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On 4-dimensional CR-Submanifolds of a 
6-dimensional Sphere 

Hideya Hashimoto, Katsuya Mashimo and Kouei Sekigawa 

Abstract. 

We prove several fundamental properties of 4-dimensional CR
submanifolds of a nearly Kahler 6-dimensional sphere and construct 
explicit examples of such submanifolds. 

§1. Introduction 

Let 8 6 be the 6-dimensional unit sphere centered at the origin of a 
7-dimensional Euclidean space R 7 . We denote by 0 the normed algebra 
of octonions (or Cayley algebra) and identify the set of pure imaginary 
octonions Im 0 with R 7 . An almost complex structure on 8 6 is defined 
as follows: 

where x denotes the cross product of octonions. The almost complex 
structure J is compatible with the canonical metric ( , ) and the almost 
Hermitian structure ( J, (, ) ) on 8 6 is nearly Kahler ( [F-I]). 

In this paper, we shall study 4-dimensional CR-submanifolds of the 
nearly Kahler manifold (86 , J, (,) ). Let M be a submanifold of 8 6 • We 
put 1tx = TxM n J(TxM) for x E M and denote by rtt the orthogonal 
complement of 1tx in TxM. If the dimension of 1tx is constant and 
J(rtt) C TfM for any x E M, the submanifold Miscalled a CR 
submanifold. 

Concerning the existence of almost complex submanifolds and to
tally real submanifolds of (86 , J, (,) ), many results have been obtained 
(see, [Gr], [Se]). On the other hand, about the existence of CR-submani
folds, only a result by Sekigawa was known before our previous paper 
([H-M]), in which the first and the second authors proved that there 
exist many 3-dimensional CR-submanifolds. 

One aim of this paper is to give some topological restrictions on 
the existence of compact 4-dimensional CR-submanifolds of 8 6 • For 
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example, we prove that the Euler number of a compact 4-dimensional 
CR-submanifold is equal to zero. We also consider the integrability 
of the distributions 1-{ and 1-{ j_. Many examples of 4-dimensional CR
submanifolds of S6 will be given in the last section. 

The authors wish to express their gratitude to Professor Yasuo Mat
sushita for his many valuable comments on characteristic classes. 

§2. Preliminaries 

Let Q be the skew field of all quaternions. The algebra of octonions 
0 is the direct sum 0 = Q EB Q with the following multiplication: 

(q, r) · (s, t) = (qs- t< r, tq + r s'), q, r, s, t E Q, 

where ' means the conjugation in Q. We define a conjugation in 0 by 
(q, r)' = (q', -r), q, r E Q, and an inner product (,) by 

(x. y' + y. x') 
(x, y) = 2 , x, y E 0. 

We denote by G 2 the group of automorphisms of 0, that is, 

G 2 = {g E GL(8, R); g(uv) = g(u)g(v) for any u, v E 0}. 

Each element of G 2 leaves invariant the identity element (1, 0) and its 
orthogonal complement Im 0. Thus we may regard G 2 as a subgroup 
of GL(7,R) = GL(ImO). 

Now, we define a basis of C ® Im 0, 

as follows: 
c:=(0,1)EQEBQ, 

E1 =iN, E2 = jN, E3 = -kN, 

E1 =iN, E2 =jN, E3 = -kN, 

where N = (1- Hc:)/2, N = (1 + Ac:)/2 E C ® 0. We denote 
also by g the complex linear extension of g E G 2 . A basis ( u, J, f) of 
C ® Im 0 is said to be admissible, if there exists an element g of G 2 

such that (u, J, f) = (c:, E, E)g. We identify an element of G 2 with 
an admissible basis by the injection 

~ : G 2 ----> GL(7, C) ; g f--+ (c:, E, E)g. 
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We denote by Mpxq(C) the set of p x q complex matrices. Let [a] 
be the element given by 

for a= t (a1 a2 a3 ) E M3xl(C). Then we have 

[a]b + [b]a = 0, 

where a, b E M3 x 1 (C). We adopt the matrix representation of elements 
of GL(7, C) with respect to (s, E, E). 

Proposition 2.1 (cf. Bryant [Br]). Thepull-backlP ofthe Maurer
Cartan form of GL(7, C) is of the form 

(2.1) cp = (-2J=r e 
2y'=I7J [B] 

where K, = ("'Ji) (1 :::; i,j :::; 3) (resp. e = t (81 82 83 )) is an _su(3)
valued (resp. M 3 x 1 (C)-valued) left invariant 1-forms. The Maurer
Cartan equation dlP = -lP 1\ ip reduces to 

(2.2) 
(2.3) 

- "' 1\ e + [e] 1\ e, 
- "' 1\ "' + 3e 1\ t e- (te 1\ e) Js. 

§3. Structure equations 

Let r.p : M --+ S 6 be a 4-dimensional submanifold of S 6 • We denote 
by \7 (resp. D) the Levi Civita connection of M (resp. S 6 ) and by Vj_ the 
induced connection on the normal bundle of M in S 6 . We denote by a 

the second fundamental form and Av the shape operator in the direction 
of v. The Gauss and the Weingarten formulas are given respectively by 

r.p*(\7 x Y) +a( X, Y), 

-cp*(Av(X)) + Vj_xv, 

where X, Y are tangent vector fields and v is a normal vector field. 
Let r.p : M --+ S 6 be an oriented 4-dimensional CR-submanifold of 

S6 • Define an orientation on 1-l j_ in such a way that an orthonormal base 
{6,6} of 1-l:}; for p EM is oriented if and only if {v, J(v), 6, 6} is 
oriented for some unit vector v E 1-lp. 
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Lemma 3.1. Take an oriented orthonormal base {~1, 6} of 'H* 
for p E M. The vector 6 X 6 is an element of 'Hp and is independent 
of the choice of the base. 

We denote by F the bundle of unit vectors of 'Hj_. For a vector~ E F 
we denote by e the vector such that { ~' e} is an oriented orthonormal 
frame of F. We define a mapping '¢ : F--+ GL(7, C) by 

where 

'¢(~) = (cp 0 7r(~), f,f) 

1 
2(~- HJ~), 

~((-HJ(), 

- h x 12 = -~ (~ x e- J=IJ(~ x o). 
2 

Define C Q9 Im 0-valued functions h, 81 and 82 on F as follows: 

f3((cp 0 7r(0, f,f)) = h, 
31 ((cp 0 7r(~), f,f)) = ~' 
22 ((cp o 1r(~), f, 7)) =e. 

Note that the image of the mapping'¢ is contained in L(G2)· Also any 
element of the fibre is expressed as cos( e) ~ + sin( e) e. 

Proposition 3.2. Restricting the 1-forms ""ij and ei given in 
Proposition 2.1 to F, we have the following: 

(3.1) dcp 0 7r* 

(3.2) e3 (X) 

e1 (X) 

(3.3) e2 (X) 

(3.4) df3 

r3 0 ( -2V=I e3 ) + r3 0 (2H e3 ) 

+ 82 0 J.L2 + 81 0 J.L1, 

R \ 1r*dcp(X), r3), 

A;* -~)A -- 2- \ 1r dcp(X), .::.1 = - 2-J.L1(X), 

A; - ) A -- 2- \ 1r*dcp(X), 3 2 = - 2-J.L2(X), 

1r o '¢ 0 ( -R e3 ) + r3 0 ""33 
~ 1 (A 2) + =-2 0 2 - 2-J.L1 + ""3 
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(3.5) 

(3.6) d81 

~ 1 (A 1) - .::.1 0 2 -2-f-12 - l'b3 

- J32 0 ~ (~f..l1 + HK32) 

+ J31 0 ~ ( ~ f..l2 - HK31) ' 

7f 0 'lj; 0 ( -f..l2) + f3 0 ( K2 3 + ~ f..l1) 

+ f3 0 ( K2 3 - ~ f..l1) 

+ 21 0 ~(K2 1 + K2 1 + rP + 03) 

- J32 0 ( HK22) 

A 1- 3-+ J31 0 - 2-( -K2 + K2 1 + (} - 03), 

( 3 A ) 7f 0 'lj; 0 ( -f..l1) + f3 0 K1 - - 2-f..l2 

+ f3 0 (K13 + ~ f..l2) 

1 2 - 3 -+ 32 0 2(K1 + K1 2 - (} - 03) 

A 2- 3-+ J32 0 - 2-( -K1 + K1 2 - (} + 03) 

+ J81 0 ( -V-1K1 1 ), 

. ( A) f3 0 V-1 K2 3 - --T-f-11 

- 11(- A ) 11 2 - f3 0 Y -1 K2 3 + - 2-f-11 + 32 0 Y -1K2 

A 1- 3-+ 31 0 - 2-(K2 - K2 1 + (} - 03) 

1 1 - 3 -+ J31 0 2(K2 + K2 1 - (} - 03), 

11( 3 A ) f3 0 Y -.1 K1 + - 2 -f-12 

- f3 0 V-1 ( K1 3 - ~ f..l2) 
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- A( 2 -2 3 3) + .::.2 ® - 2- K:1 - K:1 - 8 + 8 

+Bl ® HK:I 1 

+ JB2 ® ~ ( K:1 2 + K:1 2 + 83 + 83). 

Remark 3.3. From Lemma 3.1, there exists a complex valued 
global1-form 8 on M 4 such that n*8 = 83. 

Next we give the explicit expression of the integarability conditions 
(2.2) and (2.3). 

Lemma 3.4. On F, we have the following: 

(3.9) 

(3.10) 

(3.11) 

(3.12) dK:3 3 

(3.13) dK:ii 

(3.14) dK:2 1 

(3.15) dK:31 

(3.16) dK:32 

-K:11 1\ ILl_ K:21 1\ IL2 

- K:3 1 1\ ( -2v=:t 83) + 2~L2 1\83, 
_K:12 1\ ILl _ K:22 1\ IL2 

- K:3 2 1\ ( -2R 83)- 2~L 1 1\83, 

A ---(K:l3 /\ILl+ l'i:23 /\~L2) 
2 

1 
_ l'i:3 3 1\ 83 + 2 ~L 1 1\ ~L 2, 

3 
"'""'3. 3-

- ~ l'i:j 1\ l'i:3J + 28 1\ 83' 
j=l 

3 

-2: l'i:/ 1\ l'i:ij- 83 1\83 (i = 1, 2), 
j=l 

3 4 
- 2:/'i:/ /\i'i:2j + 31Ll /\IL2, 

J=l 

~ 1 · 3A 1 -
- ~ l'i:j 1\ l'i:3J + -2- IL 1\ 83' 

j=l 
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Finally we shall represent the connection 1-form \ (d3I)(X), 32 ) of 

the S 1 bundle F explicitely, in terms of the local data. We put 

d I . 8e = de e=o (cos( e)~ + sm( e)() = (, 

and denote by de its dual1-form. By (3.6), we obtain 

In particular, we have (1/2)(K2 1 + K2 1 )(8e) = 1. 

§4. Topological restrictions 

In this section we prove several topological properties of 4-dimensional 
CR-submanifolds of S6 . From Lemma 3.1 and Hopf's Index theorem, we 
immediately obtain the following 

Proposition 4.1. Let <p : M 4 ----> S 6 be an oriented 4-dimensional 
CR-submanifold of S 6 . Then both of the Euler class of M 4 and the Euler 
class of the complex subbundle 7-{ over M vanish. If M 4 is compact, then 
the Euler number x(M4 ) is equal to zero. In particular, S4 , S 2 X S 2 and 
CP2 can not be immersed into S 6 as a CR-submanifold. 

Next we shall establish the relations of the various characteristic 
classes of the bundles 7-{, 7-{j_ and Tj_ M 4 over M 4 . We denote by h-t 
the restriction to 7-{ of the almost complex structure of S 6 , and J' the 
almost complex structure on 7-{j_ such that the orientaion determined 
by the almost complex structure J 1 = JH E9 J' on M coincides with that 
given on M. We denote by Jz the opposite almost complex structure: 
J2 = JH E9 (-J'). We also denote by J j_ the almost complex structure of 
Tj_ M 4 which is compatible with the orientation of Tj_ M 4 • Recall that 

( 4.1) 

Let V be the direct sum V = 7-{j_ E9 Tj_ M 4 . We denote by Jv the 
restriction to V of the almost complex structure J of S 6 . We denote by 
V(l,O) (resp. vco,l)) the set of vectors of type (1,0) (resp. (0,1)) in the 
complexification V Q9 C. 

Proposition 4.2. Let <p : M ----> S 6 be an oriented 4-dimensional 
CR-submanifold of S 6 . Then we have in H*(M; Z) 

(1) e(7-f) = c1 (7-f(l,O))(= c1 (7-f(l,O), JH)) = 0, 
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P1 (T M4) = { c1 (7-l_l(1,0), J') p = -{ c1 (T_i(1,o) M4' J _l )}2, 

p1(V) = 0, 
c1 (V( 1,o)) = 0, 

where we denote by P1 ( ) ( resp. c1 ( ) ) the first Pontrjagin ( resp. Chern) 
class and by e( ) the Euler class of the respective bundles. 

Proof. By Lemma 3.1, we get (1) immediately. For (2), we calcu
late the second Chern class of the complexified tangent bundle T M 4 Q9 C 
by making use of the above decomposition. Then, we have 

c(7-l(1,o) EB 7-{(0,1) EB 7-{_1_(1,0) EB 7-{_1_(0,1)) 

(1- {c1(7-l(1,0))}2)(1- {c1(7-l_i(1,0))}2). 

Therefore we have c2(TM4Q<JC) = -{c1(7-l(1•0l)P-{c1(7-{_i(1•0))} 2, from 
which we get P1 (T M 4) = { c1 (7-{(1•0))}2 + { c1 (7-l_i(1•0)) V Hence we have 
(2). 

Next, we prove (3) and ( 4). From the decomposition rp* (T(1,o) S 6 ) IM4 
= 7-{(1,0) EB y(1,o) and c(T(1,o) S 6 ) = 1, we have 

1 1 + c1(7-{(1,0)) + c1(V(1,0)) 

+ c1(7-{(1,0))c1(V(1,0)) + c2(y(1,0)) + c1(7-{(1,0))c2(V(1,0)). 

Thus we obtain (4). Since c2(V(1•0)) = 0, we havep1(V) = -c2(VQ<JC) = 
c1(V(1,o))2- 2c2(V(1,o)) = 0. 0 

Theorem 4.3. Let rp : M 4 ----> S 6 be an oriented 4-dimensional 
CR-submanifold of S 6 . Then the first Portrjagin class of M 4 vanishes. 
In particular, if M 4 is compact, its Hirzebruch signature is equal to zero. 

Proof. First we can show that the structure group of the vec
tor bundle V reduces to Sp(1) ~ SU(2). The vector bundle V = 

7-l _i EB T_i M 4 admits two different orthogonal almost complex structures 
J'EBJ_i and Iv. We may easily check that the composition (J'EBJ_i)oJv 
is also an orthogonal almost complex structure on V. Furthermore, 
these three orthogonal almost complex structures satisfy the quater
nionic relations. Thus we get c1 (V, ( J' EB J _i)) = c1 (V, - ( J' EB J _i)) = 

-c1(V, (J' EBJ_i)) (see [p.46; Theorem (5.11); Kob]). Therefore, we have 

from which we get immediately c1 (7-l_i(1•0l) + c1 (T_i(1,o) M 4) = 0. There
fore, by Proposition 4.2 (2), we obtain the desired result. D 
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§5. Distributions H and Hj_ 

Proposition 5.1. The totally real distribution Hj_ of an oriented 
4-dimensional CR-submanifold r.p : M --+ S 6 is not involutive. 

Proof. By Frobenius' theorem, Hj_ is involutive if and only if 

(5.1) 

From 3.12, we have 

where { E 1 , E2} is the dual basis of {Mr, Md. Thus (5.1) is equivalent to 

On the other hand, taking account of (3.5), (3.6) and n*dr.p(E;) = 3; for 
i = 1, 2, we get 

H (2(u(B2,h),JBr)- ~), 

H (2(u(Br,h),JB2) + ~). 

Finally, by (3.6) and (3.7), we have 

-H + "'r 3 (E2)- r;,2 3 (Er) 

-2H + 2H ( (u(B2, h), JBr)- (u(Br, h), JB2)) 

-2J=I + 2J=1 ( (dB2(f3), JBr)- (dB1 (f3), JB2)) 

-2H- 2e3(f3) 

-3H, 

which is a contradaiction. 0 
As an immediate consequence of Proposition 4.2 (1), we have the 

following lemma on the involutivity of the distibution H. 

Lemma 5.2. Let r.p : M 4 --+ S 6 be an oriented 4-dimensional CR
submanifold of S 6 . If the distribution H is involutive, then each compact 
leaf of H is homeomorphic to a torus. 

Let r.p : M --+ S 6 be an oriented 4-dimensional CR-submanifold of 
S6 • Take a (locally defined) oriented orthonormal frame { 6, 6} of H j_. 

We put e1 = 6 x 6, e2 = J(er) and denote by w1, w2, w3, w4 the 
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dual1-forms of ei, e2 , 6, ~2 , respectively. From Lemma 3.1, WI, w2 are 
independent of the choice of the frame, and it is easily seen that so is 
the 2-form W3 1\ W4. 

Proposition 5.3. Let r.p : M ____, S 6 be an oriented 4-dimensional 
CR-submanifold of S 6 . The pull-back by 1r : F ____, M of the complex 
valued 3-form 

(wi + Hw2) 1\ w3 1\ w4 

is equal to 2y'=IB3 1\ f.li 1\ f.l2 and is a closed form. 

Proof By (3.10), (3.11) and (3.12), we have 

d( 83 1\ f.li 1\ f.l2) = - ( /'\,3 3 + /'\,2 2 + "'II) 1\ 83 1\ f.li 1\ f.l2 = 0. 

D 

Remark 5.4. The proposition 5.3 is equivalent to the fact that 
div(ei) = div(J(ei)) = 0. 

§6. Examples 

In this section, we give two kinds of 4-dimensional CR-submanifolds 
of S 6 . A 4-dimensional submanifold M of S 6 is a CR-submanifold if and 
only if the normal bundle Tj_ M of M is a totally real sub bundle (namely, 
rl(Tj_ M) = 0 1\ rl(TM) = 0, where 0 is the fundamental 2-form of S6 

defined by rl(X, Y) = (JX, Y) for X, Y E X(S6 )). 

Proposition 6.1. Let '"Y : I ____, S 2 c Im Q be a regular curve in 
the unit 2-sphere. Then the following immersion 'ljJ :I X Sp(1) ____, S 6 is 
a 4-dimensional CR-submanifold of S 6 : 

where a, b are positive real numbers satisfying a2 + b2 = 1. 

Proof It is easy to verify that the vector fields 

VI = )'(t) X '"'f(t), v2 = b'"'((t)- aq'c 

form an orthonormal frame field of the normal bundle and satisfy 
(vi, J(v2)) = 0. D 

For an element (z, q) of U(1) x Sp(l), we have an automorphism 
T(z, q) of the Cayley algebra defined by 

(6.1) (T(z, q))(r + sc) = (qrq') + (zsq')c, r, sEQ, r + r' = 0. 
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We denote by L the image of the Lie group homomorphism T: U(1) x 
5p(1)--+ Aut(O) = Gz. 

It is easily verified that on each orbit of the action of L on 5 6 , there 
exists a point of the form ai + (b + cj)s with a ?: 0, b ?: 0, c ?: 0 and 
a2 + b2 + c2 = 1. 

Proposition 6.2. For any positive numbers a, b, c satisfying a 2 + 
b2 + c2 = 1, the orbit 

a(qiq<) + (z(b + cj)q<) s, z E U(1), q E 5p(1), 

is a 4-dimensional CR-submanifold of 5 6 . 

Proof. We denote by X* a Killing vector field on 5 6 induced by 
X E T1 (U(1) x 5p(1)). If we denote by X 0 ,X1,X2,X3 the vectors 
( i, 0), (0, i), (0, j) ,(0, k) of T1 (U(1) x 5p(1)) respectively, then the tangent 
space Tp0 ( L(p0 )) of the orbit L(po) through the point Po = ai + (b + cj)s 
is spanned by the vectors 

Xo*(po) =(bi+ck)s, xl *(po) = ( -bi + ck)s, 
Xz *(po) = -2ak + (c- bj)s, x3 *(po) = 2aj- (ci + bk)c. 

From 

{ 
6abc, 

O(Xt(Po), Xj(po)) = a(5- 9a2 ), 

0, 

if i = 0, j = 2, 
if i = 2, j = 3, 
otherwise, 

we easily obtain 

D 

Proposition 6.3. The orbit of L through the point p = ai+(b+cj)s 
(a, b, c ?: 0, a 2 + b2 + c2 = 1) is a minimal submanifold of 5 6 if and only 
if 

-J3+V57 a- 24 ' 
b = c = J21- vm_ 

48 

Proof. With respect to the basis { Xo (Po), X 1 (Po), Xz (Po), X3 (Po)}, 
the induced metric g is represented as follows: 

0 
0 

3a2 + 1 
0 

-2bc ) 
0 
0 . 

3a2 + 1 
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Since the orbit of the action (6.1) through a point p = (ai) + (b + cj)c 
(a, b, c > 0) is diffeomorphic to U(2), the volume of the orbit is equal 
to 

const. x det(g) = const. x 4abcV1 + 3a2 • 

Considering the extremal of the volume under the condition a2 +b2 +c2 = 
1, we obtain the result. D 
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