Advanced Studies in Pure Mathematics 34, 2002 Minimal Surfaces, Geometric Analysis and Symplectic Geometry pp. 143–154

On 4-dimensional CR-Submanifolds of a 6-dimensional Sphere

Hideya Hashimoto, Katsuya Mashimo and Kouei Sekigawa

Abstract.

We prove several fundamental properties of 4-dimensional CRsubmanifolds of a nearly Kähler 6-dimensional sphere and construct explicit examples of such submanifolds.

§1. Introduction

Let S^6 be the 6-dimensional unit sphere centered at the origin of a 7-dimensional Euclidean space \mathbf{R}^7 . We denote by **O** the normed algebra of octonions (or Cayley algebra) and identify the set of pure imaginary octonions Im **O** with \mathbf{R}^7 . An almost complex structure on S^6 is defined as follows:

$$JX = X \times x, \ x \in S^{\mathfrak{o}}, \ X \in T_x(S^{\mathfrak{o}}),$$

where \times denotes the cross product of octonions. The almost complex structure J is compatible with the canonical metric \langle , \rangle and the almost Hermitian structure (J, \langle , \rangle) on S^6 is nearly Kähler ([F-I]).

In this paper, we shall study 4-dimensional CR-submanifolds of the nearly Kähler manifold $(S^6, J, \langle, \rangle)$. Let M be a submanifold of S^6 . We put $\mathcal{H}_x = T_x M \cap J(T_x M)$ for $x \in M$ and denote by \mathcal{H}_x^{\perp} the orthogonal complement of \mathcal{H}_x in $T_x M$. If the dimension of \mathcal{H}_x is constant and $J(\mathcal{H}_x^{\perp}) \subset T_x^{\perp} M$ for any $x \in M$, the submanifold M is called a CR submanifold.

Concerning the existence of almost complex submanifolds and totally real submanifolds of $(S^6, J, \langle, \rangle)$, many results have been obtained (see, [Gr], [Se]). On the other hand, about the existence of CR-submanifolds, only a result by Sekigawa was known before our previous paper ([H-M]), in which the first and the second authors proved that there exist many 3-dimensional CR-submanifolds.

One aim of this paper is to give some topological restrictions on the existence of compact 4-dimensional CR-submanifolds of S^6 . For

²⁰⁰⁰ Mathematics Subject Classification. Primary 53B25; Secondary 53C15.

example, we prove that the Euler number of a compact 4-dimensional CR-submanifold is equal to zero. We also consider the integrability of the distributions \mathcal{H} and \mathcal{H}^{\perp} . Many examples of 4-dimensional CR-submanifolds of S^6 will be given in the last section.

The authors wish to express their gratitude to Professor Yasuo Matsushita for his many valuable comments on characteristic classes.

$\S 2.$ Preliminaries

Let \mathbf{Q} be the skew field of all quaternions. The algebra of octonions \mathbf{O} is the direct sum $\mathbf{O} = \mathbf{Q} \oplus \mathbf{Q}$ with the following multiplication:

$$(q,r)\cdot(s,t)=(qs-t^{\iota}\ r,tq+r\ s^{\iota}),\quad q,r,s,t\in\mathbf{Q},$$

where ${}^{\iota}$ means the conjugation in **Q**. We define a conjugation in **O** by $(q,r)^{\iota} = (q^{\iota}, -r), q, r \in \mathbf{Q}$, and an inner product \langle, \rangle by

$$\langle x,y \rangle = rac{(x \cdot y^{\iota} + y \cdot x^{\iota})}{2}, \quad x,y \in \mathbf{O}.$$

We denote by \mathbf{G}_2 the group of automorphisms of \mathbf{O} , that is,

$$\mathbf{G}_2 = \{g \in \mathbf{GL}(8, \mathbf{R}); g(uv) = g(u)g(v) \text{ for any } u, v \in \mathbf{O}\}.$$

Each element of \mathbf{G}_2 leaves invariant the identity element (1,0) and its orthogonal complement Im **O**. Thus we may regard \mathbf{G}_2 as a subgroup of $\mathbf{GL}(7, \mathbf{R}) = \mathbf{GL}(\operatorname{Im} \mathbf{O})$.

Now, we define a basis of $\mathbf{C} \otimes \operatorname{Im} \mathbf{O}$,

$$(\varepsilon, E, \overline{E}) = (\varepsilon, E_1, E_2, E_3, \overline{E}_1, \overline{E}_2, \overline{E}_3)$$

as follows:

$$arepsilon = (0,1) \in \mathbf{Q} \oplus \mathbf{Q},$$

 $E_1 = iN, \ E_2 = jN, \ E_3 = -kN,$
 $\overline{E}_1 = i\overline{N}, \ \overline{E}_2 = j\overline{N}, \ \overline{E}_3 = -k\overline{N},$

where $N = (1 - \sqrt{-1\varepsilon})/2$, $\overline{N} = (1 + \sqrt{-1\varepsilon})/2 \in \mathbf{C} \otimes \mathbf{O}$. We denote also by g the complex linear extension of $g \in \mathbf{G}_2$. A basis (u, f, \overline{f}) of $\mathbf{C} \otimes \text{Im } \mathbf{O}$ is said to be *admissible*, if there exists an element g of \mathbf{G}_2 such that $(u, f, \overline{f}) = (\varepsilon, E, \overline{E})g$. We identify an element of \mathbf{G}_2 with an admissible basis by the injection

$$\iota : \mathbf{G}_2 \to \mathbf{GL}(7, \mathbf{C}) ; g \mapsto (\varepsilon, E, \overline{E})g.$$

We denote by $M_{p \times q}(\mathbf{C})$ the set of $p \times q$ complex matrices. Let [a] be the element given by

$$[a] = \begin{pmatrix} 0 & a_3 & -a_2 \\ -a_3 & 0 & a_1 \\ a_2 & -a_1 & 0 \end{pmatrix} \in M_{3 \times 3}(\mathbf{C})$$

for $a = {}^{t}(a_1 \ a_2 \ a_3) \in M_{3 \times 1}(\mathbf{C})$. Then we have

$$[a]b + [b]a = 0,$$

where $a, b \in M_{3\times 1}(\mathbf{C})$. We adopt the matrix representation of elements of $\mathbf{GL}(7, \mathbf{C})$ with respect to $(\varepsilon, E, \overline{E})$.

Proposition 2.1 (cf. Bryant [Br]). The pull-back Φ of the Maurer-Cartan form of **GL**(7, **C**) is of the form

(2.1)
$$\Phi = \begin{pmatrix} 0 & -\sqrt{-1} \ {}^t\overline{\theta} & \sqrt{-1} \ {}^t\theta \\ -2\sqrt{-1} \ \theta & \kappa & [\overline{\theta}] \\ 2\sqrt{-1} \ \overline{\theta} & [\theta] & \overline{\kappa} \end{pmatrix}$$

where $\kappa = (\kappa_j^{\ i}) \ (1 \leq i, j \leq 3) \ (resp. \ \theta = {}^t \left(\theta^1 \ \theta^2 \ \theta^3\right))$ is an $\mathfrak{su}(3)$ -valued (resp. $M_{3\times 1}(\mathbf{C})$ -valued) left invariant 1-forms. The Maurer-Cartan equation $d\Phi = -\Phi \wedge \Phi$ reduces to

(2.2)
$$d\theta = -\kappa \wedge \theta + [\overline{\theta}] \wedge \overline{\theta},$$

(2.3) $d\kappa = -\kappa \wedge \kappa + 3\theta \wedge {}^t \overline{\theta} - ({}^t\theta \wedge \overline{\theta}) I_3.$

\S **3.** Structure equations

Let $\varphi: M \to S^6$ be a 4-dimensional submanifold of S^6 . We denote by ∇ (resp. D) the Levi Civita connection of M (resp. S^6) and by ∇^{\perp} the induced connection on the normal bundle of M in S^6 . We denote by σ the second fundamental form and A_{ν} the shape operator in the direction of ν . The Gauss and the Weingarten formulas are given respectively by

$$D_X(\varphi_*(Y)) = \varphi_*(\nabla_X Y) + \sigma(X, Y),$$

$$D_X \nu = -\varphi_*(A_\nu(X)) + \nabla^\perp_X \nu,$$

where X, Y are tangent vector fields and ν is a normal vector field.

Let $\varphi : M \to S^6$ be an oriented 4-dimensional CR-submanifold of S^6 . Define an orientation on \mathcal{H}^{\perp} in such a way that an orthonormal base $\{\xi_1, \xi_2\}$ of \mathcal{H}_p^{\perp} for $p \in M$ is oriented if and only if $\{v, J(v), \xi_1, \xi_2\}$ is oriented for some unit vector $v \in \mathcal{H}_p$.

Lemma 3.1. Take an oriented orthonormal base $\{\xi_1, \xi_2\}$ of \mathcal{H}_p^{\perp} for $p \in M$. The vector $\xi_1 \times \xi_2$ is an element of \mathcal{H}_p and is independent of the choice of the base.

We denote by \mathcal{F} the bundle of unit vectors of \mathcal{H}^{\perp} . For a vector $\xi \in \mathcal{F}$ we denote by ξ' the vector such that $\{\xi, \xi'\}$ is an oriented orthonormal frame of \mathcal{F} . We define a mapping $\psi : \mathcal{F} \to \mathbf{GL}(7, \mathbf{C})$ by

$$\psi(\xi) = (\varphi \circ \pi(\xi), f, \overline{f})$$

where

$$f_{1} = \frac{1}{2}(\xi - \sqrt{-1}J\xi),$$

$$f_{2} = \frac{1}{2}(\xi' - \sqrt{-1}J\xi'),$$

$$f_{3} = -\overline{f_{1} \times f_{2}} = -\frac{1}{2}(\xi \times \xi' - \sqrt{-1}J(\xi \times \xi')).$$

Define $\mathbf{C} \otimes \text{Im } \mathbf{O}$ -valued functions f_3 , Ξ_1 and Ξ_2 on \mathcal{F} as follows:

$$\begin{aligned} \mathbf{f}_3\left((\varphi \circ \pi(\xi), f, \overline{f})\right) &= f_3, \\ \Xi_1\left((\varphi \circ \pi(\xi), f, \overline{f})\right) &= \xi, \\ \Xi_2\left((\varphi \circ \pi(\xi), f, \overline{f})\right) &= \xi'. \end{aligned}$$

Note that the image of the mapping ψ is contained in $\iota(\mathbf{G}_2)$. Also any element of the fibre is expressed as $\cos(\theta) \xi + \sin(\theta) \xi'$.

Proposition 3.2. Restricting the 1-forms κ_i^{j} and θ^i given in Proposition 2.1 to \mathcal{F} , we have the following:

(3.1) $d\varphi \circ \pi_* = \mathbf{f}_3 \otimes (-2\sqrt{-1} \ \theta^3) + \overline{\mathbf{f}_3} \otimes (2\sqrt{-1} \ \overline{\theta^3}) + \overline{\Xi}_2 \otimes \mu_2 + \overline{\Xi}_1 \otimes \mu_1,$

(3.2)
$$\theta^{3}(\tilde{X}) = \sqrt{-1} \left\langle \pi^{*} d\varphi(\tilde{X}), \overline{\mathbf{f}_{3}} \right\rangle,$$

$$\theta^{1}(\tilde{X}) = \frac{\sqrt{-1}}{2} \left\langle \pi^{*} d\varphi(\tilde{X}), \Xi_{1} \right\rangle = \frac{\sqrt{-1}}{2} \mu_{1}(\tilde{X}),$$

(3.3)
$$\theta^2(X) = \frac{1}{2} \langle \pi^* d\varphi(X), \Xi_2 \rangle = \frac{1}{2} \mu_2(X),$$

(3.4) $d\mathbf{f}_3 = \pi \circ \psi \otimes (-\sqrt{-1} \overline{\theta^3}) + \mathbf{f}_2 \otimes \kappa_3^3$

$$+ \Xi_2 \otimes rac{1}{2} \left(rac{\sqrt{-1}}{2} \mu_1 + {\kappa_3}^2
ight)$$

$$\begin{aligned} &-\Xi_{1}\otimes\frac{1}{2}\left(\frac{\sqrt{-1}}{2}\mu_{2}-\kappa_{3}^{1}\right)\\ &-J\Xi_{2}\otimes\frac{1}{2}\left(\frac{1}{2}\mu_{1}+\sqrt{-1}\kappa_{3}^{2}\right)\\ &+J\Xi_{1}\otimes\frac{1}{2}\left(\frac{1}{2}\mu_{2}-\sqrt{-1}\kappa_{3}^{1}\right),\\ (3.5) \quad d\Xi_{2} &= \pi\circ\psi\otimes(-\mu_{2})+\mathbf{f}_{3}\otimes\left(\kappa_{2}^{3}+\frac{\sqrt{-1}}{2}\mu_{1}\right)\\ &+\overline{\mathbf{f}_{3}}\otimes\left(\overline{\kappa_{2}^{3}}-\frac{\sqrt{-1}}{2}\mu_{1}\right)\\ &+\Xi_{1}\otimes\frac{1}{2}(\kappa_{2}^{1}+\overline{\kappa_{2}^{1}}+\theta^{3}+\overline{\theta^{3}})\\ &-J\Xi_{2}\otimes(\sqrt{-1}\kappa_{2}^{2})\\ &+J\Xi_{1}\otimes\frac{\sqrt{-1}}{2}(-\kappa_{2}^{1}+\overline{\kappa_{2}^{1}}+\theta^{3}-\overline{\theta^{3}}),\\ (3.6) \quad d\Xi_{1} &= \pi\circ\psi\otimes(-\mu_{1})+\mathbf{f}_{3}\otimes\left(\kappa_{1}^{3}-\frac{\sqrt{-1}}{2}\mu_{2}\right)\\ &+\overline{\mathbf{f}_{3}}\otimes\left(\overline{\kappa_{1}^{3}}+\frac{\sqrt{-1}}{2}\mu_{2}\right)\\ &+\Xi_{2}\otimes\frac{1}{2}(\kappa_{1}^{2}+\overline{\kappa_{1}^{2}}-\theta^{3}-\overline{\theta^{3}})\\ &+J\Xi_{2}\otimes\frac{\sqrt{-1}}{2}(-\kappa_{1}^{2}+\overline{\kappa_{1}^{2}}-\theta^{3}+\overline{\theta^{3}})\\ &+J\Xi_{1}\otimes(-\sqrt{-1}\kappa_{1}^{1}),\\ (3.7) \quad d(J\Xi_{2}) &= \mathbf{f}_{3}\otimes\sqrt{-1}\left(\kappa_{2}^{3}-\frac{\sqrt{-1}}{2}\mu_{1}\right)\\ &-\overline{\mathbf{f}_{3}}\otimes\sqrt{-1}\left(\overline{\kappa_{2}^{3}}+\frac{\sqrt{-1}}{2}\mu_{1}\right)+\Xi_{2}\otimes\sqrt{-1}\kappa_{2}^{2}\\ &+\Xi_{1}\otimes\frac{\sqrt{-1}}{2}(\kappa_{2}^{1}-\overline{\kappa_{2}^{1}}+\theta^{3}-\overline{\theta^{3}}),\\ (3.8) \quad d(J\Xi_{1}) &= \mathbf{f}_{3}\otimes\sqrt{-1}\left(\kappa_{1}^{3}+\frac{\sqrt{-1}}{2}\mu_{2}\right)\\ &-\overline{\mathbf{f}_{3}}\otimes\sqrt{-1}\left(\overline{\kappa_{1}^{3}}-\frac{\sqrt{-1}}{2}\mu_{2}\right)\end{aligned}$$

$$\begin{aligned} &+\Xi_2\otimes \frac{\sqrt{-1}}{2}(\kappa_1{}^2-\overline{\kappa_1{}^2}-\theta^3+\overline{\theta^3})\\ &+\Xi_1\otimes \sqrt{-1}\kappa_1{}^1\\ &+J\Xi_2\otimes \frac{1}{2}(\kappa_1{}^2+\overline{\kappa_1{}^2}+\theta^3+\overline{\theta^3}). \end{aligned}$$

Remark 3.3. From Lemma 3.1, there exists a complex valued global 1-form Θ on M^4 such that $\pi^* \Theta = \theta^3$.

Next we give the explicit expression of the integarability conditions (2.2) and (2.3).

Lemma 3.4. On \mathcal{F} , we have the following:

(3.9)
$$d\mu^1 = -\kappa_1^1 \wedge \mu^1 - \kappa_2^1 \wedge \mu^2 \\ -\kappa_3^1 \wedge (-2\sqrt{-1} \ \theta^3) + 2\mu^2 \wedge \overline{\theta^3},$$

(3.10)
$$d\mu^2 = -\kappa_1^2 \wedge \mu^1 - \kappa_2^2 \wedge \mu^2 \\ -\kappa_3^2 \wedge (-2\sqrt{-1} \ \theta^3) - 2\mu^1 \wedge \overline{\theta^3},$$

(3.11)
$$d\theta^{3} = -\frac{\sqrt{-1}}{2}(\kappa_{1}{}^{3} \wedge \mu^{1} + \kappa_{2}{}^{3} \wedge \mu^{2}) - \kappa_{3}{}^{3} \wedge \theta^{3} + \frac{1}{2}\mu^{1} \wedge \mu^{2},$$

(3.12)
$$d\kappa_3{}^3 = -\sum_{j=1}^3 \kappa_j{}^3 \wedge \kappa_3{}^j + 2\theta^3 \wedge \overline{\theta^3},$$

(3.13)
$$d\kappa_i^{\ i} = -\sum_{j=1}^3 \kappa_j^{\ i} \wedge \kappa_i^{\ j} - \theta^3 \wedge \overline{\theta^3} \quad (i=1,2),$$

(3.14)
$$d\kappa_2^1 = -\sum_{j=1}^3 \kappa_j^1 \wedge \kappa_2^j + \frac{4}{3}\mu^1 \wedge \mu^2,$$

(3.15)
$$d\kappa_3^{1} = -\sum_{j=1}^3 \kappa_j^{1} \wedge \kappa_3^{j} + \frac{3\sqrt{-1}}{2} \mu^1 \wedge \overline{\theta^3},$$

(3.16)
$$d\kappa_3^2 = -\sum_{j=1}^3 \kappa_j^2 \wedge \kappa_3^j + \frac{3\sqrt{-1}}{2}\mu^2 \wedge \overline{\theta^3}.$$

Finally we shall represent the connection 1-form $\langle (d\Xi_1)(\tilde{X}), \Xi_2 \rangle$ of the S^1 bundle \mathcal{F} explicitly, in terms of the local data. We put

$$\partial_{\theta} = \frac{d}{d\theta} \bigg|_{\theta=0} \left(\cos(\theta)\xi + \sin(\theta)\xi' \right) = \xi',$$

and denote by $d\theta$ its dual 1-form. By (3.6), we obtain

$$\left\langle (d\Xi_1)(\tilde{X}), \Xi_2 \right\rangle = -\frac{1}{2} (\kappa_2^{-1} + \overline{\kappa_2^{-1}} + \theta^3 + \overline{\theta^3})(\tilde{X}) = \left\langle \nabla_{d\pi(\tilde{X})} \xi_1, \xi_2 \right\rangle + d\theta(\tilde{X}).$$

In particular, we have $(1/2)(\kappa_2^1 + \overline{\kappa_2^1})(\partial_{\theta}) = 1$.

§4. Topological restrictions

In this section we prove several topological properties of 4-dimensional CR-submanifolds of S^6 . From Lemma 3.1 and Hopf's Index theorem, we immediately obtain the following

Proposition 4.1. Let $\varphi: M^4 \to S^6$ be an oriented 4-dimensional CR-submanifold of S^6 . Then both of the Euler class of M^4 and the Euler class of the complex subbundle \mathcal{H} over M vanish. If M^4 is compact, then the Euler number $\chi(M^4)$ is equal to zero. In particular, $S^4, S^2 \times S^2$ and $\mathbb{C}P^2$ can not be immersed into S^6 as a CR-submanifold.

Next we shall establish the relations of the various characteristic classes of the bundles \mathcal{H} , \mathcal{H}^{\perp} and $T^{\perp}M^4$ over M^4 . We denote by $J_{\mathcal{H}}$ the restriction to \mathcal{H} of the almost complex structure of S^6 , and J' the almost complex structure on \mathcal{H}^{\perp} such that the orientation determined by the almost complex structure $J_1 = J_{\mathcal{H}} \oplus J'$ on M coincides with that given on M. We denote by J_2 the opposite almost complex structure: $J_2 = J_{\mathcal{H}} \oplus (-J')$. We also denote by J^{\perp} the almost complex structure of $T^{\perp}M^4$ which is compatible with the orientation of $T^{\perp}M^4$. Recall that

(4.1)
$$\varphi^*(TS^6)|_{M^4} = \mathcal{H} \oplus \mathcal{H}^\perp \oplus T^\perp M^4.$$

Let V be the direct sum $V = \mathcal{H}^{\perp} \oplus T^{\perp}M^4$. We denote by J_V the restriction to V of the almost complex structure J of S^6 . We denote by $V^{(1,0)}$ (resp. $V^{(0,1)}$) the set of vectors of type (1,0) (resp. (0,1)) in the complexification $V \otimes \mathbf{C}$.

Proposition 4.2. Let $\varphi : M \to S^6$ be an oriented 4-dimensional CR-submanifold of S^6 . Then we have in $H^*(M; \mathbb{Z})$

(1) $e(\mathcal{H}) = c_1(\mathcal{H}^{(1,0)}) (\equiv c_1(\mathcal{H}^{(1,0)}, J_{\mathcal{H}})) = 0,$

H. Hashimoto, K. Mashimo and K. Sekigawa

(2)
$$p_1(TM^4) = \{c_1(\mathcal{H}^{\perp(1,0)}, J')\}^2 = -\{c_1(T^{\perp(1,0)}M^4, J^{\perp})\}^2,$$

$$(3) \qquad p_1(V) = 0, \quad$$

(4)
$$c_1(V^{(1,0)}) = 0,$$

where we denote by $p_1()$ (resp. $c_1()$) the first Pontrjagin (resp. Chern) class and by e() the Euler class of the respective bundles.

Proof. By Lemma 3.1, we get (1) immediately. For (2), we calculate the second Chern class of the complexified tangent bundle $TM^4 \otimes \mathbf{C}$ by making use of the above decomposition. Then, we have

$$c(TM^{4} \otimes \mathbf{C}) = c(\mathcal{H}^{(1,0)} \oplus \mathcal{H}^{(0,1)} \oplus \mathcal{H}^{\perp(1,0)} \oplus \mathcal{H}^{\perp(0,1)})$$

= $(1 - \{c_{1}(\mathcal{H}^{(1,0)})\}^{2})(1 - \{c_{1}(\mathcal{H}^{\perp(1,0)})\}^{2}).$

Therefore we have $c_2(TM^4 \otimes \mathbf{C}) = -\{c_1(\mathcal{H}^{(1,0)})\}^2 - \{c_1(\mathcal{H}^{\perp(1,0)})\}^2$, from which we get $p_1(TM^4) = \{c_1(\mathcal{H}^{(1,0)})\}^2 + \{c_1(\mathcal{H}^{\perp(1,0)})\}^2$. Hence we have (2).

Next, we prove (3) and (4). From the decomposition $\varphi^*(T^{(1,0)}S^6)|_{M^4} = \mathcal{H}^{(1,0)} \oplus V^{(1,0)}$ and $c(T^{(1,0)}S^6) = 1$, we have

$$1 = 1 + c_1(\mathcal{H}^{(1,0)}) + c_1(V^{(1,0)}) + c_1(\mathcal{H}^{(1,0)})c_1(V^{(1,0)}) + c_2(V^{(1,0)}) + c_1(\mathcal{H}^{(1,0)})c_2(V^{(1,0)}).$$

Thus we obtain (4). Since $c_2(V^{(1,0)}) = 0$, we have $p_1(V) = -c_2(V \otimes C) = c_1(V^{(1,0)})^2 - 2c_2(V^{(1,0)}) = 0$.

Theorem 4.3. Let $\varphi : M^4 \to S^6$ be an oriented 4-dimensional CR-submanifold of S^6 . Then the first Portrjagin class of M^4 vanishes. In particular, if M^4 is compact, its Hirzebruch signature is equal to zero.

Proof. First we can show that the structure group of the vector bundle V reduces to $Sp(1) \simeq SU(2)$. The vector bundle $V = \mathcal{H}^{\perp} \oplus T^{\perp} M^4$ admits two different orthogonal almost complex structures $J' \oplus J^{\perp}$ and J_V . We may easily check that the composition $(J' \oplus J^{\perp}) \circ J_V$ is also an orthogonal almost complex structure on V. Furthermore, these three orthogonal almost complex structures satisfy the quaternionic relations. Thus we get $c_1(V, (J' \oplus J^{\perp})) = c_1(V, -(J' \oplus J^{\perp})) = -c_1(V, (J' \oplus J^{\perp}))$ (see [p.46; Theorem (5.11); Kob]). Therefore, we have

$$c_1(V, (J' \oplus J^{\perp}) = c_1(\mathcal{H}^{\perp}, J') + c_1(T^{\perp}M^4, J^{\perp}) = 0,$$

from which we get immediately $c_1(\mathcal{H}^{\perp(1,0)}) + c_1(T^{\perp(1,0)}M^4) = 0$. Therefore, by Proposition 4.2 (2), we obtain the desired result.

§5. Distributions \mathcal{H} and \mathcal{H}^{\perp}

Proposition 5.1. The totally real distribution \mathcal{H}^{\perp} of an oriented 4-dimensional CR-submanifold $\varphi: M \to S^6$ is not involutive.

Proof. By Frobenius' theorem, \mathcal{H}^{\perp} is involutive if and only if

(5.1)
$$d\theta^3 \equiv 0 \mod \{\theta^3, \overline{\theta^3}, d\theta\}.$$

From 3.12, we have

$$d\theta^3 \equiv \frac{\sqrt{-1}}{2} \left(-\sqrt{-1} + \kappa_1^{3}(E_2) - \kappa_2^{3}(E_1) \right) \mu_1 \wedge \mu_2 \mod \{\theta^3, \overline{\theta^3}, d\theta\},$$

where $\{E_1, E_2\}$ is the dual basis of $\{\mu_1, \mu_2\}$. Thus (5.1) is equivalent to

$$-\sqrt{-1} + \kappa_1^3(E_2) - \kappa_2^3(E_1) = 0.$$

On the other hand, taking account of (3.5), (3.6) and $\pi^* d\varphi(E_i) = \Xi_i$ for i = 1, 2, we get

$$\kappa_1^{3}(E_2) = \sqrt{-1} \left(2 \left\langle \sigma(\Xi_2, \overline{f_3}), J\Xi_1 \right\rangle - \frac{1}{2} \right),$$

$$\kappa_2^{3}(E_1) = \sqrt{-1} \left(2 \left\langle \sigma(\Xi_1, \overline{f_3}), J\Xi_2 \right\rangle + \frac{1}{2} \right).$$

Finally, by (3.6) and (3.7), we have

$$\begin{aligned} -\sqrt{-1} + \kappa_1^{3}(E_2) &- \kappa_2^{3}(E_1) \\ &= -2\sqrt{-1} + 2\sqrt{-1} \left(\left\langle \sigma(\Xi_2, \overline{f_3}), J\Xi_1 \right\rangle - \left\langle \sigma(\Xi_1, \overline{f_3}), J\Xi_2 \right\rangle \right) \\ &= -2\sqrt{-1} + 2\sqrt{-1} \left(\left\langle d\Xi_2(\overline{f_3}), J\Xi_1 \right\rangle - \left\langle d\Xi_1(\overline{f_3}), J\Xi_2 \right\rangle \right) \\ &= -2\sqrt{-1} - 2\overline{\theta^3}(\overline{f_3}) \\ &= -3\sqrt{-1}, \end{aligned}$$

which is a contradaiction.

As an immediate consequence of Proposition 4.2 (1), we have the following lemma on the involutivity of the distibution \mathcal{H} .

Lemma 5.2. Let $\varphi : M^4 \to S^6$ be an oriented 4-dimensional CRsubmanifold of S^6 . If the distribution \mathcal{H} is involutive, then each compact leaf of \mathcal{H} is homeomorphic to a torus.

Let $\varphi : M \to S^6$ be an oriented 4-dimensional CR-submanifold of S^6 . Take a (locally defined) oriented orthonormal frame $\{\xi_1, \xi_2\}$ of \mathcal{H}^{\perp} . We put $e_1 = \xi_1 \times \xi_2$, $e_2 = J(e_1)$ and denote by ω_1 , ω_2 , ω_3 , ω_4 the

dual 1-forms of e_1 , e_2 , ξ_1 , ξ_2 , respectively. From Lemma 3.1, ω_1 , ω_2 are independent of the choice of the frame, and it is easily seen that so is the 2-form $\omega_3 \wedge \omega_4$.

Proposition 5.3. Let $\varphi : M \to S^6$ be an oriented 4-dimensional CR-submanifold of S^6 . The pull-back by $\pi : \mathcal{F} \to M$ of the complex valued 3-form

$$(\omega_1 + \sqrt{-1}\omega_2) \wedge \omega_3 \wedge \omega_4$$

is equal to $2\sqrt{-1}\theta^3 \wedge \mu_1 \wedge \mu_2$ and is a closed form.

Proof. By (3.10), (3.11) and (3.12), we have

$$d(\theta^3 \wedge \mu_1 \wedge \mu_2) = -(\kappa_3^3 + \kappa_2^2 + \kappa_1^{-1}) \wedge \theta^3 \wedge \mu_1 \wedge \mu_2 = 0.$$

Remark 5.4. The proposition 5.3 is equivalent to the fact that $\operatorname{div}(e_1) = \operatorname{div}(J(e_1)) = 0.$

§6. Examples

In this section, we give two kinds of 4-dimensional CR-submanifolds of S^6 . A 4-dimensional submanifold M of S^6 is a CR-submanifold if and only if the normal bundle $T^{\perp}M$ of M is a totally real subbundle (namely, $\Omega(T^{\perp}M) = \Omega \land \Omega(TM) = 0$, where Ω is the fundamental 2-form of S^6 defined by $\Omega(X, Y) = \langle JX, Y \rangle$ for $X, Y \in \mathfrak{X}(S^6)$).

Proposition 6.1. Let $\gamma : I \to S^2 \subset \text{Im } \mathbf{Q}$ be a regular curve in the unit 2-sphere. Then the following immersion $\psi : I \times Sp(1) \to S^6$ is a 4-dimensional CR-submanifold of S^6 :

$$\psi(t,q) = a\gamma(t) + bq^{\iota}\varepsilon,$$

where a, b are positive real numbers satisfying $a^2 + b^2 = 1$.

Proof. It is easy to verify that the vector fields

$$u_1 = \dot{\gamma}(t) \times \gamma(t), \quad \nu_2 = b\gamma(t) - aq^{\iota}\varepsilon$$

form an orthonormal frame field of the normal bundle and satisfy $\langle \nu_1, J(\nu_2) \rangle = 0.$

For an element (z,q) of $U(1) \times Sp(1)$, we have an automorphism $\tau(z,q)$ of the Cayley algebra defined by

(6.1)
$$(\tau(z,q))(r+s\varepsilon) = (qrq^{\iota}) + (zsq^{\iota})\varepsilon, \quad r,s \in \mathbf{Q}, r+r^{\iota} = 0$$

We denote by L the image of the Lie group homomorphism $\tau : U(1) \times Sp(1) \to Aut(\mathbf{O}) = \mathbf{G}_2$.

It is easily verified that on each orbit of the action of L on S^6 , there exists a point of the form $ai + (b + cj)\varepsilon$ with $a \ge 0$, $b \ge 0$, $c \ge 0$ and $a^2 + b^2 + c^2 = 1$.

Proposition 6.2. For any positive numbers a, b, c satisfying $a^2 + b^2 + c^2 = 1$, the orbit

$$a(qiq^{\iota}) + (z(b+cj)q^{\iota})\varepsilon, \quad z \in U(1), \ q \in Sp(1),$$

is a 4-dimensional CR-submanifold of S^6 .

Proof. We denote by X^* a Killing vector field on S^6 induced by $X \in T_1(U(1) \times Sp(1))$. If we denote by X_0, X_1, X_2, X_3 the vectors (i, 0), (0, i), (0, j), (0, k) of $T_1(U(1) \times Sp(1))$ respectively, then the tangent space $T_{p_0}(L(p_0))$ of the orbit $L(p_0)$ through the point $p_0 = ai + (b+cj)\varepsilon$ is spanned by the vectors

$$\begin{array}{lll} X_0^{\ *}(p_0) &= (bi+ck)\varepsilon, & X_1^{\ *}(p_0) &= (-bi+ck)\varepsilon, \\ X_2^{\ *}(p_0) &= -2ak+(c-bj)\varepsilon, & X_3^{\ *}(p_0) &= 2aj-(ci+bk)\varepsilon. \end{array}$$

From

$$\Omega(X_i^*(p_0), X_j^*(p_0)) = \begin{cases} 6abc, & \text{if } i = 0, \ j = 2, \\ a(5 - 9a^2), & \text{if } i = 2, \ j = 3, \\ 0, & \text{otherwise}, \end{cases}$$

we easily obtain

$$\Omega \wedge \Omega(X_0^*(p_0), X_1^*(p_0), X_2^*(p_0), X_3^*(p_0)) = 0.$$

Proposition 6.3. The orbit of L through the point $p = ai + (b+cj)\varepsilon$ $(a, b, c \ge 0, a^2 + b^2 + c^2 = 1)$ is a minimal submanifold of S^6 if and only if

$$a = \sqrt{\frac{3 + \sqrt{57}}{24}}, \quad b = c = \sqrt{\frac{21 - \sqrt{57}}{48}}.$$

Proof. With respect to the basis $\{X_0(p_0), X_1(p_0), X_2(p_0), X_3(p_0)\}$, the induced metric g is represented as follows:

$$g = \begin{pmatrix} b^2 + c^2 & c^2 - b^2 & 0 & -2bc \\ c^2 - b^2 & b^2 + c^2 & 0 & 0 \\ 0 & 0 & 3a^2 + 1 & 0 \\ -2bc & 0 & 0 & 3a^2 + 1 \end{pmatrix}.$$

153

Since the orbit of the action (6.1) through a point $p = (ai) + (b + cj)\varepsilon$ (a, b, c > 0) is diffeomorphic to U(2), the volume of the orbit is equal to

const.
$$\times \det(g) = \text{const.} \times 4abc\sqrt{1+3a^2}$$
.

Considering the extremal of the volume under the condition $a^2+b^2+c^2 = 1$, we obtain the result.

References

- [Br] R. L. Bryant, Submanifolds and special structures on the octonians, J. Diff. Geom., 17 (1982), 185–232.
- [E] N. Ejiri, Totally real submanifolds in a 6-sphere, Proc. Amer. Math. Soc., 83 (1981), 759–763.
- [F-I] T. Fukami and S. Ishihara, Almost Hermitian structure on S⁶, Tohoku Math. J., 7 (1955), 151–156.
- [Gr] A. Gray, Almost complex submanifolds of six sphere, Proc. Amer. Math. Soc., 20 (1969), 277–279.
- [H-M] H. Hashimoto and K. Mashimo, On some 3-dimensional CR submanifolds in S⁶, Nagoya Math. J., 156 (1999), 171–185.
- [Kob] S. Kobayashi, Differential geometry of complex vector bundles, Iwanami Shoten, Publishers and Princeton University Press, Tokyo and Princeton, 1987.
- [Se] K. Sekigawa, Some CR-submanifolds in a 6-dimensioanl sphere, Tensor, N. S., 6 (1984), 13–20.

Hideya Hashimoto Nippon Institute of Technology 4-1, Gakuendai, Miyashiro Minami-Saitama Gun, Saitama, 345-8501 Japan. hideya@nit.ac.jp

Katsuya Mashimo Department of Mathematics Tokyo University of Agriculture and Technology Koganei, Tokyo 184-8588 Japan mashimo@cc.tuat.ac.jp

Kouei Sekigawa Department of Mathematics Niigata University Niigata 950-2181 Japan