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The Topology of Toric HyperKahler Manifolds 

Hiroshi Konno1 

Abstract. 

The topology of hyperKahler quotients of quaternionic vector 
spaces by tori is studied. We discuss the relation between their topol
ogy and a combinatorial property of some polyhedral complexes. As 

· its simple application we compute their Chern classes. 

§1. Introduction 

The topology of symplectic quotients has been intensively studied in 
the last two decades. Especially, Kirwan's theory enables us to compute 
the Betti numbers of symplectic quotients [9], and thanks to the theory 
of Jeffrey and Kirwan [8] we can investigate their cohomology rings. On 
the other hand, various classes ofhyperKiihler quotients were introduced 
and studied in detail by many authors, but their topology has not yet 
been studied well. Recently, in this regard Bielawski and Dancer studied 
hyperKiihler quotients of quaternionic vector spaces HN by subtori of 
TN, which they call toric hyper Kahler manifolds [2]. 

Being influenced by their work, we intend to study the topology of 
toric hyperKiihler manifolds. It should be remarked that every toric 
hyperKiihler manifold, if we deform its hyper Kahler structure appropri
ately, contains a union of projective toric manifolds as its deformation 
retract. Because of this fact we call it the core of the toric hyperKiihler 
manifold. Generally speaking, the topology of projective toric manifolds 
is well-known [4]. However, since they intersect in a complicated way, it 
is not easy to study the topology of the core. Concerning this, in [10] 
we determined their cohomology rings. 

In this note we also study the topology of toric hyperKiihler man
ifolds. The structure of the core is described by a polyhedral complex 
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associated to it. We discuss the relation between the topology of toric 
hyperKii.hler manifolds and a combinatorial property of the associated 
polyhedral complex. As its simple application we compute the total 
Chern class of toric hyper Kahler manifolds. 

In Section 2 we define toric hyperKii.hler manifolds and describe 
their cohomology rings, which is proved in [10]. The relation of the 
topology of toric hyper Kahler manifolds and their associated polyhedral 
complexes is studied in Section 3. In Section 4 we compute their Chern 
classes. 

The author would like to thank T. Gocho for suggesting a proof 
of Lemma 3.3. He also would like to thank for the organizers of the 
conference and JAMI for their hospitality. 

§2. Toric hyperKahler manifolds 

In this section we define toric hyperKii.hler manifolds and describe 
their cohomology rings. 

First, let us recall the hyperKii.hler structure on the quaternionic 
vector space H N. Let { 1, h ,I 2 , h} be the standard basis of H. On 
HN we define three complex structures by the multiplication of h, h, h 
from the left, respectively. We denote these complex structures also by 
h,l2,h The real torus TN= {a= (al, ... ,aN) E eNIIail = 1} 
acts on HN from the right diagonally, and preserves its hyperKii.hler 
structure. If we identify ~ E HN with ( z) w) E eN X eN by ~ = z + wh) 
then the action is given by 

(z,w)a = (za,wa- 1). 

Let K be a subtorus of TN with Lie algebra k c tN. Then we have 
the torus Tn =TN I K with Lie algebra tn = tN jk. Moreover, we have 
the following exact sequences: 

0 ---+ k 

0 f-- k* 

---+ 0, 

f-- 0. 

Since the action of K on HN preserves its hyperKii.hler structure, we 
obtain the hyperKii.hler moment map 
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which is given by 

N 

/LK,I(z,w) = 1f L(lzil2 -lwil2 )~*ui, 
i=l 

N 

(JLK,2 + v'-IJLK,3)(z,w) = -21fv'-ILziwi~*ui, 
i=l 

where { ul> ... , UN} C (tN)* is the dual basis of the standard basis 
{X 1> ••• , XN} C tN. Now we define to ric hyper Kahler manifolds. 

Definition. If v E k* 0 R 3 is a regular value of the hyperKahler 
moment map /LK and if the action of K on p,[/(v) is free, we call the 
hyperKahler quotient 

X(v) = p,[/(v)/K 

a toric hyperKiihler manifold. 

Note that X(v) is a 4n dimensional hyperKahler manifold. We 
denote its hyperKahler structure by (g11 ,111, 1 ,111, 2 ,111, 3 ). The torus rn = 
TN/ K acts on X(v), preserving its hyperKahler structure. This action 
gives the hyperKahler moment map 

The terminology 'a toric hyperKahler manifold' is due to Bielawski and 
Dancer [2]. One of their results is the following: 

Fact 2.1. The diffeomorphism type of a toric hyperKiihler manifold 
X(v) is independent of the choice of v. 

In [10], for each h E (t~)* = 2::~ 1 Zui, we constructed a holomor
phic line budle Lh on X(v) with respect to the complex structure Iv,l· 
The equation Zi = 0 defines a divisor Du; on X(v), and we showed that 
the holomorphic line bundle defined by the divisor Du; is Lu;. More
over, we showed that the dual line bundle L~; corresponds to the divisor 
defined by the equation wi = 0. In [10] we described the cohomology 
ring of X(v) in terms of the subtorus K as follows. 

Theorem 2.2. Let <P: Z[u1 , ... ,uN]----. H*(X(v);Z) be a ring 
homomorphism defined by <P(ui) = c1 (LuJ· Then the following holds: 
(1) The map <P is surjective. Therefore we have an isomorphism as a 
ring: 

H*(X{v);Z) ~ Z[ul, ... ,uN]/ker<P. 



176 H. Konno 

(2) ker <P is an ideal generated by all 

1. E~1 aiui E keH* n (t~)*, and 

2. Tib,#O Ui for E~1 biXi E k \ {0}. 

Example. Let 1r: t 5 ---) t3 be a surjevtive map such that 1r(X4) = 
-1r(X1) - 1r(X2) and 1r(X5 ) = -1r(X1) - 1r(X3). Then we have a toric 
hyperKahler manifold X(v) for v E k* 0 R 3 satisfying the condition 
mentioned above. Since k is spanned by {X1 +X2 +X4, X1 +X3 +Xs}, 
there are 4 types of elements in k as follows: 

X1 +X2 +X4,X1 +X3 + Xs,X2- X3 +X4- Xs, 
5 

L aiXi where ai =/ 0 for i = 1, ... , 5. 
i=1 

Moreover, since ker ~ * is spanned by { u 2 - u4 , u3 - u5 , u1 - u2 - u3 }, 

Theorem 2.2 implies that in this case ker <P is generated by 

§3. The associated polyhedral complex 

In this section we associate a polyhedral complex C(X(v)) to a 
toric hyperKahler manifold X(v) with v = (vlJO,O) E k* 0R3 . We 
also discuss the relation between the topology of X ( v) and the asso
ciated polyhedral complex. Throughout this section, we assume that 
v = (v1,0,0) E k* 0 R 3 . We also fix an element hE (tN)* such that 
~*h = l/1. 

First, let us recall the notion of a polyhedral complex. A polyhedral 
complex C is by definition a family of polyhedra in the fixed R n satisfying 
the following conditions: 

1. If a is an element of C, then every face of a belongs to C. 
2. If a and T are elements of C and the intersection anT is not 

empty, then anT is a face of both a and T. 

We define the support of C by ICI = UaEC a. 
Now we associate a polyhedral complex C(X(v)) to a toric hy

per Kahler manifold X ( v) with v = ( l/1, 0, 0) E k* 0 R 3 . Recall that 
we fixed h E (tN)* such that ~*h = v1. We define hyperplanes Fi in 
(tn)* by 

Fi = {p E (tn)* I (1r*p + h, Xi) = 0} fori= 1, ... , N. 

Then these hyperplanes devide ( tn )* into a finite number of closed convex 
polyhedra {~€IE E 8}, where 8 is the set consisting of all maps from 
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{1, ... ,N} to {1, -1}, and Ll€ C (tn)* is defined by 

Ll€ = {p E (tn)* I t:(i)(7r*p + h, Xi) ~ 0 for any i = 1, ... , N}. 

Then the associated polyhedral complex C(X(v)) is defined to be a com
plex consisting of all compact faces of all polyhedra LlE, where E E 8. 
It should be remarked that, to define C(X(v)), we need hE (tN)* such 
that L*h = v1. However, C(X(v)) is determined by v1 up to parallel 
translation. So we use this notation. 

For each E E e, we define a subspace V, ofHN as follows: (z, w) E V, 
if and only if, for any i = 1, ... ,N, wi = 0 if t:(i) = 1, and Zi = 0 if 
t:(i) = -1. It is easy to see that if we set M€ = J.L:Z::!(Ll€,0,0), then we 
have 

M€ = {V, n J.L:K\(vl)}/K. 

Since v;, ~ eN' M€ is an ordinary toric manifold. 
Let us recall the fundamental property of X(v), which is proved in 

[10]. 

Lemma 3.1. (1) J.Lr!((tn)*,O,O) = UEEeM€. 
(2) Suppose that Ll€ n Fi is a face of Ll€ with codimension one. Then the 
homology class represented by J.Lr! (Ll€ n Fi, 0, 0) is the Poincare dual of 
t:(i)cl(LuJ in ME. 

Then we have the following fact, which was due to [5] in special 
cases and due to [2] for general toric hyperKahler manifolds. 

Fact 3.2. Let X(v) be a toric hyperKiihler manifold with v = 

(v1, 0, 0) and C = C(X(v)) the associated polyhedral complex. Then the 
following holds: 
(1) For each T E C(X(v)), NT = J.Lr!(r, 0, 0) is a projective toric sub
manifold of X(v). 
(2) UTEC NT = J.lr! (ICI, 0, 0) is a rn-equivariant deformation retract of 
X(v). 
(3) The homeomorphism type of UTEC NT is completely determined by 
the combinatorial structure of the associated polyhedral complex C (X (v)). 

Definition. Due to Fact 3.2 we call the union of projective toric 
manifolds UTEC NT the core of the toric hyperKiihler manifold X(v). 

Example. Let us consider a toric hyperKahler manifold X(v) in 
Section 2 again. Here we assume v = (v1 , 0, 0). If we set v1 = L*u4 = 
L*u2 and v2 = L*u5 = L*u3 , then k* is devided into six chambers as in 
Figure 1. Suppose that vl E sl. If we define El, E2 E e by 

t:1 (i) = 1 fori= 1,2,3,4,5, 
for i = 1, 2, 4, 
fori= 3, 5, 
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then the associated polyhedral complex C(X(v)) consists of all faces of 
.6..1 and .6..2 as in Figure 2, where we take an appropriate coordinate 
(a1 , a2, a3) in (t3)* such that Fi = {(a1, a2, a3)lai = 0} for i = 1, 2, 3. 
We remark that the combinatorial structure of the associated polyhedral 
complex and the topology of the core depend on the chamber. However, 
the topology of X(v) does not depend on it [10]. 

vt 

Figure 1. 

Thus, to study the cohomology of X(v), we have only to study its 
core UTEC NT. It is a union of projective toric manifolds, which intersect 
along toric submanifolds. The topology of projective toric manifolds NT 
is well-known [4]. However, since NT's intersect in a comlpicated way, it 
is not easy to study the topology of the core. 

Let us recall the notion of star-collapsibility, which we learned from 
the earlier version of [2]. 

Definition . A polyhedral complex C is star-collapsible if there 
exists a filtration 

0 = CT+l c Cr c · · · c C1 = C 

by subcoinplexes such that, for i ::; r, there exists a vertex Xi E Ci and 
the following conditions are satisfied: 
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Figure 2. 

1. There exists ai E Ci uniquely such that Xi E O'i and ai is a maximal 
element in ci. 

2. ci \Ci+l = {r E ci I Xi E T, Tis a face of O'i}· 

Now we show the following lemma. The proof below was suggested 
by T. Gocho. 

Lemma 3.3. Let X(v) be a toric hyperKiihler manifold with v = 
(v1, 0, 0). Then the associated polyhedral complex C(X(v)) is star-col
lapsible. 

Proof. Define the S1-action on HN by (z,w){3 = (z{3,w{3) for {3 E 

8 1 • This induces the S 1-action on X(v). It is easy to see that this 
action preserves Wv, 1 , which is the Kahler form with respect to Iv,l· 

Note that the moment map for this action P,s1: X(v) -t R is proper 
and rn-invariant. If we perturb this function by a small and generic 
( E tn as 

f([z, w]) = P,s1 ([z, w]) + (p,rn,l ([z, w]), (), 

then f remains proper and the critical point set of f coincides with the 
fixed point set of Tn, which consists of finite points {p1, ... , Pr}. We 
may also assume f (pi) > f (p2) > · · · > f (pr). 
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Moreover the gradient flow of f is described by the action of 1-
parameter subgroup of the complexification of S 1 X rn. Therefore the 
gradient flow preserves Nr for every T E C(X(v)). 

Note that !I -1 ((tn)• 0 o) desends to the function f on (tn)*. Since 
f..LTn ' ' 

f is also proper and bounded below, it is easy to see that, for every 
Xi = J1Tn,l(Pi), there exists a unique maximal Ui E C(X(v)) such that 
Xi E Ui and flu; has the maximum at Xi· Thus xi's and u/s define a 
desired filtration on C(X(v)). D 

Now we discuss the relation between the topology of X(v) and the 
combinatorial property of C(X(v)). 

Theorem 3.4. Let X(v) be a toric hyperKiihler manifold with 
v = (v1 ,0,0) with the associated polyhedral complex C = C(X(v)). Let 
0 = Cr+l c Cr c ... c cl = c, Xi E ci and Ui E ci be a filtration, 
vertices and faces concerned with star-collapsibility, respectively. We set 
Ni = J1r~ ( ui, 0, 0) for i = 1, ... , r. We denote the embedding of Ni into 
X(v) by '1/Ji: Ni--+ X(v). Then we have 

r 

kerlfl= nker(¢;o~P). 
i=l 

Proof. Since ker Ill c n~=l ker( '1/Ji o Ill) is trivial, we have only to 
show that ker Ill ::J n~=l ker( '1/Ji o Ill). To prove this, it is sufficient to 
show that the map 

r r 

w = ffi¢;: H*(X(v); Z)--+ ffiH*(Ni; Z) 
i=l i=l 

is injective. 
We set Ei = 11r~(ICii,O,O). Since ICil = ICi+ll U ui, we have Ei = 

Ei+1 U Ni. Moreover we prove the following claim. 

Claim. The natural map H*(Ei; Z) --+ H*(Ei+li Z) E9 H*(Ni; Z) 
is injective fori = 1, ... , r. 

Proof of Claim. Since Ni is a projective toric manifold, 
Hodd(Ni; Z) = 0. Moreover, since Ni \ (Ei+l n Ni) is the biggest cell in 
Ni, we also have Hodd(Ei+lnNi; Z) = 0. To show that Hodd(Ei; Z) = 0, 
we consider the cohomology exact sequence (This argument is due to 
Bielawski and Dancer): 
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Since Hodd(Ei, Ei+l; Z) ~ Hodd(Ni, Ni n Ei+1; Z) ~ Hodd(D, aD; Z) ~ 
0, where Dis the unit disk in Cdima,, we see that Hodd(Ei+l; Z) ~ 0 
implies Hodd(Ei; Z) ~ 0. Since Hodd(Er; Z) ~ 0, by the inductive 
argument we have Hodd(Ei; Z) = 0. 

Hence, by applying the standard Mayer-Vietoris argument to Ei = 

Ei+1 U Ni, we can show the claim. D 

By the above claim we can conclude that the map 

H*(X(v); Z) ~ H*(E1; Z)----+ H*(E2; Z) EB H*(N1; Z) 

is injective. By using this argument repeatedly, we finish the proof of 
Theorem 3.4. D 

§4. Chern classes 

In this section we compute the total Chern class of a toric hy
perKahler manifold as a simple application of Theorem 3.4. 

Theorem 4.1. Let X(v) be a toric hyperKiihler manifold. Let 

c(X(v)) = 1 + c1(X(v)) + c2(X(v)) + · · · E H*(X(v); Z) 

be the total Chern class of the holomorphic tangent bundle of X(v) with 
respect to the complex structure Iv,l· Then we have 

c(X(v)) = i[> (fi (1- uT)) E H*(X(v); Z). 

To prove Theorem 4.1, we need the following lemma, which is a 
simple generalization of the argument due to Bielawski and Dancer [2]. 
They showed it in the case Eo E E> such that Eo(i) = 1 for all i = 1, ... , N. 

Lemma 4.2. Let X(v) be a toric hyperKiihler manifold with v = 

(v1,0,0). If ME is not empty, then its holomorphic cotangent bundle 
T* ME is contained in X(v) as an open subset. 

Proof. We first recall the notation in Section 3. Fix E E e. For 
i = 1, ... , N, we define (q'f ,p'f) by 

Then qE = ( qi, ... , q'iv) is a point in the vector space V., and pE = 
(p1, ... , P'iv) is a point in the dual space V.*. In other words, we identify 
the cotangent bundle T*V. with HN as above. 
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Let us recall that we have a holomorphic description of M, as follows: 

where Kc is the complexification of K, and U, is an open subset of 11;,. 
By the argument in [6], q' E U, if and only if the functional lq< on k 
defined by 

. N 

lq< (Y) = (v1, Y) + ~ L lqWe-E(i)47r(uiY) for Y E k 
i=l 

has the minimum. Moreover, we have a holomorphic (with respect to 
the complex structure Iv, 1 ) description of X(v) as follows: 

X(v) = W/Kc, 

where W is a subset of T*1!;, = HN. Similarly, (q',p') E W if and only 
if (JLK,2 + HJLK, 3 )(q',p') = 0 and the functionallq<,p< on k defined by 

N N 
lq<,p<(Y) = (vl, Y) + ~ L lqil2e-E(i)47r(uiY) + ~ L IPWe'(i)47r(uiY) 

i=l i=l 

has the minimum. 
Suppose that q' E U, C V, and that p' E ~* defines a cotangent 

vector of M, at [q'], that is, 

N 

(Ya~ q<,p') = 0 for any Y = L aiXi E k, 
i=l 

where Y* is a vector field on 11;, generated by Y. If we note 

then we have 

Therefore, p' E ~* defines a cotangent vector of M, at [q'] if and only 
if (JLK,2 + HJLK, 3 )(q',p') = 0. Moreover, if lq< has the minimum, 
then it is easy to see that lq< ,p< has also the minimum. Thus we have 
(q' ,p') E W, which implies T* M, C X(v). D 



Topology of Toric HyperKiihler Manifolds 183 

Proof of Theorem 4.1. We may assume v = (vb 0, 0). Let ie: Me--t 
X(v) be the embedding. By Lemma 4.2, we have 

i;T X(v) ~ T Me ffi T* Me-

By the same argument in [4] and Lemma 3.1, we have 

where <I>e: Z[u1, ... , UN] --t H*(Me; Z) is a ring homomorphism defined 
by <I>e(ui) = Ct(i;LuJ· Therefore we have 

On the other hand, by Theorem 2.2, there exsists f E Z[u1 , ... , uN] 
such that <I>(!)= c(X(v)). Therefore we have 

i;<I> (f- fi(l- u;)) = 0 for any E E e. 

Recall now Lemma 3.4. Since any T E C(X(v)) is a face of ~e for some 
E E 8, we have 

N r 

f- II (1- u;) E n ker(,p; 0 <I>) = ker <1>. 
i=l i=l 

This implies Theorem 4.1. 0 
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