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A Proof of the Absolute Purity Conjecture 
(after Gabber) 

KazO.hiro Fujiwara 

§0. Introduction 

This article is an edited version of 0. Gabber's talk on his proof of 
the absolute purity conjecture of A. Grothendieck given at the p-adic 
conference held in Toulouse in 1994. The details of the proofs given here 
are supplied by the author following marvelous ideas due to Gabber. The 
author takes the full responsibility for inaccuracies that may appear in 
this article. 

The absolute purity conjecture is the following. 

Conjecture (Grothendieck, (G]). Let Y ~X be a closed immer
sion of noetherian regular schemes of pure codimension c. Let n be an 
integer which is invertible on X, and let A= Zjn. Then 

'H.j,(A) ~ {0 for q =I= 2c, 
Ay( -c) for q = 2c. 

The conjecture has been proved in the following cases: 

a) X is smooth over a field k, andY is also smooth over k ((AGV], 
expose XVI, 3.7). 

b) X is of equal characteristic ((AGV], expose XIX for special cases 
and conditional results, the general case can be deduced from 
Popescu's general Neron desingularization ((P]) as in §6) . 

c) dimX ~ 2 (Gabber (1976), see (Sa], §5, Remark 5.6 for a pub
lished proof). 
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d) X is of finite type over Z, and any prime divisor l of n satisfies 
l 2: dimX + 2 ([Thom2], the result in [Thom2] is in fact more 
general, but in [Thom2] it is necessary to assume that all prime 
divisors of n are "sufficiently" large). 

We explain the outline of the proof by Gabber of the' absolute purity 
conjecture. 

The first key step is the construction of the global cycle class in §1 

cl(Y) E H~c(X,A(c)) 

for X, a noetherian scheme, and Y C X a closed local complete inter
section subscheme. In the case that Y is an effective Cartier divisor, it 
is given by the localized first Chern class. In the general case, one uses 
the blowing up of X along Y, and the cycle class is constructed from the 
localized Chern classes of the exceptional divisor. The obtained cycle 
class refines the cycle class defined in [Del], 2.2. 

Thanks to the existence of the global cycle class, absolute purity 
is now reduced to punctual purity ( cf. Definition 2.2.1 and Proposi
tion 2.2.4): For a regular strict local ring 0 of dimension d with the 
closed point ix : x-+ Spec 0, the cycle class gives an isomorphism 

cl(x): Ax'::::' i~A(d)[2d]. 

By using induction on dimension, this is reduced to showing the following 
vanishing (cf. Proposition 3.1.2) 

HP(Spec O[f-1], A)= 0 for p ~ 0, 1, 

where f E m\m2 with m C 0, the maximal ideal. By a reduction step 
in §6, we may also assume that 0 is arithmetic. 

The second key step is the affine Lefschetz theorem (§5, Theorem B) 
on vanishing of cohomology of affine schemes of arithmetic type. It is 
a generalization of a theorem of M. Artin ([AGV]) in case of algebraic 
varieties over a field. Thanks to the theorem, we can show the following 
vanishing (cf. Proposition 5.2.1) by using the induction hypothesis and 
the duality result in §4 

HP(Spec O[f-1], A)= 0 for p ~ 0, 1, d- 1, d, 

where 0 and f E m are the same as before. In order to deal with 
the remaining vanishing, we invoke in the final key step the Atiyah
Hirzebruch type spectral sequence for the etale K-theory constructed 
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by Thomason ( cf. §7) 

E~,q = { :P(Spec O[f-1], Zjf!v(i)) 

=*(K/ ev)-p-q( o[f-1 ])LB-1]. 

(q = -2i), 

(q is odd) 
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One should note that the idea that the etale K-theory of schemes offers 
a very strong tool in the proof of the absolute purity conjecture is due to 
R. Thomason ([Thom2]) who has shown the conjecture with ambiguity 
of bounded torsion. Thanks to Suslin's computation of K-theory of 
separably closed field ([Sus]) and Gabber's rigidity theorem for algebraic 
K-theory ([Ga]), (K/f!v)*(O[f- 1 ])[,8-1] is computed. This implies the 
degeneracy of the spectral sequence from which the remaining vanishing 
of etale cohomology follows. 

Acknowledgement. The author thanks the referees for their 
quite helpful comments. The author also thanks Gabber for the cor
rection of mistakes in an earlier version of the article. 

Notation. For a scheme X, Xet denotes the etale topos of X. For 
an integer n 2': 1 and A= Zjn, D+(Xet,A) denotes the derived category 
of complexes of A-sheaves bounded below. The constant sheaf A on X 
is denoted by Ax. All cohomology groups are etale cohomology groups. 

§ 1. Cycle class 

1.1. Refined cycle class 

Let X be a noetherian scheme, Y C X be a closed, local complete 
intersection subscheme of pure codimension c. For an integer n which is 
invertible on X, let A= Zjn. Under this condition, Gabber constructs 
a cycle class cl(Y) E H'?c(X, A( c)) without any purity assumption. 

In the case of effective Cartier divisors, the class 

cl(Y) = c1 (0(Y)) E H'?(X,A(l)) 

is given by the localized first Chern class as in [Del], 2.1. For a morphism . 
f: X'---> X such that Y' = J*(Y) is also an effective Cartier divisor, 

J* cl(Y) = cl(Y') 

holds. In the general case, consider the blowing up 
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of X along Y. For the defining ideal 'Iy of Y, X = Proj EBm>o'Iy. 
Let E be the exceptional divisor defined by IE = 1r-1 ('Iy )O_x, ~nd let 
NYIX = 'Iy /I~ be the conormal sheaf of Yin X. 

E = Proj E9 'Iy JT;+l = P(NYIX) 
m2:0 

is the projective bundle of NY IX in the notation of EGA II. 0(1) =IE= 
0( -E) holds on X. Since 0(1) is canonically trivialized on X\ E, one 
has the localized first Chern class c1 (0(1)) in H~(X, A(1)). 

Lemma 1.1.1. Assume c > 0. There is a canonical isomorphism 

c-1 
a: E9H2(c-i)(Y, A(c- i)) EEl H~c(X, A(c)) ~ H~c(X, A(c)). 

i=l 

Proof. Consider the commutative diagram 

We write down the localization triangles on X and X. 

____, i 1A_x ____, AE ____, i*]*AX ____, 

____, i 1 Ax ____, Ay ____, i* j*Ax ____, . 

The first sequence exists onE, and the second on Y. Applying 7ry* to 
the first, we have 

since 

by the proper base change theorem. Let c' be the image of c1(0(1)) un
der H~(X,A(1)) ____, H 2 (X,A(1)) ____, H 2 (E,A(1)). c' is the first Chern 
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class of0(1)IE· Since Eisa projective bundle over Y ofrelative dimen
sion c- 1, the multiplication by c' induces a canonical decomposition 

c-1 
ffiAy( -i)[-2i] ~ 1ry*AE 

i=O 

in D+(Y,t,A), and hence Cone(Ay ---. 1rhAE) is identified with 
(B~,;:i Ay(-i)[-2i]. By taking the global section Rr, the map a de
fined in 1.1.1 gives an isomorphism. Q.E.D. 

By Lemma 1.1.1, we have an equation 

c 

c1(0(1W +:Lei· c1(0(1))c-i = 0 
i=l 

in HiHX, A( c)). For 0:::; i :=:; c- 1, ci E H2i(Y, A(i)) is the i-th Chern 
class of N~IX ([Jou], §3). The constant term Cc E H'fc(X, A( c)) refines 

the c-th Chern class cc(N~1x) in H 2c(Y,A(c)). 

Definition 1.1.2 (Gabber). cl(Y) = Cc E H'fc(X, A( c)). 

Proposition 1.1.3 (functoriality). Let X be a noetherian scheme, 
Y C X be a closed, local complete intersection subscheme of pure codi
mension c. For a morphism f: X'---. X such that Y' = J*(Y) is also a 
local complete intersection subscheme of codimension c, 

f* cl(Y) = cl(Y'). 

Especially, the formation of cl commutes with any flat pullback. 

Proposition 1.1.4. Let X be a noetherian scheme. Let Di (1 :::; 
i :=:; c) be effective Cartier divisors on X crossing normally (i.e., their 
local defining equations form a regular sequence). If Y = n1 <i<c Di, 
ilien --

c 

cl(Y) = U cl(Di)· 
i=l 

Proof. Let Di be the strict transform of Di· 1r* Di = Di + E, and 

hence there is an equality 
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of localized Chern classes in H'fr. D, (X, A(l)). By taking the cup product 
of these classes, 

m H~elSiSc"'*D,(X,A(c)) = H~e(X,A(c)). Since nl~i~el\ 0, 
U1~i~eq(O(Di)) is zero, and hence we have the following equation 

e 

2:.: ai(c1(0(n* DI)), ... , c1(0(n* De)))· c1(0(1W-i = 0 
i=O 

in H~e(X, A( c)). Here ai(a1, ... , ae) is the i-th fundamental symmetric 
polynomial in a 1, ... , ae, and a0 = 1. By the definition of the cycle 
class, 

e 

cl(Y) = CTe( c1 ( O(n* D1) ), ... , c1 ( 0( n* De))) = U C! ( 0( n* Di) ). 
i=l 

On the other hand, by the functoriality of the localized Chern classes 
of effective divisors, 

e e 

i=l i=l 

via n*: H'?e(X, A( c))----> H~e(X, A( c)). This proves the claim. Q.E.D. 

Corollary 1.1.5. The image of cl(Y) in H0 (Y, R 2ei 1A(c)) coin-
cides with the class defined in [Del], 2.2. 

1.2. Gysin map 

Assume that we are given a closed embedding Y C X, which is a 
local complete intersection of pure codimention c. ForK E Dtt(Xet, A) 
(the index tj means "finite Tor dimension") and L E D+(Xet, A), we 
have the canonical product 

cl(Y) defines a morphism A e~) i1A(c)[2c] in D+(Yet,A), and hence we 
have the canonical map which we call the Gysin map for ( i, K) 

Gys(i,K) : i* K----> i* K ®L i1A(c)[2c]----> i1K(c)[2c]. 
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Proposition 1.2.1 (Compatibility). Assume that we are given 

two embeddings Y ~ Z ~ X which are complete intersections of pure 
codimension c1 and c2 , respectively. For the map 

induced by the Gysin map 

the composition of 

is the Gysin map for ( i 2 · i 1 , K). 

Proof. In case that Z and Y are obtained by intersections of Cartier 
divisors Di: 

c1 +c2 

Y= n Di, 
i=l 

1.2.1 follows from Proposition 1.1.4. In what follows in this paper we use 
Proposition 1.2.1 only in this special case. The general case of Proposi
tion 1.2.1 is shown by using the method in [F], 9.2, but the details are 
omitted. Q.E.D. 

§2. Statement of purity theorem 

2.1. Absolute purity theorem 

In this section all schemes are over Spec Z [ 1 In], and let A = Z In. 
i 

Theorem 2.1.1 (Gabber). Let Y '-----'X be a closed immersion of 
noetherian regular schemes of pure codimension c. Then the cycle class 
defined in 1.1 gives an isomorphism 

cl(Y) 1 
Ay ~ i·A(c)[2c], 

Hir(A) ~ {0 
Ay( -c) 

for q -1- 2c, 

for q = 2c. 
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2.2. Punctual purity 

Definition 2.2.1. 

a) Let Y ~ X be a closed immersion of noetherian regular schemes 
of pure codimension c. We say that the purity holds for (X, Y) if 
and only if 

ci(Y) 1 
Ay ~ i·A(c)[2c] 

is an isomorphism in D+(Yet,A). 
b) Let X be a regular scheme, and x be a point of X. We say that 

the punctual purity holds at x, or X is punctually pure at x if and 
only if 

is an isomorphism in D+ ( Xet, A). Here dx = dim 0 x ,x is the local 

. . ·' . * ·I i' X - i-y;;r 
cod1mens1on at x, and z;, = z'x · z{x} for {x} '----+ {x} '----+X. 

c) Let 0 be a regular strict local ring with the maximal ideal m. 
We say that the punctual purity holds for ( 0, m), or ( 0, m) is 
punctually pure, if and only if Spec 0 is punctually pure at the 
closed point V ( m). 

Here are very useful propositions to check punctual purity in some 
special cases. 

Proposition 2.2.2:,_ Let 0 be a regular strict local ring with the 
maximal ideal m, and 0 be the m-adic completion. Let X= SpecO, 
x = V(m), X= SpecO, and x = V(mO). Then X is punctually pure 
at x if and only if X is punctually pure at x. 

Proof. By the formal base change theorem of Gabber ([Fu], -Corol
lary 6.6.4), 

and hence 

H~(X, A)~ H%(X, A) 

for any q E Z. Since X--+ X is faithfully fiat, by 1.1.3 cl(x) is mapped 
to cl(x) under this isomorphism. The claim follows. Q.E.D. 
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Corollary 2.2.3. Let X be a noetherian regular scheme of equal 
characteristic. Then X is punctually pure at every point. 

Proof. It suffices to prove that ( 0, m) is punctually pure for any 
regular strict local ring 0 of equal characteristic with the maximal ideal 
m. By 2.2.2, we may assume that 0 is m-adically complete. By the 
structure theorem of complete regular local rings, there is a local iso
morphism 

where O' is the strict henselization of a polynomial algebra k[X1, ... , XN] 
over a separably closed field k at (X 1 , ... , X N). By the relative pu
rity theorem ([AGV], expose XVI, 3.7), Spec k[X1 , ... , XN] is punc
tually pure at any k-rational point. Using 2.2.2 again, we finish the 
proof Q.E.D. 

i 
Proposition 2.2.4. Let Y "-----+ X be a closed immersion of regular 

schemes of pure codimension c. Any two of the following conditions 
imply the third. 

a) The purity holds for (X, Y). 
b) Y is punctually pure at every point. 
c) X is punctually pure at every point of Y. 

The proof of "b), c)==;. a)" will be given in 3.1.3 later. 
Proof of a), b) =} c). Take any point y of Y. Put dy dimOx,y, 

iy i 
{y} "-----+ Y "-----+X. From a), we have an isomorphism 

cl(Y) 1 

Ay ~ i·A(c)[2c], 

and hence 

By the compatibility 1.2.1, the composite of the isomorphisms is ob
tained by the cycle class. 
Proof of a), c) ==;. b). It is proved in a similar way as above, so the proof 
is omitted. Q.E.D. 

Proposition 2.2.5. Let S be a noetherian regular scheme of 
dimension at most one, and P be a smooth S -scheme. Then the punctual 
purity holds at every point of P. 

Proof. By 2.2.3, we may assume that Sis a trait. Let s be the closed 
point of S. By 2.2.3 again, it suffices to prove that P is punctually pure 
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at any point overs. We apply a), b) ::::} c) part of Proposition 2.2.4 (we 
have already proved this part) with X= P, Y = P8 • a) is a consequence 
of the smooth base change theorem ([AGV], XVI, Corollaire 1.2). b) 
follows from 2.2.3. Q.E.D. 

Corollary 2.2.6. Let V be a strict complete discrete valuation 
ring, 0 = V[[X1, ... , Xn]] be a power series ring over V. Then Spec 0 
is punctually pure at the closed point. 

This is a consequence of Propositions 2.2.2 and 2.2.5. 

2.3. Injectivity 

Lemma 2.3.1. Let 0 be a regular strict local ring, and X = 
. . cl(Y) 

Spec 0. For a regular closed subscheme Y C X of codzmenswn c, A -7 

H'tc(X, A( c)) is injective. 

Proof By considering the composition 

where y is a geometric generic point of Y, we are reduceed to the 
case Y = { x} where x is the closed point of X and c is the dimen
sion of 0. By Proposition 2.2.2, we may assume that 0 is a com
plete local ring. By the structure theorem of complete local rings, 
there are a coefficient ring C of 0 and a surjective local homomor
phism f: C[[X1, ... ,Xn]]-» 0. Cis a field, or a Cohen ring, namely a 
complete discrete valuation ring for which a rational prime p is a prime 
element. Let P = SpecC[[Xl,··· ,Xn]], N = dimP. Consider the 

closed embedding X ~ P induced by f. P is punctually pure at x by 
Corollary 2.2.6, and we have the Gysin map 

The last isomorphism is given by the cycle class. By the compatibility 
of cycle class 1.2.1, the composition of 

is the identity, and hence the map is injective. Q.E.D. 

§3. Impure cohomology 

Definition 3.1.1. Let 0 be a regular strict local ring, and X = 

Spec 0. For a regular closed subscheme Y C X of codimension c and 
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q E Z, the impure cohomology group H'{r(X, A)impure is defined as 

Hq (X A)· - {H'{r(X, A) 
Y ' Impure- Coker(A(-c)----> H'{r(X, A)) 

(q =f. 2c) 

(q = 2c). 
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Here A( -c) ci(Y_li -c) H'?c(X, A) is defined by the cycle class. The impure 

cohomology group Hq(X \ Y, A)impure is defined as H'{r+I(X, A)impure 
for q E Z. 

By 2.3.1, X is punctually pure at the closed point x if and only if 
Hq(X \ {x},A)impure = {0} for any q E Z. 

Proposition 3.1.2 (Invariance of impure cohomology groups). Let 
0 be a regular strict local ring, X = Spec 0, and x be the closed point 
of X. Let Y be a non-empty regular closed sub scheme different from X. 
Let n be an integer which is invertible on X, and let A = Zjn. We 
assume the following two conditions. 

a) Y is punctually pure at every point. 
b) The purity holds for (X \ { x}, Y \ { x}). 

Then there is a canonical isomorphism 

for any q E Z. 

Proof. Let d = dimO, c = codim(Y,X). X= X\ {x}, Y = Y\ {x}, 
i: Y '----+X, jx: Y '----+ Y, ix: {x} '----+X. By our assumption b), 

Ay- .'::', i'A(c)[2c] 

by the cycle class. Since the claim is obvious in the case of c = d, we 
may assume that c < d. Note that there is a following morphism of 
localization triangles 

i~Ay( -c)[-2c] ~ i~Ay( -c)[-2c] ~ i~jx*Ay-( -c)[-2c] 

al ~1 ~1 

. . . c!(Y)(-c)(-2c] -1 • 
which IS mduced by the cycle class Ay( -c)[-2c] ----> z·A. First 
we look at the second line. By assumption a), Hq(i~jx*i'A) = 0 unless 
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q = 2c, 2d - 1. The long exact sequence associated to the second line 
reduces to 

(1) H'f,(X, A) ~ H'{(X, A) for q -1- 2c, 2c + 1, 2d- 1, 2d, 

(2) 

(3) 

0--. H;/(X, A)--. H~c(X, A) --.H2cCY, i'A) 

--.H2c+1(X A)____. H2c+1(X A) 
X ' y ' ' 

H;,d- 1 (X, A) --.H~d- 1 (X, A) ____. H 2d-1 CY} A) 

--.H;,d(X, A) --. H~(X, A) --. 0, 

where we can add --> 0 to the right hand side of (2) and 0--> to the left 
hand side of (3) in the case c -1- d- 1. Concerning (2), the composition 
of 

is the identity. So the surjectivity of H~c(X,A)--> H;tcCY,i'A) follows, 
showing that H;,c+1(X,A)--. H~c+1 (X,A) is bijective (resp. injective) 
in the case c -1- d- 1 (resp. c = d- 1), and the canonical decomposition 

H~c(X, A) ~A( -c) EB Ker(H~c(X, A)--. A( -c)) 

induces 

Concerning (3), we show that 

(4) H 2d-1(Y, i'A) --. H;,d(X, A) is injective, 
(5) the image of this map is spanned by the cycle class twisted by 

A( -d). 

Then we finish the proof: it follows that H;,d- 1 (X,A) ~ H~d- 1 (X,A) 
and H;,d(X, A)impure ~ H~d(X, A). 

To prove (4) and (5), consider the following commutative diagram. 

H2d-2c-1 (Y, A)( -c) __i___,_ H;,d-2c(Y, A)( -c) 

H2d-1 (-y) 1 H2d(a) 1 
H 2d- 1 (Y,i'A) H;,d(X,A). 
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H 2d-l ('-y) is an isomorphism since Ay- ~ i' A( c) [2c]. 8 is an isomorphism 
by the localization sequence and the fact that the higher cohomology of 
Y vanishes. H'f,d-Zc(Y, A)(d- c) is spanned by the cycle class E of x in 
Y, and by the compatibility 1.2.1, H 2d(a)(d)(t:) is the cycle class of x 
in X. (5) is shown. (4) follows from Lemma 2.3.1. This completes the 
proof of 3.1.2 Q.E.D. 

3.1.3. Here we give the proof of the part b), c) =}a) of Proposition 2.2.4. 
Take a pointy in Y, and let Xy = SpecOtY' Yy = SpecO~,y· Here 
(- )h denotes the henselization. It suffices to prove that the purity holds 
for (Xy, Yy) for any y E Y. We proceed by induction on 8 = dimOY,y· 
If 8 is zero, the statement is obvious. 

Let Xy = Xy \ {y}, Yy = Yy \ {y}. By our induction hypothesis, 

by the cycle class. By Proposition 3.1.2, the punctual purity of Xy at y 

implies the purity for (Xy, Yy)· Q.E.D. 

Corollary 3.1.4. In 3.1.2, condition b) can be replaced by 

b') X is punctually pure except possibly at the closed point x. 

Proof. By the part b), c) =} a) of Proposition 2.2.4 applied to 
(X\ {x}, Y \ {x}), the assumption a) of 3.1.2 and b') of 3.1.4 implies 
condition b) of 3.1.2. Q.E.D. 

§4. Duality formalism for arithmetic schemes 

In this section, we fix a noetherian regular scheme S of dimension 
at most one. By an arithmetic S-scheme, we mean a separated scheme 
X of finite type over S. Let n be an integer which is invertible on S, 
and let A = Zjn. 

For a morphism of arithmetic S-schemes f : X ----+ Y, we make use 
of the six operations ([De2]) 

f*, j, : D~(Xet, A) ----+ D~(Yet, A), 

f*, / : D~(Yet, A) ----+ D~(Xet. A), 

Hom: D;;(Xet,A) x D;!-(Xet,A)----+ D;!-(Xet,A), 

®L: D;;(Xet, A) x D;;(Xet, A)----+ D;;(Xet, A). 

Here D~(Xet,A), D~(Yet,A) denote the derived categories of the com
plexes of A-sheaves with constructible cohomology sheaves and a suitable 
boundedness condition. 
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4.1. Normalization of dualizing complexes 

For the structural morphism fx :X --> S of an arithmetic S-scheme 
X, let 8 f x : X --> Z be the dimension function defined by 

8Jx (x) =dim {fx(x)} + tr. deg k(x)jk(fx(x)) (x EX). 

We put 

and call it the total dimension of X. For an arithmetic S-scheme X, we 
say that X is 8~equidimensional if and only if 8y, where Y is any irre
ducible component of X, are equal. X is called locally 8-equidimensional 
if and only if every point of X admits an open neighbourhood which is 
8-equidimensional. When X is locally 8-equidimensional, we also de
note by 8x the locally constant function that maps a point x to 8u of a 
8-equidimensional open neighborhood U of x. 

For an arithmetic S-scheme X, we put 

Kx = j_kA(8s)[28s]. 

Here 88 is the total dimension of S, which we view as a locally constant 
function on S. Kx has a finite injective dimension. For any K E 

D~(X,A), define DxK by 

Dx K = Hom(K, Kx ). 

By a theorem of Deligne ([De2], 4.3 and 4.7), Kx satisfies the local 
biduality: 

a) DxK belongs to D~(X, A). 
b) K ~ DxDxK for any K E D~(X,A). 

We call an object Kx of D~(X, A) having a finite quasi-injective dimen
sion ([G], Definition 1.7) with these two properties a), b), a dualizing 
complex of X. For a connected scheme, dualizing complexes are unique 
up to a shift, and the twist by a smooth locally free A-sheaf of rank one 
([G], Theoreme 2.1). 

We make use of the dualizing complex Kx chosen as above. We will 
construct the fundamental class of X in some special cases. 

Let us start with the smooth case. If f : X --> S is smooth of relative 
dimension d, there is a canonical trace map ([AGV], expose XVIII, 2.9) 

Trf : R 2d fd* Ks(d) --> Ks 
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Trt 
A(8x)[28x] ~ Kx. 

Here we regard d and 8 x as a locally constant function on X. 
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Let X be a 8-equidimensional local complete intersection scheme 

admitting a closed embedding X~ Pinto a smoothS-scheme P. Then 
we have the cycle class 

cl(X) .t i 1 Trtp ( -c5x )[-2c5x] .t 1 
A ~ ~·A(8p- 8x)[2(8p- 8x)] ~ ~"f?Ks(-8x)[-28x], 

and hence 

(X] 
A(8x )[28x] ~ Kx 

as the composition. 

Lemma 4.1.1. Let X be a 8-equidimensionallocal complete in

tersection scheme admitting a closed embedding X ~ P into a smooth 
S-scheme P. Then [X] is independent of any choice of i. We call [X] 
the fundamental class of X. 

Proof. The proof is standard. Assume that we have two embeddings 
is :X~ Ps (s = 1, 2). The composition 

IS ~s· By replacing P1 Xs P2 by P~, we may assume that P1 is a P2-
scheme, F : P1 ~ P2 is a smooth morphism of relative dimension d, and 
i 2 = F · i 1. By the compatibility of the trace map, the composition of 

is Trfp1 • It suffices to prove 

Sublemma 4.1.2. Let X be a noetherian scheme. Assume that 
F : P ~ X is a smooth morphism of relative dimension d, Y .~ X is a 
local complete intersection of pure codimension c, and i 2 : Y ~ P is a 
closed immersion such that F · i 2 = i 1 . Then the composition 

cl(i2 ) 1 Trp(c)[2c] 1 1 

A ~ i2A(d + c)[2(d +c)] ~ i2F"(c)A[2c] 

is cl(il). Here we denote the cycle map A~ i'A(c)[2c] defined for a local 

complete intersection subscheme W ~ Z of codimension c as cl(i). 
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. i2 il p 
Proof. We decompose z2 as Y--> Py = P Xx Y ~ P. 

P~Py~Y 

F l i
1 

Fy t 
X+----Y 

The base change morphism([AGV], expose XVIII (3.1.14.2)) is an iso
morphism: 

. * F 1A (l) F 1 A Zlp . X~ y y, 

and the isomorphism (1) is compatible with the trace maps: the iden
tification TrF: Ap(d)[2d] ~ F 1Ax induces TrFv : APv(d)[2d] ~ F}Ay 
by the functoriality. 

On the other hand, since F 1Ax is a shift of a A-smooth sheaf, we 
have the canonical isomorphism induced by the canonical product 

0 I FIA 0 I A L 0 * FIA Zlp . X ~ Zlp P 0 Zlp . X· 

So the Gysin map 

Gys(. , ) 
· * F 1A 'lp,F·Ax · ! F 1A ( )[2 ] Z1p X --t Zlp X C C 

is identified with 

cl(hp)®Lid. * F'A 
. * FIA 'lp . X • I A ( )[2 l L 0 * FIA Zlp . X --t Zlp p C C 0 Zlp . X, 

and also with 

cl(ilp)®LidF! A 
F}Ay --> v v i 1 ~Ap(c)[2c]0L F}Ay 

by (1). Using this identification and (1), 

(2) 

is identified with 

(3) 

""*p! A ( d)[ 2d] Gys(i2,F~Ay(-d)[-2dlJ-:-! p! A 
z2 Y Y - - --> z2 Y Y 
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The composition of (2) is 

c!(i1p) 
by the compatibility 1.2.1. By the functoriality 1.1.3, APy ~ 

i1~Ap(c)[2c] is canonically isomorphic to AFY F;.~!fh) F.YiiAx(c)[2c], 
. -:1 1 ikF-i-- ci(i1 ) -:1 1 .1 

and hence the second arrow of (3) 1s z2Fy-Ay ~ z2FyziAx(c)[2c] 

h. h . 1 A ci(il) ·'A ( ) [2 ] w 1c 1s equa to y ~ Zi x c c . 
Since (1) is compatible with the trace map, it suffices to see that 

the composition of 

A cJ(i2) "'!A (d)[2d] ik ;::;Fy "'! D! A -A y ~ z2 Py ~ z2ry y - y 

is the identity of Ay as a constant sheaf on Y. 
So we are reduced to the case when Y = X, and i = i 2 is a section of 

F. Since the problem is etale local, we may assume that P =A~, and i 
is the zero section. Using the compatibility 1.2.1 and the compatibility 
of the trace map with compositions, we may assume that P = Al-. It 
suffices to check it at the maximal points of X, so that we may assume 
that X is zero dimensional. By considering the geometric closed fibers 
over X, we reduce to the case when X = Speck, where k is a separably 
closed field. Since our cycle class coincides with the classical one for 
divisors, the claim is obvious by the definition of the trace map. Q.E.D. 

Proposition 4.1.3. Let X be a 8-equidimensional regular scheme 
admitting a closed embedding into a smooth S -scheme. For any x E X, 
the following two conditions are equivalent: 

a) The fundamental class [X] gives an isomorphism 

at any generization y of x. 
b) X is punctually pure at any generization y of x. 

Proof. We choose an embedding X ~ P into a smooth S-scheme 
P. By 2.2.5, Pis punctually pure at every point. Then the claim follows 
from the implications b), c)::::? a) and a), c)::::? b) of Proposition 2.2.4. 

Q.E.D. 
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As a corollary, the fundamental class gives an isomorphism if X is 
regular of equal characteristic by 2.2.3. Since for each point x overs E S, 
the closure { x} of x in X 8 has a dense affine open regular subscheme of 
equal characteristic, we have a canonical isomorphism 

Remark. For any 8-equidimensional local complete intersection arith
metic S-scheme X, the fundamental class [X] is defined as follows. Take 
an affine dense open subscheme U of X. Then it is easy to see that 

Note that 8x = 8u by the definition. For U, we have [U] E 
H 2liu(U,Ku(-8u)) by taking an embedding into an affine space over 
S. Then we put [X] = [U]. This is independent of any choice of U, and 
for X which admits an embedding into a smoothS-scheme we have the 
same fundamental class as before. 

For general X, one may take the following formula as the definition 
of the fundamental class: 

[X]= L lengthOx,x · [Ux] E H 2lix(X,Kx(-8x)). 
xElx 

Here I x is the set of the maximal points of X such that 8 f x ( x) = 8 x, 
and Ux is an open dense subscheme of the closure { x} which is a local 
complete intersection. When X is a 8-equidimensional local complete 
intersection, the coincidence of the two definitions is shown as follows. 

By localization, one can assume that X is irreducible and embedded 
into an affine space over S. If X dominates an irreducible component 
of S, one uses the compatibility of cycle classes with proper intersection 
of cycles ([Del], over a field). In general one may use the formalism of 
local Chern classes of perfect complexes (as in [Iv]). 

4.2. Local duality 

We describe the local duality theory for regular local rings of arith
metic type by using another normalization of dualizing complexes. 

Definition 4.2.1. We say that a strict local ring 0 is of arithmetic 
type over S if 

0 ~ osh_ 
- X,x 

for an arithmetic S-scheme X and a point x of X. Here xis a geometric 
point of X localized at x, and (- )"h denotes the strict henselization. 
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Let 0 be a regular strict local ring of arithmetic type over S. We 
choose an isomorphism 

0 ~ash_ - X,x 

for an affine arithmetic regular S-scheme X and a geometric point x 
above x. Let X:r = SpecOJP,:r, X:r = X:r \ {xs}, ix : {xs} '--' X:r, and 

Jx : X:r '--' X:r. Here X 8 is the closed point of X:r. 
Put 

Kx: = Kxlx.,(-8x)[-2bx]. 

Then K)(; is a dualizing complex of X:r: K)(; has a finite injective 
dimension, and the two properties in 4.1 characterizing a dualizing com
plex are satisfied for this Kx.,. 

By our renormalization, 

and there is a canonical map 

obtained by the fundamental class. From Proposition 4.1.3, we deduce 
the main result of this section: 

Proposition 4.2.2. For any y E X:r, the following two conditions 
are equivalent: 

a) The canonical map 

defined above gives an isomorphism 

i* 1 can 
·*A Y ·* Kren 
2y' .'::::', 2y' x., 

at any generization y' of y. 
b) X:r is punctually pure at any generization y' of y. 

4.2.3. Finally we deduce the local duality theorem from the biduality 
of Kx: ([G], 4.7). For L E D~(X:r, A), we put 

Dx.,L = Hom(L, K)(;). 

ForK E D~(X:r, A), apply the biduality to Jx!K, and we get 

·' . K ·' D D . K H ( "*D . K ·' Kren) 25;Jx! .'::::', 25; x., x.,Jx! .'::::', om 2:r x.,Jx! , 25; x., 
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Here 

Using that ikJx!K ~ iiJx*K[-1], we have a perfect pairing of A-modules 

Hq(Xx, K) X H 2dx- 1-q(Xx, Dx.,K)----> A(-dx) 

for any q E Z. 

§5. Vanishing theorems 

5.1. Affine Lefschetz theorems 

Let S be a noetherian regular scheme of dimension at most one. 
For an integer n which is invertible on S, let A= Z/n. Gabber proved 
the following affine Lefschetz theorems. We will use Theorem C in this 
paper. 

Theorem A. Let f : X ----> Y be an affine morphism of finite type 
between arithmetic S-schemes. Let F be a A-sheaf on X. Then 

To state the next theorem, we define a dimension function in a 
general setting. Let Y be the spectrum of a universally catenary local 
ring, f : X ----> Y be a morphism of finite type. For x E X, we put 

DJ(x) = dim{f(x)} +tr.degk(x)/k(f(x)), 

and Dx,J = sup{8t(x);x EX}. 

Theorem B. Let Y be the spectrum of a strict local ring of arith
metic type overS, f : X ----> Y be an affine morphism of finite type. If 
F is a A-sheaf on X, 

for q > DsuppF,J· 

Especially, Theorem B implies 

Theorem C. Let 0 be a strict local ring of arithmetic type over 
S. For a non-zerodivisor f ofO and a A-sheaf F on SpecO[f-1], 

Hq(Speco[r1],F) = o for q > dimO 
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holds. 

Remark. For algebraic varieties over a field, these theorems A-Care due 
toM. Artin ([AGV], expose XIV, Theoreme 3.1, Corollaire 3.4). Amaz
ingly, the original proof by Artin basically works well in the arithmetic 
setting, except one important step. The missing step is Theorem C for 
two dimensional regular local rings of arithmetic type, which is treated 
by the local duality formalism. See [112] for the details. 

5.2. Application to purity 

The following theorem is an important step towards the proof of the 
absolute purity conjecture. 

Theorem 5.2.1 (Vanishing theorem). Let 0 be a regular strict 
local ring of arithmetic type, and X = Spec 0. Let Y be a regular 
divisor of X, and x be the closed point of X. We assume the following 
two conditions. 

a) Y is punctually pure at every point. 
b) X is punctually pure except possibly at x. 

Then 

ifq=/:0, 1, d-1, d. Hered=dimO. 

Proof. By Theorem C, 

if q > d. By the invariance of impure cohomology groups 3.1.2 (cf. 
Corollary 3.1.4), we have 

for d < q < 2d- 1. By assumption b), the renormalized dualizing 
complex Kx\{x} is isomorphic to A by Proposition 4.2.2. Hence by the 

local duality theorem 4.2.3, Hq(X\ {x }, A) is the A-dual of H 2d-l-q(X\ 
{x},A). Hence we have 

for 0 < q < d-1. By using Proposition 3.1.2 again, we have the desired 
vanishing~ Q.E.D. 
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§6. Proof of purity: reduction to the arithmetic case 

In the following two sections, we prove the absolute purity conjec
ture. First we make reductions to the arithmetic case over Z to apply 
the vanishing theorem and etale K -theories. 

6.1. Limit argument 

Lemma 6.1.1 (descent lemma). Let A be a regular local ring with 
the maximal ideal m and the residue field k, and I C I' C A be two 
ideals of A. Assume the following two conditions. 

a) I is an ideal genemted by a part of a regular system of pammeters 
of A of height c, and I'/ I is an ideal genemted by a part of a 
regular system of parameters of A/ I of height d. 

b) There is a directed inductive system {Aj}jEJ of regular local rings 
such that each transition map 'Pii : Ai _, Aj for i ::; j is a local 
homomorphism, and there is a local isomorphism 

A~ !imiEJAj. 

Then there is an index jo E J and two subsystems {Ij }j E J, j '2io , 
{ Ij hEJ, i'2io of { Aj hEJ, i'2io satisfying the following properties: 

a') Ij C Ij C Aj are ideals of Aj for j ~ j 0 . Ij is an ideal generated 
by a part of a regular system of parameters of Aj of height c, Ij/ Ij 
is an ideal generated by a part of a regular system of parameters 
of Ai/Ii of height d for j ~ jo. 

b') 'Pii(Ii)Ai = Ij, 'Pii(JDAi = Ij for j ~ i ~ jo. I= IjA, I'= IjA 
for any j ~ jo. 

Proof. Let m and mj (j E J) be the maximal ideals of A and Aj 
(j E J), respectively. 

Let Is (1 ::; s ::; c) be elements of I such that Ush~s~c generate I, 
and forms a part of a regular system of parameters of A. 

Take elements gt (1 ::; t ::; d) of I' such that {gt mod Ih <t<d gen
erate I'/ I, and forms a part of a regular system of parameter~ ;;fA/ I. 
{fs, 9th~s~c,l~t~d forms a part of a regular system of parameters of A. 

We identify A with the inductive limit of { Aj bEJ. Then mj A, j E J 
generates m, and hence for some j 0 E J mjA = m for any j ~ j 0 • 

We take elements Fs E mj0 (1 ::; s ::; c) and Gt E mj0 (1 ::; t ::; d) 
such that Fs and Gt are mapped to fs and 9t, respectively. 

Put Fs(j) = 'Pj0 j(Fs) and Gt(j) = 'Pioi(Gt) for j ~ jo. We show 
that these elements F8 (j) ( 1 ::; s ::; c) and G t (j) ( 1 ::; t ::; d) form a part 
of a regular system of parameters of Aj. For this, it suffices to see that 
c + d-elements F 8 (j) mod m] (1 ::; s ::; c) and Gt(j) mod m] (1 ::; t ::; d) 
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are linearly independent in mj / m7. The images of these elements in 
m/m2 are fs mod m 2 (1 :::; s:::; c) and gt mod m 2 (1 :::; t:::; d), and span a 
c+d-dimensional subspace of m/m2 . So the linear independence follows. 

We put Ij = (F(j)s, 1 :::; s :::; c) and Ij = (Fs(j), (1 :::; s :::; 
c), Gt(j), (1 :::; t :::; d)) C Aj for j 2': j 0 . Ij, Ij define regular sub
schemes of Spec Aj of codimension c and c + d, respectively. 'Pij induces 
'Pij(Ii) = Ij, 'Pij(If) = Ij for j 2': i 2': jo. IjA =I, IjA =I' for j 2': j 0 

by the construction. The descent lemma follows. Q.E.D. 

Proposition 6.1.2. Assume that the purity is true for any closed 
immersion Y ----* X of arithmetic regular schemes over a Cohen ring. 
Then the punctual purity is true for any regular strict local ring. 

Proof. By Proposition 2.2.4, it suffices to show the punctual purity 
for a regular strict complete local ring 0. Let m be the maximal ideal 
of 0, and let d = dim 0. By Corollary 2.2.3, we may assume that 0 
is of mixed characteristic. Let p be the residue characteristic. By the 
structure theorem of complete regular local rings, there is a presentation 

Here C is a Cohen ring for k. 

Sublemma 6.1.3 There is a directed inductive system {Sj}jEJ of 
regular local rings satisfying the following properties: 

a) There is a local C -isomorphism Sj ~ C { {Y1 , . . . , Yn1 } } for some 
nj E N. Here C{ {Y1, ... , YN}} is the strict henselization of 
C[Y1, ... , YN] at (p, Y1, ... , YN ). 

b) Each transition map 'Pij : Si ----* Sj for i :::; j is a local C
homomorphism, and 

as a local C -algebra. 

Proof. By the theorem of Artin-Rotthaus ([AR]), there is a directed 
inductive system {Rj }JEJ of smooth C-algebras, and C[[X1, ... , XnlJ 
is isomorphic to the inductive limit: C[[X1, ... , XnlJ .':::::+ fu!}JEJRj· Let 
Xj E Spec Rj be the image of the closed point x of Spec C[[X1, ... , Xn]J, 
and sj be the henselization of Rj at Xj. sj ~ c {Yl) ... ) Ynj} for some 
nj 2': 0 since the residue field k(x) at xis k. The claim follows. Q.E.D. 

We return to the proof of 6.1.2. Let { Sj }jEJ be a directed inductive 
system obtained by Sublemma 6.1.3. We apply the descent lemma 6.1.1 
with A = C[[X1, ... , XnlJ, Aj = Sj, I = fA and I' = m'. Then 
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there is an index j 0 E J and subsystems {Ij}jEJ, j?_jo and {Ij}jEJ, j?.jo 
satisfying conditions a') and b') of 6.1.1. Put Oj = Aj/Ij, .:f:j = Ij/Ij 
for j :2': j 0 . We have an inductive system { Oj LEJ,j?.jo and {,:f:j }jEJ,j?.jo 
such that 

a) oj is a regular local ring. 
b) .:f:j is an ideal of Oj, and defines a regular subscherne of codimen

sion dimO. 
c) 0 ':::0 ~jEJ,j?.joOj, .:f:jO = m. 

By condition c), 

Hq(SpecO\ V(m),A) ':::O~jEJ,j?.joHq(SpecOj \ V(.:f:j),A), 

for any q E Z. cl(V(.Jj)) E H~~Jil(SpecOj,A(n)) = H 2d- 1 (Spec0j \ 

V(.Jj),A(n)) is mapped tocl(V(m)). So the purity for (SpecOj, V(.Jj)) 
implies the punctual purity for (O,m). Q.E.D. 

Proposition 6.1.4. Assume that the purity is true for any closed 
immersion Y --* X of arithmetic regular schemes over Z. Then the 
purity is true for any regular strict local ring of arithmetic type over a 
Cohen ring. 

Proof. Since any Cohen ring C is absolutely unramified, it is a di
rected inductive limit of subrings which are regular and essentially of 
finite type over Z ([A]). The rest of the limit argument is treated simi
larly as in the proof of Proposition 6.1.2 using the descent lemma 6.1.1. 
We omit the details. Q.E.D. 

Corollary 6.1.5. Assume that the puntual purity is true for any 
pair ( 0, m) of a regular strict local ring 0 of arithmetic type over Z and 
the maximal ideal m. Then the absolute purity conjecture is true. 

§7. Proof of purity: K-theory 

We prove the punctual purity for a regular strict local ring of arith
metic type over Z by the method of local Lefschetz pencils, using induc
tion on the dimension. Our vanishing theorem 5.2.1, which is proved 
purely by an etale cohomological method using the local duality and 
a local affine Lefschetz theorem, is not enough to prove the purity. In 
addition to the information obtained from 5.2.1, we use the relationship 
between etale cohomology and etale K-theory to get further vanishing. 

7.1. Localization in K-theory 



A Proof of the Absolute Purity Conjecture 177 

For a noetherian scheme X and q E Z, Kq(X) denotes the K-group 
of X made from the category of locally free coherent sheaves of ax
modules on X. We fix a prime£ which is invertible on X and an integer 
v > 0. We consider the mod gv K-theory (Kj£v)q(X). In order that 
it has a good product structure, we assume either £ > 3 or £ = 3 and 
v > 1, or£= 2 and v > 2. We have the long exact sequence 

Lemma 7.1.1. Let a be a henselian regular local ring, and f be 
an element in m \ m 2 • For q E Z, there is a canonical isomorphism 

(Kj£v)q(a) EB (K/£v)q-1(a) ~ (K/£v)q(a[r1]). 

(x, y) f---7 resq x + [!] U resq-1 y 

Here resq : (K/£v)q(Speca) -t (K/£v)q(Speca[j-1]) is the restric
tion map, and [!] is the image off E a[f-1] x under K 1 ( a[f-1]) -t 

(K/£v)l(a[f-1]). 

Proof. By the rigidity theorem of Gabber ([Gal), 

for any q E Z by the restriction map. By the excision sequence in K
theory using the regularity of a and a; fa, we have an exact sequence 

·· · -t(Kj£v)q(ajja) -t (K/£v)q(a) 

r~q(K/£v)q(a[f- 1 ]) ~ (Kj£v)q-1(aj ja) -t · · · · 

Note that 8q([f] U resq_1 y) = res~_ 1 y, and hence the composition of 

is an isomorphism. Especially, 8q+1 is surjective for any q, showing that 
resq is injective, and the claim follows. Q.E.D. 

Proposition 7.1.2. Let a be a regular strict local ring, and f 
be an element in m \ m 2 • For a prime £ which is invertible in a and 
v, q E Z, v;::: 0, 

(if q is even) 

(if q is odd). 
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Here (3 E (K/.Cv)z(O[f- 1]) is a Batt element. 

Proof. Let k = 0/m be the residue field of 0. By a theorem of 
Suslin ([Sus]), (Kj.Cv)q(k) is zero for q odd, and is canonically isomorphic 
to Z/.CV(i) for q = 2i :;:=: 0. Hence the localization by a Bott element in
duces (Kj.Cv)q(k) ~ (K/.Cv)q(k)[f3- 1] for q :;:=: 0. By the rigidity theorem 
of Gabber ([Ga]), 

by the restriction map for any q, and hence (Kj.Cv)q(O) ~ 
(K/.Cv)q(O)[f3- 1 ] for q :;:=: 0. Proposition 7.1.2 follows from 7.1.1 since 
the etale K-theory is mod 2-periodic. Q.E.D. 

7.2. Etale K-theory: Conclusion of the proof of purity 

Let X be a separated regular scheme having a finite Krull dimension. 
Assume the following three conditions on X and the prime .C. 

a) .e is invertible on X, A is contained in r(X, Ox) if .e = 2. 
b) Every residue field of X admits a finite Tate-Tsen filtration. 
c) There is a uniform bound for the .C-cohomological dimensions of 

the residue fields. 

Under these assumptions, R. Thomason constructs the following spectral 
sequence strongly converging to the etale K-theory of X, which is an 
analogue of the Atiyah-Hirzebruch spectral sequence for the topological 
K-theory of topological spaces ([Thoml], a more detailed account is 
found in [Jar]). 

Here (3 is a Bott element. If a primitive .ev -th root of unity is contained 
in r(X,Ox), one can choose (3 from (K/.Cv)z(X). 

Let 0 be a regular strict local ring of arithmetic type over Z, and f 
be an element in m \ m 2 • Then the assumptions a)-c) are satisfied for 
Spec O[f-1], and hence the spectral sequence 

E~,q = { :P(Spec O[J- 1], Z/.Cv(i)) 

===?(K I .CV)-p-q( ou-1]) [(3-1] 

exists by the theory of Thomason. 

(q = -2i), 

(q is odd) 
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Theorem 7.2.1. Let 0 be a regular strict local ring of arithmetic 
type over Z, and f be an element in m \ m 2 . Assume that the punctual 
purity is true for any regular strict local ring of arithmetic type over Z 
of dimension strictly less than dim 0. Then the spectral sequence ( *) 
degenerates at E2 . 

Proof. We may assume that d = dim 0 ;::: 1. By the vanishing 
theorem 5.2.1, all columns in the E2-term vanish except for p = 0, 1, d-
1, d. It follows that any differential d~,q : E~,q -+ E~+r,q-r+ 1 for r ;::: 2 
on the spectral sequence vanishes except possibly for p = 0, 1. 

Put U = SpecO[f-1]. ForsE Z, let {Filt(KI£v)s(U)[,B-1]}tEZ be 
the decreasing filtration on (Kifv)s(U)[,B-1] obtained by the spectral 
sequence. For i E Z, we have the edge homomorphism 

e0,-2i : (K I ev)2i(U) [,8-1] =Fila (K I gvhi (U) [,8-1] 

-+Eg,-2i = Ho(U, Zlfv(i)). 

Since Gr~n(KI£vb_ 1 (U)[,B- 1 ] = E~1 - 2i = 0, we have a homomor
phism 

e1,-2i: (KI£v)2i-1(U)[,B-1] =Fil1(KI£vb-1(U)[,B-1] 

-+E~·-2i = H 1 (U, Zlfv(i)). 

To show the differential d~,q on E~,q (r ;::: 2) is zero for p = 0, 1, it 
suffices to prove the following lemma since it implies that E~,q = E~q 
for p = 0, 1. 

Lemma 7.2.2. e0 ,-2 i and e1,-2 i are isomorphisms fori E Z. 

Proof. We choose a Bott element ,B of degree 2. The product with ,B 
induces an isomorphism of spectral sequences E~,q ::; E~,q-2 of degree 
-2, so we may assume that i = 0. By Proposition 7.1.2, it suffices to 
see the two maps 

e0•0 : (Kifv)o(U)::; (Kifv)o(U)[,B-1]-+ H 0 (U, Zlfv) 

e1·0 : (Kifvh(U)::; (KifVh(U)[,B-1]-+ H 1(U,ZI£v(1)) 

are isomorphisms. For e0•0, this is clear. 

is identified with the map obtained by the Kummer theory. The claim 
now follows by H 1(U,Gm) = 0. 

Corollary 7.2.3. E~q = 0 if p > 1. 
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Proof. This is clear since Filt(K/£v)s(U)[,8-1] = 0 fort 2: 1 if sis 
even, fort 2: 2 if s is odd by Lemma 7.2.2. Q.E.D. 

7.2.4. Now we can complete the proof of the absolute purity theorem 
2.1.1. 

By Corollary 6.1.5, it suffices to prove the punctual purity for any 
regular strict local ring 0 of arithmetic type over Z. We may assume 
that the coefficient ring A is Z/ _ev, where £ is a prime which is invertible 
in 0 and v 2: 0, and that v > 1 if£ = 3 and v > 2 if£ = 2. We use 
induction on d = dimO. If d = 0, the claim is obvious. Assumed 2: 1. 
By our induction hypothesis, the punctual purity is true for any regular 
strict local ring of arithmetic type over Z of dimension strictly less than 
d. We choose an element f Em\ m 2 • The assumption of theorem 7.2.1 
is satisfied, and hence the spectral sequence 

E~,q = HP(SpecO[j-1], Z/fV(i)) 

===? (K/fv)-p-q(O[f-1])[,8-1] (q = -2i). 

degenerates at E 2 . E~,q = Ef;,q for any p, q E Z. For p 2: 2, Ef;,q = 0 by 
Corollary 7.2.3, and hence 

for p 2: 2. This implies the purity for (Spec 0, V (f)), and the punctual 
purity for (0, m) by Proposition 3.1.2. Q.E.D. 

§8. Consequences 

Here we list some consequences of the absolute purity theorem. 

Consequence. LetS be a noetherian regular scheme of dimension 
at most one. Let n be an integer which is invertible on S, and let A = 
Zjn. If X is a regularS-scheme of finite type, the dualizing complex 
Kx normalized as in §4 satisfies 

A(8x )[28x].::; Kx. 

Especially, A is a dualizing complex of X. 

Consequence (semi-purity). Let X be a noetherian regular 
scheme, let n be an integer which is invertible on S, and let A = Zjn. 

i 
If Y ~ X is a closed immersion of codimension 2: c, 
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Consequence. Let X be a noetherian regular scheme, let Y be 
a divisor on X with simple normal crossings, and let j : X \ Y <---+ X 
be the inclusion. Let n be an integer which is invertible on X, and let 
A= Zjn. Then the canonical maps give isomorphisms 

R 1j*A ~ EB(£yJ*A( -1) 
iEI 

where (Yi)iEI is the set of irreducible components of Y, and £Y; is the 
inclusion map Yi <---+ X for i E I. 

Here is a generalization of the above claim in terms of logarithmic 
schemes (see [Ill] for log etale cohomology). 

Consequence (absolute local acyclicity). Let X be an fs log-
scheme such that the underlying scheme Xcl is noetherian. Assume that 
X is log-regular. Let U be the open subset of X defined by 

U = {x EX; (Mx/05c)x = {1}}, 

i.e., U is the maximal open set where the log-structure is trivial. Let nbe 
an integer which is invertible on X, and let A= Zjn. For a A-smooth 
sheaf :F on x!~g' 

holds. Here j is the morphism of topoi U~{ = U!~g ---. X!~g. 
Here is a conditional result which follows from the absolute purity. 

Consequence. Assume that the resolution of singularities of 
quasi-excellent schemes is true. Let S be a quasi-compact quasi-excellent 
scheme, and f : X ---. S be a finite type morphism. For an integer n 2: 1 
which is invertible on S, let A= Zjn. Then for a A-constructible sheaf 
:F on X, Rqf*:F is A-constructible for any q E Z, and vanishes except 
for a finite number of q 's, i.e., the finiteness theorem is true for quasi
excellent schemes. 
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