On 4-dimensional CR-Submanifolds of a 6-dimensional Sphere

Hideya Hashimoto, Katsuya Mashimo and Kouei Sekigawa

Abstract

. We prove several fundamental properties of 4 -dimensional CRsubmanifolds of a nearly Kähler 6-dimensional sphere and construct explicit examples of such submanifolds.

§1. Introduction

Let S^{6} be the 6 -dimensional unit sphere centered at the origin of a 7-dimensional Euclidean space \mathbf{R}^{7}. We denote by \mathbf{O} the normed algebra of octonions (or Cayley algebra) and identify the set of pure imaginary octonions $\operatorname{Im} \mathbf{O}$ with \mathbf{R}^{7}. An almost complex structure on S^{6} is defined as follows:

$$
J X=X \times x, \quad x \in S^{6}, \quad X \in T_{x}\left(S^{6}\right)
$$

where \times denotes the cross product of octonions. The almost complex structure J is compatible with the canonical metric \langle,$\rangle and the almost$ Hermitian structure (J,\langle,$\rangle) on S^{6}$ is nearly Kähler ([F-I]).

In this paper, we shall study 4-dimensional CR-submanifolds of the nearly Kähler manifold ($\left.S^{6}, J,\langle\rangle,\right)$. Let M be a submanifold of S^{6}. We put $\mathcal{H}_{x}=T_{x} M \cap J\left(T_{x} M\right)$ for $x \in M$ and denote by \mathcal{H}_{x}^{\perp} the orthogonal complement of \mathcal{H}_{x} in $T_{x} M$. If the dimension of \mathcal{H}_{x} is constant and $J\left(\mathcal{H}_{x}^{\perp}\right) \subset T_{x}^{\perp} M$ for any $x \in M$, the submanifold M is called a $C R$ submanifold.

Concerning the existence of almost complex submanifolds and totally real submanifolds of $\left(S^{6}, J,\langle\rangle,\right)$, many results have been obtained (see, $[\mathrm{Gr}],[\mathrm{Se}]$). On the other hand, about the existence of CR-submanifolds, only a result by Sekigawa was known before our previous paper ($[\mathrm{H}-\mathrm{M}]$), in which the first and the second authors proved that there exist many 3 -dimensional CR-submanifolds.

One aim of this paper is to give some topological restrictions on the existence of compact 4-dimensional CR-submanifolds of S^{6}. For

[^0]example, we prove that the Euler number of a compact 4-dimensional CR-submanifold is equal to zero. We also consider the integrability of the distributions \mathcal{H} and \mathcal{H}^{\perp}. Many examples of 4 -dimensional CRsubmanifolds of S^{6} will be given in the last section.

The authors wish to express their gratitude to Professor Yasuo Matsushita for his many valuable comments on characteristic classes.

§2. Preliminaries

Let \mathbf{Q} be the skew field of all quaternions. The algebra of octonions \mathbf{O} is the direct sum $\mathbf{O}=\mathbf{Q} \oplus \mathbf{Q}$ with the following multiplication:

$$
(q, r) \cdot(s, t)=\left(q s-t^{\iota} r, t q+r s^{\iota}\right), \quad q, r, s, t \in \mathbf{Q}
$$

where ${ }^{\iota}$ means the conjugation in \mathbf{Q}. We define a conjugation in \mathbf{O} by $(q, r)^{\iota}=\left(q^{\iota},-r\right), q, r \in \mathbf{Q}$, and an inner product \langle,$\rangle by$

$$
\langle x, y\rangle=\frac{\left(x \cdot y^{\iota}+y \cdot x^{\iota}\right)}{2}, \quad x, y \in \mathbf{O}
$$

We denote by \mathbf{G}_{2} the group of automorphisms of \mathbf{O}, that is,

$$
\mathbf{G}_{2}=\{g \in \mathbf{G} \mathbf{L}(8, \mathbf{R}) ; g(u v)=g(u) g(v) \text { for any } u, v \in \mathbf{O}\}
$$

Each element of \mathbf{G}_{2} leaves invariant the identity element $(1,0)$ and its orthogonal complement $\operatorname{Im} \mathbf{O}$. Thus we may regard \mathbf{G}_{2} as a subgroup of $\mathbf{G L}(7, \mathbf{R})=\mathbf{G L}(\operatorname{Im} \mathbf{O})$.

Now, we define a basis of $\mathbf{C} \otimes \operatorname{Im} \mathbf{O}$,

$$
(\varepsilon, E, \bar{E})=\left(\varepsilon, E_{1}, E_{2}, E_{3}, \bar{E}_{1}, \bar{E}_{2}, \bar{E}_{3}\right)
$$

as follows:

$$
\begin{gathered}
\varepsilon=(0,1) \in \mathbf{Q} \oplus \mathbf{Q} \\
E_{1}=i N, E_{2}=j N, E_{3}=-k N \\
\bar{E}_{1}=i \bar{N}, \bar{E}_{2}=j \bar{N}, \bar{E}_{3}=-k \bar{N}
\end{gathered}
$$

where $N=(1-\sqrt{-1} \varepsilon) / 2, \bar{N}=(1+\sqrt{-1} \varepsilon) / 2 \in \mathbf{C} \otimes \mathbf{O}$. We denote also by g the complex linear extension of $g \in \mathbf{G}_{2}$. A basis (u, f, \bar{f}) of $\mathbf{C} \otimes \operatorname{Im} \mathbf{O}$ is said to be admissible, if there exists an element g of \mathbf{G}_{2} such that $(u, f, \bar{f})=(\varepsilon, E, \bar{E}) g$. We identify an element of \mathbf{G}_{2} with an admissible basis by the injection

$$
\iota: \mathbf{G}_{2} \rightarrow \mathbf{G L}(7, \mathbf{C}) ; g \mapsto(\varepsilon, E, \bar{E}) g
$$

We denote by $M_{p \times q}(\mathbf{C})$ the set of $p \times q$ complex matrices. Let $[a]$ be the element given by

$$
[a]=\left(\begin{array}{ccc}
0 & a_{3} & -a_{2} \\
-a_{3} & 0 & a_{1} \\
a_{2} & -a_{1} & 0
\end{array}\right) \in M_{3 \times 3}(\mathbf{C})
$$

for $a={ }^{t}\left(a_{1} a_{2} a_{3}\right) \in M_{3 \times 1}(\mathbf{C})$. Then we have

$$
[a] b+[b] a=0
$$

where $a, b \in M_{3 \times 1}(\mathbf{C})$. We adopt the matrix representation of elements of $\mathbf{G L}(7, \mathbf{C})$ with respect to $(\varepsilon, E, \bar{E})$.

Proposition 2.1 (cf. Bryant [Br]). The pull-back Φ of the MaurerCartan form of $\mathbf{G L}(7, \mathbf{C})$ is of the form

$$
\Phi=\left(\begin{array}{ccc}
0 & -\sqrt{-1}^{t} \bar{\theta} & \sqrt{-1}^{t} \theta \tag{2.1}\\
-2 \sqrt{-1} & \theta & \kappa \\
2 \sqrt{-1} & {[\bar{\theta}]} \\
\theta & {[\theta]} & \bar{\kappa}
\end{array}\right)
$$

where $\kappa=\left(\kappa_{j}{ }^{i}\right)(1 \leq i, j \leq 3)\left(\right.$ resp. $\left.\theta={ }^{t}\left(\theta^{1} \theta^{2} \theta^{3}\right)\right)$ is an $\mathfrak{s u}(3)$ valued (resp. $M_{3 \times 1}(\mathbf{C})$-valued) left invariant 1-forms. The MaurerCartan equation $d \Phi=-\Phi \wedge \Phi$ reduces to

$$
\begin{align*}
d \theta & =-\kappa \wedge \theta+[\bar{\theta}] \wedge \bar{\theta} \tag{2.2}\\
d \kappa & =-\kappa \wedge \kappa+3 \theta \wedge{ }^{t} \bar{\theta}-\left({ }^{t} \theta \wedge \bar{\theta}\right) I_{3} \tag{2.3}
\end{align*}
$$

§3. Structure equations

Let $\varphi: M \rightarrow S^{6}$ be a 4-dimensional submanifold of S^{6}. We denote by $\nabla($ resp. $D)$ the Levi Civita connection of $M\left(\right.$ resp. $\left.S^{6}\right)$ and by ∇^{\perp} the induced connection on the normal bundle of M in S^{6}. We denote by σ the second fundamental form and A_{ν} the shape operator in the direction of ν. The Gauss and the Weingarten formulas are given respectively by

$$
\begin{aligned}
D_{X}\left(\varphi_{*}(Y)\right) & =\varphi_{*}\left(\nabla_{X} Y\right)+\sigma(X, Y) \\
D_{X} \nu & =-\varphi_{*}\left(A_{\nu}(X)\right)+\nabla^{\perp}{ }_{X} \nu
\end{aligned}
$$

where X, Y are tangent vector fields and ν is a normal vector field.
Let $\varphi: M \rightarrow S^{6}$ be an oriented 4-dimensional CR-submanifold of S^{6}. Define an orientation on \mathcal{H}^{\perp} in such a way that an orthonormal base $\left\{\xi_{1}, \xi_{2}\right\}$ of \mathcal{H}_{p}^{\perp} for $p \in M$ is oriented if and only if $\left\{v, J(v), \xi_{1}, \xi_{2}\right\}$ is oriented for some unit vector $v \in \mathcal{H}_{p}$.

Lemma 3.1. Take an oriented orthonormal base $\left\{\xi_{1}, \xi_{2}\right\}$ of \mathcal{H}_{p}^{\perp} for $p \in M$. The vector $\xi_{1} \times \xi_{2}$ is an element of \mathcal{H}_{p} and is independent of the choice of the base.

We denote by \mathcal{F} the bundle of unit vectors of \mathcal{H}^{\perp}. For a vector $\xi \in \mathcal{F}$ we denote by ξ^{\prime} the vector such that $\left\{\xi, \xi^{\prime}\right\}$ is an oriented orthonormal frame of \mathcal{F}. We define a mapping $\psi: \mathcal{F} \rightarrow \mathbf{G L}(7, \mathbf{C})$ by

$$
\psi(\xi)=(\varphi \circ \pi(\xi), f, \bar{f})
$$

where

$$
\begin{aligned}
f_{1} & =\frac{1}{2}(\xi-\sqrt{-1} J \xi) \\
f_{2} & =\frac{1}{2}\left(\xi^{\prime}-\sqrt{-1} J \xi^{\prime}\right) \\
f_{3} & =-\overline{f_{1} \times f_{2}}=-\frac{1}{2}\left(\xi \times \xi^{\prime}-\sqrt{-1} J\left(\xi \times \xi^{\prime}\right)\right)
\end{aligned}
$$

Define $\mathbf{C} \otimes \operatorname{Im} \mathbf{O}$-valued functions f_{3}, Ξ_{1} and Ξ_{2} on \mathcal{F} as follows:

$$
\begin{aligned}
& \mathbf{f}_{3}((\varphi \circ \pi(\xi), f, \bar{f}))=f_{3}, \\
& \Xi_{1}((\varphi \circ \pi(\xi), f, \bar{f}))=\xi, \\
& \Xi_{2}((\varphi \circ \pi(\xi), f, \bar{f}))=\xi^{\prime}
\end{aligned}
$$

Note that the image of the mapping ψ is contained in $\iota\left(\mathbf{G}_{2}\right)$. Also any element of the fibre is expressed as $\cos (\theta) \xi+\sin (\theta) \xi^{\prime}$.

Proposition 3.2. Restricting the 1 -forms $\kappa_{i}{ }^{j}$ and θ^{i} given in Proposition 2.1 to \mathcal{F}, we have the following:
(3.1) $d \varphi \circ \pi_{*}=\mathbf{f}_{3} \otimes\left(-2 \sqrt{-1} \theta^{3}\right)+\overline{\mathbf{f}_{3}} \otimes\left(2 \sqrt{-1} \overline{\theta^{3}}\right)$

$$
\begin{align*}
& +\Xi_{2} \otimes \mu_{2}+\Xi_{1} \otimes \mu_{1} \\
\theta^{3}(\tilde{X})= & \sqrt{-1}\left\langle\pi^{*} d \varphi(\tilde{X}), \overline{\mathbf{f}_{3}}\right\rangle \tag{3.2}\\
\theta^{1}(\tilde{X})= & \frac{\sqrt{-1}}{2}\left\langle\pi^{*} d \varphi(\tilde{X}), \Xi_{1}\right\rangle=\frac{\sqrt{-1}}{2} \mu_{1}(\tilde{X}) \\
\theta^{2}(\tilde{X})= & \frac{\sqrt{-1}}{2}\left\langle\pi^{*} d \varphi(\tilde{X}), \Xi_{2}\right\rangle=\frac{\sqrt{-1}}{2} \mu_{2}(\tilde{X}) \tag{3.3}\\
d \mathbf{f}_{3}= & \pi \circ \psi \otimes\left(-\sqrt{-1} \overline{\theta^{3}}\right)+\mathbf{f}_{3} \otimes \kappa_{3}^{3} \tag{3.4}\\
& +\Xi_{2} \otimes \frac{1}{2}\left(\frac{\sqrt{-1}}{2} \mu_{1}+\kappa_{3}^{2}\right)
\end{align*}
$$

$$
\begin{align*}
& -\Xi_{1} \otimes \frac{1}{2}\left(\frac{\sqrt{-1}}{2} \mu_{2}-\kappa_{3}{ }^{1}\right) \\
& -J \Xi_{2} \otimes \frac{1}{2}\left(\frac{1}{2} \mu_{1}+\sqrt{-1} \kappa_{3}{ }^{2}\right) \\
& +J \Xi_{1} \otimes \frac{1}{2}\left(\frac{1}{2} \mu_{2}-\sqrt{-1} \kappa_{3}{ }^{1}\right), \\
& d \Xi_{2}=\pi \circ \psi \otimes\left(-\mu_{2}\right)+\mathbf{f}_{3} \otimes\left(\kappa_{2}{ }^{3}+\frac{\sqrt{-1}}{2} \mu_{1}\right) \tag{3.5}\\
& +\overline{\mathbf{f}_{3}} \otimes\left(\overline{\kappa_{2}{ }^{3}}-\frac{\sqrt{-1}}{2} \mu_{1}\right) \\
& +\Xi_{1} \otimes \frac{1}{2}\left(\kappa_{2}{ }^{1}+\overline{\kappa_{2}{ }^{1}}+\theta^{3}+\overline{\theta^{3}}\right) \\
& -J \Xi_{2} \otimes\left(\sqrt{-1} \kappa_{2}{ }^{2}\right) \\
& +J \Xi_{1} \otimes \frac{\sqrt{-1}}{2}\left(-\kappa_{2}{ }^{1}+\overline{\kappa_{2}{ }^{1}}+\theta^{3}-\overline{\theta^{3}}\right), \\
& d \Xi_{1}=\pi \circ \psi \otimes\left(-\mu_{1}\right)+\mathbf{f}_{3} \otimes\left(\kappa_{1}{ }^{3}-\frac{\sqrt{-1}}{2} \mu_{2}\right) \tag{3.6}\\
& +\overline{\mathbf{f}_{3}} \otimes\left(\overline{\kappa_{1}{ }^{3}}+\frac{\sqrt{-1}}{2} \mu_{2}\right) \\
& +\Xi_{2} \otimes \frac{1}{2}\left(\kappa_{1}{ }^{2}+\overline{\kappa_{1}^{2}}-\theta^{3}-\overline{\theta^{3}}\right) \\
& +J \Xi_{2} \otimes \frac{\sqrt{-1}}{2}\left(-\kappa_{1}^{2}+\overline{\kappa_{1}^{2}}-\theta^{3}+\overline{\theta^{3}}\right) \\
& +J \Xi_{1} \otimes\left(-\sqrt{-1} \kappa_{1}{ }^{1}\right), \\
& \text { (3.7) } d\left(J \Xi_{2}\right)=\mathbf{f}_{3} \otimes \sqrt{-1}\left(\kappa_{2}{ }^{3}-\frac{\sqrt{-1}}{2} \mu_{1}\right) \\
& -\overline{\mathbf{f}_{3}} \otimes \sqrt{-1}\left(\overline{\kappa_{2}{ }^{3}}+\frac{\sqrt{-1}}{2} \mu_{1}\right)+\Xi_{2} \otimes \sqrt{-1} \kappa_{2}{ }^{2} \\
& +\Xi_{1} \otimes \frac{\sqrt{-1}}{2}\left(\kappa_{2}{ }^{1}-\overline{\kappa_{2}{ }^{1}}+\theta^{3}-\overline{\theta^{3}}\right) \\
& +J \Xi_{1} \otimes \frac{1}{2}\left(\kappa_{2}{ }^{1}+\overline{\kappa_{2}{ }^{1}}-\theta^{3}-\overline{\theta^{3}}\right), \\
& \text { (3.8) } d\left(J \Xi_{1}\right)=\mathbf{f}_{3} \otimes \sqrt{-1}\left(\kappa_{1}^{3}+\frac{\sqrt{-1}}{2} \mu_{2}\right) \\
& -\overline{\mathbf{f}_{3}} \otimes \sqrt{-1}\left(\overline{\kappa_{1}^{3}}-\frac{\sqrt{-1}}{2} \mu_{2}\right)
\end{align*}
$$

$$
\begin{aligned}
& +\Xi_{2} \otimes \frac{\sqrt{-1}}{2}\left(\kappa_{1}^{2}-\overline{\kappa_{1}^{2}}-\theta^{3}+\overline{\theta^{3}}\right) \\
& +\Xi_{1} \otimes \sqrt{-1} \kappa_{1}^{1} \\
& +J \Xi_{2} \otimes \frac{1}{2}\left(\kappa_{1}^{2}+\overline{\kappa_{1}^{2}}+\theta^{3}+\overline{\theta^{3}}\right) .
\end{aligned}
$$

Remark 3.3. From Lemma 3.1, there exists a complex valued global 1-form Θ on M^{4} such that $\pi^{*} \Theta=\theta^{3}$.

Next we give the explicit expression of the integarability conditions (2.2) and (2.3).

Lemma 3.4. On \mathcal{F}, we have the following:

$$
\begin{equation*}
d \kappa_{3}^{3}=-\sum_{j=1}^{3} \kappa_{j}^{3} \wedge \kappa_{3}^{j}+2 \theta^{3} \wedge \overline{\theta^{3}} \tag{3.12}
\end{equation*}
$$

$$
\begin{equation*}
d \kappa_{i}{ }^{i}=-\sum_{j=1}^{3} \kappa_{j}{ }^{i} \wedge \kappa_{i}^{j}-\theta^{3} \wedge \overline{\theta^{3}} \quad(i=1,2), \tag{3.13}
\end{equation*}
$$

$$
\begin{equation*}
d \kappa_{2}^{1}=-\sum_{j=1}^{3}{\kappa_{j}}^{1} \wedge \kappa_{2}^{j}+\frac{4}{3} \mu^{1} \wedge \mu^{2} \tag{3.14}
\end{equation*}
$$

$$
\begin{equation*}
d \kappa_{3}{ }^{1}=-\sum_{j=1}^{3} \kappa_{j}{ }^{1} \wedge \kappa_{3}^{j}+\frac{3 \sqrt{-1}}{2} \mu^{1} \wedge \overline{\theta^{3}}, \tag{3.15}
\end{equation*}
$$

$$
\begin{equation*}
d \kappa_{3}^{2}=-\sum_{j=1}^{3} \kappa_{j}^{2} \wedge \kappa_{3}^{j}+\frac{3 \sqrt{-1}}{2} \mu^{2} \wedge \overline{\theta^{3}} \tag{3.16}
\end{equation*}
$$

Finally we shall represent the connection 1-form $\left\langle\left(d \Xi_{1}\right)(\tilde{X}), \Xi_{2}\right\rangle$ of the S^{1} bundle \mathcal{F} explicitely, in terms of the local data. We put

$$
\partial_{\theta}=\left.\frac{d}{d \theta}\right|_{\theta=0}\left(\cos (\theta) \xi+\sin (\theta) \xi^{\prime}\right)=\xi^{\prime}
$$

and denote by $d \theta$ its dual 1-form. By (3.6), we obtain

$$
\left\langle\left(d \Xi_{1}\right)(\tilde{X}), \Xi_{2}\right\rangle=-\frac{1}{2}\left(\kappa_{2}^{1}+\overline{\kappa_{2}{ }^{1}}+\theta^{3}+\overline{\theta^{3}}\right)(\tilde{X})=\left\langle\nabla_{d \pi(\tilde{X})} \xi_{1}, \xi_{2}\right\rangle+d \theta(\tilde{X})
$$

In particular, we have $(1 / 2)\left(\kappa_{2}{ }^{1}+\overline{\kappa_{2}{ }^{1}}\right)\left(\partial_{\theta}\right)=1$.

§4. Topological restrictions

In this section we prove several topological properties of 4-dimensional CR-submanifolds of S^{6}. From Lemma 3.1 and Hopf's Index theorem, we immediately obtain the following

Proposition 4.1. Let $\varphi: M^{4} \rightarrow S^{6}$ be an oriented 4-dimensional CR-submanifold of S^{6}. Then both of the Euler class of M^{4} and the Euler class of the complex subbundle \mathcal{H} over M vanish. If M^{4} is compact, then the Euler number $\chi\left(M^{4}\right)$ is equal to zero. In particular, $S^{4}, S^{2} \times S^{2}$ and $\mathbf{C} P^{2}$ can not be immersed into S^{6} as a $C R$-submanifold.

Next we shall establish the relations of the various characteristic classes of the bundles $\mathcal{H}, \mathcal{H}^{\perp}$ and $T^{\perp} M^{4}$ over M^{4}. We denote by $J_{\mathcal{H}}$ the restriction to \mathcal{H} of the almost complex structure of S^{6}, and J^{\prime} the almost complex structure on \mathcal{H}^{\perp} such that the orientaion determined by the almost complex structure $J_{1}=J_{\mathcal{H}} \oplus J^{\prime}$ on M coincides with that given on M. We denote by J_{2} the opposite almost complex structure: $J_{2}=J_{\mathcal{H}} \oplus\left(-J^{\prime}\right)$. We also denote by J^{\perp} the almost complex structure of $T^{\perp} M^{4}$ which is compatible with the orientation of $T^{\perp} M^{4}$. Recall that

$$
\begin{equation*}
\left.\varphi^{*}\left(T S^{6}\right)\right|_{M^{4}}=\mathcal{H} \oplus \mathcal{H}^{\perp} \oplus T^{\perp} M^{4} \tag{4.1}
\end{equation*}
$$

Let V be the direct sum $V=\mathcal{H}^{\perp} \oplus T^{\perp} M^{4}$. We denote by J_{V} the restriction to V of the almost complex structure J of S^{6}. We denote by $V^{(1,0)}$ (resp. $V^{(0,1)}$) the set of vectors of type (1,0) (resp. $(0,1)$) in the complexification $V \otimes \mathbf{C}$.

Proposition 4.2. Let $\varphi: M \rightarrow S^{6}$ be an oriented 4-dimensional CR-submanifold of S^{6}. Then we have in $H^{*}(M ; \mathbf{Z})$

$$
\begin{equation*}
e(\mathcal{H})=c_{1}\left(\mathcal{H}^{(1,0)}\right)\left(\equiv c_{1}\left(\mathcal{H}^{(1,0)}, J_{\mathcal{H}}\right)\right)=0 \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \text { (2) } \tag{2}\\
& p_{1}\left(T M^{4}\right)=\left\{c_{1}\left(\mathcal{H}^{\perp(1,0)}, J^{\prime}\right)\right\}^{2}=-\left\{c_{1}\left(T^{\perp(1,0)} M^{4}, J^{\perp}\right)\right\}^{2} \tag{3}\\
& \text { (3) } \\
& p_{1}(V)=0 \\
& \text { (4) } \\
& c_{1}\left(V^{(1,0)}\right)=0
\end{align*}
$$

where we denote by $p_{1}()$ (resp. $\left.c_{1}()\right)$ the first Pontrjagin (resp. Chern) class and by $e()$ the Euler class of the respective bundles.

Proof. By Lemma 3.1, we get (1) immediately. For (2), we calculate the second Chern class of the complexified tangent bundle $T M^{4} \otimes \mathbf{C}$ by making use of the above decomposition. Then, we have

$$
\begin{aligned}
c\left(T M^{4} \otimes \mathbf{C}\right) & =c\left(\mathcal{H}^{(1,0)} \oplus \mathcal{H}^{(0,1)} \oplus \mathcal{H}^{\perp(1,0)} \oplus \mathcal{H}^{\perp(0,1)}\right) \\
& =\left(1-\left\{c_{1}\left(\mathcal{H}^{(1,0)}\right)\right\}^{2}\right)\left(1-\left\{c_{1}\left(\mathcal{H}^{\perp(1,0)}\right)\right\}^{2}\right)
\end{aligned}
$$

Therefore we have $c_{2}\left(T M^{4} \otimes \mathbf{C}\right)=-\left\{c_{1}\left(\mathcal{H}^{(1,0)}\right)\right\}^{2}-\left\{c_{1}\left(\mathcal{H}^{\perp(1,0)}\right)\right\}^{2}$, from which we get $p_{1}\left(T M^{4}\right)=\left\{c_{1}\left(\mathcal{H}^{(1,0)}\right)\right\}^{2}+\left\{c_{1}\left(\mathcal{H}^{\perp(1,0)}\right)\right\}^{2}$. Hence we have (2).

Next, we prove (3) and (4). From the decomposition $\left.\varphi^{*}\left(T^{(1,0)} S^{6}\right)\right|_{M^{4}}$ $=\mathcal{H}^{(1,0)} \oplus V^{(1,0)}$ and $c\left(T^{(1,0)} S^{6}\right)=1$, we have

$$
\begin{aligned}
1= & 1+c_{1}\left(\mathcal{H}^{(1,0)}\right)+c_{1}\left(V^{(1,0)}\right) \\
& +c_{1}\left(\mathcal{H}^{(1,0)}\right) c_{1}\left(V^{(1,0)}\right)+c_{2}\left(V^{(1,0)}\right)+c_{1}\left(\mathcal{H}^{(1,0)}\right) c_{2}\left(V^{(1,0)}\right)
\end{aligned}
$$

Thus we obtain (4). Since $c_{2}\left(V^{(1,0)}\right)=0$, we have $p_{1}(V)=-c_{2}(V \otimes C)=$ $c_{1}\left(V^{(1,0)}\right)^{2}-2 c_{2}\left(V^{(1,0)}\right)=0$.

Theorem 4.3. Let $\varphi: M^{4} \rightarrow S^{6}$ be an oriented 4-dimensional $C R$-submanifold of S^{6}. Then the first Portrjagin class of M^{4} vanishes. In particular, if M^{4} is compact, its Hirzebruch signature is equal to zero.

Proof. First we can show that the structure group of the vector bundle V reduces to $S p(1) \simeq S U(2)$. The vector bundle $V=$ $\mathcal{H}^{\perp} \oplus T^{\perp} M^{4}$ admits two different orthogonal almost complex structures $J^{\prime} \oplus J^{\perp}$ and J_{V}. We may easily check that the composition $\left(J^{\prime} \oplus J^{\perp}\right) \circ J_{V}$ is also an orthogonal almost complex structure on V. Furthermore, these three orthogonal almost complex structures satisfy the quaternionic relations. Thus we get $c_{1}\left(V,\left(J^{\prime} \oplus J^{\perp}\right)\right)=c_{1}\left(V,-\left(J^{\prime} \oplus J^{\perp}\right)\right)=$ $-c_{1}\left(V,\left(J^{\prime} \oplus J^{\perp}\right)\right)($ see $[\mathrm{p} .46$; Theorem (5.11); Kob]). Therefore, we have

$$
c_{1}\left(V,\left(J^{\prime} \oplus J^{\perp}\right)=c_{1}\left(\mathcal{H}^{\perp}, J^{\prime}\right)+c_{1}\left(T^{\perp} M^{4}, J^{\perp}\right)=0\right.
$$

from which we get immediately $c_{1}\left(\mathcal{H}^{\perp(1,0)}\right)+c_{1}\left(T^{\perp(1,0)} M^{4}\right)=0$. Therefore, by Proposition 4.2 (2), we obtain the desired result.

§5. Distributions \mathcal{H} and \mathcal{H}^{\perp}

Proposition 5.1. The totally real distribution \mathcal{H}^{\perp} of an oriented 4-dimensional CR-submanifold $\varphi: M \rightarrow S^{6}$ is not involutive.

Proof. By Frobenius' theorem, \mathcal{H}^{\perp} is involutive if and only if

$$
\begin{equation*}
d \theta^{3} \equiv 0 \quad \bmod \quad\left\{\theta^{3}, \overline{\theta^{3}}, d \theta\right\} \tag{5.1}
\end{equation*}
$$

From 3.12, we have

$$
d \theta^{3} \equiv \frac{\sqrt{-1}}{2}\left(-\sqrt{-1}+\kappa_{1}^{3}\left(E_{2}\right)-\kappa_{2}^{3}\left(E_{1}\right)\right) \mu_{1} \wedge \mu_{2} \quad \bmod \quad\left\{\theta^{3}, \overline{\theta^{3}}, d \theta\right\}
$$

where $\left\{E_{1}, E_{2}\right\}$ is the dual basis of $\left\{\mu_{1}, \mu_{2}\right\}$. Thus (5.1) is equivalent to

$$
-\sqrt{-1}+\kappa_{1}^{3}\left(E_{2}\right)-\kappa_{2}^{3}\left(E_{1}\right)=0
$$

On the other hand, taking account of (3.5), (3.6) and $\pi^{*} d \varphi\left(E_{i}\right)=\Xi_{i}$ for $i=1,2$, we get

$$
\begin{aligned}
\kappa_{1}^{3}\left(E_{2}\right) & =\sqrt{-1}\left(2\left\langle\sigma\left(\Xi_{2}, \overline{f_{3}}\right), J \Xi_{1}\right\rangle-\frac{1}{2}\right) \\
\kappa_{2}^{3}\left(E_{1}\right) & =\sqrt{-1}\left(2\left\langle\sigma\left(\Xi_{1}, \overline{f_{3}}\right), J \Xi_{2}\right\rangle+\frac{1}{2}\right)
\end{aligned}
$$

Finally, by (3.6) and (3.7), we have

$$
\begin{aligned}
-\sqrt{-1}+ & \kappa_{1}{ }^{3}\left(E_{2}\right)-\kappa_{2}{ }^{3}\left(E_{1}\right) \\
& =-2 \sqrt{-1}+2 \sqrt{-1}\left(\left\langle\sigma\left(\Xi_{2}, \overline{f_{3}}\right), J \Xi_{1}\right\rangle-\left\langle\sigma\left(\Xi_{1}, \overline{f_{3}}\right), J \Xi_{2}\right\rangle\right) \\
& =-2 \sqrt{-1}+2 \sqrt{-1}\left(\left\langle d \Xi_{2}\left(\overline{\mathbf{f}_{3}}\right), J \Xi_{1}\right\rangle-\left\langle d \Xi_{1}\left(\overline{\mathbf{f}_{3}}\right), J \Xi_{2}\right\rangle\right) \\
& =-2 \sqrt{-1}-2 \overline{\theta^{3}}\left(\overline{\mathbf{f}_{3}}\right) \\
& =-3 \sqrt{-1},
\end{aligned}
$$

which is a contradaiction.
As an immediate consequence of Proposition 4.2 (1), we have the following lemma on the involutivity of the distibution \mathcal{H}.

Lemma 5.2. Let $\varphi: M^{4} \rightarrow S^{6}$ be an oriented 4-dimensional $C R$ submanifold of S^{6}. If the distribution \mathcal{H} is involutive, then each compact leaf of \mathcal{H} is homeomorphic to a torus.

Let $\varphi: M \rightarrow S^{6}$ be an oriented 4-dimensional CR-submanifold of S^{6}. Take a (locally defined) oriented orthonormal frame $\left\{\xi_{1}, \xi_{2}\right\}$ of \mathcal{H}^{\perp}. We put $e_{1}=\xi_{1} \times \xi_{2}, e_{2}=J\left(e_{1}\right)$ and denote by $\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}$ the
dual 1-forms of $e_{1}, e_{2}, \xi_{1}, \xi_{2}$, respectively. From Lemma 3.1, ω_{1}, ω_{2} are independent of the choice of the frame, and it is easily seen that so is the 2 -form $\omega_{3} \wedge \omega_{4}$.

Proposition 5.3. Let $\varphi: M \rightarrow S^{6}$ be an oriented 4-dimensional $C R$-submanifold of S^{6}. The pull-back by $\pi: \mathcal{F} \rightarrow M$ of the complex valued 3-form

$$
\left(\omega_{1}+\sqrt{-1} \omega_{2}\right) \wedge \omega_{3} \wedge \omega_{4}
$$

is equal to $2 \sqrt{-1} \theta^{3} \wedge \mu_{1} \wedge \mu_{2}$ and is a closed form.
Proof. By (3.10), (3.11) and (3.12), we have

$$
d\left(\theta^{3} \wedge \mu_{1} \wedge \mu_{2}\right)=-\left(\kappa_{3}{ }^{3}+\kappa_{2}^{2}+\kappa_{1}^{1}\right) \wedge \theta^{3} \wedge \mu_{1} \wedge \mu_{2}=0
$$

Remark 5.4. The proposition 5.3 is equivalent to the fact that $\operatorname{div}\left(e_{1}\right)=\operatorname{div}\left(J\left(e_{1}\right)\right)=0$.

§6. Examples

In this section, we give two kinds of 4-dimensional CR-submanifolds of S^{6}. A 4-dimensional submanifold M of S^{6} is a CR-submanifold if and only if the normal bundle $T^{\perp} M$ of M is a totally real subbundle (namely, $\Omega\left(T^{\perp} M\right)=\Omega \wedge \Omega(T M)=0$, where Ω is the fundamental 2-form of S^{6} defined by $\Omega(X, Y)=\langle J X, Y\rangle$ for $\left.X, Y \in \mathfrak{X}\left(S^{6}\right)\right)$.

Proposition 6.1. Let $\gamma: I \rightarrow S^{2} \subset \operatorname{Im} \mathbf{Q}$ be a regular curve in the unit 2-sphere. Then the following immersion $\psi: I \times S p(1) \rightarrow S^{6}$ is a 4-dimensional $C R$-submanifold of S^{6} :

$$
\psi(t, q)=a \gamma(t)+b q^{\iota} \varepsilon
$$

where a, b are positive real numbers satisfying $a^{2}+b^{2}=1$.
Proof. It is easy to verify that the vector fields

$$
\nu_{1}=\dot{\gamma}(t) \times \gamma(t), \quad \nu_{2}=b \gamma(t)-a q^{\iota} \varepsilon
$$

form an orthonormal frame field of the normal bundle and satisfy $\left\langle\nu_{1}, J\left(\nu_{2}\right)\right\rangle=0$.

For an element (z, q) of $U(1) \times S p(1)$, we have an automorphism $\tau(z, q)$ of the Cayley algebra defined by

$$
\begin{equation*}
(\tau(z, q))(r+s \varepsilon)=\left(q r q^{\iota}\right)+\left(z s q^{\iota}\right) \varepsilon, \quad r, s \in \mathbf{Q}, r+r^{\iota}=0 \tag{6.1}
\end{equation*}
$$

We denote by L the image of the Lie group homomorphism $\tau: U(1) \times$ $S p(1) \rightarrow \operatorname{Aut}(\mathbf{O})=\mathbf{G}_{2}$.

It is easily verified that on each orbit of the action of L on S^{6}, there exists a point of the form $a i+(b+c j) \varepsilon$ with $a \geq 0, b \geq 0, c \geq 0$ and $a^{2}+b^{2}+c^{2}=1$.

Proposition 6.2. For any positive numbers a, b, c satisfying $a^{2}+$ $b^{2}+c^{2}=1$, the orbit

$$
a\left(q i q^{\iota}\right)+\left(z(b+c j) q^{\iota}\right) \varepsilon, \quad z \in U(1), q \in S p(1)
$$

is a 4-dimensional CR-submanifold of S^{6}.
Proof. We denote by X^{*} a Killing vector field on S^{6} induced by $X \in T_{1}(U(1) \times S p(1))$. If we denote by $X_{0}, X_{1}, X_{2}, X_{3}$ the vectors $(i, 0),(0, i),(0, j),(0, k)$ of $T_{1}(U(1) \times S p(1))$ respectively, then the tangent space $T_{p_{0}}\left(L\left(p_{0}\right)\right)$ of the orbit $L\left(p_{0}\right)$ through the point $p_{0}=a i+(b+c j) \varepsilon$ is spanned by the vectors

$$
\begin{array}{ll}
X_{0}{ }^{*}\left(p_{0}\right)=(b i+c k) \varepsilon, & X_{1}{ }^{*}\left(p_{0}\right)=(-b i+c k) \varepsilon \\
X_{2}{ }^{*}\left(p_{0}\right)=-2 a k+(c-b j) \varepsilon, & X_{3}{ }^{*}\left(p_{0}\right)=2 a j-(c i+b k) \varepsilon
\end{array}
$$

From

$$
\Omega\left(X_{i}^{*}\left(p_{0}\right), X_{j}^{*}\left(p_{0}\right)\right)= \begin{cases}6 a b c, & \text { if } i=0, j=2 \\ a\left(5-9 a^{2}\right), & \text { if } i=2, j=3, \\ 0, & \text { otherwise }\end{cases}
$$

we easily obtain

$$
\Omega \wedge \Omega\left(X_{0}^{*}\left(p_{0}\right), X_{1}^{*}\left(p_{0}\right), X_{2}^{*}\left(p_{0}\right), X_{3}^{*}\left(p_{0}\right)\right)=0
$$

Proposition 6.3. The orbit of L through the point $p=a i+(b+c j) \varepsilon$ $\left(a, b, c \geq 0, a^{2}+b^{2}+c^{2}=1\right)$ is a minimal submanifold of S^{6} if and only if

$$
a=\sqrt{\frac{3+\sqrt{57}}{24}}, \quad b=c=\sqrt{\frac{21-\sqrt{57}}{48}} .
$$

Proof. With respect to the basis $\left\{X_{0}\left(p_{0}\right), X_{1}\left(p_{0}\right), X_{2}\left(p_{0}\right), X_{3}\left(p_{0}\right)\right\}$, the induced metric g is represented as follows:

$$
g=\left(\begin{array}{cccc}
b^{2}+c^{2} & c^{2}-b^{2} & 0 & -2 b c \\
c^{2}-b^{2} & b^{2}+c^{2} & 0 & 0 \\
0 & 0 & 3 a^{2}+1 & 0 \\
-2 b c & 0 & 0 & 3 a^{2}+1
\end{array}\right)
$$

Since the orbit of the action (6.1) through a point $p=(a i)+(b+c j) \varepsilon$ $(a, b, c>0)$ is diffeomorphic to $U(2)$, the volume of the orbit is equal to

$$
\text { const. } \times \operatorname{det}(g)=\text { const. } \times 4 a b c \sqrt{1+3 a^{2}}
$$

Considering the extremal of the volume under the condition $a^{2}+b^{2}+c^{2}=$ 1 , we obtain the result.

References

[Br] R. L. Bryant, Submanifolds and special structures on the octonians, J. Diff. Geom., 17 (1982), 185-232.
[E] N. Ejiri, Totally real submanifolds in a 6-sphere, Proc. Amer. Math. Soc., 83 (1981), 759-763.
[F-I] T. Fukami and S. Ishihara, Almost Hermitian structure on S^{6}, Tohoku Math. J., 7 (1955), 151-156.
[Gr] A. Gray, Almost complex submanifolds of six sphere, Proc. Amer. Math. Soc., 20 (1969), 277-279.
[H-M] H. Hashimoto and K. Mashimo, On some 3-dimensional CR submanifolds in S^{6}, Nagoya Math. J., 156 (1999), 171-185.
[Kob] S. Kobayashi, Differential geometry of complex vector bundles, Iwanami Shoten, Publishers and Princeton University Press, Tokyo and Princeton, 1987.
[Se] K. Sekigawa, Some CR-submanifolds in a 6-dimensioanl sphere, Tensor, N. S., 6 (1984), 13-20.

Hideya Hashimoto
Nippon Institute of Technology
4-1, Gakuendai, Miyashiro
Minami-Saitama Gun, Saitama, 345-8501
Japan.
hideya@nit.ac.jp
Katsuya Mashimo
Department of Mathematics
Tokyo University of Agriculture and Technology
Koganei, Tokyo 184-8588
Japan
mashimo@cc.tuat.ac.jp
Kouei Sekigawa
Department of Mathematics
Niigata University
Niigata 950-2181
Japan

[^0]: 2000 Mathematics Subject Classification. Primary 53B25; Secondary 53C15.

