Advanced Studies in Pure Mathematics 39, 2004 Stochastic Analysis on Large Scale Interacting Systems pp. 377–395

Zero-Range-Exclusion Particle Systems

Kôhei Uchiyama

§1. Introduction

Let \mathbf{T}_N denote the one-dimensional discrete torus $\mathbf{Z}/N\mathbf{Z}$ represented by $\{1, ..., N\}$. The zero-range-exclusion process that we are to introduce and study in this article is a Markov process on the state space $\mathcal{X}^N :=$ $\mathbf{Z}_+^{\mathbf{T}_N}$ ($\mathbf{Z}_+ = \{0, 1, 2, ...\}$). Denote by $\eta = (\eta_x, x \in \mathbf{T}_N)$ a generic element of \mathcal{X}^N , and define

$$\xi_x = \mathbf{1}(\eta_x \ge 1)$$

(namely, ξ_x equals 0 or 1 according as η_x is zero or positive). The process is regarded as a 'lattice gas' of particles having energy. The site x is occupied by a particle if $\xi_x = 1$ and vacant otherwise. Each particle has energy, represented by η_x , which takes discrete values $1, 2, \ldots$ If y is a nearest neighbor site of x and is vacant, a particle at site x jumps to y at rate $c_{\text{ex}}(\eta_x)$, where c_{ex} is a positive function of $k = 1, 2, \ldots$ Between two neighboring particles the energies are transferred unit by unit according to the same stochastic rule as that of the zero-range processes. In this article we shall give some results related to the hydrodynamic scaling limit for this model.

To give a formal definition of the infinitesimal generator of the process we introduce some notations. Let b = (x, y) be an oriented bond of \mathbf{T}_N , namely x and y are nearest neighbor sites of \mathbf{T}_N , and (x, y)stands for an ordered pair of them. Define the *exclusion* operator π_b and *zero-range* operator ∇_b attached to b which act on $f \in C(\mathcal{X}^N)$ by

$$\pi_b f(\eta) = f(S^b_{ ext{ex}}\eta) - f(\eta) \quad ext{and} \quad
abla_b f(\eta) = f(S^b_{ ext{zr}}\eta) - f(\eta)$$

where the transformation $S_{\text{ex}}^b: \mathcal{X}^N \mapsto \mathcal{X}^N$ is defined by

$$(S^b_{\rm ex}\eta)_z = \begin{cases} \eta_y, & \text{if } z = x, \\ \eta_x, & \text{if } z = y, \\ \eta_z, & \text{otherwise,} \end{cases}$$

Received December 26, 2002.

Revised March 24, 2003.

if $\xi_x = 1$ and $\xi_y = 0$; and $S_{\text{zr}}^b \eta$ by

$$(S_{zr}^b\eta)_z = \begin{cases} \eta_x - 1, & \text{if } z = x, \\ \eta_y + 1, & \text{if } z = y, \\ \eta_z, & \text{otherwise,} \end{cases}$$

if $\eta_x \ge 2$ and $\xi_y = 1$; and in the remaining case of η , both $S_{ex}^b \eta$ and $S_{zr}^b \eta$ are set to be η , namely

$$S_{\text{ex}}^b \eta = \eta \quad \text{if} \quad \xi_x (1 - \xi_y) = 0,$$

$$S_{\text{ex}}^b \eta = \eta \quad \text{if} \quad \mathbf{1}(\eta_x \ge 2)\xi_y = 0.$$

Let c_{ex} and c_{zr} be two non-negative functions on \mathbf{Z}_+ and define for b = (x, y)

$$L_b = c_{\rm ex}(\eta_x)\pi_b + c_{\rm zr}(\eta_x)\nabla_b.$$

Let \mathbf{T}_N^* denote the set of all oriented bonds in \mathbf{T}_N :

$$\mathbf{T}_N^* = \{ b = (x, y) : x, y \in \mathbf{T}_N, |x - y| = 1 \}.$$

Then the infinitesimal generator L_N of our Markovian particle process on \mathbf{T}_N is given by

$$L_N = \sum_{b \in \mathbf{T}_N^*} L_b.$$

It is assumed that for some positive constant a_0 , $c_{\text{ex}}(k) \ge a_0$ for $k \ge 1$ and $c_{\text{zr}}(k) \ge a_0$ for $k \ge 2$. This especially implies that the lattice gas on \mathbf{T}_N with both the number of particles and the total energy being given is ergodic. We call the Markov process generated by L_N the zero-rangeexclusion process. For the sake of convenience we set

$$c_{\rm ex}(0) = 0$$
 and $c_{\rm zr}(0) = c_{\rm zr}(1) = 0.$

We need some technical conditions on the functions c_{ex} and c_{zr} : there exist positive constants a_1, a_2, a_3, a_4 and an integer k_0 such that

(1)
$$|c_{\rm zr}(k) - c_{\rm zr}(k+1)| \le a_1 \text{ for all } k \ge 1;$$

(2)
$$c_{\mathrm{zr}}(k) - c_{\mathrm{zr}}(l) \ge a_2$$
 whenever $k \ge l + k_0$;

(3)
$$a_3k \le c_{\text{ex}}(k) \le a_4k \text{ for all } k \ge 1.$$

These conditions are imposed mainly for guaranteeing an estimate of the spectral gaps for the local processes ([4]). The conditions (1) and

(2) are the same as in the paper [2] where is carried out an estimation of the spectral gap for the zero-range processes.

We shall also write $\pi_{x,y}, S_{ex}^{x,y}, L_{x,y}$, etc. for π_b, S_{ex}^b, L_b , etc.

Grand Canonical Measures and Dirichlet Form.

For a pair of constants $0 and <math>\rho > p$ let $\nu_{p,\rho} = \nu_{p,\rho}^{\mathbf{T}_N}$ denote the product probability measure on \mathcal{X}^N whose marginal laws are given by

$$\nu_{p,\rho}(\{\eta:\eta_x=l\}):= \begin{cases} \begin{array}{ll} 1-p & \text{if } l=0,\\ \frac{p}{Z_{\lambda(p,\rho)}} & \text{if } l=1,\\ \frac{p}{Z_{\lambda(p,\rho)}}\cdot \frac{\left(\lambda(p,\rho)\right)^{l-1}}{c_{\mathrm{zr}}(2)c_{\mathrm{zr}}(3)\cdots c_{\mathrm{zr}}(l)} & \text{if } l\geq 2, \end{cases}$$

for all x. Here $Z_{\lambda} := 1 + \sum_{l=2}^{\infty} \frac{\lambda^{l-1}}{c_{zr}(2)c_{zr}(3)\cdots c_{zr}(l)}$ and $\lambda(p,\rho)$ is a positive constant depending on p and ρ and determined uniquely by the relation $E^{\nu_{p,\rho}}[\eta_x] = \rho$, where $E^{\nu_{p,\rho}}$ denotes the expectation under the law $\nu_{p,\rho}$. Clearly $E^{\nu_{p,\rho}}[\xi_x] = p$. The lattice gas is reversible relative to the measures $\nu_{p,\rho}$ (namely L_N is symmetric relative to each of them).

It is convenient to introduce the transformations $S^b, b = (x, y)$ which acts on $\eta \in \mathcal{X}^N$ according to

$$S^{b}\eta = \begin{cases} S^{b}_{\text{ex}}\eta & \text{if } \xi_{y} = 0, \\ S^{b}_{\text{zr}}\eta & \text{if } \xi_{y} = 1, \end{cases}$$

and the operators

$$\Gamma_b = \xi_x \pi_b + \mathbf{1}(\eta_x \ge 2) \nabla_b \qquad (b = (x, y)).$$

The latter may also be defined by $\Gamma_b f(\eta) = f(S^b \eta) - f(\eta)$ $(f \in C(\mathcal{X}^N))$. Let $\tau_x \eta$ be the configuration $\eta \in \mathcal{X}$ viewed from x, namely $(\tau_x \eta)_y = \eta_{x+y}$. We let it also act on a function f of η according to $\tau_x f(\eta) = f(\tau_x \eta)$. Setting

$$c_{01}(\eta) = c_{\text{ex}}(\eta_0)(1-\xi_1) + c_{\text{zr}}(\eta_0)\xi_1;$$

$$c_{10}(\eta) = c_{\text{ex}}(\eta_1)(1-\xi_0) + c_{\text{zr}}(\eta_1)\xi_0;$$

and $c_{x,x+1} = \tau_x c_{01}, c_{x+1,x} = \tau_x c_{10}$, we can write

$$L_b = c_b \Gamma_b.$$

The Dirichlet form is then given by

$$\mathcal{D}^{p,\rho}\{f\} = \sum_{b \in \mathbf{T}_N^*} E^{\nu_{p,\rho}}[(\Gamma_b f)^2 c_b].$$

(Functions f of configuration η will be always real in this article.)

Diffusion Coefficient Matrix.

Following Varadhan [7] we define the diffusion coefficient matrix. First we introduce some notations. Let \mathcal{X} denote $\mathbf{Z}_{+}^{\mathbf{Z}}$, the set of all configurations on \mathbf{Z} and \mathcal{F}_c the set of all local functions on \mathcal{X} (namely, $f \in \mathcal{F}_c$ if f depends only on a finite number of coordinates of $\eta \in \mathcal{X}$). For $f \in \mathcal{F}_c$ we use the symbol \tilde{f} to represent the formal sum $\sum_x \tau_x f$. It has meaning if Γ_{01} is acted:

$$\Gamma_{01}\tilde{f} = \sum_{x} \Gamma_{01}\tau_{x}f = \sum_{x} \tau_{x}\Gamma_{x,x+1}f,$$

where the infinite sums are actually finite sums. Let $\chi(p,\rho)$ denote the covariance matrix of ξ_0 and η_0 under $\nu_{p,\rho}$:

$$\chi(p,\rho) = \begin{pmatrix} (1-p)p & (1-p)\rho \\ (1-p)\rho & E^{\nu_{p,\rho}}|\eta_0 - \rho|^2 \end{pmatrix}$$

For each 0 p, let $\hat{c}(p, \rho) = (\hat{c}^{i,j}(p, \rho))_{1 \leq i,j \leq 2}$ denote a 2×2 symmetric matrix whose quadratic form is defined by the following variational formula:

$$\underline{\alpha} \cdot \hat{c}(p,\rho)\underline{\alpha} = \hat{c}^{11}(p,\rho)\alpha^2 + 2\hat{c}^{12}(p,\rho)\alpha\beta + \hat{c}^{22}(p,\rho)\beta^2$$
$$= \inf_{f \in \mathcal{F}_c} E^{\nu_{p,\rho}} \left[\left(\Gamma_{01} \{ \alpha \xi_0 + \beta \eta_0 + \tilde{f} \} \right)^2 c_{01} \right]$$

where $\underline{\alpha} = (\alpha, \beta)^T$, a two-dimensional real column vector (*T* indicates the transpose), and \cdot indicates the inner product in $\mathbf{R} \times \mathbf{R}$. Then the diffusion coefficient matrix is defined by

$$D(p,\rho) = \hat{c}(p,\rho)\chi^{-1}(p,\rho),$$

where $\chi^{-1}(p,\rho)$ is the inverse matrix of $\chi(p,\rho)$. The two eigen-values of D are positive (cf. Section 5) and D is diagonalizable.

Let $\nabla^{-}\xi$ and $\nabla^{-}\eta$ be the particle and energy gradients:

$$abla^-\xi=\xi_0-\xi_1 \quad ext{ and } \quad
abla^-\eta=\eta_0-\eta_1$$

and w^P_{01} and w^E_{01} the particle and energy currents, respectively, from the site 0 to the site 1 :

$$w^P_{01} = -L_{\{0,1\}}\{\xi_0\} \quad \text{ and } \quad w^E_{01} = -L_{\{0,1\}}\{\eta_0\}.$$

Here $L_{\{0,1\}} = L_{01} + L_{10}$. The explicit form of the currents are

$$\begin{split} & w_{01}^P &= c_{\mathrm{ex}}(\eta_0)(1-\xi_1) - c_{\mathrm{ex}}(\eta_1)(1-\xi_0) \\ & w_{01}^E &= c_{\mathrm{ex}}(\eta_0)(1-\xi_1)\eta_0 + c_{\mathrm{zr}}(\eta_0)\xi_1 - c_{\mathrm{ex}}(\eta_1)(1-\xi_0)\eta_1 - c_{\mathrm{zr}}(\eta_1)\xi_0. \end{split}$$

We can show that

$$\begin{pmatrix} w_{01}^P \\ w_{01}^E \end{pmatrix} - D(p,\rho) \begin{pmatrix} \nabla^- \xi \\ \nabla^- \eta \end{pmatrix} \in \overline{\left\{ \begin{pmatrix} Lf_1 \\ Lf_2 \end{pmatrix} : f_1, f_2 \in \mathcal{F}_c^K \text{ for some } K \in \mathbf{N} \right\}}^{p,\rho}$$

where $\overline{\{\cdots\}}^{p,\rho}$ is the closure relative to the central limit theorem variance $V^{p,\rho}$ (see Section 3). This would lead one to expect that the hydrodynamic equation for the limit densities $p = p(t,\theta)$ and $\rho = \rho(t,\theta)$ should be

$$\frac{\partial}{\partial t} \binom{p}{\rho} = \frac{\partial}{\partial \theta} D(p,\rho) \frac{\partial}{\partial \theta} \binom{p}{\rho}.$$

Unfortunately in deriving this equation there arises serious difficulty due to the unboundedness of the spin values. While the marginal of our grandcanonical measure is roughly Poisson, the energy current w_{01}^E involves the term $c_{\text{ex}}(\eta_0)\eta_0$ that is bounded below by $\delta\eta_0^2$ ($\delta > 0$) and cannot be controlled by the grandcanonical measure as in the case of Ginzburg-Landau model, the logarithm of the Poisson density function being of the order $O(\eta_0 \log \eta_0)$. Nagahata [3] studies a similar model and derives a system of diffusion equations of the same form as above: his model is the same as the present one except that the energy values are bounded by a constant.

In the rest of this article we shall state some results on the equilibrium fluctuations and the central limit theorem variances without proof, and give certain asymptotic estimates for the density-density correlation coefficients and for the least upper bound of the spectrum of an operator of the form $V_N + L$ as consequences of these results. In the last part of the paper some upper and lower bounds of the diffusion matrix will be given.

§2. Density-Density Correlation Function

Consider an infinite particle system on the whole lattice **Z** whose formal generator is $L = \sum c_b \Gamma_b$. It is well defined on \mathcal{F}_c :

$$Lf(\eta) = \sum_{b \in \mathbf{Z}^{\star}} c_b(\eta) \Gamma_b f(\eta), \quad f \in \mathcal{F}_c.$$

Let \mathcal{F}_c° be the set of all $f \in \mathcal{F}_c$ such that both f and Lf are in $L^2(\nu_{p,\rho}, \mathcal{X})$. Then the operator L with the domain \mathcal{F}_c° is a symmetric and non-negative transformation in $L^2(\nu_{p,\rho}, \mathcal{X})$. Clearly \mathcal{F}_c° is dense in $L^2(\nu_{p,\rho}, \mathcal{X})$. Hence L has the Friedrichs extension, which we denote by \mathcal{L} : namely \mathcal{L} is the smallest self-adjoint extension of L. The following theorem is a consequence from the standard theory on the semigroup of operators. Let Λ_K be the finite interval $\{-K, \ldots, K\}$ and $L_{\Lambda(K)}$ the generator of the lattice gas on Λ_K , namely

$$L_{\Lambda(K)} = \sum_{b \in \Lambda^*(K)} L_b;$$

also put $\mathcal{X}_{\Lambda(K)} = \mathbf{Z}_{+}^{\Lambda(K)}$. Here $\Lambda(K)$ is used in stead of Λ_K in sub- or superscripts and $\Lambda^*(K) = (\Lambda(K))^*$ (the set of all oriented bonds in Λ).

Theorem 1. The operator \mathcal{L} generates a strongly continuous Markov semigroup on $L^2(\nu_{p,\rho}, \mathcal{X})$. Denote by $S(t), t \geq 0$ this semigroup, and by $S_K(t)$ the semigroup on $L^2(\mathcal{X}_{\Lambda(K)})$ generated by $L_{\Lambda(K)}$. Then

$$\lim_{K \to \infty} S_K(t) f(\eta|_{\Lambda(K)}) = S(t) f(\eta), \quad f \in \mathcal{F}_c^{\circ},$$

strongly in $L^2(\nu_{p,o}, \mathcal{X})$. The convergence is locally uniform in t.

Fix $0 and <math>\rho > p$. Let $\eta(t)$ be a Markov process on \mathcal{X} whose infinitesimal generator and initial distribution are \mathcal{L} and $\nu_{p,\rho}$, respectively. Denote the probability law of the process $\eta(t)$ by $P_{\text{eq}} = P_{\text{eq}(p,\rho)}$ and the expectation relative to it by $E_{\text{eq}(p,\rho)}$. Define the fluctuation processes $Y_{t,N}^P$ and $Y_{t,N}^E$ by

$$Y_{t,N}^{P}(J) = \frac{1}{\sqrt{N}} \sum_{x \in \mathbf{Z}} J(x/N)(\xi_{x}(N^{2}t) - p), \quad J \in C_{0}^{\infty}(\mathbf{R}),$$
$$Y_{t,N}^{E}(J) = \frac{1}{\sqrt{N}} \sum_{x \in \mathbf{Z}} J(x/N)(\eta_{x}(N^{2}t) - \rho), \quad J \in C_{0}^{\infty}(\mathbf{R})$$

respectively. $(C_0^{\infty}(\mathbf{R})$ is the set of smooth functions with compact supports.) Under the equilibrium measure $P_{\text{eq}(p,\rho)}$ the process $Y_{t,N}$ =

 $(Y_{t,N}^P, Y_{t,N}^E)$ converges in the sense of finite dimensional distributions, namely for each set of $J_1, \ldots, J_k \in C_0^{\infty}(\mathbf{R})$ and $t_1, \ldots, t_k \in [0, \infty)$, the joint distribution of $Y_{t_1,N}(J_1), \ldots, Y_{t_k,N}(J_k)$ converges ([6]). The limit process $Y_t = (Y_t^P, Y_t^E)$ is an infinite dimensional Ornstein-Uhlenbeck process. The distribution of Y_t is described as follows.

Let K_D denote the fundamental solution for the heat equation

$$\frac{\partial}{\partial t}\underline{u} = D^T \frac{\partial^2}{\partial \theta^2} \underline{u}$$

and U_t a matrix of corresponding convolution operators:

$$U_t \underline{J}(\theta) = \int_{-\infty}^{\infty} K_D(t, \theta - \theta') \underline{J}(\theta') d\theta',$$

where $\underline{J} = (J^1, J^2)^T \in C_0^{\infty}(\mathbf{R}) \times C_0^{\infty}(\mathbf{R})$. Let \underline{J}_1 and \underline{J}_2 be vector functions of the same kind. Then the distribution of the limit process Y_t is given by

$$E\left[e^{i(Y_0,\underline{J}_1)}e^{i(Y_t,\underline{J}_2)}\right] = \exp\left[-\frac{1}{2}\int_0^t Q\{U_r\underline{J}_2\}dr - \frac{1}{2}\sigma^2\{U_t\underline{J}_2 + \underline{J}_1\}\right];$$

in particular

(4)
$$E[(Y_0,\underline{J}_1)(Y_t,\underline{J}_2)] = \sigma^2(U_t\underline{J}_2,\underline{J}_1) = (\chi(p,\rho)U_t\underline{J}_2,\underline{J}_1)_{L^2(\mathbf{R})}.$$

Here E denotes the expectation by the probability law of the limit process and

$$Q\{\underline{J}\} = 2(\underline{J}', \hat{c}\underline{J}')_{L^2(\mathbf{R})}, \quad \sigma^2\{\underline{J}\} = (\underline{J}, \chi\underline{J})_{L^2(\mathbf{R})}.$$

(Also $(Y_t, \underline{J}) = Y_t^P(J_1) + Y_t^E(J_2), (\underline{J}_1, \underline{J}_2)_{L^2(\mathbf{R})} = \int_{\mathbf{R}} (J_1^1 J_2^1 + J_1^2 J_2^2) d\theta;$ $\hat{c} = \hat{c}(p, \rho)$ is the matrix appearing in the definition of $D = D(p, \rho); \underline{J}'$ is the (component-wise) derivative of $\underline{J}; \sigma^2(\cdot, \cdot)$ is the bilinear form associated with the quadratic form $\sigma^2\{\cdot\}$.) The kernel K_D may be explicitly written down in the form

$$K_D(t,\theta) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp\{-t\lambda^2 D^T\} e^{-i\lambda\theta} d\lambda$$
$$= \sqrt{4\pi t D^T}^{-1} \exp\{-\theta^2 (4tD^T)^{-1}\}.$$

Here D^T is the transpose of D; for a 2×2 real matrix A whose eigenvalues are positive,

$$\sqrt{A} := \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp\{-\theta^2 A^{-1}\} d\theta,$$

which is a real matrix having positive eigenvalues such that $A = (\sqrt{A})^2$.

Define the symmetric matrix $\Sigma(x,t)$ with parameters $(x,t) \in \mathbf{Z} \times [0,\infty)$ by

$$\underline{\alpha} \cdot \Sigma(x,t) \underline{\alpha} = E_{eq(p,\rho)}[u_{\underline{\alpha}}(0,0)u_{\underline{\alpha}}(x,t)]$$

where $u_{\underline{\alpha}}(x,t) = \alpha(\xi_x(t)-p) + \beta(\eta_x(t)-\rho).$

Since $P_{eq(p,\rho)}$ is invariant under the translation, $\Sigma(x,t)$ is the covariance matrix of $(\xi_x(s), \eta_x(s))$ and its space-time translation $(\xi_{x+y}(s+t), \eta_{x+y}(s+t))$. Hence if we define

$$R(x,t) := \Sigma(x,t)\chi^{-1}(p,\rho),$$

then R(x-y, t-s) is the space-time correlation coefficient of $(\xi_x(t), \eta_x(t))$. The next theorem states that R(x, t) behaves like $R(x, t) \approx K_D(t, x)$ as $x, t \to \infty$, as being expected ([5]).

Theorem 2. For $\underline{J} = (J^1, J^2)^T \in C_0^{\infty}(\mathbf{R}) \times C_0^{\infty}(\mathbf{R})$

$$\lim_{N \to \infty} \sum_{x \in \mathbf{Z}} \mathbf{R}(x, N^2 t) \underline{J}(x/N) = \int_{-\infty}^{\infty} K_D(t, \theta) \underline{J}(\theta) d\theta.$$

Theorem 2 is deduced from (4). Indeed by (4),

(5)
$$\lim_{N \to \infty} \frac{1}{N} \sum_{x} \sum_{y} \underline{J}_{1}(y/N) \cdot R(x-y, N^{2}t) \underline{J}_{2}(x/N)$$
$$= \int_{-\infty}^{\infty} \underline{J}_{1}(\theta) \cdot U_{t} \underline{J}_{2}(\theta) d\theta$$

because the formula under the limit on the left side equals $E[(Y_{0,N}, \underline{J}_1) (Y_{t,N}, \underline{J}_2)]$. If the delta function could be taken for \underline{J}_1 , the relation of Theorem 2 would come out. For justification we take Fourier transform in (5). To this end let \hat{R} be the Fourier series with coefficients R:

$$\hat{R}(\lambda,t) = \hat{\Sigma}(\lambda,t)\chi^{-1}, \quad \lambda \in \mathbf{R}$$

 $\hat{\Sigma}(\lambda,t) = \sum_{x \in \mathbf{Z}} e^{i\lambda x} \Sigma(x,t).$

Lemma 3.

$$0 \le \hat{\Sigma}(\lambda, t) \le \hat{\Sigma}(\lambda, 0) = \chi.$$

Proof. If $a_x = e^{i\lambda x} \Sigma(x, t)$, then

$$\sum_{x=-k}^{k-1} \sum_{y=-k}^{k-1} a_{y-x} = \sum_{u=-2k}^{2k} (2k - |u|)a_u.$$

The right-hand side divided by 2k converges, as $k \to \infty$, to $\hat{\Sigma}(\lambda, t)$. Since S(t) is a symmetric operator, the first diagonal component of a_{u-x} may be expressed in the form

$$a_{y-x}^{11} = E^{\nu_{p,\rho}} \Big[e^{i\lambda y} S(t/2) \{\xi_y - p\} e^{-i\lambda x} S(t/2) \{\xi_x - p\} \Big],$$

and similarly for the other components; hence

$$\underline{\alpha} \cdot \hat{\Sigma}(\lambda, t) \underline{\alpha} = \lim_{k \to \infty} \frac{1}{2k} E^{\nu_{p,\rho}} \left| S(t/2) \left\{ \sum_{x=-k}^{k-1} e^{i\lambda x} [\alpha(\xi_x - p) + \beta(\eta_x - \rho)] \right\} \right|^2$$

The inequalities of the lemma now follow from the fact that S(t) is contraction in $L^2(\nu_{p,\rho})$. Q.E.D. Proof of Theorem 2. Rewriting the relation (5) by means of \hat{R} , we have

(6)
$$\lim_{N \to \infty} \int_{-N\pi}^{N\pi} \underline{\hat{J}}_{1}^{N}(\lambda) \cdot \hat{R}(\lambda/N, N^{2}t) \underline{\hat{J}}_{2}^{N}(-\lambda) d\lambda$$
$$= \int_{-\infty}^{\infty} \underline{\hat{J}}_{1}(\lambda) \cdot e^{-t\lambda^{2}D^{T}} \underline{\hat{J}}_{2}(-\lambda) d\lambda.$$

Here

$$\underline{\hat{J}}^{N}(\lambda) = \frac{1}{N} \sum \underline{J}(x/N) e^{i\lambda x/N}, \quad \underline{\hat{J}}(\lambda) = \int_{-\infty}^{\infty} \underline{J}(\theta) e^{i\lambda\theta} d\theta.$$

By the Poisson summation formula, $\underline{\hat{J}}^{N}(\lambda) = \sum_{x \in \mathbf{Z}} \underline{\hat{J}}(\lambda + 2\pi Nx)$. The class of J_1^i (i = 1, 2) in (6) may be extended to the set of rapidly decreasing functions. Let $\delta > 0$, $g_{\delta}(\theta) = (4\pi\delta)^{-1/2}e^{-\theta^2/(4\delta)}$ and $\underline{J}_1(\theta) =$ $g_{\delta}(\theta)\underline{\alpha}$. Then, $\hat{g}_{\delta}(\lambda) = e^{-\delta\lambda^2}$ and

$$e^{-\delta\lambda^2} \le \hat{g}_{\delta}^N(\lambda) \le e^{-\delta\lambda^2} + \frac{2e^{-\delta(\pi N)^2}}{1 - e^{-\delta(\pi N)^2}} \ (|\lambda| \le N\pi);$$

and writing \underline{J} for \underline{J}_2 in (6), we infer that

$$\lim_{N \to \infty} \int_{-N\pi}^{N\pi} e^{-\delta\lambda^2} \underline{\alpha} \cdot \hat{R}(\lambda/N, N^2 t) \underline{\hat{J}}^N(-\lambda) d\lambda$$
$$= \int_{-\infty}^{\infty} e^{-\delta\lambda^2} \underline{\alpha} \cdot e^{-t\lambda^2 D^T} \underline{\hat{J}}(-\lambda) d\lambda.$$

On taking the limit as $\delta \downarrow 0$ this relation is also valid for $\delta = 0$. The proof is complete. Q.E.D.

§3. Central Limit Theorem Variance

The canonical measure for the configurations on Λ_n with the number of particles m and the total energy E is the conditional law

$$P_{n,m,E}[\cdot] = \frac{\nu_{p,\rho}(\cdot \cap \{|\xi|_{\Lambda(n)} = m, |\eta|_{\Lambda(n)} = E\} | \mathcal{F}_{\mathbf{Z} \setminus \Lambda(n)})}{\nu_{p,\rho}(|\xi|_{\Lambda(n)} = m, |\eta|_{\Lambda(n)} = E)}.$$

Here for $\Lambda \subset \mathbf{Z}$, $|\xi|_{\Lambda} = \sum_{x \in \Lambda} \xi_x$ and $|\eta|_{\Lambda} = \sum_{x \in \Lambda} \eta_x$; \mathcal{F}_{Λ} stands for the σ -field in \mathcal{X} generated by $\eta_y, y \in \Lambda$. From the reversibility relation it follows that for any functions f and g of η and any bond $b \in \Lambda_n^*$,

$$E_{n,m,E}[c_b(\eta)f(S^b\eta)g(\eta)] = E_{n,m,E}[c_{b'}(\eta)f(\eta)g(S^{b'}\eta)],$$

where b' is the bond obtained from b by reversing its direction. The Dirichlet form for $L_{\Lambda(n)}$ accordingly is given by

$$\mathcal{D}_{n,m,E}\{f\} := -E_{n,m,E}[fL_{\Lambda(n)}f]$$
$$= \sum_{b\in\Lambda^*(n)} \mathcal{D}^b_{n,m,E}\{f\}$$

where $\mathcal{D}_{n,m,E}^{b}\{f\} = \frac{1}{2}E_{n,m,E}[(\Gamma_{b}f)^{2}c_{b}],$; the corresponding bilinear form is given by

$$\mathcal{D}_{n,m,E}^{01}(f,g) = -\frac{1}{2} E_{n,m,E}[f \cdot (L_{01} + L_{10})g] = \frac{1}{2} E_{n,m,E}[(\Gamma_{01}f)(\Gamma_{01}g)c_{01}].$$

We introduce a function space on which the central limit theorem variance is well defined. The numbers p and ρ are fixed so that $0 and <math>\rho \ge p$ unless otherwise specified. They will be dropped from the notations if used as sub- or superscripts.

Definition 4. Let \mathcal{G} denote the linear space of all functions $h \in \mathcal{F}_c$ of the form

(7)
$$L_I H := \sum_{b \in I^*} L_b H = h,$$

where I is an interval of \mathbf{Z} and H is a local function such that for some positive integer K,

(8)
$$\sum_{b \in I^*} (\Gamma_b H(\eta))^2 \le K \sum_{x \in I} (\eta_x)^K, \ \eta \in \mathcal{X}.$$

(This bound, which may be replaced by a weaker one, is adopted only for convenience sake. We may take I as the minimal of intervals Λ such that $h \in \mathcal{F}_{\Lambda}$.)

If $h \in \mathcal{F}_c$ satisfies

$$E^{\nu}[h \mid \mathcal{F}_{\mathbf{Z} \setminus I} \lor \sigma\{|\xi|_I, |\eta|_I\}] = 0 \text{ a.s.},$$

then it admits a representation (7) but the condition (8) may fail to hold. The functions w_{01}^P, w_{01}^E are in \mathcal{G} : the requirements are satisfied with $I = \{0, 1\}$ and $H = -\xi_0$ and $H = -\eta_0$, respectively. For each positive integer K put

$$\mathcal{F}_c^K = \{ f \in \mathcal{F}_c : |f(\eta)| \le K \sum_{|x| \le K} (\eta_x)^K \}$$

Then the linear space $L\mathcal{F}_c^K$ is obviously included in \mathcal{G} .

Let $L_{n,m,E}$ denote the restriction of $L_{\Lambda(n)}$ to the space of functions on $\mathcal{X}_{n,m,E} := \{\eta \in \mathcal{X}_{\Lambda(n)} : |\xi|_{\Lambda(n)} = m, |\eta|_{\Lambda(n)} = E\}$, and for $h, g \in \mathcal{G}$, define

$$V_{n,m,E}(h,g) = \frac{1}{2n} E_{n,m,E} \left[\sum_{|x| < n'} \tau_x h \cdot (-L_{n,m,E})^{-1} \sum_{|x| < n'} \tau_x g \right],$$

where n' is the maximal integer among those for which both sums in the brackets are $\mathcal{F}_{\Lambda(n)}$ -measurable.

Theorem 5. For every $h, g \in \mathcal{G}$ and for every $p > 0, \rho \ge p$, there exists a following limit

$$\lim_{m/2n \to p, E/2n \to \rho} V_{n,m,E}(h,g),$$

where the limit is taken in such a way that n, m and E are sent to infinity so that $m/2n \rightarrow p$ and $E/2n \rightarrow \rho$. The functional defined by this limit makes a bilinear form on \mathcal{G} . If it is denoted by

$$V(h,g) = V^{p,\rho}(h,g),$$

then the subspace

$$\mathcal{G}_{\circ} := \{ \alpha w_{01}^{P} + \beta w_{01}^{E} - Lf : \alpha, \beta \in \mathbf{R}, f \in \mathcal{F}_{c}^{K} \text{ for some } K \}$$

is dense in \mathcal{G} with respect to the quadratic form $V^{p,\rho}\{h\} := V^{p,\rho}(h,h)$.

Theorem 5 says that every $h \in \mathcal{G}$ can be approximated by an element of \mathcal{G}_{\circ} in the metric $\sqrt{V^{p,\rho}}$ as accurately as one needs. To apply this to the gradients $\nabla^{-}\xi := \xi_0 - \xi_1$ and $\nabla^{-}\eta := \eta_0 - \eta_1$, we need the following lemma (cf. [6]).

Lemma 6. Suppose that (1) and (2) are satisfied. Then both $\nabla^{-}\xi$ and $\nabla^{-}\eta$ are in \mathcal{G} . Let H^{P} and H^{E} stand for the corresponding H's (with $I(h) = \{0, 1\}$). Then

$$\Gamma_{01}H^P = \xi_0/c_{\text{ex}}(\eta_0) \quad and \quad \Gamma_{01}H^E = \eta_0/c_{\text{ex}}(\eta_0) \quad if \quad \xi_0(1-\xi_1) = 1$$

and $\Gamma_{01}H^P = 0$ if $\xi_0(1-\xi_1) = 0$; moreover there exists a constant $\delta > 0$ such that $\delta \leq \Gamma_{01}H^E \leq 1/\delta$ whenever $\mathbf{1}(\eta_0 \geq 2)\xi_1 = 1$.

The proof of Theorem 5 may be carried out along the same lines as in [7] or [8].

§4. The Least Upper Bound of Spectrum

In this section we are concerned with the Markov process whose infinitesimal generator is \mathcal{L} , a self-adjoint operator on $L^2(\nu_{p,\rho})$ (see Theorem 1). Let $\mathcal{P}(\mathcal{X})$ be the set of all probability measures on \mathcal{X} . Define a functional $\mathcal{I}(\mu)$ of $\mu \in \mathcal{P}(\mathcal{X})$ by

$$\mathcal{I}(\mu) = E^{\nu}[\varphi(-\mathcal{L})\varphi], \text{ where } \varphi = \sqrt{d\mu/d\nu}$$

if μ is absolutely continuous relative to $\nu = \nu_{p,\rho}$ and φ is in the domain of $\sqrt{-\mathcal{L}}$; and $\mathcal{I}(\mu) = \infty$ otherwise. For a local function G on \mathcal{X} let $\Omega_{o}\{G+\mathcal{L}\}$ denote the least upper bound of the spectrum of the operator $G+\mathcal{L}$. It has the variational representation

$$\Omega_{\circ}\{G+\mathcal{L}\} = \sup_{\mu \in \mathcal{P}(\mathcal{X})} \Big(E^{\mu}[G] - \mathcal{I}(\mu) \Big).$$

Given a positive integer n and $h \in \mathcal{G}$, let n' be the maximal integer such that $\tau_y h \in \mathcal{F}_{\Lambda(n)}$ if |y| < n', and define a function $G_n = G_n^h$ by

$$G_n = \frac{1}{2n} \sum_{y:|y| < n'} \tau_y h.$$

Theorem 7. Let $h \in \mathcal{G}$. Let the interval I = I(h) and the function H be chosen so that

(9) $\sum_{b \in I^*} (\Gamma_b H)^2 c_b \le A \sum_{x \in I} \eta_x^K$

where $\eta_x^K = (\eta_x)^K$, and A and K are positive constants with $K \ge 1$. Let $G_n = G_n^h$ be defined as above. Also define a function $\zeta_n^l(\eta)$ for $l \ge 1$ by

$$\zeta_n^l(\eta) = \frac{1}{2n} \sum_{x:|x| \le n} \eta_x^K \mathbf{1}(\eta_x > l).$$

Then, if $\lambda \in (-1, 1)$, $J \in C_0^2(\mathbf{R})$, and C is a positive constant such that $A|I|^2(1-2^{-K})^{-1} \leq C$, it holds that for all $n, l \in \mathbf{N}$,

$$\overline{\lim_{N \to \infty}} \Omega_{\circ} \left\{ \sum_{x \in \mathbf{Z}} \left[N^{\lambda} J(x/N) \tau_x G_n - \frac{C}{N} J^2(x/N) \tau_x \zeta_n^l \right] + N^{1+2\lambda} \mathcal{L} \right\} \\
\leq ||J||_{L^2}^2 \sup_{\substack{m, E: E/m \leq 2l}} V_{n,m,E} \{h\}.$$

where $||J||_{L^2}^2 = \int_{\mathbf{R}} J^2 d\theta$ and the supremum is taken over all couples of positive integers m and E such that $m \leq E \leq 2lm$.

Proof. The proof is divided into three steps.

Step 1. This step is quite similar to a corresponding argument in [7], so we provide only an outline. The supremum of the spectrum Ω_{\circ} that is to be estimated may be given by the variational formula

$$\Omega^{N} = \sup_{\mu \in \mathcal{P}(\mathcal{X})} E^{\mu} \left[\sum_{x \in \mathbf{Z}} \left[N^{\lambda} j_{x} \tau_{x} G_{n} - \frac{C}{N} j_{x}^{2} \tau_{x} \zeta_{n}^{l} \right] - N^{1+2\lambda} \mathcal{I}(\mu) \right].$$

where we put $j_x = J(x/N)$.

Let $\varphi = \sqrt{d\mu/d\nu}$ and $\mathcal{D}^{\Lambda} = \sum_{b \in \Lambda^*} \mathcal{D}^b$, then $\mathcal{I}(\mu) = \sum_{b \in \mathbf{Z}^*} \mathcal{D}^b \{\varphi\} = \frac{1}{2n} \sum_{x \in \mathbf{Z}} \mathcal{D}^{\Lambda(n)} \{\tau_x \varphi\}$. We substitute this into the variational expression given above. To compute the expectation appearing in it we first take the conditional expectation conditioned on $\omega = \eta|_{\Lambda_n^c}$. If $\mu(\cdot|\omega)$ stands for this conditional law, then $E^{\mu}[G_n]$ is expressed as an integral of $F(\omega) = E^{\mu(\cdot|\omega)}[G_n]$ by μ . We have a similar expression for the form $\mathcal{D}^{\Lambda(n)}\{\varphi\}$, which may be naturally restricted to the space $L^2(\nu^{\Lambda(n)}, \mathcal{X}_{\Lambda(n)})$ (ν^{Λ} is the product measure on \mathcal{X}_{Λ} with the same common one-site marginal as that of $\nu = \nu_{p,\rho}$). Rewriting μ for $\mu(\cdot|\omega) \in \mathcal{P}(\mathcal{X}_{\Lambda(n)})$ and taking the supremum in μ , we see that Ω^N is not greater than

$$\frac{N^{1+2\lambda}}{2n} \sum_{x \in \mathbf{Z}} \sup_{\mu \in \mathcal{P}(\mathcal{X}_{\Lambda(n)})} \left\{ \frac{2n}{N^{1+2\lambda}} E^{\mu} \left[N^{\lambda} j_x G_n - \frac{C}{N} j_x^2 \zeta_n^l \right] - \mathcal{D}^{\Lambda(n)} \{\varphi\} \right\}.$$

Decomposing $\mathcal{X}_{\Lambda(n)}$ into the ergodic classes $\mathcal{X}_{n,m,E}$ we may express $\mathcal{D}^{\Lambda(n)}\{\varphi\}$ in the form $\mathcal{D}^{\Lambda(n)}\{\varphi\} = \sum_{m} \sum_{E} p_{m,E} \mathcal{D}_{n,m,E}\{\varphi_{m,E}\}$, where

 $p_{m,E} = \mu(\mathcal{X}_{n,m,E})$ and $\varphi_{m,E}$ is the square root of a probability density on $\mathcal{X}_{n,m,E}$. As a consequence we see that if

$$\Omega_{n,m,E,x}^{N} = \sup_{\mu \in \mathcal{P}(\mathcal{X}_{n,m,E})} \left\{ \frac{2nj_x}{N^{1+\lambda}} E^{\mu}[G_n] - \frac{2nCj_x^2}{N^{2+2\lambda}} E^{\mu}[\zeta_n^l] - \mathcal{D}_{n,m,E}\{\varphi\} \right\},\,$$

then

(10)
$$\Omega^N \leq \frac{N^{1+2\lambda}}{2n} \sum_{x=1}^N \sup_{m,E} \Omega^N_{n,m,E,x}.$$

Step 2. Let $\langle \cdot \rangle_{n,m,E}$ stand for the expectation by $P_{n,m,E}$. For H introduced in Definition 4 and for any $\mathcal{F}_{\Lambda(n)}$ -measurable function u, we have the following identity

(11)
$$\langle u\tau_x h \rangle_{n,m,E} = -\frac{1}{2} \sum_{b \in I^*(h)} \left\langle \Gamma_{b+x} u \cdot \tau_x (c_b \Gamma_b H) \right\rangle_{n,m,E}$$

or in terms of the Dirichlet form

(12)
$$\langle u\tau_x h \rangle_{n,m,E} = -\sum_{b \in I^*(h)} \mathcal{D}_{n,m,E}^{b+x}(u,\tau_x H).$$

(Here b + x is the oriented bond obtained by translating b by x.) From this it follows that

$$E^{\mu}[G_n] = -\frac{1}{2n} \sum_{|x| < n'} \sum_{b \in I^*(h)} \mathcal{D}_{n,m,E}^{b+x}(\tau_x H, \varphi^2).$$

A simple computation verifies that the terms $|\mathcal{D}_{n,m,E}^{b}(F,\varphi^{2})|$, where $F \in C(\mathcal{X}_{n,m,E})$, are bounded by

$$\sqrt{\frac{1}{2}\Big\langle \Big[(\Gamma_b F)^2 c_b + (\Gamma_{b'} F)^2 c_{b'} \Big] \varphi^2 \Big\rangle_{n,m,E}} \sqrt{\mathcal{D}^b_{n,m,E} \{\varphi\}}.$$

where b' is the bond b but reversely oriented. By employing Schwarz inequality and the assumption (9) on H it therefore follows that $|E^{\mu}[G_n]|$ is at most

$$\frac{1}{2n}\sqrt{\sum_{|x|
$$\leq \frac{|I|}{n}\sqrt{A\sum_{|x|\leq n}\left\langle \eta_x^K\varphi^2\right\rangle_{n,m,E}}\sqrt{\mathcal{D}_{n,m,E}\{\varphi\}}.$$$$

By the inequality $2ab - a^2 \leq b^2$ this shows that

(13)
$$\frac{2nj_x}{N^{1+\lambda}}E^{\mu}[G_n] - \mathcal{D}_{n,m,E}\{\varphi\} \le \frac{A|I|^2 j_x^2}{N^{2+2\lambda}} \sum_{|x|\le n} \left\langle \eta_x^K \varphi^2 \right\rangle_{n,m,E}$$

Since $(m^{-1} \sum \eta_x)^K \leq m^{-1} \sum \eta_x^K$, the condition $E = \sum \eta_x > 2lm$ implies the inequality $2^{-K} \sum \eta_x^K \geq l^K m$, which in turn implies that

$$2n\zeta_n^l = \sum \eta_x^K \mathbf{1}(\eta_x > l) \ge \sum \eta_x^K - l^K m \ge (1 - 2^{-K}) \sum \eta_x^K .$$

This combined with (13) shows that if the constant C is chosen so that $A|I|^2 \leq (1-2^{-K})C$, then

$$\Omega^N_{n,m,E,x} \leq 0$$
 whenever $E/m > 2l$,

and accordingly that the supremum over the pairs of m and E in (10) may be restricted to those satisfying $E/m \leq 2l$. Consequently

(14)
$$\Omega^{N} \leq \frac{N^{1+2\lambda}}{2n} \sum_{x \in \mathbf{Z}} \sup_{m,E:E/m \leq 2l} \Omega^{N}_{n,m,E,x}.$$

Step 3. Now we apply the following estimate for the spectrum of the Schrödinger type operator $L_{n,m,E} + F$ with $F \in C(\mathcal{X}_{n,m,E})$ satisfying $\langle F \rangle_{n,m,E} = 0$:

(15)
$$\Omega_{\circ}\{F + L_{n,m,E}\} \leq \langle F(-L_{n,m,E})^{-1}F \rangle_{n,m,E} + \frac{4}{\kappa_n^2} \|F\|_{\infty}^3,$$

where $\kappa_n = \kappa_{n,m,E}$ is the second eigenvalue of $-L_{n,m,E}$ (cf. [7],[1] etc.). Taking $F = (2nj_x/N^{1+\lambda})G_{n,m,E}$ in (15), where $G_{n,m,E} = G_n|_{\mathcal{X}_{n,m,E}}$,

$$\begin{aligned} \Omega_{n,m,E,x}^{N} &\leq & \Omega_{\circ}\{(2nj_{x}/N^{1+\lambda})G_{n,m,E} + L_{n,m,E}\}\\ &\leq & (2n)V_{n,m,E}\left\{\frac{j_{x}}{N^{1+\lambda}}h\right\} + \frac{4}{\kappa_{n}^{2}} \cdot \left[\frac{2nj_{x}\|G_{n,m,E}\|_{\infty}}{N^{1+\lambda}}\right]^{3}\\ &= & \frac{2nj_{x}^{2}}{N^{2+2\lambda}}V_{n,m,E}\{h\} + O\left(\frac{1}{N^{3+3\lambda}}\right). \end{aligned}$$

From (14) we thus obtain $\lim_{N\to\infty} \Omega^N \leq ||J||_{L^2}^2 \sup_{m,E:E/m\leq 2l} V_{n,m,E}\{h\}$, the required bound. Q.E.D.

The next theorem is essentially a corollary of Theorem 7.

Theorem 8. Let $h \in \mathcal{G}$ and put

$$F^N(\eta) = \sqrt{N} \sum_{x \in \mathbf{Z}} J(x/N) \tau_x h(\eta).$$

Then there exists a constant C such that for all positive constants β and l,

$$\begin{split} \overline{\lim_{N \to \infty}} E_{\text{eq}} \left| \int_0^T F^N(\eta(N^2 t)) dt \right| &\leq \beta T ||J||_{L^2}^2 \sup_{p_o, \rho_o: \rho_o/p_o \leq l} V^{p_o, \rho_o}\{h\} \\ &+ (\log 2)/\beta + (C\beta)/l. \end{split}$$

Proof. We may replace F^N by

$$F_n^N := \sqrt{N} \sum_{x \in \mathbf{Z}} J(x/N) \frac{1}{2n} \sum_{y: |y-x| < n'} \tau_y h$$

In fact if

$$a_{N,n}^{x} = \frac{N}{2n^{2}} \sum_{y: |y-x| < n'} [J(x/N) - J(y/N)],$$

then $|a_{N,n}^x| \leq \int_{-n/N}^{n/N} |J''(s+N^{-1}x)| ds$ and the difference

$$F^N - F_n^N = \frac{n}{\sqrt{N}} \sum_{x \in \mathbf{Z}}^N a_{N,n}^x \tau_x h$$

is obviously negligible under the equilibrium measure. Introducing the random variable $X^N = \int_0^T F_n^N(\eta(N^2t))dt$, we may write $E_{\text{eq}}|X^N|$ for what to estimate. Let $K \ge 1$ be a constant for which the condition (9) is satisfied. Let ζ_n^l be a function defined in Theorem 7 and put

$$Y^N = \int_0^T \frac{C}{N} \sum_{x \in \mathbf{Z}} J^2(x/N) \tau_x \zeta_n^l(\eta(N^2 t)) dt.$$

Then by Jensen's inequality and the Feynman-Kac formula

$$\begin{split} &E_{\text{eq}}[|X^{N}| - \beta Y^{N}] \\ &\leq \frac{1}{\beta} \log \max_{+,-} E_{\text{eq}}[e^{\pm \beta X^{N} - \beta^{2}Y^{N}}] + \frac{\log 2}{\beta} \\ &\leq \frac{T}{\beta} \max_{+,-} \Omega_{\circ} \Big\{ \pm \beta F^{N} - \frac{C}{N} \sum_{x \in \mathbf{Z}} |\beta J(x/N)|^{2} \tau_{x} \zeta_{n}^{l} + N^{2}L \Big\} + \frac{\log 2}{\beta}. \end{split}$$

According to Theorems 7 and 5, if C is chosen suitably large, then

$$\overline{\lim_{N\to\infty}} E_{\rm eq}[|X^N| - \beta Y^N] \le \beta T ||J||_{L^2}^2 \sup_{p_o, \rho_o: \rho_o/p_o \le l} V^{p_o, \rho_o}\{h\} + \frac{\log 2}{\beta}.$$

This gives the required inequality since $E_{eq}[\beta Y^N] \leq C_1 \beta / l$. Q.E.D.

§5. Upper and Lower Bounds For $D(p, \rho)$

Let $\underline{\kappa} = \underline{\kappa}(p,\rho)$ and $\overline{\kappa} = \overline{\kappa}(p,\rho)$ stand for the eigen-values of $D(p,\rho)$ such that $\underline{\kappa} \leq \overline{\kappa}$. We here prove that for some positive constants m and M,

$$\frac{m}{p+(1+\lambda)^{-1}} \le \underline{\kappa} \le \bar{\kappa} \le M(1+\lambda) \qquad (\rho \ge p > 0),$$

where $\lambda = \lambda(p, \rho)$ is the parameter appearing in the definition of $\nu_{p,\rho}$.

Proof of the upper bound. We shall apply the fact that if \hat{c}_{\circ} is a symmetric 2×2 matrix and $\hat{c}_{\circ} \geq \hat{c}$, then $\operatorname{Tr}(\hat{c}_{\circ}\chi^{-1}) \geq \operatorname{Tr}(\hat{c}\chi^{-1})$. Let $\langle \cdot \rangle$ indicate the expectation under $\nu_{p,\rho}$. Then

$$\begin{aligned} \underline{\alpha} \cdot \hat{c}(p,\rho) \underline{\alpha} &\leq \left\langle \left(\Gamma_{01} \{ \alpha \xi_0 + \beta \eta_0 \} \right)^2 c_{01} \right\rangle \\ &= \left\langle \{ \alpha \xi_0 + \beta \eta_0 \}^2 (1 - \xi_1) c_{\mathrm{ex}}(\eta_0) \right\rangle + \beta^2 \langle \xi_0 \xi_1 c_{\mathrm{zr}}(\eta_0) \rangle \end{aligned}$$

In view of the conditions (2) and (3), $c_{\text{ex}}(\eta_0) \leq C[c_{\text{zr}}(\eta_0) + \mathbf{1}(\eta_0 = 1)]$. By combining this with the relations $\langle c_{\text{zr}}(\eta_0) \rangle = p\lambda$, $\langle \eta_0 c_{\text{zr}}(\eta_0) \rangle = (\rho + p)\lambda$ and $\langle \eta_0^2 c_{\text{zr}}(\eta_0) \rangle = (\langle \eta_0^2 \rangle + 2\rho + p)\lambda$, the last line above is dominated by $\beta^2 p^2 \lambda$ plus a constant multiple of

$$(1-p)[\alpha^2 p\lambda + 2\alpha\beta(\rho+p)\lambda + \beta^2(\langle \eta_0^2 \rangle + 2\rho+p)\lambda + (\alpha+\beta)^2\langle \mathbf{1}(\eta_0=1)\rangle].$$

Recalling what is remarked at the beginning of this proof, noticing det $\chi = (p\langle \eta_0^2 \rangle - \rho^2)(1-p)$ so that

$$\chi^{-1}(p,\rho) = \frac{1}{(p\langle\eta_0^2\rangle - \rho^2)(1-p)} \begin{pmatrix} \langle\eta_0^2\rangle - \rho^2 & -(1-p)\rho \\ -(1-p)\rho & (1-p)p \end{pmatrix}$$

and carrying out simple computations, we see that

$$\operatorname{Tr}(\hat{c}\chi^{-1}) \leq C_1[\lambda + p^2(\lambda^2)(p\langle \eta_0^2 \rangle - \rho^2)^{-1} + \lambda].$$

Since $\bar{\kappa} + \underline{\kappa} = \text{Tr}(\hat{c}\chi^{-1})$, these yield the required upper bound, if we can find a positive constant δ so that

(16)
$$p\langle \eta_0^2 \rangle - \rho^2 \ge \delta p^2 \lambda.$$

(This is certainly true for $\lambda \leq 1$.) To this end set $\ell = \ell(\lambda) = \max\{k : c_{\rm zr}(k) \leq \lambda\}$ and $p_k = \nu_{p,\rho}\{\eta : \eta_0 = k\}/p$. Noticing that $p_{k+1}/p_k = \lambda/c_{\rm zr}(k+1)$, we infer from $|c_{\rm zr}(k) - c_{\rm zr}(\ell)| \leq a_1|k-\ell|$ that for all sufficiently large λ ,

$$p_k \ge p_\ell \exp\{-a_1(k-\ell)^2/\lambda\}$$
 if $|k-\ell| \le 2\sqrt{\lambda}$,

or, what we are about to apply, $\min\{\sum_{k < \ell - \sqrt{\lambda}} p_k, \sum_{k > \ell + \sqrt{\lambda}} p_k\} \ge \delta$ with some constant $\delta > 0$ independent of λ . Hence

$$\begin{aligned} \langle \eta_0^2 \rangle / p - (\rho/p)^2 &= E^{\nu_{p,\rho}} [|\eta_0 - \rho/p|^2 \,|\, \eta_0 > 0] \\ &\geq \lambda P^{\nu_{p,\rho}} [|\eta_0 - \rho/p| \ge \sqrt{\lambda} \,|\, \eta_0 > 0] \ge \delta \lambda. \end{aligned}$$

Thus we have shown (16).

Proof of the lower bound. Let $A = A(p, \rho)$ be a 2×2 symmetric matrix whose quadratic form is

$$\underline{\alpha} \cdot A\underline{\alpha} = V\{\alpha \nabla^{-} \xi + \beta \nabla^{-} \eta\}.$$

Then $D(p,\rho) = \chi(p,\rho)A^{-1}(p,\rho)$ and it holds that $V\{\alpha\nabla^{-}\xi + \beta\nabla^{-}\eta\} \leq \langle (\Gamma_{01}\{\alpha H^{P} + \beta H^{E}\})^{2}c_{01}\rangle$ (cf. [6]), where H^{P} and H^{E} are functions introduced in Lemma 6. We shall apply the inequality

(17)
$$\underline{\kappa} \ge \frac{\det(\chi A^{-1})}{\operatorname{Tr}(\chi A^{-1})} = \frac{1}{\operatorname{Tr}(\chi^{-1}A)}.$$

By employing Lemma 6 as well as the conditions (1) through (3) we see that for some constant C,

$$\begin{array}{rcl} \underline{\alpha} \cdot A\underline{\alpha} & \leq & \langle (\Gamma_{01}\{\alpha H^{P} + \beta H^{E}\})^{2}c_{01}\rangle \\ & \leq & C \left\langle \frac{\xi_{0}(1-\xi_{1})}{c_{\mathrm{zr}}(\eta_{0}+1)}(\alpha\xi_{0}+\beta\eta_{0})^{2} \right\rangle + C\beta^{2}\langle\xi_{1}c_{\mathrm{zr}}(\eta_{0})\rangle. \end{array}$$

One observes that the right-hand side equals C times

$$\alpha^{2}(1-p)\frac{p}{\lambda}\left(1-\frac{1}{Z_{\lambda}}\right)+2\alpha\beta(1-p)\frac{\rho-p}{\lambda}+\beta^{2}\left(\frac{1-p}{\lambda}\langle(\eta_{0}-\xi_{0})^{2}\rangle+p^{2}\lambda\right).$$

Noticing that $Z_{\lambda} = 1 + \lambda/c_{\rm zr}(2) + O(\lambda^2)$ as $\lambda \downarrow 0$ and $\nu_{p,\rho} \{\eta_0 = 2\} = p\lambda/c_{\rm zr}(2)Z_{\lambda}$, and applying the inequality used in the preceding proof, we infer that

(18)
$$\det(\chi)\operatorname{Tr}(\chi^{-1}A) \le C'p^2(1-p)\lambda \quad \text{for} \quad 0 < \lambda < 1.$$

For large values of λ we make an elementary computation (as we did for the upper bound) to see that $\det(\chi) \operatorname{Tr}(\chi^{-1}A)$ is at most C times

$$\frac{1-p}{\lambda}(2-p)(p\langle\eta_0^2\rangle-\rho^2)+\frac{(1-p)^2p^2}{\lambda}-\frac{(1-p)p}{\lambda Z_{\lambda}}(\langle\eta_0^2\rangle-\rho^2)+(1-p)p^3\lambda.$$

Hence, in view of (16),

$$\operatorname{Tr}(\chi^{-1}A) \le C'\left[\frac{1}{\lambda} + p\right] \ (\lambda \ge 1).$$

This together with (17) and (18) concludes the asserted lower bound of $\underline{\kappa}$.

References

- C. Kipnis and C. Landim, Scaling limits of particle systems, Springer, 1999.
- [2] C. Landim, S. Sethuraman and S. Varadhan, Spectral Gap for Zero-Range Dynamics, Ann. Probab. 24 (1996), pp. 1871-1902.
- [3] Y. Nagahata, Fluctuation dissipation equation for lattice gas with energy, to appear in Jour. Stat. Phys., Vol. 110 Nos.1/2 (2003) 219-246.
- [4] Y. Nagahata and K. Uchiyama: Spectral gap for zerorange-exclusion dynamics, preprint
- [5] H. Spohn, Large scale dynamics of interacting particles, Text and Monographs in Physics, Springer, 1991.
- [6] K. Uchiyama, Equilibrium fluctuations for zero-range-exclusion processes, preprint
- [7] S.R.S. Varadhan, Nonlinear diffusion limit for a system with nearest neighbor interactions - II, Asymptotic problems in probability theory: stochastic models and diffusions on fractals (eds. K.D. Elworthy and N. Ikeda), Longman (1993), pp. 75-128.
- [8] S.R.S. Varadhan and H.T. Yau., Diffusive limit of lattice gases with mixing condition, Asian J.Math vol. 1 (1997), 623-678.

Department of Mathematics Tokyo Institute of Technology Oh-okayama, Meguro Tokyo 152-8551 Japan E-mail address: uchiyama@math.titech.ac.jp