quad \text { for } m=1, \ldots, n-1
$$

where $q_{m}(u)$ is a polynomial in the variables $u_{1 j}(1<j<m+1)$ and $u_{i j}(1<i<j)$. In particular $p_{1}(u)=\sum_{i=1}^{n-1} u_{i i+1}$.

Thus $(u \dot{w}(a))_{s s}$ and $t$ are conjugate if and only if

$$
\begin{equation*}
(-1)^{m} p_{m}(u)=\sum_{1 \leq i_{1}<i_{2} \cdots<i_{m} \leq n} \alpha_{i_{1}} \alpha_{i_{2}} \cdots \alpha_{i_{m}}, \text { for } m=1, \ldots, n \tag{3.3.3}
\end{equation*}
$$

These simultaneous equations have solutions if $\operatorname{det} t=a$ and in this case the number of solutions is $q^{(n-1)(n-2) / 2}$ since for any values of $u_{i j}(2 \leq i<j \leq n), u_{1 j}(2 \leq j \leq n)$ are uniquely determined by the equations (3.3.3). Notice that $\operatorname{Tr} t=-\sum_{i=1}^{n-1} u_{i i+1}$. Moreover if $(u \dot{w}(a))_{s s}$ and $t$ are conjugate, then the set $\left\{g \in G \mid g(u \dot{w}(a))_{s s} g^{-1}=t\right\}$ is a coset of $C_{G}(t)$. Putting these facts together we have the equations in the theorem.

Corollary 3.4. If $(\mathbf{T}, \theta)$ and $\left(\mathbf{T}^{\prime}, \theta^{\prime}\right)$ are geometrically conjugate, we have

$$
\varepsilon(\mathbf{T}) \sum_{t \in T, \operatorname{det} t=a} \chi(\operatorname{Tr} t) \theta(t)=\varepsilon\left(\mathbf{T}^{\prime}\right) \sum_{t \in T^{\prime}, \operatorname{det} t=a} \chi(\operatorname{Tr} t) \theta^{\prime}(t)
$$

Proof. If ( $\mathbf{T}, \theta$ ) and ( $\mathbf{T}^{\prime}, \theta^{\prime}$ ) are geometrically conjugate, we have $f_{\mathbf{T}, \boldsymbol{\theta}}=f_{\mathbf{T}^{\prime}, \boldsymbol{\theta}^{\prime}}$ (cf. [3]). By evaluating them on $c_{\dot{w}(a)}$, the assertion follows.

We remark that the corollary is a generalization of [2, Lemma (5.1)]. In particular if we apply (3.4) to $G L_{2}(q),\left(\mathrm{T}_{1}, 1\right)$ and $\left(\mathrm{T}_{w}, 1\right)$ (cf. the notation in [5]), we have

$$
\sum_{x \in k^{\times}} \chi\left(x+a x^{-1}\right)=-\sum_{y \in k_{2}^{\times}, N_{2,1} y=a} \chi\left(y+y^{q}\right)
$$

which is (1.3) of [2].
To obtain the value of $f_{\mathbf{T}}$ on $c_{\boldsymbol{t}}^{\boldsymbol{w}(a)}$, we consider the following automorphism $\alpha$ on $G$. Let $w_{0}=\left(w_{0, i j}\right)$ be the matrix in $G$, with $w_{0, i j}=\delta_{i+j, n+1}(-1)^{i-1}$ and put $\alpha(g)=\left({ }^{t} g^{-1}\right)^{w_{0}}$ for $g \in \mathbf{G}$. Then $\alpha$ is an involutive automorphism of $\mathbf{G}, G$, and $U$. It can be checked easily that $\psi \circ \alpha=\psi$. The extension of $\alpha$ to an automorphism of $\mathbb{C} G$ induces an automorphism of $\mathcal{H}$.

Noting that for an $F$-stable maximal torus $\mathbf{T}, \mathbf{T}$ and $\alpha(\mathbf{T})$ are $G$ conjugate, and using Theorem 2.3, we obtain without difficulty that

$$
\begin{align*}
f_{\mathbf{T}}\left(c_{\alpha(n)}\right)(t) & =f_{\alpha(\mathbf{T})}\left(c_{n}\right)(\alpha(t)), \text { and }  \tag{3.4.1}\\
f_{\mathbf{T}, \theta}\left(c_{\alpha(n)}\right) & =f_{\alpha(\mathbf{T}), \theta \circ \alpha}\left(c_{n}\right) .
\end{align*}
$$

Lemma 3.5. We have

$$
f_{\mathbf{T}, \theta}\left(c_{\alpha(\dot{w}(a))}\right)=f_{\mathbf{T}, \bar{\theta}}\left(c_{\dot{w}(a)}\right),
$$

where $\bar{\theta}=\theta^{-1}$. Therefore

$$
\begin{equation*}
f_{\mathbf{T}, \theta}\left(c_{-t} \dot{w}(a)\right)=\varepsilon(\mathbf{T}) \sum_{t \in T, \operatorname{det}} \chi(\operatorname{Tr} t) \theta\left(t^{-1}\right) \tag{3.5.1}
\end{equation*}
$$

Proof. From the preceding discussion, we have

$$
\begin{aligned}
f_{\mathbf{T}, \theta}\left(c_{\alpha(\dot{w}(a))}\right) & =f_{\alpha(\mathbf{T}), \theta \circ \alpha}\left(c_{\dot{w}(a)}\right) \quad \text { (by the equation (3.4.2)) } \\
& =\varepsilon(\alpha(\mathbf{T})) \sum_{t^{\prime} \in \alpha(T), \operatorname{det} t^{\prime}=a} \chi\left(\operatorname{Tr} t^{\prime}\right) \theta\left(\alpha\left(t^{\prime}\right)\right) \\
& =\varepsilon(\mathbf{T}) \sum_{t \in T, \operatorname{det} t=a^{-1}} \chi\left(\operatorname{Tr} t^{-1}\right) \theta(t) \\
& =\varepsilon(\mathbf{T}) \sum_{t \in T, \operatorname{det} t=a} \chi(\operatorname{Tr} t) \theta\left(t^{-1}\right) \\
& =f_{\mathbf{T}, \bar{\theta}}\left(c_{\dot{w}(a)}\right)
\end{aligned}
$$

by Theorem 3.3. The second assertion follows from this and $\alpha(\dot{w}(a))=$ $-^{t}\left(\dot{w}\left((-1)^{n} a^{-1}\right)\right)$.

We remark that the equations (3.3.2) and (3.5.1), together with Theorem 4.2 in [3], generalize Theorem 4.1 in [2] to $G L_{n}(q)$.

The following theorem was proved by Kondo [11] for all irreducible characters of $G=G L_{n}(k)$, using the results of J. A. Green on the irreducible characters of $G$. Kondo stated the theorem in terms of Gauss sums of field extensions of $k$. Our theorem is stated in terms of character sums over a torus, and is proved using the Deligne-Lusztig theory [8].

Theorem 3.6. Let $\zeta$ be an irreducible character of $G=G L_{n}(k)$ and let $\zeta$ be a component of $R_{\mathbf{T}, \theta}$. Then the Gauss sum of the character $\zeta$ is given by

$$
\tau(\zeta)=\sum_{g \in G} \zeta(g) \chi(\operatorname{Tr}(g))=\operatorname{deg} \zeta|G|_{p} \varepsilon(\mathbf{T}) \sum_{t \in T} \chi(\operatorname{Tr}(t)) \theta(t)
$$

Proof. We shall denote by $\rho_{\mathbf{T}, \theta}$ the character of the virtual representation $R_{\mathbf{T}, \theta}$. From ([13], §3) and ([8], Prop. 5.11) we have

$$
\zeta=\sum_{\left[\left(\mathbf{T}^{\prime}, \theta^{\prime}\right)\right]} c_{\left(\mathbf{T}^{\prime}, \theta^{\prime}\right)} \rho_{\mathbf{T}^{\prime}, \theta^{\prime}}
$$

for some $c_{\left(\mathbf{T}^{\prime}, \theta^{\prime}\right)} \in \mathbb{Q}$, where $\left(\mathbf{T}^{\prime}, \theta^{\prime}\right)$ runs over members of the geometric conjugacy class of ( $\mathbf{T}, \theta$ ). Since $\tau$ is additive (cf. [16]), we have

$$
\tau(\zeta)=\sum_{\left[\left(\mathbf{T}^{\prime}, \theta^{\prime}\right)\right]} c_{\left(\mathbf{T}^{\prime}, \theta^{\prime}\right)} \tau\left(\rho_{\mathbf{T}^{\prime}, \theta^{\prime}}\right)
$$

By [loc.cit.,(1.2)], the Gauss sums of the virtual characters $\rho_{\mathbf{T}^{\prime}, \theta^{\prime}}$ are given by

$$
\tau\left(\rho_{\mathbb{T}^{\prime}, \theta^{\prime}}\right)=\frac{|G|}{\left|T^{\prime}\right|} \sum_{t^{\prime} \in T^{\prime}} \theta^{\prime}\left(t^{\prime}\right) \chi\left(\operatorname{Tr}\left(t^{\prime}\right)\right) .
$$

Then by (3.4) we have

$$
\varepsilon(\mathbf{T}) \sum_{t \in T} \chi(\operatorname{Tr} t) \theta(t)=\varepsilon\left(\mathbf{T}^{\prime}\right) \sum_{t \in T^{\prime}} \chi(\operatorname{Tr} t) \theta^{\prime}(t)
$$

for pairs ( $\mathbf{T}, \theta$ ) and ( $\mathbf{T}^{\prime}, \theta^{\prime}$ ) in the same geometric conjugacy class. Therefore

$$
\tau(\zeta)=\left\{\varepsilon(\mathbf{T}) \sum_{t \in T} \theta(t) \chi(\operatorname{Tr} t)\right\}\left\{\sum_{\left[\left(\mathbf{T}^{\prime}, \theta^{\prime}\right)\right]} c_{\left(\mathbf{T}^{\prime}, \theta^{\prime}\right)} \varepsilon\left(\mathbf{T}^{\prime}\right) \frac{|G|}{\left|T^{\prime}\right|}\right\}
$$

Since

$$
\operatorname{deg} \zeta=\sum_{\left[\left(\mathbf{T}^{\prime}, \boldsymbol{\theta}^{\prime}\right)\right]} c_{\left(\mathbf{T}^{\prime}, \boldsymbol{\theta}^{\prime}\right)} \varepsilon\left(\mathbf{T}^{\prime}\right) \frac{|G|_{p^{\prime}}}{\left|T^{\prime}\right|}
$$

the result follows.
Corollary 3.7. Let $\pi_{\mathbf{T}, \theta}$ be an irreducible component of the GelfandGraev representation, associated with the representation $f_{\mathbf{T}, \theta}$ of $\mathcal{H}$, for an arbitrary pair ( $\mathbf{T}, \theta$ ) as in ( $[8], \S 10)$. Then we have

$$
f_{\mathbf{T}, \theta}(\tilde{e})=\varepsilon\left(\pi_{\mathbf{T}, \theta}, \chi\right)=q^{-n / 2} \varepsilon(\mathbf{T}) \sum_{t \in T} \theta^{-1}(t) \chi(\operatorname{Tr} t) .
$$

Proof. We have

$$
f_{\mathbf{T}, \theta}(\widetilde{e})=\varepsilon\left(\pi_{\mathbf{T}, \theta}, \chi\right)=\frac{q^{-n^{2} / 2}}{\operatorname{deg} \pi} \sum_{g \in G} \chi_{\mathbf{T}, \theta}^{*}(g) \chi(\operatorname{Tr}(g))
$$

by (2.4), where $\chi_{\mathbf{T}, \theta}^{*}$ is the character of the contragredient representation $\pi_{\mathbf{T}, \theta}^{*}$. By ([3], Theorem (2.1)), $\pi_{\mathbf{T}, \boldsymbol{\theta}}$ is a component of $R_{\mathbf{T}, \theta}$, and is associated with the geometric conjugacy class $[(\mathbf{T}, \theta)]$. Then $\chi_{\mathbf{T}, \theta}$ is a linear combination of Deligne-Lusztig characters, so $\chi_{\mathbf{T}, \theta}^{*}=\chi_{\mathbf{T}, \theta^{-1}}$ as this is true for the Deligne-Lusztig characters. The Corollary now follows from the preceding Theorem.

As an application of Lemma 3.5 and Corollary 3.7, we give a formula for the twisted Fourier transform of the identity element $e$ of $\mathcal{H}$ in terms of the standard basis elements of $\mathcal{H}$. It would be interesting to know a version of this formula for other types of finite reductive groups.

We recall the notation for the twisted Fourier transform

$$
\widetilde{h}=\sum_{g \in G} \widehat{\Phi}(g) g^{-1} \in \mathcal{H} \text { for } h=\sum \Phi(g) g \in \mathcal{H}
$$

with $\Phi$ vanishing outside $G$.
Theorem 3.8. We have

$$
\widetilde{e}=q^{-n / 2} \sum_{a \in k^{\times}} c_{-t} \dot{w}(a),
$$

and

$$
\widetilde{h}=q^{-n / 2}\left(\sum_{a \in k^{\times}} c_{-t}{ }^{\dot{w}(a)}\right) h,
$$

for all $h \in \mathcal{H}$.
Proof. By the above Corollary together with equation (3.5.1), it follows that

$$
f_{\mathbf{T}, \theta}(\widetilde{e})=q^{-n / 2} f_{\mathbf{T}, \theta}\left(\sum_{a \in k^{\times}} c_{-^{t}} \dot{w}(a)\right)
$$

for all pairs ( $\mathbf{T}, \theta$ ), and the first equation follows. The second equation follows from (1.6).

## §4. Gauss sums of unipotent characters of $S L_{n}(k)$

For the definitions and notation we refer to [16]. We first notice that by Theorem 3.3 above and Theorem 1.2 of [16] we have

$$
\tau\left(R_{\mathbf{T}, \theta}\right)=\left[G_{0}: T\right] \varepsilon(\mathbf{T}) f_{\mathbf{T}, \theta}\left(c_{\dot{w}}\right)
$$

where $G_{0}=S L_{n}(k)$ and $\dot{w}=\dot{w}(1)$. Let

$$
S=\sum_{\substack{x_{1}, x_{2}, \ldots, x_{n} \in k \\ x_{1} \cdots x_{n}=1}} \chi\left(x_{1}+\cdots+x_{n}\right) .
$$

Then we have

Theorem 4.1. Let $\rho$ be any irreducible character of $W=S_{n}$. For the unipotent character $R_{\rho}$ of $S L_{n}(k)$ defined by

$$
R_{\rho}=\frac{1}{|W|} \sum_{w \in W} \operatorname{Tr} \rho(w) R_{\mathbf{T}_{w}, 1}
$$

we have

$$
w\left(R_{\rho}\right)=q^{n(n-1) / 2} S
$$

Proof. If $\mathbf{T}_{\mathbf{0}}$ is a maximal split torus and $\mathbf{T}$ is an arbitrary $F$-stable maximal torus in $\mathbf{G}_{0}$, then the pairs $\left(\mathbf{T}_{0}, 1\right)$ and $(\mathbf{T}, 1)$ are geometrically conjugate. Corollary 3.4 holds for $G_{0}$, and we have $S=f_{\mathbf{T}, 1}\left(c_{\dot{w}}\right)$, since $S=f_{\mathbf{T}_{0}, 1}\left(c_{\dot{w}}\right)$. Therefore, by the additivity of $\tau$, we have

$$
\begin{aligned}
\tau\left(R_{\rho}\right) & =\frac{1}{|W|} \sum_{w \in W} \operatorname{Tr} \rho(w) \tau\left(R_{\mathbf{T}_{w}, 1}\right) \\
& =\frac{1}{|W|} \sum_{w \in W} \operatorname{Tr} \rho(w)\left[G_{0}: T_{w}\right] \varepsilon\left(\mathbf{T}_{w}\right) S \\
& =\frac{q^{n(n-1) / 2} S}{|W|} \sum_{w \in W} \operatorname{Tr} \rho(w) R_{\mathbf{T}_{w}, 1}(1) \\
& =q^{n(n-1) / 2} S R_{\rho}(1)
\end{aligned}
$$

Since $w\left(R_{\rho}\right)=R_{\rho}(1)^{-1} \tau\left(R_{\rho}\right)$, we have proved the assertion in the theorem.

We remark that if $\rho$ is the trivial representation, the above result is proved in [12].

## §5. On the norm $\operatorname{map} \Delta: \mathcal{H}^{\prime} \rightarrow \mathcal{H}$

We mention here another application of the preceding results to a computation of the norm map $\Delta: \mathcal{H}^{\prime} \rightarrow \mathcal{H}$ on $\widetilde{e} \in \mathcal{H}^{\prime}$, in the case of $\mathbf{G}=G L_{n}(\bar{k})$. In this case the norm map is a homomorphism of algebras from the Hecke algebra $\mathcal{H}^{\prime}$ of a Gelfand-Graev representation of $G^{\prime}=$ $G L_{n}\left(k^{\prime}\right), k^{\prime}=k_{m}=\mathbb{F}_{q^{m}}$, to the Hecke algebra $\mathcal{H}$ of a Gelfand-Graev representation of $G=G L_{n}(k)$ (cf. [6]) and it is known to be surjective. Moreover it gives a correspondence of representations of Hecke algebras (or spherical functions) $f_{\mathbf{T}, \theta} \rightarrow f_{\mathbf{T}, \theta} \circ \Delta$. Let $\mathbf{T}$ be an $F$-stable maximal torus, $T=\mathbf{T}^{F}, T^{\prime}=\mathbf{T}^{F^{m}}, N_{\mathbf{T}}: T^{\prime} \rightarrow T$ be the (usual) norm map, and let $\tilde{N}_{\mathbf{T}}$ be the extension of $N_{\mathbf{T}}$ to a homomorphism of group algebras of $T^{\prime}$ and $T$. Then the norm map $\Delta$ is characterized as the unique linear
$\operatorname{map} \Delta: \mathcal{H}^{\prime} \rightarrow \mathcal{H}$ with the property that for each $F$-stable maximal torus $\mathbf{T}$, one has

$$
f_{\mathbf{T}} \circ \Delta=\widetilde{N}_{\mathbf{T}} \circ f_{\mathbf{T}}^{\prime}
$$

Theorem 5.1. Let $e^{\prime}$ be the identity element of $\mathcal{H}^{\prime}$. Then

$$
\Delta\left(\widetilde{e}^{\prime}\right)=(-1)^{n(m-1)} \widetilde{e}^{m}
$$

Proof. In the discussion to follow, we shall use the notation $k_{m}$ for the extension of $k$ of degree $m$, along with $\operatorname{Tr}_{a, b}=\operatorname{Tr}_{k_{a} / k_{b}}$ and $N_{a, b}=N_{k_{a} / k_{b}}$ for trace and norm maps of field extensions, as in [5], where $b$ is a divisor of $a$.

By the definition of the norm map, it is enough to show that

$$
\widetilde{N}_{\mathbf{T}}\left(f_{\mathbf{T}}^{\prime}\left(\widetilde{e}^{\prime}\right)\right)=f_{\mathbf{T}}\left((-1)^{n(m-1)} \tilde{e}^{m}\right)
$$

for each $F$-stable maximal torus $\mathbf{T}$. From the known structure of the $F$-stable maximal tori, it is not difficult to verify that it is enough to prove the above formula in case $\mathbf{T}$ is isomorphic to $\left\{\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) \mid\right.$ $\left.a_{i} \in \bar{k}^{\times}\right\}$where the Frobenius map $F$ acts as $F\left(\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)\right)=$ $\operatorname{diag}\left(a_{2}^{q}, \ldots, a_{n}^{q}, a_{1}^{q}\right)$. Hence $T$ is isomorphic to $k_{n}^{\times}$and $T^{\prime}$ is isomorphic to $\left(k_{n m / d}^{\times}\right)^{d}$, with $d=$ g.c.d. $(m, n)$. Under this identification of $T$ and $T^{\prime}$, we have

$$
\operatorname{Tr}\left(t^{\prime}\right)=\operatorname{Tr}_{n m / d, m}\left(a_{1}^{\prime}+\cdots+a_{d}^{\prime}\right)
$$

and

$$
N_{\mathbf{T}}\left(t^{\prime}\right)=N_{n m / d, n}\left(a_{1}^{\prime} a_{2}^{\prime q} \cdots a_{d}^{q^{d-1}}\right)
$$

with $t^{\prime}=\left(a_{1}^{\prime}, \ldots, a_{d}^{\prime}\right) \in\left(k_{n m / d}^{\times}\right)^{d}$. Let $\chi^{\prime}=\chi \circ \operatorname{Tr}_{m, 1}$ and $\chi_{n}=\chi \circ \operatorname{Tr}_{n, 1}$. Finally, we note that $\varepsilon^{\prime}(\mathbf{T})=(-1)^{\sigma^{\prime}(\mathbf{G})-\sigma^{\prime}(\mathbf{T})}=(-1)^{n-d}$, where $\sigma^{\prime}(\mathbf{G})$, $\sigma^{\prime}(\mathbf{T})$ are the $k^{\prime}$-ranks of $\mathbf{G}$ and $\mathbf{T}$, and $\varepsilon(\mathbf{T})=(-1)^{n-1}$. Then for each irreducible representation $\theta$ of $T$ we have by Corollary 3.7,

$$
\begin{aligned}
& \tilde{\theta}\left(\tilde{N}_{\mathbf{T}}\left(f_{\mathbf{T}}^{\prime}\left(\widetilde{e}^{\prime}\right)\right)\right) \\
= & q^{-n m / 2} \varepsilon^{\prime}(\mathbf{T}) \sum_{t^{\prime} \in T^{\prime}} \theta^{-1}\left(N_{\mathbf{T}}\left(t^{\prime}\right)\right) \chi^{\prime}\left(\operatorname{Tr}\left(t^{\prime}\right)\right) \\
= & q^{-n m / 2}(-1)^{n-d} \sum_{a_{1}^{\prime}, \ldots, a_{d}^{\prime}} \theta^{-1}\left(N_{n m / d, n}\left(a_{1}^{\prime} a_{2}^{\prime q} \cdots\right)\right) \\
& \times \chi_{n}\left(\operatorname{Tr}_{n m / d, n}\left(a_{1}^{\prime}+\cdots+a_{d}^{\prime}\right)\right) \\
= & q^{-n m / 2}(-1)^{n-d} \prod_{i=0}^{d-1} G\left(\chi_{n} \circ \operatorname{Tr}_{n m / d, n}, \theta^{-1} \circ N_{n m / d, n} \circ F_{q}^{i}\right) \\
= & q^{-n m / 2}(-1)^{n-d} G\left(\chi_{n} \circ \operatorname{Tr}_{n m / d, n}, \theta^{-1} \circ N_{n m / d, n}\right)^{d},
\end{aligned}
$$

where $F_{q}(a)=a^{q}$ for $a \in k_{n m / d}^{\times}$and $G\left(\chi_{n} \circ \operatorname{Tr}_{n m / d, n}, \theta \circ N_{n m / d, n}\right)$ is the Gauss sum over $k_{n m / d}$ with $\chi_{n} \circ \operatorname{Tr}_{n m / d, n}\left(\right.$ resp. $\left.\theta \circ N_{n m / d, n}\right)$ as its additive (resp. multiplicative) character. Now the Davenport-Hasse theorem implies

$$
-G\left(\chi_{n} \circ \operatorname{Tr}_{n m / d, n}, \theta^{-1} \circ N_{n m / d, n}\right)=\left(-G\left(\chi_{n}, \theta^{-1}\right)\right)^{m / d}
$$

Thus we have

$$
\widetilde{\theta}\left(\tilde{N}_{\mathbf{T}}\left(f_{\mathbf{T}}^{\prime}\left(\widetilde{e}^{\prime}\right)\right)\right)=q^{-n m / 2}(-1)^{m+n} G\left(\chi_{n}, \theta^{-1}\right)^{m}
$$

On the other hand we have $f_{\mathbf{T}, \theta}(\widetilde{e})=q^{-n / 2}(-1)^{n-1} G\left(\chi_{n}, \theta^{-1}\right)$, and the result follows.

As a corollary we obtain what may be viewed as an extension of the Davenport-Hasse relation for Gauss sums of field extensions to Gauss sums of irreducible components of the Gelfand-Graev representation of $G L_{n}\left(k^{\prime}\right)$ and $G L_{n}(k)$.

Corollary 5.2. Keep the notation of the previous theorem and Corollary 3.7. For each irreducible representation $\theta$ of $T$, we have

$$
\varepsilon\left(\pi_{\mathbf{T}, \theta \circ \widetilde{N}_{\mathbf{T}}}^{\prime}, \chi^{\prime}\right)=(-1)^{n(m-1)} \varepsilon\left(\pi_{\mathbf{T}, \theta}, \chi\right)^{m}
$$

for components of the Gelfand-Graev representations of $G L_{n}\left(k^{\prime}\right)$ and $G L_{n}(k)$ respectively which correspond by the norm map $\Delta$.

The proof is immediate by the previous Theorem and Corollary 3.7.

## References

[1] R. W. Carter, Finite groups of Lie type, Wiley-Interscience, 1985.
[2] B. Chang, Decomposition of the Gelfand-Graev characters of $G L_{3}(q)$, Comm. Algebra 4(1976), 375-401.
[3] C. W. Curtis, On the Gelfand-Graev representations of a reductive group over a finite field, J. Algebra 157(1993), 517-533.
[4] C. W. Curtis and I. Reiner, Methods of representation theory, vol. I, John Wiley \& Sons, 1981.
[5] C. W. Curtis and K. Shinoda, Unitary Kloosterman sums and GelfandGraev representation of $G L_{2}, J$. Algebra 216(1999), 431-447.
[6] C. W. Curtis and T. Shoji, A norm map for endomorphism algebras of Gelfand-Graev representations, Progr. Math. 141(1996), 185-194.
[7] P. Deligne, SGA4 $\frac{1}{2}$, Lecture Notes in Mathematics, vol. 569, SpringerVerlag, Berlin/New York, 1977.
[8] P. Deligne and G. Lusztig, Representations of of reductive groups over finite fields, Ann. of Math. 103(1976), 103-161.
[9] F. Digne, G.I. Lehrer, and J. Michel, The characters of the group of rational points of a reductive group with non-connected centre, J. reine. angew. Math. 425(1992), 155-192.
[10] N. M. Katz, Gauss sums, Kloosterman sums, and monodromy groups, Princeton University Press, 1988.
[11] T. Kondo, On Gaussian sums attached to the general linear groups over finite fields, J. Math. Soc. Japan 15(1963),244-255.
[12] I. Lee and K. Park, Gauss sums for $G_{2}(q)$, Bull. Korean Math. Soc. 34(1997), 305-315.
[13] G. Lusztig and B. Srinivasan, The characters of the finite unitary groups, J. Algebra 49(1977), 167-171.
[14] I. G. Macdonald, Zeta functions attached to finite general linear groups, Math. Ann. 249(1980), 1-15.
[15] I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Univ. Press, 1995.
[16] N. Saito and K. Shinoda, Character Sums Attached to Finite Reductive Groups, Tokyo J. Math. 23(2000), 373-385.
[17] N. Saito and K. Shinoda, Some character sums and Gauss sums over $G_{2}(q)$, Tokyo J. Math. 24(2001), 277-289.
[18] T. A. Springer, The zeta function of a cuspidal representation of a finite group $G L_{n}(k)$, in Lie groups and their representations, Proceedings of the Summer School of the Bolyai János Math. Soc., Budapest, 1971, Halsted Press(John Wiley \& Sons)(1975), 645-648.

Charles W. Curtis
Department of Mathematics
University of Oregon
Eugene, OR 97403
U.S.A.
curtis@math.uoregon.edu
Ken-ichi Shinoda
Department of Mathematics
Sophia University
Tokyo, 102-8554
Japan
shinoda@mm.sophia.ac.jp

