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Principal blocks with extra-special 
defect groups of order 27 

Yoko Usami 

§1. Introduction 

Let G be a finite group and p be a prime number. Let b be a p
block of G, P be a defect group of b and k(b) (respectively, l(b)) be 
the number of irreducible ordinary characters (respectively, irreducible 
Brauer characters) in b. Suppose that 

two blocks b and b' of finite groups G and G' respectively, 
(1) have the common defect group P and their Brauer cate-

gories Brb,p (G) and Brb' ,p ( G') are equivalent. 

(See [FH] for Brauer categories.) When we consider only principal p
blocks, their defect groups are Sylow p-subgroups and having the same 
Brauer category is equivalent to having the same p-local structure. See 
the definition in section 4 in [R] : Finite groups G and H have the 
same p-local structure if they have a common Sylow p-subgroup P such 
that whenever Q1 and Q2 are subgroups of P and f : Q1 ---+ Q2 is an 
isomorphism, then there is an element g E G such that f ( x) = xg for all 
x E Q1 if and only ifthere is an element hE H such that f(x) =xh for 
all X E Ql. 

Under condition (1) there is a question whether we have 

(2) k(b)=k(b') and l(b)=l(b') 

or not. We have a following conjecture. 

Conjecture 1. When b and b' are principal blocks satisfying con
dition (1), the equalities in (2) hold. 

When P is an abelian group, it is known that a block b of G and its 
Brauer correspondent Brp(b) in Na(P) have the same Brauer category 
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(Proposition 4.21 in [AB]), and Brow~ conjectured that they are derived 
equivalent (respectively, isotypic). See Conjecture 6.1 and Question 6.2 
in [Br2]. Note that each of these conjectures implies that we have 

(3) k(b)=k(Brp(b)) and l(b)=l(Brp(b)) 

for any block b with abelian defect group P. As is stated in [Br2] Brow~'s 
conjectures above do not necessarily hold when P is not an abelian 
group. The principal2-block b of any one of Suzuki groups Sz(q) and its 
Brauer correspondent have the same Brauer category (actually, fusion 
of P is controlled by its normalizer, since Sylow 2-subgroups are T.I. 
sets), but they are not derived equivalent nor isotypic ; nevertheless (3) 
holds for them (cf. Consequences 5 and 7 in [A]). Here we have to add 
one more remark. M. Kiyota pointed out that a semidirect product of 
an elementary abelian 3-group Z3 X Z3 of order 9 by a quaternion group 
of order 8 whose unique involution acts on Z3 xZ3 trivially, has only two 
3-blocks (i.e. the principal block b0 and the other block b!) and their 
Brauer categories are equivalent to each other but we have l(b0 ) #l(b!). 

In this paper we fix P as an extra-special group of order 27 and 
of exponent 3, and consider principal 3-blocks b having P as a de
fect group and check Conjecture 1. Note that in this case having the 
same Brauer category implies having the same inertial quotient E( = 
Nc(P)/PCc(P) here) and the same fusion of P. At any rate, using the 
classification of finite simple groups, we determine k(b), l(b) and k0 (b) 
completely and proves that Conjecture 1 is true for such blocks, and 
consequently we prove that Dade's conjecture of ordinary form holds for 
b. (Here ko(b) is the number of irreducible ordinary characters in b of 
height zero.) 

When the author visited l'Universite Paris 7, Lluis Puig suggested 
an idea of using his construction of characters as functions on local 
pointed elements which can be found in Corollary 4.4, Theorem 5.2 and 
Theorem 5.6 in [P]. The author uses his idea to prove Theorem 1 below. 

In the following we denote a cyclic group of order m by Zm, a 
quaternion group of order 8 by Q8 , a dihedral group of order 8 by D 8 

and a semidihedral group of order 16 by SD16 respectively. 

Theorem 1. Let b be the principal3-block of a finite group G with 
an extra-special defect group P of order 27 and of exponent 3. Let E 
be the inertial quotient ofb (i.e. E =Nc(P)/PC0 (P)) and let u be a 
non-trivial element in Z(P). Then we have the following. 

(1) When Nc(P) s;;; Cc(Z(P)), fusion of P in G is controlled by 
Nc(P) and one of the following holds : 
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(i) If E = 1, then b is 3-nilpotent, k(b) = 11,k0 (b) = 9 and 
l(b)=l. 

(ii) If E~Z2, then k(b)=10,k0 (b)=6 and l(b)=2. (In this 
case E acts on P/Z(P) fixed-point-freely. ) 

(iii) If E~Z4 , then k(b)=14,k0 (b)=6 and l(b)=4. 
(iv) If E~Q8 , then k(b)=16,k0 (b)=6 and l(b)=5. 

(2) When Nc(P) g; Cc(Z(P)), E is isomorphic with either Z2 , Z2x 
Z2, Z8 , Ds or SD16 and we have an estimate of k(b) as below 
according to E and the number of conjugacy classes of elements 
of order3. When E~Z2 , E does not act on P/Z(P) fixed-point
freely. In each case k(b) -l(b) takes a constant value. When 
E~Z8 , each case is further divided into two subcases according 
to fusion of a basic set of Cc ( u) in the extended centralizer 
C0 *(u) (= {gEGiug =u or u-1 }). The subcase where each 
element of a basic set of Cc(u) is fixed by C0 *(u) corresponds 
to subcase 1. Otherwise it is subcase 2. 

(i) Suppose that E~Z2 . 

(i)-(1) If fusion of P is controlled by Nc(P), then P-{1} 
consists of 6 classes and k(b)-l(b)=8 and k(b)= 
10. 

(i)-(2) Otherwise, P-{1} consists of 5 classes and k(b)
l(b)=7 and 9=:;k(b)::;11. 

(ii) Suppose that E ~ Z2 xZ2 . Then one of the following holds. 
(ii)-(1) If fusion of Pis controlled by Nc(P), then P-{1} 

consists of 4 classes and k(b)-l(b) = 7 and k(b) = 11. 
(ii)-(2) P- {1} consists of 3 classes, k(b) -l(b) = 5 and 

8::; k(b)::; 11. 
(ii)-(3) P-{1} consists of 3 classes, k(b)-l(b) = 6 and 

10::; k(b)::; 12. 
(ii)-(4) P- {1} consists of 2 classes, k(b) -l(b) = 4 and 

7::; k(b)::; 12. 
(ii)-(5) P- {1} consists of 2 classes, k(b) -l(b) = 3 and 

6::;k(b)::;11. 
(ii)-(6) P- {1} consists of 1 class, k(b) -l(b) = 2 and 5 ::; 

k(b)::; 18. 
(iii) Suppose that E~ Z8 . 

(iii)-(1) If fusion of Pis controlled by Nc(P), then P-{1} 
consists of2 classes and k(b)-l(b)=5. In subcase 
1,8::;k(b):=;14. In subcase 2,8::;k(b)::;12. 

(iii)-(2) Otherwise, P- {1} consists of 1 class and k(b)
l(b) = 4. In subcase 1,8::; k(b)::; 18. In subcase 
2, 7::;k(b)::;15. 
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(iv) Suppose that E ~ D8 . Then one of the following holds. 
(iv)-(1) If fusion of Pis controlled by Nc(P), then P-{1} 

consists of3 classes, k(b)-l(b)=8 and k(b)=13. 
(iv)-(2) P-{1} consists of2 classes, k(b)-l(b) = 6 and 

9~k(b)~13. 
(iv)-(3) P-{1} consists of1 class, k(b)-l(b)=4 and7~ 

k(b) ~ 15. 
(v) Suppose that E~SD16 • 

(v)-(1) If fusion of Pis controlled by Nc(P), then P-{1} 
consists of2 classes, k(b)-l(b)=7 and 10~k(b)~ 
15. 

(v)-(2) Otherwise, P-{1} consists of1 class, k(b)-l(b)=5 
and 7~k(b)~14. 

Using the classification of finite simple groups we obtain the follow
ing theorem. As is well known, we can assume that Op' (G)= 1 when we 
treat the principal p-block of G. 

Theorem 2. (Using the classification of finite simple groups.) Let 
G be a finite group with 03' (G) = 1 having an extra-special Sylow 3-
subgroup P of order 27 and of exponent 3. Let M be a minimal normal 
subgroup of G. Then one of the following holds : 

(i) M ~ Z 3 and Z(P) is a normal subgroup of G and fusion of 
P in G is controlled by N c ( P). As for the principal 3-block 
b, k(b) and l (b) are uniquely determined according to its inertial 
quotient. 

(ii) M ~ Z3 x Z3 and G /M is embedded in GL(2, 3). In particular, 
G is 3-solvable. 

(iii) M~PSL(3, q) where q = 4, 7 (mod 9). Furthermore we have 

PGL(3, q) ~ G ~ Aut(PSL(3, q)) 

(iv) M~PSU(3,q2 ) where q = 2,5 (mod 9). Furthermore we have 

(v) M~M24, Ru or J4. Furthermore G=M. 
(vi) M~PSL(3,3), PSU(3,32 ), 2F4(2)', M 12 , J 2 or He. Further

more G=M or Aut(M). 
(vii) M~G2(q) where q = 2,4,5, 7 (mod 9). Furthermore M~G~ 

Aut(M). 
(viii) M~ 2F4 (q) where 22m+l =q = 2,5 (mod 9). Furthermore M~ 

G~Aut(M). 
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The number k(b) in case of Na(P) ~ Ca(Z(P)) (see Theorem 1 (2)) 
is uniquely determined by E as follows: If E ~ z2 (respectively z2 X 

Z2, Z8 , D 8 and SD16 ), then k(b) = 10 (respectively, 11, 13, 13 and 14). 
When Na(P) <l_ Ca(Z(P)), we have always k0 (b) = 9. Furthermore, 
Dade's conjecture of ordinary form holds forb in any case. The above 
groups in (ii) through (viii) fall into the cases described in Theorem 1 
(2) as follows. The numbers in the statements below correspond to those 
in Theorem 1 (2). The semidirect product of z3 X z3 by SL(2, 3), some 
groups in (iii) above and PGU(3, q2) · (odd order) with q = 2, 5 (mod 9) 
satisfy (i)-(2). The semidirect product of z3 X z3 by G£(2,3), all there
maining groups in (iii) above and PGU(3, q2) · (even order) with q = 2, 5 
(mod 9) satisfy (ii)-(2). PSL(3, 3) and M 12 satisfy (ii)-(5). PSU(3, 32 ) 

and J2 satisfy (iii)-(1). M24, Aut(M12), Aut(PSL(3, 3)), He and 
Aut( He) satisfy (iv)-(2). 2F~(2) satisfies (iv)-(3). Aut(PSU(3, 32 )), 

Aut(J2) and all the groups in (vii) above satisfy (v)-(1). Ru, J4 and all 
the groups in (viii) above satisfy (v)-(2). 

§2. Remarks on Theorem 1 

(1) After the author obtained Theorem 1, Masao Kiyota told the 
author that several years ago he already determined k(b), k0 (b) and l(b) 
for principal blocks b when Na(P) ~Ca(Z(P)) by Brauer and Olsson's 
method using the orthogonality relation between columns of generalized 
decomposition matrix. 

(2) Outline of the proof is as follows. First, list up all possible 
Brow§'s (or Alperin's) conjugation families for b-subpairs (with an aid 
of 3-strongly embedded subgroups) in order to determine fusion of b
subpairs in G ([Br1, CP]). This work means that we list up all possible 
Brauer categories as in [CP]. Note that when b is a principal p-block, 
b-subpairs are equivalent to p-subgroups. Second, collect information 
about blocks bq such that 

( 1, b) <l_ ( Q, bq) ~ ( P, e), 

where (P, e) is a fixed maximal b-subpair. Third, construct a Z-basis 
of generalized characters in b which vanish on 3-regular elements. Here 
we apply L.Puig's Theorem 5.6 in [P], where he gave some equivalent 
conditions of a function on local pointed elements to be a generalized 
character. Fourthly, determine the decomposition of each character in 
the above Z-basis into irreducible characters in order to know k(b). It 
is known that any irreducible character in b appears in some generalized 
character in this Z-basis. In order to determine these decompositions the 



418 Y. Usami 

author used a computer and also checked the elementary divisors of Car
tan matrices by a computer. Unfortunately, when Na(P) g; Ca(Z(P)), 
we can not determine k(b) uniquely. There are huge number of possible 
decompositions. But, as for k(b), it seems that we can get almost the 
same estimate of k(b) as this by hand. 

(3) When E is of order 2, either G has a normal subgroup of index 3, 
or G is a 3-solvable group of 3-length 1 by S.D. Smith and A.P. Tyrer's 
theorem in [ST]. 

§3. Remarks on Theorem 2 

(1) Using the strong assumption that Z(P) <J G, k(b) in (i) is deter
mined. Here we already use the classification of finite simple groups to 
determine the number of irreducible ordinary characters in the principal 
3-block with an elementary abelian defect group of order 9 and with the 
cyclic inertial quotient of order 8. 

(2) If G is a 3-solvable group with Q3,(G) = 1 and has an extra
special Sylow 3-subgroup of order 27 and of exponent 3, then G is com
pletely determined, that is, either the semidirect product of P and a 
group E isomorphic with 1' Zz' Zz X Zz' z4' Qs' Ds' or SD16 or 
the semidirect product of Z3 xZ3 by SL(2, 3) or GL(2, 3) (with faithful 
actions). (cf. Proposition 53.4 in [Ka] or [Ko]). 

(3) It is not easy to choose the irreducible characters in b among 
all irreducible characters in G when G belongs to one of infinite series 
in (iii), (iv), (vii) and (viii). Fortunately, any nonprincipal 3-block of a 
simple group in these infinite series has some proper subgroup of P as a 
defect group. So using the estimate of k(b) in Theorem 1 and the known 
facts on the number of irreducible ordinary characters in other 3-blocks 
and some more information about b itself, we determine k(b) effectively 
in these cases. The author thanks Ken-ichi Shinoda and Meinolf Geck 
for information about 2F4 (q). 

(4) In order to prove Dade's conjecture in this case, we consider the 
set of G-conjugacy classes of radical 3-chains as the disjoint union of two 
subsets, one of which consists of classes of chains whose final subgroups 
are defect groups of the principal blocks of the normalizers of the chains 
and the other consists of the rest. There is a bijection from the former 
subset to the latter given by the Brauer correspondence between the 
corresponding principal blocks, sending a class of chains of length m 
into that of length m-1. Then by cancellation we get the conclusion 
(cf. 2.3 in [U1]). 
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§4. Perfect isometries and Morita equivalences 

Having the same p-local structure does not always guarantee a de
rived category equivalence between the principal p-blocks (see counter 
examples in §1). But the author thinks that we can still expect some
thing. Recall Brow?s theorem : 

Theorem 3 (Brow~, Theorem3.1 [Br2]). If two blocks are derived 
category equivalent, then there is a perfect isometry between these blocks. 

In view of this theorem, we can expect a derived equivalence between 
blocks if there exists a perfect isometry between them, although it is not 
proved that they are equivalent. In any case, it is meaningful to check 
whether a perfect isometry exists, as the first step towards checking 
the existence of a derived equivalence. The author and her student 
M.Nakabayashi did it in the following cases. (cf. Theorem 2 and [N]). 

Proposition 4. The groups in (i) (respectively (ii), (iii), (iv), (v), 
(vi) and (vii)) below have the same 3-local structure and there is a perfect 
isometry between the principal 3-blocks of any two of them. 

(i) PSU(3, 32), J 2 • 

(ii) PSL(3, 3), M12· 

(iii) M 24 , He, Aut(He). 
(iv) Aut(M12), Aut(PSL(3, 3)). 
(v) Ru, J4. 

(vi) the semidirect product of Z3 x Z3 by SL(2, 3), PGU(3, q2 ) with 
q:=:2,5(mod 9), PGL(3,q) with q:=:4, 7(mod 9). 

(vii) G2 (q) with q a power of2 and q:=:2,4,5, 7(mod 9). 

Proposition 5. The groups in (i)' (respectively (ii)', (iii)', (iv)', 
(v)' and (vi)') have the same 3-local structure, but there is no perfect 
isometry between their principal 3-blocks which sends the trivial charac
ter to the trivial character. Here P is the extra-special group of order 27 
and of exponent 3. 

(i)' the semidirect product of P by Z8 , PSU(3, 32 ), 

(ii)' M24, Aut(M12) 
(iii)' Ru, 2F4 (2) 
(iv)' G2(2), Aut(J2) 
(v)' Aut(J2), the semidirect product of P by SD16 with the faithful 

action 
(vi)' G2 (4), the semidirect product of P by SD16 with the faithful 

action. 

On the other hand, there are Koshitani and Kunugi's results on the 
principal3-blocks of PSU(3, q2) and PSL(3, q) with elementary abelian 
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defect groups of order 9 ([KK], [Ku]). Based on them we have got the 
following theorem. 

Theorem 6 (N. Kunugi andY. Usami [KU], [U2]). The principal 
3-blocks of all the groups in (i) (respectively (ii), (iii) and (iv)) below are 
Morita equivalent. 

(i) PGU(3, q2 ) defined over the finite field GF(q2 ) satisfying q=.2, 5 
(mod 9). 

(ii) PGL(3, q) satisfying q=. 4, 7 (mod 9). 
(iii) SU(3, q2 ) defined over the finite field GF(q2 ) satisfying q = 2, 5 

(mod 9). 
(iv) SL(3,q) satisfying q=.4, 7(mod 9). 

Moreover, let q be a power of 2 and satisfying q = 2 or 5 (mod 9). 
Then the author and M.N akabayashi have almost finished proving that 
the principal 3-blocks of G2(q) and G2(2) are Morita equivalent to each 
other. 

For the characters of groups in Theorem 2, see the following: 

1. J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and 
R.A. Wilson, Atlas of Finite Groups, Clarendon Press, (1985) 
Oxford. 

2. B. Chang, The conjugate classes of Chevalley groups of type 
(G2), J. Algebra, 9 (1968), 190-211. 

3. B. Chang and R. Ree, The characters of G2(q), Symposia Math
ematica XIII, Instituto Nazionale de Alta Mathematica, (1974), 
395-413. 

4. V. Ennola, On the characters of the finite unitary groups, Ann. 
Acad. Sci. Fenn., 323 (1963), 1-34. 

5. H. Enomoto, The conjugacy classes of Chevalley groups of type 
(G2) over finite fields of characteristic 2 or 3, J. Fac. Sci. Univ. 
Tokyo Sect. I Math., 16 (1970), 497-512. 

6. H. Enomoto and H. Yamada, The characters of G2(2n), Japan. 
J. Math., 12 (1986), 325-377. 

7. K. Shinoda, The conjugacy classes of the finite Ree groups of 
type (F4), J. Fac. Sci. Univ. Tokyo Sect. IA Math., 22 (1975), 
1-15. 

8. G. Malle, Die unipotenten Charaktere von 2F4 (q2), Comm. in 
Algebra, 18(7) (1990), 2361-2381. 

9. R. Steinberg, The representation ofGL(3, q), GL(4, q), PGL(3, q) 
and PGL(4, q), Canadian J. Math., 3 (1951), 225-235. 
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