Zero-Range-Exclusion Particle Systems

Kôhei Uchiyama

§1. Introduction

Let \mathbf{T}_{N} denote the one-dimensional discrete torus $\mathbf{Z} / N \mathbf{Z}$ represented by $\{1, \ldots, N\}$. The zero-range-exclusion process that we are to introduce and study in this article is a Markov process on the state space $\mathcal{X}^{N}:=$ $\mathbf{Z}_{+}^{\mathbf{T}_{N}}\left(\mathbf{Z}_{+}=\{0,1,2, \ldots\}\right)$. Denote by $\eta=\left(\eta_{x}, x \in \mathbf{T}_{N}\right)$ a generic element of \mathcal{X}^{N}, and define

$$
\xi_{x}=\mathbf{1}\left(\eta_{x} \geq 1\right)
$$

(namely, ξ_{x} equals 0 or 1 according as η_{x} is zero or positive). The process is regarded as a 'lattice gas' of particles having energy. The site x is occupied by a particle if $\xi_{x}=1$ and vacant otherwise. Each particle has energy, represented by η_{x}, which takes discrete values $1,2, \ldots$ If y is a nearest neighbor site of x and is vacant, a particle at site x jumps to y at rate $c_{\mathrm{ex}}\left(\eta_{x}\right)$, where c_{ex} is a positive function of $k=1,2, \ldots$ Between two neighboring particles the energies are transferred unit by unit according to the same stochastic rule as that of the zero-range processes. In this article we shall give some results related to the hydrodynamic scaling limit for this model.

To give a formal definition of the infinitesimal generator of the process we introduce some notations. Let $b=(x, y)$ be an oriented bond of \mathbf{T}_{N}, namely x and y are nearest neighbor sites of \mathbf{T}_{N}, and (x, y) stands for an ordered pair of them. Define the exclusion operator π_{b} and zero-range operator ∇_{b} attached to b which act on $f \in C\left(\mathcal{X}^{N}\right)$ by

$$
\pi_{b} f(\eta)=f\left(S_{\mathrm{ex}}^{b} \eta\right)-f(\eta) \quad \text { and } \quad \nabla_{b} f(\eta)=f\left(S_{\mathrm{zr}}^{b} \eta\right)-f(\eta)
$$

where the transformation $S_{\mathrm{ex}}^{b}: \mathcal{X}^{N} \mapsto \mathcal{X}^{N}$ is defined by

$$
\left(S_{\mathrm{ex}}^{b} \eta\right)_{z}= \begin{cases}\eta_{y}, & \text { if } z=x \\ \eta_{x}, & \text { if } z=y \\ \eta_{z}, & \text { otherwise }\end{cases}
$$

Received December 26, 2002.
Revised March 24, 2003.
if $\xi_{x}=1$ and $\xi_{y}=0 ;$ and $S_{\mathrm{zr}}^{b} \eta$ by

$$
\left(S_{\mathrm{zr}}^{b} \eta\right)_{z}= \begin{cases}\eta_{x}-1, & \text { if } z=x \\ \eta_{y}+1, & \text { if } z=y \\ \eta_{z}, & \text { otherwise }\end{cases}
$$

if $\eta_{x} \geq 2$ and $\xi_{y}=1$; and in the remaining case of η, both $S_{\mathrm{ex}}^{b} \eta$ and $S_{\mathrm{zr}}^{b} \eta$ are set to be η, namely

$$
\begin{array}{ll}
S_{\mathrm{ex}}^{b} \eta=\eta \quad \text { if } \quad \xi_{x}\left(1-\xi_{y}\right)=0 \\
S_{\mathrm{zr}}^{b} \eta=\eta \quad \text { if } \quad \mathbf{1}\left(\eta_{x} \geq 2\right) \xi_{y}=0
\end{array}
$$

Let c_{ex} and c_{zr} be two non-negative functions on \mathbf{Z}_{+}and define for $b=(x, y)$

$$
L_{b}=c_{\mathrm{ex}}\left(\eta_{x}\right) \pi_{b}+c_{\mathrm{zr}}\left(\eta_{x}\right) \nabla_{b}
$$

Let \mathbf{T}_{N}^{*} denote the set of all oriented bonds in \mathbf{T}_{N} :

$$
\mathbf{T}_{N}^{*}=\left\{b=(x, y): x, y \in \mathbf{T}_{N},|x-y|=1\right\}
$$

Then the infinitesimal generator L_{N} of our Markovian particle process on \mathbf{T}_{N} is given by

$$
L_{N}=\sum_{b \in \mathbf{T}_{N}^{*}} L_{b}
$$

It is assumed that for some positive constant $a_{0}, c_{\mathrm{ex}}(k) \geq a_{0}$ for $k \geq 1$ and $c_{\mathrm{zr}}(k) \geq a_{0}$ for $k \geq 2$. This especially implies that the lattice gas on \mathbf{T}_{N} with both the number of particles and the total energy being given is ergodic. We call the Markov process generated by L_{N} the zero-rangeexclusion process. For the sake of convenience we set

$$
c_{\mathrm{ex}}(0)=0 \quad \text { and } \quad c_{\mathrm{zr}}(0)=c_{\mathrm{zr}}(1)=0
$$

We need some technical conditions on the functions c_{ex} and c_{zr} : there exist positive constants $a_{1}, a_{2}, a_{3}, a_{4}$ and an integer k_{0} such that

$$
\begin{equation*}
\left|c_{\mathrm{zr}}(k)-c_{\mathrm{zr}}(k+1)\right| \leq a_{1} \quad \text { for all } k \geq 1 \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
c_{\mathrm{zr}}(k)-c_{\mathrm{zr}}(l) \geq a_{2} \quad \text { whenever } k \geq l+k_{0} \tag{2}\\
a_{3} k \leq c_{\mathrm{ex}}(k) \leq a_{4} k \quad \text { for all } k \geq 1
\end{gather*}
$$

These conditions are imposed mainly for guaranteeing an estimate of the spectral gaps for the local processes ([4]). The conditions (1) and
(2) are the same as in the paper [2] where is carried out an estimation of the spectral gap for the zero-range processes.

We shall also write $\pi_{x, y}, S_{\mathrm{ex}}^{x, y}, L_{x, y}$, etc. for $\pi_{b}, S_{\mathrm{ex}}^{b}, L_{b}$, etc.

Grand Canonical Measures and Dirichlet Form.

For a pair of constants $0<p<1$ and $\rho>p$ let $\nu_{p, \rho}=\nu_{p, \rho}^{\mathbf{T}_{N}}$ denote the product probability measure on \mathcal{X}^{N} whose marginal laws are given by

$$
\nu_{p, \rho}\left(\left\{\eta: \eta_{x}=l\right\}\right):= \begin{cases}\frac{1-p}{p} & \text { if } l=0 \\ \frac{\text { if } l=1}{Z_{\lambda(p, \rho)}} & \text { if } l \geq 2 \\ \frac{p}{Z_{\lambda(p, \rho)}} \cdot \frac{(\lambda(p, \rho))^{l-1}}{c_{\mathrm{zr}}(2) c_{\mathrm{zr}}(3) \cdots c_{\mathrm{zr}}(l)} & \text { if }\end{cases}
$$

for all x. Here $Z_{\lambda}:=1+\sum_{l=2}^{\infty} \frac{\lambda^{l-1}}{c_{\mathrm{zr}}(2) c_{\mathrm{zr}}(3) \cdots c_{\mathrm{zr}}(l)}$ and $\lambda(p, \rho)$ is a positive constant depending on p and ρ and determined uniquely by the relation $E^{\nu_{p, \rho}}\left[\eta_{x}\right]=\rho$, where $E^{\nu_{p, \rho}}$ denotes the expectation under the law $\nu_{p, \rho}$. Clearly $E^{\nu_{p, \rho}}\left[\xi_{x}\right]=p$. The lattice gas is reversible relative to the measures $\nu_{p, \rho}$ (namely L_{N} is symmetric relative to each of them).

It is convenient to introduce the transformations $S^{b}, b=(x, y)$ which acts on $\eta \in \mathcal{X}^{N}$ according to

$$
S^{b} \eta= \begin{cases}S_{\mathrm{ex}}^{b} \eta & \text { if } \xi_{y}=0 \\ S_{\mathrm{zr}}^{b} \eta & \text { if } \xi_{y}=1\end{cases}
$$

and the operators

$$
\Gamma_{b}=\xi_{x} \pi_{b}+\mathbf{1}\left(\eta_{x} \geq 2\right) \nabla_{b} \quad(b=(x, y))
$$

The latter may also be defined by $\Gamma_{b} f(\eta)=f\left(S^{b} \eta\right)-f(\eta)\left(f \in C\left(\mathcal{X}^{N}\right)\right)$. Let $\tau_{x} \eta$ be the configuration $\eta \in \mathcal{X}$ viewed from x, namely $\left(\tau_{x} \eta\right)_{y}=$ η_{x+y}. We let it also act on a function f of η according to $\tau_{x} f(\eta)=$ $f\left(\tau_{x} \eta\right)$. Setting

$$
\begin{aligned}
& c_{01}(\eta)=c_{\mathrm{ex}}\left(\eta_{0}\right)\left(1-\xi_{1}\right)+c_{\mathrm{zr}}\left(\eta_{0}\right) \xi_{1} ; \\
& c_{10}(\eta)=c_{\mathrm{ex}}\left(\eta_{1}\right)\left(1-\xi_{0}\right)+c_{\mathrm{zr}}\left(\eta_{1}\right) \xi_{0} ;
\end{aligned}
$$

and $c_{x, x+1}=\tau_{x} c_{01}, c_{x+1, x}=\tau_{x} c_{10}$, we can write

$$
L_{b}=c_{b} \Gamma_{b} .
$$

The Dirichlet form is then given by

$$
\mathcal{D}^{p, \rho}\{f\}=\sum_{b \in \mathbf{T}_{N}^{*}} E^{\nu_{p, \rho}}\left[\left(\Gamma_{b} f\right)^{2} c_{b}\right]
$$

(Functions f of configuration η will be always real in this article.)

Diffusion Coefficient Matrix.

Following Varadhan [7] we define the diffusion coefficient matrix. First we introduce some notations. Let \mathcal{X} denote $\mathbf{Z}_{+}^{\mathbf{Z}}$, the set of all configurations on \mathbf{Z} and \mathcal{F}_{c} the set of all local functions on \mathcal{X} (namely, $f \in \mathcal{F}_{c}$ if f depends only on a finite number of coordinates of $\eta \in \mathcal{X}$). For $f \in \mathcal{F}_{c}$ we use the symbol \tilde{f} to represent the formal sum $\sum_{x} \tau_{x} f$. It has meaning if Γ_{01} is acted:

$$
\Gamma_{01} \tilde{f}=\sum_{x} \Gamma_{01} \tau_{x} f=\sum_{x} \tau_{x} \Gamma_{x, x+1} f
$$

where the infinite sums are actually finite sums. Let $\chi(p, \rho)$ denote the covariance matrix of ξ_{0} and η_{0} under $\nu_{p, \rho}$:

$$
\chi(p, \rho)=\left(\begin{array}{cc}
(1-p) p & (1-p) \rho \\
(1-p) \rho & E^{\nu_{p, \rho}}\left|\eta_{0}-\rho\right|^{2}
\end{array}\right)
$$

For each $0<p<1, \rho>p$, let $\hat{c}(p, \rho)=\left(\hat{c}^{i, j}(p, \rho)\right)_{1 \leq i, j \leq 2}$ denote a 2×2 symmetric matrix whose quadratic form is defined by the following variational formula:

$$
\begin{aligned}
\underline{\alpha} \cdot \hat{c}(p, \rho) \underline{\alpha} & =\hat{c}^{11}(p, \rho) \alpha^{2}+2 \hat{c}^{12}(p, \rho) \alpha \beta+\hat{c}^{22}(p, \rho) \beta^{2} \\
& =\inf _{f \in \mathcal{F}_{c}} E^{\nu_{p, \rho}}\left[\left(\Gamma_{01}\left\{\alpha \xi_{0}+\beta \eta_{0}+\tilde{f}\right\}\right)^{2} c_{01}\right]
\end{aligned}
$$

where $\underline{\alpha}=(\alpha, \beta)^{T}$, a two-dimensional real column vector (T indicates the transpose), and • indicates the inner product in $\mathbf{R} \times \mathbf{R}$. Then the diffusion coefficient matrix is defined by

$$
D(p, \rho)=\hat{c}(p, \rho) \chi^{-1}(p, \rho)
$$

where $\chi^{-1}(p, \rho)$ is the inverse matrix of $\chi(p, \rho)$. The two eigen-values of D are positive (cf. Section 5) and D is diagonalizable.

Let $\nabla^{-} \xi$ and $\nabla^{-} \eta$ be the particle and energy gradients:

$$
\nabla^{-} \xi=\xi_{0}-\xi_{1} \quad \text { and } \quad \nabla^{-} \eta=\eta_{0}-\eta_{1}
$$

and w_{01}^{P} and w_{01}^{E} the particle and energy currents, respectively, from the site 0 to the site 1 :

$$
w_{01}^{P}=-L_{\{0,1\}}\left\{\xi_{0}\right\} \quad \text { and } \quad w_{01}^{E}=-L_{\{0,1\}}\left\{\eta_{0}\right\}
$$

Here $L_{\{0,1\}}=L_{01}+L_{10}$. The explicit form of the currents are

$$
\begin{aligned}
w_{01}^{P} & =c_{\mathrm{ex}}\left(\eta_{0}\right)\left(1-\xi_{1}\right)-c_{\mathrm{ex}}\left(\eta_{1}\right)\left(1-\xi_{0}\right) \\
w_{01}^{E} & =c_{\mathrm{ex}}\left(\eta_{0}\right)\left(1-\xi_{1}\right) \eta_{0}+c_{\mathrm{zr}}\left(\eta_{0}\right) \xi_{1}-c_{\mathrm{ex}}\left(\eta_{1}\right)\left(1-\xi_{0}\right) \eta_{1}-c_{\mathrm{zr}}\left(\eta_{1}\right) \xi_{0}
\end{aligned}
$$

We can show that
where $\overline{\{\cdots\}}^{p, \rho}$ is the closure relative to the central limit theorem variance $V^{p, \rho}$ (see Section 3). This would lead one to expect that the hydrodynamic equation for the limit densities $p=p(t, \theta)$ and $\rho=\rho(t, \theta)$ should be

$$
\frac{\partial}{\partial t}\binom{p}{\rho}=\frac{\partial}{\partial \theta} D(p, \rho) \frac{\partial}{\partial \theta}\binom{p}{\rho}
$$

Unfortunately in deriving this equation there arises serious difficulty due to the unboundedness of the spin values. While the marginal of our grandcanonical measure is roughly Poisson, the energy current w_{01}^{E} involves the term $c_{\text {ex }}\left(\eta_{0}\right) \eta_{0}$ that is bounded below by $\delta \eta_{0}^{2}(\delta>0)$ and cannot be controlled by the grandcanonical measure as in the case of Ginzburg-Landau model, the logarithm of the Poisson density function being of the order $O\left(\eta_{0} \log \eta_{0}\right)$. Nagahata [3] studies a similar model and derives a system of diffusion equations of the same form as above: his model is the same as the present one except that the energy values are bounded by a constant.

In the rest of this article we shall state some results on the equilibrium fluctuations and the central limit theorem variances without proof, and give certain asymptotic estimates for the density-density correlation coefficients and for the least upper bound of the spectrum of an operator of the form $V_{N}+L$ as consequences of these results. In the last part of the paper some upper and lower bounds of the diffusion matrix will be given.

§2. Density-Density Correlation Function

Consider an infinite particle system on the whole lattice \mathbf{Z} whose formal generator is $L=\sum c_{b} \Gamma_{b}$. It is well defined on \mathcal{F}_{c} :

$$
L f(\eta)=\sum_{b \in \mathbf{Z}^{*}} c_{b}(\eta) \Gamma_{b} f(\eta), \quad f \in \mathcal{F}_{c}
$$

Let \mathcal{F}_{c}° be the set of all $f \in \mathcal{F}_{c}$ such that both f and $L f$ are in $L^{2}\left(\nu_{p, \rho}, \mathcal{X}\right)$. Then the operator L with the domain \mathcal{F}_{c}° is a symmetric and non-negative transformation in $L^{2}\left(\nu_{p, \rho}, \mathcal{X}\right)$. Clearly \mathcal{F}_{c}° is dense in $L^{2}\left(\nu_{p, \rho}, \mathcal{X}\right)$. Hence L has the Friedrichs extension, which we denote by \mathcal{L} : namely \mathcal{L} is the smallest self-adjoint extension of L. The following theorem is a consequence from the standard theory on the semigroup of operators. Let Λ_{K} be the finite interval $\{-K, \ldots, K\}$ and $L_{\Lambda(K)}$ the generator of the lattice gas on Λ_{K}, namely

$$
L_{\Lambda(K)}=\sum_{b \in \Lambda^{*}(K)} L_{b}
$$

also put $\mathcal{X}_{\Lambda(K)}=\mathbf{Z}_{+}^{\Lambda(K)}$. Here $\Lambda(K)$ is used in stead of Λ_{K} in sub- or superscripts and $\Lambda^{*}(K)=(\Lambda(K))^{*}$ (the set of all oriented bonds in Λ).

Theorem 1. The operator \mathcal{L} generates a strongly continuous Markov semigroup on $L^{2}\left(\nu_{p, \rho}, \mathcal{X}\right)$. Denote by $S(t), t \geq 0$ this semigroup, and by $S_{K}(t)$ the semigroup on $L^{2}\left(\mathcal{X}_{\Lambda(K)}\right)$ generated by $L_{\Lambda(K)}$. Then

$$
\lim _{K \rightarrow \infty} S_{K}(t) f\left(\left.\eta\right|_{\Lambda(K)}\right)=S(t) f(\eta), \quad f \in \mathcal{F}_{c}^{\circ}
$$

strongly in $L^{2}\left(\nu_{p, \rho}, \mathcal{X}\right)$. The convergence is locally uniform in t.
Fix $0<p<1$ and $\rho>p$. Let $\eta(t)$ be a Markov process on \mathcal{X} whose infinitesimal generator and initial distribution are \mathcal{L} and $\nu_{p, \rho}$, respectively. Denote the probability law of the process $\eta(t)$ by $P_{\mathrm{eq}}=P_{\mathrm{eq}(p, \rho)}$ and the expectation relative to it by $E_{\mathrm{eq}(p, \rho)}$. Define the fluctuation processes $Y_{t, N}^{P}$ and $Y_{t, N}^{E}$ by

$$
\begin{array}{ll}
Y_{t, N}^{P}(J)=\frac{1}{\sqrt{N}} \sum_{x \in \mathbf{Z}} J(x / N)\left(\xi_{x}\left(N^{2} t\right)-p\right), \quad J \in C_{0}^{\infty}(\mathbf{R}) \\
Y_{t, N}^{E}(J)=\frac{1}{\sqrt{N}} \sum_{x \in \mathbf{Z}} J(x / N)\left(\eta_{x}\left(N^{2} t\right)-\rho\right), \quad J \in C_{0}^{\infty}(\mathbf{R})
\end{array}
$$

respectively. $\left(C_{0}^{\infty}(\mathbf{R})\right.$ is the set of smooth functions with compact supports.) Under the equilibrium measure $P_{\mathrm{eq}(p, \rho)}$ the process $Y_{t, N}=$
$\left(Y_{t, N}^{P}, Y_{t, N}^{E}\right)$ converges in the sense of finite dimensional distributions, namely for each set of $J_{1}, \ldots, J_{k} \in C_{0}^{\infty}(\mathbf{R})$ and $t_{1}, \ldots, t_{k} \in[0, \infty)$, the joint distribution of $Y_{t_{1}, N}\left(J_{1}\right), \ldots, Y_{t_{k}, N}\left(J_{k}\right)$ converges ([6]). The limit process $Y_{t}=\left(Y_{t}^{P}, Y_{t}^{E}\right)$ is an infinite dimensional Ornstein-Uhlenbeck process. The distribution of Y_{t} is described as follows.

Let K_{D} denote the fundamental solution for the heat equation

$$
\frac{\partial}{\partial t} \underline{u}=D^{T} \frac{\partial^{2}}{\partial \theta^{2}} \underline{u}
$$

and U_{t} a matrix of corresponding convolution operators:

$$
U_{t} \underline{J}(\theta)=\int_{-\infty}^{\infty} K_{D}\left(t, \theta-\theta^{\prime}\right) \underline{J}\left(\theta^{\prime}\right) d \theta^{\prime}
$$

where $\underline{J}=\left(J^{1}, J^{2}\right)^{T} \in C_{0}^{\infty}(\mathbf{R}) \times C_{0}^{\infty}(\mathbf{R})$. Let \underline{J}_{1} and \underline{J}_{2} be vector functions of the same kind. Then the distribution of the limit process Y_{t} is given by

$$
E\left[e^{i\left(Y_{0}, \underline{J}_{1}\right)} e^{i\left(Y_{t}, \underline{J}_{2}\right)}\right]=\exp \left[-\frac{1}{2} \int_{0}^{t} Q\left\{U_{r} \underline{J}_{2}\right\} d r-\frac{1}{2} \sigma^{2}\left\{U_{t} \underline{J}_{2}+\underline{J}_{1}\right\}\right]
$$

in particular

$$
\begin{equation*}
E\left[\left(Y_{0}, \underline{J}_{1}\right)\left(Y_{t}, \underline{J}_{2}\right)\right]=\sigma^{2}\left(U_{t} \underline{J}_{2}, \underline{J}_{1}\right)=\left(\chi(p, \rho) U_{t} \underline{J}_{2}, \underline{J}_{1}\right)_{L^{2}(\mathbf{R})} \tag{4}
\end{equation*}
$$

Here E denotes the expectation by the probability law of the limit process and

$$
Q\{\underline{J}\}=2\left(\underline{J}^{\prime}, \hat{c} \underline{J}^{\prime}\right)_{L^{2}(\mathbf{R})}, \quad \sigma^{2}\{\underline{J}\}=(\underline{J}, \chi \underline{J})_{L^{2}(\mathbf{R})}
$$

(Also $\left(Y_{t}, \underline{J}\right)=Y_{t}^{P}\left(J_{1}\right)+Y_{t}^{E}\left(J_{2}\right),\left(\underline{J}_{1}, \underline{J}_{2}\right)_{L^{2}(\mathbf{R})}=\int_{\mathbf{R}}\left(J_{1}^{1} J_{2}^{1}+J_{1}^{2} J_{2}^{2}\right) d \theta$; $\hat{c}=\hat{c}(p, \rho)$ is the matrix appearing in the definition of $D=D(p, \rho) ; \underline{J}^{\prime}$ is the (component-wise) derivative of $\underline{J} ; \sigma^{2}(\cdot, \cdot)$ is the bilinear form associated with the quadratic form $\sigma^{2}\{\cdot\}$.) The kernel K_{D} may be explicitly written down in the form

$$
\begin{aligned}
K_{D}(t, \theta) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \exp \left\{-t \lambda^{2} D^{T}\right\} e^{-i \lambda \theta} d \lambda \\
& =\sqrt{4 \pi t D^{T}}-1 \exp \left\{-\theta^{2}\left(4 t D^{T}\right)^{-1}\right\}
\end{aligned}
$$

Here D^{T} is the transpose of D; for a 2×2 real matrix A whose eigenvalues are positive,

$$
\sqrt{A}:=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp \left\{-\theta^{2} A^{-1}\right\} d \theta
$$

which is a real matrix having positive eigenvalues such that $A=(\sqrt{A})^{2}$.
Define the symmetric matrix $\Sigma(x, t)$ with parameters $(x, t) \in \mathbf{Z} \times$ $[0, \infty)$ by

$$
\begin{aligned}
& \underline{\alpha} \cdot \Sigma(x, t) \underline{\alpha}=E_{e q(p, \rho)}\left[u_{\underline{\alpha}}(0,0) u_{\underline{\alpha}}(x, t)\right] \\
& \text { where } \quad u_{\underline{\alpha}}(x, t)=\alpha\left(\xi_{x}(t)-p\right)+\beta\left(\eta_{x}(t)-\rho\right)
\end{aligned}
$$

Since $P_{\mathrm{eq}(p, \rho)}$ is invariant under the translation, $\Sigma(x, t)$ is the covariance matrix of $\left(\xi_{x}(s), \eta_{x}(s)\right)$ and its space-time translation $\left(\xi_{x+y}(s+\right.$ $\left.t), \eta_{x+y}(s+t)\right)$. Hence if we define

$$
R(x, t):=\Sigma(x, t) \chi^{-1}(p, \rho)
$$

then $R(x-y, t-s)$ is the space-time correlation coefficient of $\left(\xi_{x}(t), \eta_{x}(t)\right)$. The next theorem states that $R(x, t)$ behaves like $R(x, t) \approx K_{D}(t, x)$ as $x, t \rightarrow \infty$, as being expected ([5]).

Theorem 2. For $\underline{J}=\left(J^{1}, J^{2}\right)^{T} \in C_{0}^{\infty}(\mathbf{R}) \times C_{0}^{\infty}(\mathbf{R})$

$$
\lim _{N \rightarrow \infty} \sum_{x \in \mathbf{Z}} \mathbf{R}\left(x, N^{2} t\right) \underline{J}(x / N)=\int_{-\infty}^{\infty} K_{D}(t, \theta) \underline{J}(\theta) d \theta
$$

Theorem 2 is deduced from (4). Indeed by (4),

$$
\begin{align*}
& \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{x} \sum_{y} \underline{J}_{1}(y / N) \cdot R\left(x-y, N^{2} t\right) \underline{J}_{2}(x / N) \tag{5}\\
& =\int_{-\infty}^{\infty} \underline{J}_{1}(\theta) \cdot U_{t} \underline{J}_{2}(\theta) d \theta
\end{align*}
$$

because the formula under the limit on the left side equals $E\left[\left(Y_{0, N}, \underline{J}_{1}\right)\right.$ $\left.\left(Y_{t, N}, \underline{J}_{2}\right)\right]$. If the delta function could be taken for \underline{J}_{1}, the relation of Theorem 2 would come out. For justification we take Fourier transform in (5). To this end let \hat{R} be the Fourier series with coefficients R :

$$
\begin{aligned}
\hat{R}(\lambda, t) & =\hat{\Sigma}(\lambda, t) \chi^{-1}, \quad \lambda \in \mathbf{R} \\
\hat{\Sigma}(\lambda, t) & =\sum_{x \in \mathbf{Z}} e^{i \lambda x} \Sigma(x, t) .
\end{aligned}
$$

Lemma 3.

$$
0 \leq \hat{\Sigma}(\lambda, t) \leq \hat{\Sigma}(\lambda, 0)=\chi
$$

Proof. If $a_{x}=e^{i \lambda x} \Sigma(x, t)$, then

$$
\sum_{x=-k}^{k-1} \sum_{y=-k}^{k-1} a_{y-x}=\sum_{u=-2 k}^{2 k}(2 k-|u|) a_{u}
$$

The right-hand side divided by $2 k$ converges, as $k \rightarrow \infty$, to $\hat{\Sigma}(\lambda, t)$. Since $S(t)$ is a symmetric operator, the first diagonal component of a_{y-x} may be expressed in the form

$$
a_{y-x}^{11}=E^{\nu_{p, \rho}}\left[e^{i \lambda y} S(t / 2)\left\{\xi_{y}-p\right\} e^{-i \lambda x} S(t / 2)\left\{\xi_{x}-p\right\}\right]
$$

and similarly for the other components; hence
$\underline{\alpha} \cdot \hat{\Sigma}(\lambda, t) \underline{\alpha}=\lim _{k \rightarrow \infty} \frac{1}{2 k} E^{\nu_{p, \rho}}\left|S(t / 2)\left\{\sum_{x=-k}^{k-1} e^{i \lambda x}\left[\alpha\left(\xi_{x}-p\right)+\beta\left(\eta_{x}-\rho\right)\right]\right\}\right|^{2}$.
The inequalities of the lemma now follow from the fact that $S(t)$ is contraction in $L^{2}\left(\nu_{p, \rho}\right)$. Q.E.D.
Proof of Theorem 2. Rewriting the relation (5) by means of \hat{R}, we have

$$
\begin{align*}
& \lim _{N \rightarrow \infty} \int_{-N \pi}^{N \pi} \underline{\hat{J}}_{1}^{N}(\lambda) \cdot \hat{R}\left(\lambda / N, N^{2} t\right) \hat{J}_{2}^{N}(-\lambda) d \lambda \\
& =\int_{-\infty}^{\infty} \underline{\underline{J}}_{1}(\lambda) \cdot e^{-t \lambda^{2} D^{T}} \hat{\underline{J}}_{2}(-\lambda) d \lambda \tag{6}
\end{align*}
$$

Here

$$
\underline{\hat{J}}^{N}(\lambda)=\frac{1}{N} \sum \underline{J}(x / N) e^{i \lambda x / N}, \quad \underline{\hat{J}}(\lambda)=\int_{-\infty}^{\infty} \underline{J}(\theta) e^{i \lambda \theta} d \theta
$$

By the Poisson summation formula, $\underline{\hat{J}}^{N}(\lambda)=\sum_{x \in \mathbf{Z}} \underline{\hat{J}}(\lambda+2 \pi N x)$. The class of $J_{1}^{i} \quad(i=1,2)$ in (6) may be extended to the set of rapidly decreasing functions. Let $\delta>0, g_{\delta}(\theta)=(4 \pi \delta)^{-1 / 2} e^{-\theta^{2} /(4 \delta)}$ and $\underline{J}_{1}(\theta)=$ $g_{\delta}(\theta) \underline{\alpha}$. Then, $\hat{g}_{\delta}(\lambda)=e^{-\delta \lambda^{2}}$ and

$$
e^{-\delta \lambda^{2}} \leq \hat{g}_{\delta}^{N}(\lambda) \leq e^{-\delta \lambda^{2}}+\frac{2 e^{-\delta(\pi N)^{2}}}{1-e^{-\delta(\pi N)^{2}}}(|\lambda| \leq N \pi)
$$

and writing \underline{J} for \underline{J}_{2} in (6), we infer that

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \int_{-N \pi}^{N \pi} e^{-\delta \lambda^{2}} \underline{\alpha} \cdot \hat{R}\left(\lambda / N, N^{2} t\right) \underline{\hat{J}}^{N}(-\lambda) d \lambda \\
& =\int_{-\infty}^{\infty} e^{-\delta \lambda^{2}} \underline{\alpha} \cdot e^{-t \lambda^{2} D^{T}} \underline{\hat{J}}(-\lambda) d \lambda .
\end{aligned}
$$

On taking the limit as $\delta \downarrow 0$ this relation is also valid for $\delta=0$. The proof is complete.
Q.E.D.

§3. Central Limit Theorem Variance

The canonical measure for the configurations on Λ_{n} with the number of particles m and the total energy E is the conditional law

$$
P_{n, m, E}[\cdot]=\frac{\nu_{p, \rho}\left(\cdot \cap\left\{|\xi|_{\Lambda(n)}=m,|\eta|_{\Lambda(n)}=E\right\} \mid \mathcal{F}_{\mathbf{Z} \backslash \Lambda(n)}\right)}{\nu_{p, \rho}\left(|\xi|_{\Lambda(n)}=m,|\eta|_{\Lambda(n)}=E\right)}
$$

Here for $\Lambda \subset \mathbf{Z},|\xi|_{\Lambda}=\sum_{x \in \Lambda} \xi_{x}$ and $|\eta|_{\Lambda}=\sum_{x \in \Lambda} \eta_{x} ; \mathcal{F}_{\Lambda}$ stands for the σ-field in \mathcal{X} generated by $\eta_{y}, y \in \Lambda$. From the reversibility relation it follows that for any functions f and g of η and any bond $b \in \Lambda_{n}^{*}$,

$$
E_{n, m, E}\left[c_{b}(\eta) f\left(S^{b} \eta\right) g(\eta)\right]=E_{n, m, E}\left[c_{b^{\prime}}(\eta) f(\eta) g\left(S^{b^{\prime}} \eta\right)\right]
$$

where b^{\prime} is the bond obtained from b by reversing its direction. The Dirichlet form for $L_{\Lambda(n)}$ accordingly is given by

$$
\begin{aligned}
\mathcal{D}_{n, m, E}\{f\} & :=-E_{n, m, E}\left[f L_{\Lambda(n)} f\right] \\
& =\sum_{b \in \Lambda^{*}(n)} \mathcal{D}_{n, m, E}^{b}\{f\}
\end{aligned}
$$

where $\mathcal{D}_{n, m, E}^{b}\{f\}=\frac{1}{2} E_{n, m, E}\left[\left(\Gamma_{b} f\right)^{2} c_{b}\right]$,; the corresponding bilinear form is given by

$$
\mathcal{D}_{n, m, E}^{01}(f, g)=-\frac{1}{2} E_{n, m, E}\left[f \cdot\left(L_{01}+L_{10}\right) g\right]=\frac{1}{2} E_{n, m, E}\left[\left(\Gamma_{01} f\right)\left(\Gamma_{01} g\right) c_{01}\right]
$$

We introduce a function space on which the central limit theorem variance is well defined. The numbers p and ρ are fixed so that $0<p<1$ and $\rho \geq p$ unless otherwise specified. They will be dropped from the notations if used as sub- or superscripts.

Definition 4. Let \mathcal{G} denote the linear space of all functions $h \in \mathcal{F}_{c}$ of the form

$$
\begin{equation*}
L_{I} H:=\sum_{b \in I^{*}} L_{b} H=h \tag{7}
\end{equation*}
$$

where I is an interval of \mathbf{Z} and H is a local function such that for some positive integer K,

$$
\begin{equation*}
\sum_{b \in I^{*}}\left(\Gamma_{b} H(\eta)\right)^{2} \leq K \sum_{x \in I}\left(\eta_{x}\right)^{K}, \eta \in \mathcal{X} \tag{8}
\end{equation*}
$$

(This bound, which may be replaced by a weaker one, is adopted only for convenience sake. We may take I as the minimal of intervals Λ such that $h \in \mathcal{F}_{\Lambda}$.)

If $h \in \mathcal{F}_{c}$ satisfies

$$
E^{\nu}\left[h \mid \mathcal{F}_{\mathbf{Z} \backslash I} \vee \sigma\left\{|\xi|_{I},|\eta|_{I}\right\}\right]=0 \text { a.s. }
$$

then it admits a representation (7) but the condition (8) may fail to hold. The functions w_{01}^{P}, w_{01}^{E} are in \mathcal{G} : the requirements are satisfied with $I=\{0,1\}$ and $H=-\xi_{0}$ and $H=-\eta_{0}$, respectively. For each positive integer K put

$$
\mathcal{F}_{c}^{K}=\left\{f \in \mathcal{F}_{c}:|f(\eta)| \leq K \sum_{|x| \leq K}\left(\eta_{x}\right)^{K}\right\}
$$

Then the linear space $L \mathcal{F}_{c}^{K}$ is obviously included in \mathcal{G}.
Let $L_{n, m, E}$ denote the restriction of $L_{\Lambda(n)}$ to the space of functions on $\mathcal{X}_{n, m, E}:=\left\{\eta \in \mathcal{X}_{\Lambda(n)}:|\xi|_{\Lambda(n)}=m,|\eta|_{\Lambda(n)}=E\right\}$, and for $h, g \in \mathcal{G}$, define

$$
V_{n, m, E}(h, g)=\frac{1}{2 n} E_{n, m, E}\left[\sum_{|x|<n^{\prime}} \tau_{x} h \cdot\left(-L_{n, m, E}\right)^{-1} \sum_{|x|<n^{\prime}} \tau_{x} g\right]
$$

where n^{\prime} is the maximal integer among those for which both sums in the brackets are $\mathcal{F}_{\Lambda(n) \text {-measurable. }}$

Theorem 5. For every $h, g \in \mathcal{G}$ and for every $p>0, \rho \geq p$, there exists a following limit

$$
\lim _{m / 2 n \rightarrow p, E / 2 n \rightarrow \rho} V_{n, m, E}(h, g),
$$

where the limit is taken in such a way that n, m and E are sent to infinity so that $m / 2 n \rightarrow p$ and $E / 2 n \rightarrow \rho$. The functional defined by this limit makes a bilinear form on \mathcal{G}. If it is denoted by

$$
V(h, g)=V^{p, \rho}(h, g)
$$

then the subspace

$$
\mathcal{G}_{\circ}:=\left\{\alpha w_{01}^{P}+\beta w_{01}^{E}-L f: \alpha, \beta \in \mathbf{R}, f \in \mathcal{F}_{c}^{K} \text { for some } K\right\}
$$

is dense in \mathcal{G} with respect to the quadratic form $V^{p, \rho}\{h\}:=V^{p, \rho}(h, h)$.

Theorem 5 says that every $h \in \mathcal{G}$ can be approximated by an element of \mathcal{G}_{\circ} in the metric $\sqrt{V^{p, \rho}}$ as accurately as one needs. To apply this to the gradients $\nabla^{-} \xi:=\xi_{0}-\xi_{1}$ and $\nabla^{-} \eta:=\eta_{0}-\eta_{1}$, we need the following lemma (cf. [6]).

Lemma 6. Suppose that (1) and (2) are satisfied. Then both $\nabla^{-} \xi$ and $\nabla^{-} \eta$ are in \mathcal{G}. Let H^{P} and H^{E} stand for the corresponding H 's (with $I(h)=\{0,1\})$. Then

$$
\Gamma_{01} H^{P}=\xi_{0} / c_{\mathrm{ex}}\left(\eta_{0}\right) \quad \text { and } \quad \Gamma_{01} H^{E}=\eta_{0} / c_{\mathrm{ex}}\left(\eta_{0}\right) \quad \text { if } \quad \xi_{0}\left(1-\xi_{1}\right)=1
$$

and $\Gamma_{01} H^{P}=0$ if $\xi_{0}\left(1-\xi_{1}\right)=0$; moreover there exists a constant $\delta>0$ such that $\delta \leq \Gamma_{01} H^{E} \leq 1 / \delta$ whenever $\mathbf{1}\left(\eta_{0} \geq 2\right) \xi_{1}=1$.

The proof of Theorem 5 may be carried out along the same lines as in [7] or [8].

§4. The Least Upper Bound of Spectrum

In this section we are concerned with the Markov process whose infinitesimal generator is \mathcal{L}, a self-adjoint operator on $L^{2}\left(\nu_{p, \rho}\right)$ (see Theorem 1). Let $\mathcal{P}(\mathcal{X})$ be the set of all probability measures on \mathcal{X}. Define a functional $\mathcal{I}(\mu)$ of $\mu \in \mathcal{P}(\mathcal{X})$ by

$$
\mathcal{I}(\mu)=E^{\nu}[\varphi(-\mathcal{L}) \varphi], \text { where } \varphi=\sqrt{d \mu / d \nu}
$$

if μ is absolutely continuous relative to $\nu=\nu_{p, \rho}$ and φ is in the domain of $\sqrt{-\mathcal{L}}$; and $\mathcal{I}(\mu)=\infty$ otherwise. For a local function G on \mathcal{X} let $\Omega_{0}\{G+\mathcal{L}\}$ denote the least upper bound of the spectrum of the operator $G+\mathcal{L}$. It has the variational representation

$$
\Omega_{0}\{G+\mathcal{L}\}=\sup _{\mu \in \mathcal{P}(\mathcal{X})}\left(E^{\mu}[G]-\mathcal{I}(\mu)\right)
$$

Given a positive integer n and $h \in \mathcal{G}$, let n^{\prime} be the maximal integer such that $\tau_{y} h \in \mathcal{F}_{\Lambda(n)}$ if $|y|<n^{\prime}$, and define a function $G_{n}=G_{n}^{h}$ by

$$
G_{n}=\frac{1}{2 n} \sum_{y:|y|<n^{\prime}} \tau_{y} h
$$

Theorem 7. Let $h \in \mathcal{G}$. Let the interval $I=I(h)$ and the function H be chosen so that

$$
\begin{equation*}
\sum_{b \in I^{*}}\left(\Gamma_{b} H\right)^{2} c_{b} \leq A \sum_{x \in I} \eta_{x}^{K} \tag{9}
\end{equation*}
$$

where $\eta_{x}^{K}=\left(\eta_{x}\right)^{K}$, and A and K are positive constants with $K \geq 1$. Let $G_{n}=G_{n}^{h}$ be defined as above. Also define a function $\zeta_{n}^{l}(\eta)$ for $l \geq 1$ by

$$
\zeta_{n}^{l}(\eta)=\frac{1}{2 n} \sum_{x:|x| \leq n} \eta_{x}^{K} \mathbf{1}\left(\eta_{x}>l\right)
$$

Then, if $\lambda \in(-1,1), J \in C_{0}^{2}(\mathbf{R})$, and C is a positive constant such that $A|I|^{2}\left(1-2^{-K}\right)^{-1} \leq C$, it holds that for all $n, l \in \mathbf{N}$,

$$
\begin{aligned}
& \varlimsup_{N \rightarrow \infty} \Omega_{\circ}\left\{\sum_{x \in \mathbf{Z}}\left[N^{\lambda} J(x / N) \tau_{x} G_{n}-\frac{C}{N} J^{2}(x / N) \tau_{x} \zeta_{n}^{l}\right]+N^{1+2 \lambda} \mathcal{L}\right\} \\
& \leq\|J\|_{L^{2}}^{2} \sup _{m, E: E / m \leq 2 l} V_{n, m, E}\{h\}
\end{aligned}
$$

where $\|J\|_{L^{2}}^{2}=\int_{\mathbf{R}} J^{2} d \theta$ and the supremum is taken over all couples of positive integers m and E such that $m \leq E \leq 2 l m$.

Proof. The proof is divided into three steps.
Step 1. This step is quite similar to a corresponding argument in [7], so we provide only an outline. The supremum of the spectrum Ω_{\circ} that is to be estimated may be given by the variational formula

$$
\Omega^{N}=\sup _{\mu \in \mathcal{P}(\mathcal{X})} E^{\mu}\left[\sum_{x \in \mathbf{Z}}\left[N^{\lambda} j_{x} \tau_{x} G_{n}-\frac{C}{N} j_{x}^{2} \tau_{x} \zeta_{n}^{l}\right]-N^{1+2 \lambda} \mathcal{I}(\mu)\right]
$$

where we put $j_{x}=J(x / N)$.
Let $\varphi=\sqrt{d \mu / d \nu}$ and $\mathcal{D}^{\Lambda}=\sum_{b \in \Lambda^{*}} \mathcal{D}^{b}$, then $\mathcal{I}(\mu)=\sum_{b \in \mathbf{Z}^{*}} \mathcal{D}^{b}\{\varphi\}=$ $\frac{1}{2 n} \sum_{x \in \mathbf{Z}} \mathcal{D}^{\Lambda(n)}\left\{\tau_{x} \varphi\right\}$. We substitute this into the variational expression given above. To compute the expectation appearing in it we first take the conditional expectation conditioned on $\omega=\left.\eta\right|_{\Lambda_{n}^{c}}$. If $\mu(\cdot \mid \omega)$ stands for this conditional law, then $E^{\mu}\left[G_{n}\right]$ is expressed as an integral of $F(\omega)=$ $E^{\mu(\cdot \mid \omega)}\left[G_{n}\right]$ by μ. We have a similar expression for the form $\mathcal{D}^{\Lambda(n)}\{\varphi\}$, which may be naturally restricted to the space $L^{2}\left(\nu^{\Lambda(n)}, \mathcal{X}_{\Lambda(n)}\right)\left(\nu^{\Lambda}\right.$ is the product measure on \mathcal{X}_{Λ} with the same common one-site marginal as that of $\left.\nu=\nu_{p, \rho}\right)$. Rewriting μ for $\mu(\cdot \mid \omega) \in \mathcal{P}\left(\mathcal{X}_{\Lambda(n)}\right)$ and taking the supremum in μ, we see that Ω^{N} is not greater than

$$
\frac{N^{1+2 \lambda}}{2 n} \sum_{x \in \mathbf{Z}} \sup _{\mu \in \mathcal{P}\left(\mathcal{X}_{\Lambda(n)}\right)}\left\{\frac{2 n}{N^{1+2 \lambda}} E^{\mu}\left[N^{\lambda} j_{x} G_{n}-\frac{C}{N} j_{x}^{2} \zeta_{n}^{l}\right]-\mathcal{D}^{\Lambda(n)}\{\varphi\}\right\}
$$

Decomposing $\mathcal{X}_{\Lambda(n)}$ into the ergodic classes $\mathcal{X}_{n, m, E}$ we may express $\mathcal{D}^{\Lambda(n)}\{\varphi\}$ in the form $\mathcal{D}^{\Lambda(n)}\{\varphi\}=\sum_{m} \sum_{E} p_{m, E} \mathcal{D}_{n, m, E}\left\{\varphi_{m, E}\right\}$, where
$p_{m, E}=\mu\left(\mathcal{X}_{n, m, E}\right)$ and $\varphi_{m, E}$ is the square root of a probability density on $\mathcal{X}_{n, m, E}$. As a consequence we see that if
$\Omega_{n, m, E, x}^{N}=\sup _{\mu \in \mathcal{P}\left(\mathcal{X}_{n, m, E}\right)}\left\{\frac{2 n j_{x}}{N^{1+\lambda}} E^{\mu}\left[G_{n}\right]-\frac{2 n C j_{x}^{2}}{N^{2+2 \lambda}} E^{\mu}\left[\zeta_{n}^{l}\right]-\mathcal{D}_{n, m, E}\{\varphi\}\right\}$, then

$$
\begin{equation*}
\Omega^{N} \leq \frac{N^{1+2 \lambda}}{2 n} \sum_{x=1}^{N} \sup _{m, E} \Omega_{n, m, E, x}^{N} \tag{10}
\end{equation*}
$$

Step 2. Let $\langle\cdot\rangle_{n, m, E}$ stand for the expectation by $P_{n, m, E}$. For H introduced in Definition 4 and for any $\mathcal{F}_{\Lambda(n)}$-measurable function u, we have the following identity

$$
\begin{equation*}
\left\langle u \tau_{x} h\right\rangle_{n, m, E}=-\frac{1}{2} \sum_{b \in I^{*}(h)}\left\langle\Gamma_{b+x} u \cdot \tau_{x}\left(c_{b} \Gamma_{b} H\right)\right\rangle_{n, m, E} \tag{11}
\end{equation*}
$$

or in terms of the Dirichlet form

$$
\begin{equation*}
\left\langle u \tau_{x} h\right\rangle_{n, m, E}=-\sum_{b \in I^{*}(h)} \mathcal{D}_{n, m, E}^{b+x}\left(u, \tau_{x} H\right) \tag{12}
\end{equation*}
$$

(Here $b+x$ is the oriented bond obtained by translating b by x.) From this it follows that

$$
E^{\mu}\left[G_{n}\right]=-\frac{1}{2 n} \sum_{|x|<n^{\prime}} \sum_{b \in I^{*}(h)} \mathcal{D}_{n, m, E}^{b+x}\left(\tau_{x} H, \varphi^{2}\right)
$$

A simple computation verifies that the terms $\left|\mathcal{D}_{n, m, E}^{b}\left(F, \varphi^{2}\right)\right|$, where $F \in$ $C\left(\mathcal{X}_{n, m, E}\right)$, are bounded by

$$
\sqrt{\frac{1}{2}\left\langle\left[\left(\Gamma_{b} F\right)^{2} c_{b}+\left(\Gamma_{b^{\prime}} F\right)^{2} c_{b^{\prime}}\right] \varphi^{2}\right\rangle_{n, m, E}} \sqrt{\mathcal{D}_{n, m, E}^{b}\{\varphi\}}
$$

where b^{\prime} is the bond b but reversely oriented. By employing Schwarz inequality and the assumption (9) on H it therefore follows that $\left|E^{\mu}\left[G_{n}\right]\right|$ is at most

$$
\begin{aligned}
& \frac{1}{2 n} \sqrt{\sum_{|x|<n^{\prime}} \sum_{b \in I^{*}(h)}\left\langle\left(\Gamma_{b+x} \tau_{x} H\right)^{2} c_{b+x} \varphi^{2}\right\rangle_{n, m, E}} \sqrt{\left|I^{*}\right| \mathcal{D}_{n, m, E}\{\varphi\}} \\
& \leq \frac{|I|}{n} \sqrt{A \sum_{|x| \leq n}\left\langle\eta_{x}^{K} \varphi^{2}\right\rangle_{n, m, E}} \sqrt{\mathcal{D}_{n, m, E}\{\varphi\}}
\end{aligned}
$$

By the inequality $2 a b-a^{2} \leq b^{2}$ this shows that

$$
\begin{equation*}
\frac{2 n j_{x}}{N^{1+\lambda}} E^{\mu}\left[G_{n}\right]-\mathcal{D}_{n, m, E}\{\varphi\} \leq \frac{A|I|^{2} j_{x}^{2}}{N^{2+2 \lambda}} \sum_{|x| \leq n}\left\langle\eta_{x}^{K} \varphi^{2}\right\rangle_{n, m, E} \tag{13}
\end{equation*}
$$

Since $\left(m^{-1} \sum \eta_{x}\right)^{K} \leq m^{-1} \sum \eta_{x}^{K}$, the condition $E=\sum \eta_{x}>2 l m$ implies the inequality $2^{-K} \sum \eta_{x}^{K} \geq l^{K} m$, which in turn implies that

$$
2 n \zeta_{n}^{l}=\sum \eta_{x}^{K} \mathbf{1}\left(\eta_{x}>l\right) \geq \sum \eta_{x}^{K}-l^{K} m \geq\left(1-2^{-K}\right) \sum \eta_{x}^{K}
$$

This combined with (13) shows that if the constant C is chosen so that $A|I|^{2} \leq\left(1-2^{-K}\right) C$, then

$$
\Omega_{n, m, E, x}^{N} \leq 0 \text { whenever } E / m>2 l
$$

and accordingly that the supremum over the pairs of m and E in (10) may be restricted to those satisfying $E / m \leq 2 l$. Consequently

$$
\begin{equation*}
\Omega^{N} \leq \frac{N^{1+2 \lambda}}{2 n} \sum_{x \in \mathbf{Z}} \sup _{m, E: E / m \leq 2 l} \Omega_{n, m, E, x}^{N} \tag{14}
\end{equation*}
$$

Step 3. Now we apply the following estimate for the spectrum of the Schrödinger type operator $L_{n, m, E}+F$ with $F \in C\left(\mathcal{X}_{n, m, E}\right)$ satisfying $\langle F\rangle_{n, m, E}=0$:

$$
\begin{equation*}
\Omega_{\circ}\left\{F+L_{n, m, E}\right\} \leq\left\langle F\left(-L_{n, m, E}\right)^{-1} F\right\rangle_{n, m, E}+\frac{4}{\kappa_{n}^{2}}\|F\|_{\infty}^{3} \tag{15}
\end{equation*}
$$

where $\kappa_{n}=\kappa_{n, m, E}$ is the second eigenvalue of $-L_{n, m, E}$ (cf. [7],[1] etc.). Taking $F=\left(2 n j_{x} / N^{1+\lambda}\right) G_{n, m, E}$ in (15), where $G_{n, m, E}=G_{n} \mid \mathcal{X}_{n, m, E}$,

$$
\begin{aligned}
\Omega_{n, m, E, x}^{N} & \leq \Omega_{o}\left\{\left(2 n j_{x} / N^{1+\lambda}\right) G_{n, m, E}+L_{n, m, E}\right\} \\
& \leq(2 n) V_{n, m, E}\left\{\frac{j_{x}}{N^{1+\lambda}} h\right\}+\frac{4}{\kappa_{n}^{2}} \cdot\left[\frac{2 n j_{x}\left\|G_{n, m, E}\right\|_{\infty}}{N^{1+\lambda}}\right]^{3} \\
& =\frac{2 n j_{x}^{2}}{N^{2+2 \lambda}} V_{n, m, E}\{h\}+O\left(\frac{1}{N^{3+3 \lambda}}\right)
\end{aligned}
$$

From (14) we thus obtain $\varlimsup_{N \rightarrow \infty} \Omega^{N} \leq\|J\|_{L^{2}}^{2} \sup _{m, E: E / m \leq 2 l} V_{n, m, E}\{h\}$, the required bound.
Q.E.D.

The next theorem is essentially a corollary of Theorem 7.

Theorem 8. Let $h \in \mathcal{G}$ and put

$$
F^{N}(\eta)=\sqrt{N} \sum_{x \in \mathbf{Z}} J(x / N) \tau_{x} h(\eta)
$$

Then there exists a constant C such that for all positive constants β and l,

$$
\begin{aligned}
\varlimsup_{N \rightarrow \infty} E_{\mathrm{eq}}\left|\int_{0}^{T} F^{N}\left(\eta\left(N^{2} t\right)\right) d t\right| \leq & \beta T\|J\|_{L^{2}}^{2} \sup _{p_{o}, \rho_{o}: \rho_{o} / p_{o} \leq l} V^{p_{o}, \rho_{o}}\{h\} \\
& +(\log 2) / \beta+(C \beta) / l
\end{aligned}
$$

Proof. We may replace F^{N} by

$$
F_{n}^{N}:=\sqrt{N} \sum_{x \in \mathbf{Z}} J(x / N) \frac{1}{2 n} \sum_{y:|y-x|<n^{\prime}} \tau_{y} h .
$$

In fact if

$$
a_{N, n}^{x}=\frac{N}{2 n^{2}} \sum_{y:|y-x|<n^{\prime}}[J(x / N)-J(y / N)]
$$

then $\left|a_{N, n}^{x}\right| \leq \int_{-n / N}^{n / N}\left|J^{\prime \prime}\left(s+N^{-1} x\right)\right| d s$ and the difference

$$
F^{N}-F_{n}^{N}=\frac{n}{\sqrt{N}} \sum_{x \in \mathbf{Z}}^{N} a_{N, n}^{x} \tau_{x} h
$$

is obviously negligible under the equilibrium measure.
Introducing the random variable $X^{N}=\int_{0}^{T} F_{n}^{N}\left(\eta\left(N^{2} t\right)\right) d t$, we may write $E_{\text {eq }}\left|X^{N}\right|$ for what to estimate. Let $K \geq 1$ be a constant for which the condition (9) is satisfied. Let ζ_{n}^{l} be a function defined in Theorem 7 and put

$$
Y^{N}=\int_{0}^{T} \frac{C}{N} \sum_{x \in \mathbf{Z}} J^{2}(x / N) \tau_{x} \zeta_{n}^{l}\left(\eta\left(N^{2} t\right)\right) d t
$$

Then by Jensen's inequality and the Feynman-Kac formula

$$
\begin{aligned}
& E_{\text {eq }}\left[\left|X^{N}\right|-\beta Y^{N}\right] \\
& \leq \frac{1}{\beta} \log \max _{+,-} E_{\text {eq }}\left[e^{ \pm \beta X^{N}-\beta^{2} Y^{N}}\right]+\frac{\log 2}{\beta} \\
& \leq \frac{T}{\beta} \max _{+,-} \Omega_{0}\left\{ \pm \beta F^{N}-\frac{C}{N} \sum_{x \in \mathbf{Z}}|\beta J(x / N)|^{2} \tau_{x} \zeta_{n}^{l}+N^{2} L\right\}+\frac{\log 2}{\beta}
\end{aligned}
$$

According to Theorems 7 and 5, if C is chosen suitably large, then

$$
\varlimsup_{N \rightarrow \infty} E_{\text {eq }}\left[\left|X^{N}\right|-\beta Y^{N}\right] \leq \beta T\|J\|_{L^{2}}^{2} \sup _{p_{o}, \rho_{o}: \rho_{o} / p_{o} \leq l} V^{p_{o}, \rho_{o}}\{h\}+\frac{\log 2}{\beta}
$$

This gives the required inequality since $E_{\mathrm{eq}}\left[\beta Y^{N}\right] \leq C_{1} \beta / l$. Q.E.D.

§5. Upper and Lower Bounds For $D(p, \rho)$

Let $\underline{\kappa}=\underline{\kappa}(p, \rho)$ and $\bar{\kappa}=\bar{\kappa}(p, \rho)$ stand for the eigen-values of $D(p, \rho)$ such that $\underline{\kappa} \leq \bar{\kappa}$. We here prove that for some positive constants m and M,

$$
\frac{m}{p+(1+\lambda)^{-1}} \leq \underline{\kappa} \leq \bar{\kappa} \leq M(1+\lambda) \quad(\rho \geq p>0)
$$

where $\lambda=\lambda(p, \rho)$ is the parameter appearing in the definition of $\nu_{p, \rho}$. Proof of the upper bound. We shall apply the fact that if \hat{c}_{\circ} is a symmetric 2×2 matrix and $\hat{c}_{\circ} \geq \hat{c}$, then $\operatorname{Tr}\left(\hat{c}_{\circ} \chi^{-1}\right) \geq \operatorname{Tr}\left(\hat{c} \chi^{-1}\right)$. Let $\langle\cdot\rangle$ indicate the expectation under $\nu_{p, \rho}$. Then

$$
\begin{aligned}
\underline{\alpha} \cdot \hat{c}(p, \rho) \underline{\alpha} & \leq\left\langle\left(\Gamma_{01}\left\{\alpha \xi_{0}+\beta \eta_{0}\right\}\right)^{2} c_{01}\right\rangle \\
& =\left\langle\left\{\alpha \xi_{0}+\beta \eta_{0}\right\}^{2}\left(1-\xi_{1}\right) c_{\mathrm{ex}}\left(\eta_{0}\right)\right\rangle+\beta^{2}\left\langle\xi_{0} \xi_{1} c_{\mathrm{zr}}\left(\eta_{0}\right)\right\rangle
\end{aligned}
$$

In view of the conditions (2) and (3), $c_{\mathrm{ex}}\left(\eta_{0}\right) \leq C\left[c_{\mathrm{zr}}\left(\eta_{0}\right)+\mathbf{1}\left(\eta_{0}=1\right)\right]$. By combining this with the relations $\left\langle c_{\mathrm{zr}}\left(\eta_{0}\right)\right\rangle=p \lambda,\left\langle\eta_{0} c_{\mathrm{zr}}\left(\eta_{0}\right)\right\rangle=(\rho+p) \lambda$ and $\left\langle\eta_{0}^{2} c_{\mathrm{zr}}\left(\eta_{0}\right)\right\rangle=\left(\left\langle\eta_{0}^{2}\right\rangle+2 \rho+p\right) \lambda$, the last line above is dominated by $\beta^{2} p^{2} \lambda$ plus a constant multiple of
$(1-p)\left[\alpha^{2} p \lambda+2 \alpha \beta(\rho+p) \lambda+\beta^{2}\left(\left\langle\eta_{0}^{2}\right\rangle+2 \rho+p\right) \lambda+(\alpha+\beta)^{2}\left\langle\mathbf{1}\left(\eta_{0}=1\right)\right\rangle\right]$.
Recalling what is remarked at the beginning of this proof, noticing $\operatorname{det} \chi=\left(p\left\langle\eta_{0}^{2}\right\rangle-\rho^{2}\right)(1-p)$ so that

$$
\chi^{-1}(p, \rho)=\frac{1}{\left(p\left\langle\eta_{0}^{2}\right\rangle-\rho^{2}\right)(1-p)}\left(\begin{array}{cc}
\left\langle\eta_{0}^{2}\right\rangle-\rho^{2} & -(1-p) \rho \\
-(1-p) \rho & (1-p) p
\end{array}\right)
$$

and carrying out simple computations, we see that

$$
\operatorname{Tr}\left(\hat{c} \chi^{-1}\right) \leq C_{1}\left[\lambda+p^{2}\left(\lambda^{2}\right)\left(p\left\langle\eta_{0}^{2}\right\rangle-\rho^{2}\right)^{-1}+\lambda\right]
$$

Since $\bar{\kappa}+\underline{\kappa}=\operatorname{Tr}\left(\hat{c} \chi^{-1}\right)$, these yield the required upper bound, if we can find a positive constant δ so that

$$
\begin{equation*}
p\left\langle\eta_{0}^{2}\right\rangle-\rho^{2} \geq \delta p^{2} \lambda \tag{16}
\end{equation*}
$$

(This is certainly true for $\lambda \leq 1$.) To this end set $\ell=\ell(\lambda)=\max \{k$: $\left.c_{\mathrm{zr}}(k) \leq \lambda\right\}$ and $p_{k}=\nu_{p, \rho}\left\{\eta: \eta_{0}=k\right\} / p$. Noticing that $p_{k+1} / p_{k}=$ $\lambda / c_{\mathrm{zr}}(k+1)$, we infer from $\left|c_{\mathrm{zr}}(k)-c_{\mathrm{zr}}(\ell)\right| \leq a_{1}|k-\ell|$ that for all sufficiently large λ,

$$
p_{k} \geq p_{\ell} \exp \left\{-a_{1}(k-\ell)^{2} / \lambda\right\} \quad \text { if } \quad|k-\ell| \leq 2 \sqrt{\lambda}
$$

or, what we are about to apply, $\min \left\{\sum_{k<\ell-\sqrt{\lambda}} p_{k}, \sum_{k>\ell+\sqrt{\lambda}} p_{k}\right\} \geq \delta$ with some constant $\delta>0$ independent of λ. Hence

$$
\begin{aligned}
\left\langle\eta_{0}^{2}\right\rangle / p-(\rho / p)^{2} & =E^{\nu_{p, \rho}}\left[\left|\eta_{0}-\rho / p\right|^{2} \mid \eta_{0}>0\right] \\
& \geq \lambda P^{\nu_{p, \rho}}\left[\left|\eta_{0}-\rho / p\right| \geq \sqrt{\lambda} \mid \eta_{0}>0\right] \geq \delta \lambda
\end{aligned}
$$

Thus we have shown (16).
Proof of the lower bound. Let $A=A(p, \rho)$ be a 2×2 symmetric matrix whose quadratic form is

$$
\underline{\alpha} \cdot A \underline{\alpha}=V\left\{\alpha \nabla^{-} \xi+\beta \nabla^{-} \eta\right\} .
$$

Then $D(p, \rho)=\chi(p, \rho) A^{-1}(p, \rho)$ and it holds that $V\left\{\alpha \nabla^{-} \xi+\beta \nabla^{-} \eta\right\} \leq$ $\left\langle\left(\Gamma_{01}\left\{\alpha H^{P}+\beta H^{E}\right\}\right)^{2} c_{01}\right\rangle$ (cf. [6]), where H^{P} and H^{E} are functions introduced in Lemma 6. We shall apply the inequality

$$
\begin{equation*}
\underline{\kappa} \geq \frac{\operatorname{det}\left(\chi A^{-1}\right)}{\operatorname{Tr}\left(\chi A^{-1}\right)}=\frac{1}{\operatorname{Tr}\left(\chi^{-1} A\right)} . \tag{17}
\end{equation*}
$$

By employing Lemma 6 as well as the conditions (1) through (3) we see that for some constant C,

$$
\begin{aligned}
\underline{\alpha} \cdot A \underline{\alpha} & \leq\left\langle\left(\Gamma_{01}\left\{\alpha H^{P}+\beta H^{E}\right\}\right)^{2} c_{01}\right\rangle \\
& \leq C\left\langle\frac{\xi_{0}\left(1-\xi_{1}\right)}{c_{\mathrm{zr}}\left(\eta_{0}+1\right)}\left(\alpha \xi_{0}+\beta \eta_{0}\right)^{2}\right\rangle+C \beta^{2}\left\langle\xi_{1} c_{\mathrm{zr}}\left(\eta_{0}\right)\right\rangle
\end{aligned}
$$

One observes that the right-hand side equals C times

$$
\begin{aligned}
& \alpha^{2}(1-p) \frac{p}{\lambda}\left(1-\frac{1}{Z_{\lambda}}\right)+2 \alpha \beta(1-p) \frac{\rho-p}{\lambda} \\
& +\beta^{2}\left(\frac{1-p}{\lambda}\left\langle\left(\eta_{0}-\xi_{0}\right)^{2}\right\rangle+p^{2} \lambda\right)
\end{aligned}
$$

Noticing that $Z_{\lambda}=1+\lambda / c_{\mathrm{zr}}(2)+O\left(\lambda^{2}\right)$ as $\lambda \downarrow 0$ and $\nu_{p, \rho}\left\{\eta_{0}=2\right\}=$ $p \lambda / c_{\mathrm{zr}}(2) Z_{\lambda}$, and applying the inequality used in the preceding proof, we infer that

$$
\begin{equation*}
\operatorname{det}(\chi) \operatorname{Tr}\left(\chi^{-1} A\right) \leq C^{\prime} p^{2}(1-p) \lambda \quad \text { for } \quad 0<\lambda<1 \tag{18}
\end{equation*}
$$

For large values of λ we make an elementary computation (as we did for the upper bound) to see that $\operatorname{det}(\chi) \operatorname{Tr}\left(\chi^{-1} A\right)$ is at most C times

$$
\frac{1-p}{\lambda}(2-p)\left(p\left\langle\eta_{0}^{2}\right\rangle-\rho^{2}\right)+\frac{(1-p)^{2} p^{2}}{\lambda}-\frac{(1-p) p}{\lambda Z_{\lambda}}\left(\left\langle\eta_{0}^{2}\right\rangle-\rho^{2}\right)+(1-p) p^{3} \lambda
$$

Hence, in view of (16),

$$
\operatorname{Tr}\left(\chi^{-1} A\right) \leq C^{\prime}\left[\frac{1}{\lambda}+p\right](\lambda \geq 1)
$$

This together with (17) and (18) concludes the asserted lower bound of $\underline{\kappa}$.

References

[1] C. Kipnis and C. Landim, Scaling limits of particle systems, Springer, 1999.
[2] C. Landim, S. Sethuraman and S. Varadhan, Spectral Gap for Zero-Range Dynamics, Ann. Probab. 24 (1996), pp. 1871-1902.
[3] Y. Nagahata, Fluctuation dissipation equation for lattice gas with energy, to appear in Jour. Stat. Phys., Vol. 110 Nos.1/2 (2003) 219-246.
[4] Y. Nagahata and K. Uchiyama: Spectral gap for zerorange-exclusion dynamics, preprint
[5] H. Spohn, Large scale dynamics of interacting particles, Text and Monographs in Physics, Springer, 1991.
[6] K. Uchiyama, Equilibrium fluctuations for zero-range-exclusion processes, preprint
[7] S.R.S. Varadhan, Nonlinear diffusion limit for a system with nearest neighbor interactions - II, Asymptotic problems in probability theory: stochastic models and diffusions on fractals (eds. K.D. Elworthy and N. Ikeda), Longman (1993), pp. 75-128.
[8] S.R.S. Varadhan and H.T. Yau., Diffusive limit of lattice gases with mixing condition, Asian J.Math vol. 1 (1997), 623-678.

Department of Mathematics
Tokyo Institute of Technology
Oh-okayama, Meguro
Tokyo 152-8551
Japan
E-mail address: uchiyama@math.titech.ac.jp

