
Advanced Studies in Pure Mathematics 30, 2001 
Class Field Theory - Its Centenary and Prospect 
pp. 549-631 

Class Field Theory in Characteristic p, 

its Origin and Development 

Peter Roquette 

Abstract. 

Today's notion of "global field" comprises number fields (alge
braic, of finite degree) and function fields (algebraic, of dimension 1, 
finite base field). They have many similar arithmetic properties. The 
systematic study of these similarities seems to have been started by 
Dedekind (1857). A new impetus was given by the seminal thesis of 
E.Artin (1921, published in 1924). In this exposition I shall report on 
the development during the twenties and thirties of the 20th century, 
with emphasis on the emergence of class field theory for function 
fields. The names of F.K.Schmidt, H. Hasse, E. Witt, C. Chevalley 
(among others) are closely connected with that development. 
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§1. Introduction 

What today is called "class field theory" has deep roots in the his
tory of mathematics, going back to Gauss, Kummer and Kronecker. The 
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term "class field" was coined by Heinrich Weber in his book on ellip
tic functions and algebraic numbers [118] which appeared in 1891. It 
was Hilbert [67] who in 1898 proposed to establish class field theory as 
the theory of arbitrary abelian extensions of algebraic number fields. 
Although Hilbert himself discussed unramified abelian extensions only, 
i.e., what today is called the "Hilbert class field", it is evident from 
his introductory remarks that he clearly envisioned the possible gener
alization to the ramified case. 1 And Takagi, giving class field theory 
a new turn, succeeded in completing Hilbert's program to full extent 
[108], [110]. His work was crowned by Arlin's general reciprocity law [6] 
together with Furtwangler's proof of the principal ideal theorem [32]. 

Soon after Takagi's fundamental papers, there arose the question 
whether algebraic function fields with finite base field could be treated 
similarly, i.e., whether class field theory could be transferred to function 
fields. Today we know that this is the case. 

In this article I shall outline the origin and the development of those 
ideas, and I shall follow up the main steps until finally class field theory 
for function fields was well established. The initial steps were done by 
F.K. Schmidt, Hasse and Witt; other mathematicians will be mentioned 
in due course. The time period covered will be from 1925 to about 1940. 
Thereafter class field theory for function fields ceased to be a separate 
topic; it became possible to deal with number fields and function fields 
simultaneously; the common name for both became Global Field. 2 

Class field theory for function fields was developed largely in analogy 
and parallel to class field theory for number fields. Hence, in order to 
understand what has happened in the function field case, it seems useful 
to give some comments to the development of class field theory in the 
number field case during the said time period. We shall do this briefly 
in the first preliminary section. 3 

1This has been pointed out by Hasse [42]. In some contrast to this is the 
statement of K. Takagi in his memoirs that Hilbert seemed to be interested in 
the unramified case only and, hence, Takagi was "misled" by Hilbert into the 
wrong direction of study. See Kaplan's article [73] where several passages of 
Takagi's memoirs are translated from Japanese into French. 

2In more recent times, however, the theory of function fields was revived 
under new aspects, among them also a new class field theory. See e.g., the 
book by D. Goss [34]. But this is outside the scope of this article. 

3 Information on the history of class field theory can also be obtained from 
[30], [31], [56], [71], [72], [73], [78]. 
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§2. Class field theory for number fields 1920-40 

2.1. Zeittafel: 

1920 Takagi's first great paper [109], establishing class field theory in 
its full generality according to Hilbert's program 

1922 Takagi's second paper [110], on reciprocity laws in number fields 

1925 Hasse's report on Takagi's results at the Danzig meeting of the 
DMV (German Mathematical Society) 

1926 Part I of Hasse's report "Klassenkorperbericht" [36]; the other 
two parts Ia and II appeared in 1927 and 1930 respectively, see 
[37] and [38] 

1927 Publication of Artin's proof of the general reciprocity law [6], 
based on Chebotarev's ideas which were connected with his den
sity theorem [11], [12] 

1928 Furtwiingler proves the principal ideal theorem (the proof ap
peared in print 1930 [32]; later simplifications by Magnus [77], 
Iyanaga [70] and Witt[129]) 

1929 Kathe Hey's thesis: Class field theory on the basis of analytic 
number theory in non-commutative algebras [65] 

1930 Hasse-F.K.Schmidt: Concept of local class field theory [39], [97] 
(later reorganized and simplified by Chevalley [15]) 

1931 Hasse determines the structure of the Brauer group over a local 
field [40], following ideas of E. Noether on crossed products; 

1931 Herbrand: Essential simplification of computations pertaining to 
class field theory [63] [64] 

1932 Hasse's Marburg lectures on class field theory [44] 

1932 Brauer, Hasse, Noether: local-global principle for algebras [10]; 
connection with the product formula for the Hilbert symbol 

1933 Hasse: Structure of Brauer group of number fields [43] 

1933 Publication of Chevalley's fundamental thesis [15] which con
tributed greatly to the simplification and adequate organization 
of class field theory 

1934 Deming's book on algebras [22], based on E. Noether's lectures, 
containing a treatment of class field theory by means of algebras 

1935 Chevalley and Nehrkorn present algebraic-arithmetic proofs for 
many of the main theorems of class field theory 

1940 Chevalley's purely algebraic-arithmetic proof of Artin's recipro
city law in the framework of ideles [17], without using analytic 
functions 
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2.2. Comments 

In 1920, the same year when Takagi's first main paper [108] had 
appeared, he attended the International Congress of Mathematicians in 
Strasbourg where he reported about his results [109]. However it seems 
that he did not receive any visible reaction to his report. 4 But two 
years later, 1922, after his second paper [110] had appeared and became 
available in Western libraries, it turned out that there was a number 
of young mathematicians who were keenly interested in Takagi's results 
and methods. Among them were Emil Artin and Helmut Hasse. 

2.2.1. E. Artin: Artin in two papers [3], [4], obviously inspired by 
Takagi's, investigated (-functions and his new £-functions, and on this 
occasion he conjectured what is- now called Artin's reciprocity law. 
Artin's proof appeared in 1927 [6] but already in 1925 he knew how 
to prove it, as we can infer from a letter dated February 10, 1925 and 
addressed to Hasse [28]: 5 

... Haben Sie die Arbeit van Tschebotareff in den An
nalen Bd.95 gelesen? Ich konnte sie nicht verstehen und 
mich auch aus Zeitmangel noch nicht richtig dahinterklem
men. W enn die richtig ist, hat man sicher die allgemeinen 
Abelschen Reziprozitatsgesetze in der Tasche ... 

. . . Did you read Chebotarev's paper in the Annalen, vol. 
95? I could not understand it, and because of lack of time 
I was not able to dive deeper into it. If it turns out to 
be correct then, certainly, one has pocketed the general 
abelian reciprocity law ... 

Artin's reciprocity law can be considered as the coronation of Tak
agi 's class field theory. It was soon completed by Furtwangler who 
proved the principal ideal theorem [32] which had been conjectured by 
Hilbert [67]. The actual proof of this theorem had been obtained some 
time before its publication date (1930). In our Zeittafel we have dated 

4 This may have been due to the fact that until then, the development 
of class field theory took place mainly in Germany, and that German mathe
maticians were not admitted at the Strasbourg congress (probably on political 
grounds shortly after World War I). Thus Takagi did not meet the experts on 
class field theory at that congress. 

5 All letters which we cite in this article are contained among the Hasse 
papers which are deposited in the Staats- und Universitatsbibliothek Gottingen 
~ except when it is explicitly stated otherwise. 
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it for 1928, because we have found a reference to its proof in a letter of 
Hasse to Mardell which is dated November 26, 1928: 6 

... Ich lege eine Arbeit von Artin (Hamburg) bei, die 
einen ganz grundlegenden Fortschritt in der Theorie der 
relativ-Abelschen Zahlkorper enthalt. Vielleicht ist es nicht 
ohne Interesse fur Sie, zu erf ahren, daft ganz kurzlich Furt
wangler, auf dem Boden dieser Artinschen Arbeit, den 
Hauptidealsatz der Klassenkorpertheorie (vgl. meinen Be
richt, S.45) vollstandig bewiesen hat, durch Reduktion auf 
eine Prage der Theorie der endlichen Gruppen ... 

I enclose a paper by Artin (Hamburg) which contains a 
very important advance in the theory of relatively abelian 
fields. Perhaps it is not without interest for you to know 
that recently Furtwiingler, based on this paper of Artin's, 
has completely proved the principal ideal theorem of class 
field theory (see my report, p.45), via reduction to a ques
tion of finite group theory. 

The paper by Artin which Hasse was referring to, was Artin's proof of 
his reciprocity law [6]. And when Hasse mentioned his "report" then he 
referred to Part I of his "Klassenkorperbericht" which had appeared in 
1926. 

2.2.2. H. Hasse: A detailed historical analysis how Hasse became 
interested in class field theory is given by G. Frei in his article which 
appears in this same volume [31]. Already in 1923, in a letter dated 
April 21, 1923 and addressed to Hensel, Hasse explained the relevance 
of Takagi's new results and methods with respect to their project of 
studying the local norms for abelian extensions. At that time he was 
24 years of age and held the position of Privatdozent at the University 
of Kiel. He had just completed the manuscript of a joint paper with 
Kurt Hensel, his former academic teacher at Marburg. That paper was 
to appear in the Mathematische Annalen; it gives the description of 
the local norm group for cyclic extensions of prime degree £, under the 
assumption that the £-th roots of unity are contained in the ground field 
[35]. Hasse now realized that Takagi's theory could be used to deal with 
the general case, without this assumption about roots of unity. 

Moreover; Hasse leaves no doubt that he regards Takagi's papers as 
being of highest importance also for class field theory in general. He 
writes: 

6 This letter is contained among the Mordell papers at the archive of St. 
John's College, Cambridge. 
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... Ich habe gerade die Ausarbeitung eines Kollegs uber 
die Klassenkorpertheorie van Takagi var, die ich mit un
seren Methoden sehr schon einfach darstellen kann ... 

. . . Just now I am writing the notes for a course about 
Takagi's class field theory, which I am able to present quite 
simply with our methods ... 

Clearly, when Hasse refers to "our methods" in this letter then he means 
the £-adic methods as employed in their joint paper. 

We all know that a good way of learning a mathematical subject is 
to give a course about that topic; the necessity of a clear and coherent 
presentation to the participants of the course will prompt the speaker 
to look for a better understanding of the subject. As evidenced by the 
Vorlesungsverzeichnis (list of lectures) of the University of Kiel, Hasse's 
course about Takagi's class field theory was given in the summer term 
1923, and was supplemented in the winter term 1923/24 with a course 
on "Higher Reciprocity Laws". 7 Hasse's manuscript still exists and is 
available among Hasse's papers. It became the basis of Hasse's great 
class field theory report (Klassenkorperbericht) which appeared in three 
parts I, Ia, II. [36], [37] [38]. 

2.2.3. The class field report: As G. Frei states [29], it had been 
Hilbert who suggested to Hasse to write such a report, which then 
was conceived by Hasse as a follow-up of Hilbert's famous Zahlbericht 
[66]. Like Hilbert's report, Hasse's was commissioned by the DMV (Ger
man Mathematical Society), and it appeared in the Jahresbericht of the 
DMV; the last part as a supplement (Erganzungsband). 8 The three 
parts were bound together as a single book which became known as the 
Klassenkorperbericht. 9 

Hasse delivered an excerpt from this report in a lecture at the annual 
DMV meeting 1925 at the town of Danzig. 

The impact of Hasse's report, both the Danzig lecture and the 
printed report, can hardly be overestimated. Hasse was not content 

71 am indebted to W. Gaschi.itz for his help in obtaining the Vor
lesungsverzeichnis of Kiel University for those years. 

8 lt seems that Hasse's report was the last one which was commissioned by 
the DMV. Whereas in its earlier years, the DMV had tried to initiate a number 
of comprehensive reports in various mathematical disciplines, this usage came 
to an end in the 20's. Later, the role of the DMV reports was taken up by the 
publications in the series Ergebnisse der Mathematik und ihrer Grenzgebiete of 
Springer-Verlag, edited by the editorial board of Zentmlblatt fiir Mathematik. 

9 There are some corrections [45] which, however, have not been included 
into this book. 
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with merely presenting Takagi's results. He set out to give a compre
hensive and systematic overview of all of class field theory known at 
that time; his treatment included quite a number of simplifications and 
additions - including proofs. 

Actually, Part I of the Klassenkorperbericht does not yet contain 
proofs. It seems that for these, Hasse had originally planned an addi
tional, separate publication in the Mathematische Annalen. For there is 
a letter dated Nov 1, 1926, from Hilbert (who was editor of the Annalen 
at that time) to Hasse, in which Hilbert said: 

Sehr geehrter Herr Kollege, Ihr Anerbieten, mir fur die 
Annalen ein Manuskript mit dem Titel: "Takagi's Theo
rie der relativ-Abelschen Zahlkorper, bearbeitet van Hasse" 
zur Verfugung zu stellen, nehme ich mit vielem Dank an 
- zugleich auch namens der Annalenleser u. der zahlenth. 
Wiss., der Sie damit einen wichtigen Dienst erweisen. Ich 
habe soeben einen Brief an Takagi aufgesetzt, darf aber 
van vorneherein seines Einverstandnisses sicker sein ... 

Dear Colleague, with many thanks I shall accept your offer 
to let me have a manuscript for the Annalen with the 
title "Takagi's theory of relatively abelian number fields, 
presented by Hasse" - also in the name of the readers 
of the Annalen and of the number theoretical science, to 
whom you will render an important service. Just now I 
have formulated a letter to Takagi but I am confident that 
he will agree ... 

Note that the date of this letter is late in 1926, hence after the appear
ance of Part I in the Jahresbericht der DMV. Hasse answered imme
diately, proposing to Hilbert several versions of his article. Thereupon 
Hilbert sent a second letter, dated Nov 5, 1926: 

Ich bin gar nicht im Zweifel, daft wir Ihren ersten Vor
schlag annehmen sollten und eine unbedingt vollstandige 
Wiedergabe der Takagischen Theorie in Ihrer A usfiihrung 
und Korrektur in den Annalen bringen mussen; ich mochte 
Sie sogar bitten, nicht etwa auf Kosten der leichten Les
barkeit und Verstandlichkeit Textkurzungen vorzunehmen; 
es kann in diesem Fall auf einige Druckbogen mehr nicht 
ankommen. Ich mochte eine solche Darstellung wunschen, 
dass der Leser nicht noch andere Abhandlungen van Ih
nen, Takagi oder anderen hinzuzuziehen braucht, sondern 
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- wenn er etwa mit den Kenntnissen meines Berichts aus
gestattet ist - Ihre Abhandlung verhaltnismajlig leicht ver
stehen und auch die Grundgedanken sich ohne grofle Muhe 
aneignen kann. /ch bin ... uberzeugt, dass das so entste
hende Heft (bez. Doppelheft) den Annalen zur Zierde gere
ichen wird ... 

I have no doubts that we should accept your first pro
posal and have to publish in the Annalen a fully complete 
presentation of Takagi's theory, in your treatment and cor
rection; in fact I would like to ask you not to shorten the 
paper on the expense of easy reading and understanding; 
in this case some more print sheets do not matter at all. 
I would prefer a presentation such that the reader does 
not have to consult other papers by yourself, by Takagi 
or by others but - if he is familiar with what is in my 
report - would be able to understand your article easily, 
and also become acquainted with the basic ideas without 
much trouble. I am confident that this fascicle ( or double 
fascicle) will become a beautiful gem for the Annalen. 

From these words we not only infer the high esteem in which Hilbert 
held the work of Hasse and his ability for presenting a good exposition. 10 

We also see that Hasse was contemplating, at that time, to publish the 
full proofs for Takagi's theory in the Mathematische Annalen. Later this 
idea was dropped. 

We have said above already that Hasse's report had a great impact 
on the further development of class field theory. As a consequence of 
this report, class field theory had become freely and easily accessible, 
as Hilbert had wished it to become, in a way which did not assume 
any further knowledge beyond what was generally known from Hilbert's 
Zahlbericht. Indeed, Hasse in his preface to [36] explicitly states that 
no essential prerequisites except chapters I-VII of Hilbert's Zahlbericht 
will be assumed. Alternatively, he said, the first six chapters of Hecke's 

10One of the biographers of Hasse says that " ... his books confirm Hasse's 
reputation as a writer who could be counted on to present the most difficult 
subjects in great clarity ... " [27]. We learn from Hilbert's letter that Hasse 
had that reputation already when he was young ( and had not yet written any 
book at all). 
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book on Algebraic Numbers [59] (which had just appeared) would be 
sufficient. l1 

This triggered an enormous rise of interest in the subject, in particu
lar in view of Artin's and Furtwangler's progress beyond Takagi, as men
tioned earlier already. Both Artin's reciprocity law and Furtwangler's 
principal ideal theorem were included in Part II of Hasse's report. 

It is remarkable, however, that local class field theory does not yet 
properly appear in Hasse's report. There is only a brief note in Part 
II §7 (which is concerned with the norm residue symbol) to the effect 
that the result derived there can be regarded as establishing the main 
theorems oflocal class field theory ( "Klassenkorpertheorie im Kleinen"). 
In this connection Hasse cites his own paper [39] and the related one of 
F.K. Schmidt [97] which had just appeared in Crelle's Journal (1930). In 
those papers, local class field theory is derived from the global, contrary 
to what we are used today. Hasse remarks, in the same context, that 
it would be highly desirable to have it the other way round, i.e., first 
to establish local class field theory and then, by some Local-Global
Principle, to switch to the global case. He informs the reader that, as a 
first step, F .K. Schmidt in a colloquium lecture at Halle 12 had developed 
local class field theory ab ovo, i.e., without the help of global class field 
theory. And he continues: 

Von hier aus, durch Zusammenfassung der auf die ein
zelnen Primstellen bezi.iglichen Sii,tze der Klassenkorper
theorie im Kleinen zu den auf alle Primstellen gleichzeitig 
bezi.iglichen Satze der Klassenkorpertheorie im GrojJen, 
verspreche ich mir eine erhebliche gedankliche und viel
leicht auch sachliche Vereinfachung der Beweise der Klas
senkorpertheorie im GrofJen, die ja in ihrem bisherigen 
Zustande wenig geeignet sind, das Studium dieser in ihren 
Resultaten so glatten Theorie verlockend erscheinen zu 
lassen. 

Starting from here, combining the theorems of local class 
field theory referring to the individual primes, in order 
to obtain the theorems of global class field theory which 

11However, in Part II, sections II and IV there are some arguments which 
belong to Hensel's theory oflocal fields - and these were not mentioned neither 
in Hilbert's Zahlbericht, nor in Hecke's book, nor in Hasse's preface. 

121n the spring of 1925, Hasse had moved from Kiel to the University of 
Halle where he had been offered a full professorship. From the correspondence 
between F.K. Schmidt and Hasse we can infer that the colloquium lecture in 
question had been held in the first week of February, 1930. 
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refer to all primes simultaneously, I hope to get an essen
tial simplification, conceptual and perhaps also factual, 
of the proofs of global class field theory; in their present 
state these proofs are not particularly inviting to study 
this theory which is so elegant in its results. 

From this we see clearly why local class field theory was not included 
in Hasse's report: because it did not yet exist. It seems that during the 
process of writing those parts of his report Hasse became conscious of 
the fact that, indeed, what he was doing could be regarded as local class 
field theory. And immediately he developed the idea that class field 
theory could be better understood if it would first be developed locally, 
and then globally by somehow combining all the local theories. 

2.2.4. Further development: It did not take long until these ideas 
could be realized. As we see from the Zeittafel, already in 1931 there 
appeared Hasse's paper where he determines the structure of the Brauer 
group over local number fields. Although in that paper class field theory 
is not explicitly mentioned, it is clear from the context ( and it was 
certainly clear to Hasse) that the results obtained on local algebras can 
be translated to yield local class field theory. Explicitly this is carried 
out in the papers by Hasse [43] and Chevalley [14], [15]. 13 

The global theory then follows through the local-global prinple for 
algebras, proved jointly by Brauer, Hasse and Noether in 1932 [10]; see 
also Hasse's systematic treatment [43] one year later. 

As Hasse says in the introduction to [43], it was a suggestion of 
Emmy Noether which had led him to introduce the theory of non
commutative algebras into commutative class field theory. Due to Emmy 
Noether, algebras can be represented as crossed products which are given 
by so-called factor sets; today we would call them 2-cocycles which rep
resent cohomology classes of dimension 2. Hence [43] can be regarded 

13F.K. Schmidt's foundation of local class field theory "ab ova" as an
nounced in Hasse's report has never been published. In a letter to Hasse dated 
Dec 27, 1929 F.K. Schmidt asserts that he is able to handle tame abelian ex
tensions - and he realizes that wild extensions will present more difficulties. In 
a second letter of January 21, 1930 he confirms that he intends to talk about 
this subject in.the colloquium at Halle, and that meanwhile he has some more 
results ( "ich habe mir einiges weitere uberlegt" ) . This does not sound as if 
he had obtained the full solution. In all of the following correspondence -
and there are many letters - he never returns to this problem. Perhaps F.K. 
Schmidt, in his colloquium lecture at Halle, was quite optimistic that he could 
solve the problems with wild extensions but later he found that the difficulties 
were larger than he had expected. 
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as the first instance where cohomology was introduced and used in class 
field theory. In the course of time it was discovered that the formalism 
of general cohomology theory was well suited to serve the needs of class 
field theory, and that the reference to algebras was of secondary impor
tance and could be dropped at all. But this came later, after the period 
(1925-1940) which we are discussing here. 

In the academic year 1932/33, when Hasse was already in Marburg, 
he had the opportunity to deliver again a course on class field theory, 
as he had done nine years ago in Kiel. But now the methods employed 
were quite different from those in earlier times, reflecting the state of the 
art at the time (but without explicit use of algebras). There were notes 
taken from these lectures, which were widely circulated and for a long 
time constituted a valuable source for many mathematicians who wanted 
to become acquainted with class field theory without cohomology. 14 

In these lectures Hasse still had to use complex analysis, namely in 
order to compute the norm residue index for cyclic extensions. More 
precisely, analytic properties of certain L-series were used in the proof 
of one of the two fundamental inequalities for the norm residue index. 
According to the trend of that time, the use of analytical tools in order 
to prove theorems of class field theory was not considered to be quite 
adequate. Since the main theorems of class field theory had become 
statements about algebraic structures, e.g., the reciprocity law as an 
isomorphism statement, it was desired to have a proof which would 
open more insight into the structures involved. The analytic methods 
of that time did not do this. Based on Hasse's methods, Chevalley and 
Nehrkorn [16] were able to go a long way towards this goal. Finally, the 
seminal paper by Chevalley [17] in which the proofs were given in the 
setting of ideles, marked a cornerstone in the development of class field 

141n 1933, an English translation of the Marburg lectures was planned. 
It seems that Mordell was interested in such a translation, probably because 
class field theory had been used in Hasse's first proof (1933) of the Riemann 
hypothesis for elliptic curves, and therefore Mordell wanted class field theory 
to become better known in England. In a letter to Mordell dated Nov 1, 1933, 
Hasse suggested that on the occasion of such a translation certain improve
ments should be carried out, the most important one being the inclusion of the 
theory of the norm residue symbol and the power residue symbol, which Hasse 
had covered in the lecture but which were not included in the notes. (This 
letter is found in the archive of St. John's College, Cambridge.) However, the 
translation plan had to be given up in 1934. 
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theory. Today it is generally accepted that the framework of ideles is 
most appropriate for questions concerned with class field theory. 15 

Later in the sixties, the interest in Hasse's Marburg lectures rose 
again, and therefore the old lecture notes were printed and published in 
book form. 

The foregoing comments refer to class field theory for number fields. 
They are meant to provide a background for the following discussion 
of the development of class field theory for function fields. That story 
begins in 1925 at the Danzig meeting of the DMV. 

§3. Arithmetic foundation 

3.1. The conference program 

As mentioned in the foregoing section already, in the year 1925 the 
DMV (German Mathematical Society) held its annual meeting at the 
town of Danzig. The meeting lasted from 11th to 17th of September. 
In the program we find the following entry for the session on Tuesday, 
September 15 afternoon: [25] 

Dienstag, den 15. September, nachmittags 4,00 Uhr 
Vorsitz: Hensel. 

1. H.Hasse, Halle a.S.: Neuere Fortschritte in der Theorie 
der Klassenkorper. (Referat, 60 Minuten) 

2. Friedrich Karl Schmidt, Freiburg i.B.: Zur Korpertheorie. 
(20 Minuten.) 

3. E. Noether, Gottingen: Gruppencharaktere und Idealthe
orie. 
(20 Minuten.) 

4. Karl Dorge, Koln: Zum Hilbertschen Irreduzibilitatssatz. 
(20 Minuten.) 

The first entry represents Hasse's talk which we have discussed above 
already. At the time of the Danzig meeting Hasse was affiliated with 
the University of Halle, where he had just accepted a full professorship. 
Hasse's talk is labelled Referat (report) which means that it was an 
invited lecture. The time allocated for it was 60 minutes, more than 

15 A description and assessment of Chevalley's work on class field theory is 
given by S. lyanaga in [72]. By this way, lyanaga reports that the terminology 
of "idele" is due to a suggestion of Hasse. Chevalley originally used two words: 
"elements ideal". 
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for the following talks. 16 Immediately after Hasse's report we see the 
announcement of a talk by F .K. Schmidt. 17 

F.K. Schmidt was 24 at the time of the Danzig meeting 18 , hence 
three years younger than Hasse. He had just completed his Doktorexa
men (Ph.D.) at the University of Freiburg. His formal advisor had been 
Alfred Loewy but in fact he had been guided in his work by Wolfgang 
Krull who at the time was assistent to Loewy in Freiburg. 19 It appears 
that the Danzig meeting was the first mathematical congress which the 
young F .K. Schmidt attended. 

The title of his talk "On field theory" is not very informative. In 
the Jahresbericht der DMV [25] we find an abstract which says that 
arbitrary algebraic function fields F of one variable will be considered, 
over a base field K which is absolutely algebraic of prime characteristic 
p. Given a transcendental element x E F, it is announced that the 
speaker will present the ideal theory, the theory of units and the theory 
of the discriminant for the ring Rx of x-integral elements in F. The 
abstract ends with the words: 

Eine erweiterte Fassung des Vortrags erscheint in diesem 
J ahresbericht. 

An extended version of the talk will appear in this journal. 

However, this "extended version" never appeared, neither in the Jahres
bericht der DMV nor elsewhere. Hence, in order to find out more about 
the content of F.K. Schmidt's talk we should consult his thesis, for it 
seems likely that he talked about the results which he had recently ob
tained there. 

161n the final report about the meeting [25] it is said that the session 
started already at 3:25 p.m. instead of 4 p.m. as originally planned. It is 
conceivable that Hasse had asked for more time for his report which, after all, 
was a formidable task since it was to cover the whole of Takagi's class field 
theory. 

171n Germany the name "Schmidt" is quite common. There are several 
known mathematicians with this name. In order to identify them it is common 
to use their first names, or first name initials. We shall follow this habit 
here too; this is the reason why we always use the initials when mentioning 
F.K. Schmidt, whereas with other mathematicians the initials are not used in 
general. 

18More precisely: Five days after the meeting he had his 24th birthday., 
19Biographical information about Loewy may be found in the article by 

Volker Remmert [86]; about Krull in the obituary by H. Schoneborn [101]. 
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3.2. F.K. Schmidt's thesis 
3.2.1. Arithmetic in subrings of function fields: Again, this thesis 

has never been published. But the University of Freiburg still keeps the 
original and I could obtain a copy of it. 20 The thesis is written in clear, 
legible handwriting and contains essentially the following results. (The 
notation as well as the terminology is ours, not F.K. Schmidt's.) As 
already introduced above, Rx denotes the ring of elements in F which 
are integral over K[x]. The base field K is assumed to be finite. 21 

- Rx is a Dedekind ring. 22 

- The discriminant of Rx over K[x] contains precisely those primes 
of K[x] which are ramified in Rx. 

- The ideal class group of Rx is finite. 
- The unit group R; is finitely generated, and the number of gen-

erators modulo torsion is one less than the number of infinite 
primes of F with respect to x. 

- In K[x] there holds an n-th power reciprocity law under the as
sumption that the n-th roots of unity are contained in K (in anal
ogy to Kummer's reciprocity law in then-th cyclotomic number 
field if n is prime). 

For the moment, let us disregard the last item which we shall dis
cuss later. The other items belong today to the basic prerequisites for 
every student who wishes to study algebraic function fields. In the mid
twenties, however, it seems that these things were not general knowl
edge, at least there was no standard reference. Hence it was a good 
problem for a young Ph.D. student to develop this theory ab ovo, i.e. 
from scratch. F .K. Schmidt solved the problem by standard methods 
which were well known and used by that time, referring to the analogy 
with Dedekind's foundation of the theory of algebraic numbers. 23 The 
title of F.K. Schmidt's thesis reads: 

Allgemeine Karper im Gebiet der hoheren Kongruenzen 
(Arbitrary fields in the domain of higher congruences) 

201 am indebted to Volker Remmert for his help in this matter. 
21 Some of the following results remain true and accordingly are proved 

under the more general assumption that K is absolutely algebraic of prime 
characteristic p. 

22F.K. Schmidt does not use this term which is common today. He speaks 
of "Multiplikationsring" (multiplication ring). This name should indicate that 
the non-zero fractional ideals form a group with respect to ordinary ideal 
multiplication. 

23He could not refer to E. Noether's axiomatic characterization of 
Dedekind rings because her paper [84] appeared in 1927 only. 
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This is a rather queer title, and the notion of "Gebiet der hoheren Kon
gruenzen" does not appear in the proper text of the thesis. But af
ter reading the introduction it is clear why this title had been chosen. 
Namely, the author wished to refer to Artin's thesis [5] (which had been 
completed 1921 but appeared 1924 only), and which carried the title: 

Quadratische Karper im Gebiet der hoheren Kongruenzen 
( Quadratic fields in the domain of higher congruences) 

Artin had considered quadratic extensions F of the rational func
tion field K(x) (with K = IFp)- 24 Through the choice of the title F.K. 
Schmidt wished to signalize that he is generalizing Artin's work by con
sidering not only quadratic but arbitrary field extensions F of K(x) of 
finite degree (with K algebraic over IFp)- Artin in turn had chosen his 
title in order to refer to Dedekind's classical paper of 1857 whose title 
read: 

Abriss einer Theorie der hoheren Congruenzen in Bezug 
auf einen reellen Primzahl-Modulus 
( Outline of a theory of higher congruences with respect to 
a real prime number module) 

There Dedekind discusses the number theory of the polynomial ring 
IFp[x] in analogy to the ordinary ring of integers Z. 

So we see that F.K. Schmidt's thesis had been written with the aim 
of establishing the fundamental facts of the arithmetic in function fields 
over finite base fields - in analogy to the arithmetic of algebraic number 
fields, and in generalization of Artin's thesis, in reference to ideas going 
back to Dedekind. 

This gives us an explanation why F.K. Schmidt's thesis has never 
been published. For, the same results had appeared about the same 
time in another paper [102] by the author Sengenhorst. As F.K. Schmidt 
explains in [96], at the time of completing his thesis he did not know 
about Sengenhorst's paper which already contained his results. Likewise, 
he did not know about the work of Rauter, a Ph.D. student of Hasse, 
who also at the same time (and also without knowledge of Sengenhorst) 
came to the same conclusions [85]. It seems that in those days the 
need for a solid foundation of the arithmetic of function fields was felt 
widespread, so that there were three dissertations, almost at the same 
time, dealing with the same subject. 25 

24Hence Artin's thesis covered hyperelliptic function fields. 
25Rauter, in addition, dealt also with the Hilbert ramification theory for 

Galois extensions of function fields. 
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Both Sengenhorst and Rauter became gymnasium teachers, the first 
one in Berlin and the other in the town of Tilsit in East Prussia. They 
did not remain active in mathematical research. But F.K. Schmidt did; 
he realized that the results in his thesis could only be the beginning, 
and that the next aim should be to establish Takagi's class field theory 
in the function field case. And he started to work in that direction. 

3.2.2. The n-th power reciprocity law: Actually, in F.K. Schmidt's 
thesis there is one chapter which already has some bearing on class field 
theory, namely the chapter on the n-th power reciprocity law in the 
rational function field K(x). (We had mentioned this above already.) 

Let n be an integer not divisible by the characteristic p of K. Sup
pose that K contains then-th roots of unity, i.e., that n divides q - 1 
where q is the order of K. Then, for any two elements a, b E K[x] which 
are relatively prime, the n-th power residue symbol ( % t can be defined 
in complete analogy to the number field case (i.e., when a, b are inte
gers in a number field containing then-th roots of unity). Suppose that 
a, b, when considered as polynomials in x, are monic of degree r and s 
respectively. Then the power reciprocity law according to F.K. Schmidt 
reads as follows: 

(1) 

In particular, if n is odd then the inversion factor is trivial and we obtain 

The case n = 2 had been treated by Artin in his thesis [5]. But 
already Dedekind in 1857 [20] had written down the quadratic reciprocity 
law in K[x] (for K = Zp) with the comment: "Der Beweis kann ganz 
analog dem funften GaufJschen Beweis fur den Satz von Legendre gefii,hrt 
werden . . . " (The proof can be done in complete analogy to the fifth 
proof of Gauss for Legendre's theorem ... ) - thereby Dedekind assumed 
that the reader is familiar with the various proofs of Gauss and their 
numbering. 

F.K. Schmidt pointed out in his thesis that the proof of his n-th 
power reciprocity law in K[x] is elementary, in contrast to Kummer's 
proof in the number field case over the field of n-th roots of unity. And 
one year later in [96] he presented a formula which made this law a 
triviality. Namely, if a = Tii<i<r(x - ai) is the decomposition into 
linear factors of the polynomial a, and similarly b = TI1::=;j::=;s(x - /3j) 
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then he observed that 

(2) (a) II q-1 - = (ai - /3i)----,. 
b n I<i<r 

1$/~s 

which is putting (1) into evidence. 
Later in 1934, Hasse [51] said that (1) is a "well known reciprocity 

formula" ( eine bekannte Reziprozitatsformel). Although he referred to 
F .K. Schmidt [96], Hasse did not specify whether he considered this 
formula to be known because of F .K. Schmidt's paper, or it had been 
"well known" before already. In any case, Hasse in his paper showed 
that this reciprocity formula finds it interpretation within the theory of 
cyclic class fields over a rational function field F = K(x) as ground field. 
One year later in 1935, Hasse's student H.L. Schmid then generalized 
this to an arbitrary function field Fas ground field [91]. See section 7.1. 

3.3. Further remarks 

As we have pointed out, it seems that during the Danzig meeting 
F.K. Schmidt became aware that most of his results in his thesis had 
been obtained elsewhere already. On the other hand, he did realize that 
there was interesting and important work ahead in the form of a project 
to transfer class field theory from number fields to function fields. His 
result about the n-th power reciprocity law in rational function fields 
could be regarded as a beginning in this direction, however small. 

He seems to have been stimulated by Hasse's Danzig lecture which, 
as we have seen, had been delivered just before his own talk, and he 
surely had attended Hasse's. Perhaps F.K. Schmidt had not known 
Takagi's class field theory before, and he became interested in it through 
Hasse's lecture. An indication for this is the fact that the notion of 
"class field" does not appear in his 1925 thesis - but in his 1926 paper 
[96] already he refers to Takagi'stheory of class fields as his main aim in 
the case of function fields. Another indication of Hasse's influence is the 
fact that starting in the spring of 1926, F .K. Schmidt regularly wrote to 
Hasse and informed him about his progress. Hasse seemed to have not 
only stimulated F.K. Schmidt's further work but he was continuously 
interested in its progress. 26 

The proofs of Takagi's main statements on class field theory de
pended, at that time, heavily on analytic methods; more precisely: on 

26Unfortunately, only one side of their correspondence is preserved, 
namely the letters from F.K. Schmidt to Hasse; they are to be found among 
the Hasse papers in the Gottingen library. The letters from Hasse to F.K. 
Schmidt seem to be lost. 



Class Field Theory in Chamcteristic p, its Origin and Development 567 

the properties of the Dedekind (-function and the £-functions of the 
base field. Therefore, in order to transfer Takagi's theory to the function 
field case, as a first step one would have to transfer the relevant theory 
of (-functions and £-functions. Accordingly, F.K. Schmidt started to 
develop just such a theory, which became his first major and widely 
known paper. 

3.4. Summary 

• F.K. Schmidt in his thesis {Freiburg 1925) proved the basic facts 
about the arithmetic in function fields with finite base fields. 
Thereby he generalized the arithmetic part of Artin's thesis (Ham
burg 1921) where hyperelliptic function fields only were consid
ered. But F.K. Schmidt's thesis was never published because the 
same results had been obtained independently by other authors, 
about the same time. 

• F.K. Schmidt's thesis contained one section which had some bear
ing on class field theory; it contained the n-th power reciprocity 
law for polynomials in the ring K[x] if K contains then-th roots 
of unity. This generalized Dedekind's reprocity law {1857) for the 
case n = 2. Artin in his thesis {1921) had also given a proof for 
n=2. It turned out that F.K. Schmidt's proof was very simple and 
almost trivial; nevertheless ten years later it was recognized, af
ter suitable generalization, as an important ingredient of general 
class field theory. 

• At the DMV meeting in Danzig {1925) F.K. Schmidt met Hasse 
and attended his great lecture which reported about Takagi 's class 
field theory. Stimulated by this experience he decided to direct his 
further work towards establishing class field theory for function 
fields. 

§4. Analytic foundation 

4.1. F.K. Schmidt's letters to Hasse 1926 

The first letter from F .K. Schmidt to Hasse which is preserved in 
the collection of the Hasse papers at Gottingen, is dated May 6, 1926. 
F.K. Schmidt wrote: 

... Was die Grenzformel fur die (-Funktion in Korpern 
von der Charakteristik p angeht, so ist mir in meiner 
Dissertation die Ubertragung auf den ersten Anhieb nicht 
gelungen ... 
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Concerning the limit formula for the (-function in 
fields of characteristic p, on the first try I did not succeed 
in my dissertation to transfer it ... 

By "limit formula" he means a formula for the residue of (( s) at the point 
s = l. And "transfer" means the transfer from the number field case to 
the function field case. It seems that Hasse had asked him whether he 
had obtained the result already, which as we see was not the case. But 
soon, on August 8, 1926 F.K. Schmidt could announce success: 

Es ist mir bei erneuter Betrachtung ziemlich bald moglich 
gewesen, die bekannten Dedekindschen Resultate in vallem 
Umfang auf Karper der Charakteristik p auszudehnen ... 

After taking up the subject anew, I fairly soon succeeded 
in transferring completely Dedekind's well known results 
to fields of characteristic p ... 

And then he continues to report to Hasse about his definition of the 
zeta function and the limit formula. Given a function field FIK with 
finite base field K, the zeta function ((s) in his definition depends on 
the choice of a transcendental x E F, and it refers in the well known 
manner to the prime ideals of the ring Rx of x-integers in F. The limit 
formula for this function, according to F.K. Schmidt, reads as follows: 

(3) 
(q - l)n-1 R 

lim(s - l)((s) = ~ • h 
s---+1 V l'DI log q 

where q = IKI is the order of the base field, n = [F : K(x)] the field 
degree, 'D is the discriminant of Rx over K[x] with absolute norm l'DI = 
qdeg'D, and R is the "regulator" which F.K. Schmidt had some difficulty 
to define but finally succeeded, replacing the logarithms ( which appear 
in the number field case) by the valuation degrees of the units at the 
infinite primes ( the poles of x). h is the number of ideal classes of Rx. 
The above formula holds only in the case when all infinite primes are of 
degree 1, which is the analogue to totally real fields in the number field 
case. In his letter, F.K. Schmidt had restricted himself to this "totally 
real" case for reasons of brevity only. At the end of the letter F.K. 
Schmidt writes: 

Auf Veranlassung van Herrn Prof. Haupt sall demniichst 
in den Erlanger Berichten eine varliiufige Mitteilung mein
er Resultate und M ethaden erscheinen; da der Druck dart 
sehr schnell geht ... 
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On the suggestion of Prof. Haupt, a preliminary announce
ment about my results and methods is to appear shortly 
in the Erlangen reports; since there the printing will be 
very fast ... 

The reference to Erlangen shows that F.K. Schmidt had changed 
his place of activity from Freiburg to Erlangen, where he had accepted 
a position of assistent to Professor Otto Haupt. The latter, although 
his primary interests were in real analysis and geometry, was also keenly 
interested in the modern developments of algebra and number theory. 
Haupt kept contact with Emmy Noether who whenever she visited her 
home town Erlangen, was heartily welcomed in the Haupt residence. 27 

From the remarks in F.K. Schmidt's letter we infer that Haupt was 
impressed by F.K. Schmidt's work and therefore wished to secure prior
ity for him in publication, in particular in view of F.K. Schmidt's earlier 
experiences with his thesis. The Erlanger Berichte could quickly pub
lish but otherwise this journal was not so well known, devoted not only 
to mathematics but also to science at large, and not available in many 
university's mathematics libraries. 

In his above cited letter F.K. Schmidt did not mention class field 
theory but in his next letter to Hasse, dated December 6, 1926 he does. 
Obviously replying to a question of Hasse, he writes that he did not 
plan a general axiomatic foundation of class field theory but he believes 
this could be done~ similar to E. Noether's axiomatic characterization 
of rings which admit classical ideal theory. 28 However, he continues, 
there may arise difficulties concerning the existence theorem of class field 
theory in the case when the class number is divisible by the characteristic 
p. Then he offers to send a brief summary of his results on class field 
theory in characteristic p ~ but he does not mention any details in the 
letter; for those we are dependent on F.K. Schmidt's publications. 

27Inspired by the discussions with Emmy Noether, Otto Haupt wrote a 
textbook on the then "modern" algebra [57], which appeared in 1929 and 
was the first such textbook, before van der Waerden's appeared. Haupt's 
book covered more material than van der Waerden's; the fact that the latter 
became more widely known than the former seems to be due to the style of 
writing. 

28 He is referring to the paper [84] of Emmy Noether of which he seems to 
know the content already, and he also assumes that Hasse knows it although 
the paper had not yet appeared in print (it appeared in 1927). Note that 
both Hasse and F.K. Schmidt had met E. Noether one year earlier in Danzig, 
as is evident from the program excerpt which we gave in section 3.1. ~ An 
axiomatic treatment of class field theory was given much later, in the early 
fifties, in the seminal lecture notes by Artin-Tate [9]. 
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4.2. The preliminary announcement 

F.K. Schmidt's Vorlaufige Mitteilung [96] is signed by the author 
with the date "August 1926", soon after his letter where he announced 
this paper to Hasse. It appeared in November that year with the title: 

Zur Zahlentheorie in Koryern der Charakteristik p. 
(Vorlaufige Mitteilung.) 

On number theory in fields of characteristic p. 

(Preliminary announcement.) 

In the introduction he refers to his thesis and acknowledges that both 
Sengenhorst and Rauter had obtained identical results. But now, he 
says, he is going to start with the transfer of the analytic theory. In the 
quadratic case (i.e., quadratic extensions of rational function fields) the 
analytic theory had been covered in the second part of Artin's thesis. 
Now he (F.K. Schmidt) would generalize also the second part of Artin's 
thesis to the case of arbitrary function fields with finite base field ( which 
had not been done neither by Sengenhorst nor by Rauter). And he 
continues: 

Die hier angefiihrten Ergebnisse eroffnen u.a. die Mog
lichkeit, die Takagische Theorie der Klassenkorper und 
der hoheren Reziprozitatsgesetze [ auf Funktionenkoryer] 
zu ubertragen, worauf ich demnachst einzugehen gedenke. 

The results given here open up, e.g., the possibility of 
transferring Takagi's class field theory and higher reci
procity laws [to the case of function fields]; I intend to 
discuss this soon. 

Thus F .K. Schmidt announced publicly that he was aiming at class 
field theory in characteristic p. From his correspondence with Hasse as 
discussed above we may infer that in December 1926 he was already in 
the possession of the main class field theorems, at least in a first and 
maybe incomplete version. We shall return to this in section 5. Here 
we wish to discuss what seems to be the most important part of the 
preliminary announcement: 

Namely, at the end of the paper we find a Zusatz bei der Korrektur 
(Added in proof), dated "October 1926". There F.K. Schmidt says that 
further considerations have led him to change his viewpoint, as follows. 

Up to now, when transferring arithmetic or analytic notions to the 
case of a function field FIK, the theory had been developed with respect 
to a given transcendental element x E F. The ring Rx of x-integral func
tions had been regarded as the analogue of the ring of algebraic integers 
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in a number field, and all the notions and theorems for function fields 
had referred to the structure of Rx and its prime ideals. The same point 
of view had been taken also by the other authors, i.e., Artin, Sengen
horst and Rauter. But from the new viewpoint, F.K. Schmidt says, no 
transcendental element in F is distinguished. Today we would say that 
his new viewpoint was "birationally invariant" but F .K. Schmidt did 
not use this expression. Instead, he refers to the classical theory of com
plex algebraic functions, where the "birationally invariant" point of view 
means that one works with an abstract Riemann surface, independent 
of any of its representation as a covering of the complex plane. Let us 
cite F .K. Schmidt himself [96]: 

. . . Wir nehmen also jetzt den Standpunkt ein, der in der 
Theorie der algebraischen Funktionen zuerst bei Dedekind 
und Weber zu find en ist. Diese beiden A utoren haben 
bekanntlich fur die von ihnen behandelten Karper algebra
ischer Funktionen eine arithmetische Definition des Punk
tbegriff es gegeben, der von jeder Bezugnahme auf eine Va
riable frei ist ... 

. . . Thus we now take the same viewpoint which in the 
theory of algebraic functions had been taken the first time 
by Dedekind and Weber. As is well known, those two 
authors had given, for the fields of algebraic functions as 
considered by them, an arithmetic definition of the notion 
of point, which is free from any reference to a variable ... 

He is referring to the classical paper by Dedekind and Weber [21] on 
the algebraic theory of function fields over the base field (C ( the complex 
number field). The "arithmetic definition" he alludes to, is today's usual 
definition: 29 a point is given by a "place" of the function field or, 
equivalently, by a valuation which is trivial on the base field. Here 
again, we can verify the enormous conceptual influence which the paper 
by Dedekind and Weber has exerted in the course of time. 

The remarkable fact is not so much that F.K. Schmidt had adopted 
the viewpoint of Dedekind-Weber which to us looks quite natural, but 
that it was not adopted earlier, neither by himself in his thesis nor by any 
of the other authors: Artin, Sengenhorst and Rauter. An explanation for 
this may be that the theory of algebraic function fields with finite base 

29 See, e.g., Stichtenoth's introduction to the theory of function fields [107]. 
The first systematic treatment in a textbook on the basis of F.K. Schmidt's 
viewpoint was given by Hasse [54] in his "Zahlentheorie" which had been 
completed in 1938 but appeared in 1949 only. 
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field had first been developed in close analogy to the theory of algebraic 
number fields. In the latter case the ring of all algebraic integers in 
the field is a natural and distinguished object of study. In the first 
attempts to transfer number theory to function fields, one was looking 
for an analogue of this ring and found it in the ring Rx of all x-integral 
elements in the field, with respect to a given transcendental x. 

However in number theory it became more and more evident that 
the various "infinite primes" ( as we call them today), which belong to the 
archimedean valuations of the number field, play an important role and 
should be treated, as far as possible, on the same footing as the "finite 
primes", which belong to the non-archimedean valuations and hence to 
the prime ideals of the ring of integers. These ideas were adopted via 
the analogy between number theory and the theory of complex algebraic 
functions on a compact Riemann surface - an analogy which had been 
pointed out on many occasions. We only mention Hilbert in his famous 
Paris lecture [69] in the year 1900; see also the report [83] by E. Noether 
on this subject, published 1919. 

In particular during the development of class field theory for number 
fields the need to consider those "infinite primes" was strongly felt. For 
in the definition of a "class group" in the sense of Weber one has to 
consider modules which consist of finite as well as of those infinite primes. 
See, e.g., Part Ia of Hasse's Klassenkorperbericht [37]. 

We may imagine that F.K. Schmidt, during his attempts to transfer 
class field theory, observed that for a function field FIK one has to 
consider a similar situation: given a transcendental element x E F its 
poles should be treated on the same footing as the finite places for x. And 
then he recalled that this viewpoint had been adopted much earlier by 
Dedekind-Weber in the case of complex algebraic functions. In this way 
it now became possible to appeal directly to the analogy with the fields 
of complex analytic functions on a compact Riemann surface - without 
the detour over the number field case. This then led F .K. Schmidt to 
the birationally invariant viewpoint, as announced in his "Note added 
in proof". 

In that note he briefly outlined the basic definitions and results (but 
without proofs for which he referred to the forthcoming final version). 
Given a function field F over a finite field K with q elements, his new 
definition of the zeta function is as follows: 

(4) 

where the product is taken over all places (primes) p of F ( "points" in 
F.K. Schmidt's terminology), regardless of whether p is a pole of any 
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given transcendental or not. a ranges over the positive divisors of the 
function field. I al = qdeg a denotes the absolute norm. Since every a 
is composed uniquely by the places p it follows that the Euler product 
equals the Dirichlet series. 

Indeed, this definition of ( ( s) is birationally invariant with respect 
to the function field FIK. It is the analogue not to the classical zeta 
function of a number field, but to the modified zeta function which, be
sides of the Euler factors belonging to the finite primes, contains factors 
corresponding to the archimedean primes. 

4.3. Riemann-Roch theorem and zeta function 

4.3.l. The final version: The final version with the title Analytische 
Zahlentheorie in Korpern der Charakteristik p (Analytic number theory 
in fields of characteristic p) appeared in 1931 only, in the Mathematische 
Zeitschrift [98]. The manuscript was received by the editors on April 
30, 1929. But it was essentially finished already in the summer of 1927 
because F.K. Schmidt had used it as the first part in his Habilitations
schrift (thesis for his second academic degree). He did his Habilitation 
at the University of Erlangen during the summer semester of 1927. The 
Habilitationsschrift carried the title: 30 

Abelsche Korper im Gebiet der hoheren Kongruenzen. 
(Abelian fields in the domain of higher congruences) 

and it consisted of two parts: 

I. Analytische Zahlentheorie in Korpern der Charakteristik p 
( Analytic number theory in fields of characteristic p) 

II. Die Theorie der Klassenkorper uber einem Korper algebraischer 
Funktionen in einer Unbestimmten und mit endlichem Koeffizien
tenbereich. 
( Class field theory over a field of algebraic functions in one vari
able and with finite coefficient domain.) 

Part II appeared in 1931 in the Erlanger Nachrichten [99]; see section 5. 
And Part I is identical with the paper in the Mathematische Zeitschrift 
which we are discussing now. 

The main object of the paper is to develop the analytic properties of 
the zeta funtion ((s) of a function field FIK with finite base field - in a 
birationally invariant manner as sketched in the "Note added in proof" 
of the preliminary announcement. For this purpose, the results of his 
thesis seemed to F .K. Schmidt not well suited as a framework because 

301 am indebted to W. Schmidt (Erlangen) for providing me with a copy 
of F.K. Schmidt's Habilitationsschrift. 
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they depend on the choice of a transcendental element x E F and hence 
are not birationally invariant.' Accordingly F.K. Schmidt developed the 
entire arithmetic theory of function fields anew, in a birationally invari
ant setting. He had discovered, firstly, that the classical theorem of 
Riemann-Roch 31 can be transferred to function fields with finite base 
field, and secondly that this Riemann-Roch theorem is intimately con
nected with the main analytical properties of his new zeta function. 
Accordingly he divided the paper into two parts: In the first part he 
developed the theory of divisors, and in the second part the theory of 
the zeta function. 

4.3.2. Theory of divisors: In the first part F.K. Schmidt relies heav
ily on the analogy with the theory of complex algebraic functions; for the 
latter he refers to the paper by Dedekind and Weber already mentioned 
above, and also to the book by Hensel and Landsberg [61] from the year 
1902. 

If we compare those sources with F.K. Schmidt's paper then we dis
cover that in the latter almost the same methods and arguments are used 
as in the former; we are tempted to say that F.K. Schmidt just copies 
his classical sources. But we should not underestimate the conceptual 
difficulties which F.K. Schmidt had to overcome. Today we could just 
say that the arguments used by Dedekind-Weber are applicable mutatis 
mutandis in the cases discussed by F.K. Schmidt, i.e., for finite base 
fields and, more generally, for arbitrary perfect base fields. But such 
general statement is accepted today only because now it is well known 
how to modify the arguments of Dedekind-Weber for the cases at hand 
- thanks to F.K. Schmidt. Before something is accepted to be "well 
known" it has to be done first. 

What seems to be trivial or easy to us was by no means trivial to 
F.K. Schmidt at the time. Let us discuss the various steps which were 
to be taken in the transfer process from Dedekind-Weber: 

1. Dedekind-Weber [21] already had mentioned that their whole 
theory remains valid if the base field C is replaced by, e.g., the field of all 
algebraic numbers. Today we read this remark as to say that their theory 

31 F.K. Schmidt always writes "Roche" in his paper, instead of "Roch". 
This could possibly lead to confusion because the (German) mathematician 
Roch is not identical with the (French) mathematician(s) Roche. In a postcard 
to Hasse dated January 4, 1934 he apologizes for his mistake of constantly 
appending an "e" to the name of Roch. And he adds somewhat jokingly: 
Leider wird diese Konstante "e" neuerdings, wohl im AnschlujJ an mich, auch 
von anderer Seite geschrieben. Also wieder einmal der bekannte "Fluch der 
bosen Tat". 
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is valid over an arbitrary algebraically closed field of characteristic zero. 
This is evident (to us) by just looking at the Dedekind-Weber paper 
which is of purely algebraic nature. 

2. A closer look convinces us (today) that the paper remains valid 
in characteristic p > 0 provided the choice of transcendental elements x 
will be restricted to separating elements whenever necessary, e.g., when 
computing formal derivatives. And we know today that separating el
ements do exist if the base field K is perfect. F.K. Schmidt was the 
first to prove this. 32 Thereafter he is able to define the genus g of the 
function field FIK in the same way as Dedekind-Weber: 

(5) Wx 
g=--nx+l 

2 

where x E F is a separating variable, nx = [F : K(x)], and Wx is the 
so-called "ramification number" of F over K(x) which he defines to be 
the degree of the Dedekind different. Note that this definition covers 
the case of wild ramification which can appear in characteristic p. In 
contrast, Hensel-Landsberg [61] used a definition which looks simpler 
but is applicable in case of tame ramification only. It seems that F.K. 
Schmidt was aware of this situation and hence took care to choose the 
correct definition. 

Although the definition (5) is not birationally invariant per se, F.K. 
Schmidt shows that the result of the expression on the right hand side of 
(5) does not depend on x. Hence g is indeed well defined as a birational 
invariant of the field. 33 

32Without, however, using the terminology "separable" or "separating". 
He still uses the terminology "of the first kind" ( von erster Art) as introduced 
by Steinitz [105]. The term "separable" which is common today was intro
duced by van der Waerden in his textbook [115] whose first edition appeared 
in 1930. 

33E. Witt, who had attended F.K. Schmidt's lectures on function fields 
in the winter semester 1933/34 at Gottingen, presented in [126] what he calls 
a simplification of this invariance proof. He explicitly refers to §4 of F.K. 
Schmidt's paper and proposes to replace that section by his (Witt's) proof. 
The "simplification" of Witt consists essentially of proving, in the algebraic 
setting including characteristic p, the well known explicit formula for the di
visor of a differential, whereas F.K. Schmidt works with derivations only, not 
with differentials. - Independently of Witt and at the same time, Hasse [52] 
gave the same proof in the framework of his general theory of differentials. -
F.K. Schmidt himself, in his later paper [100] which appeared in 1936, proved 
the Riemann-Roch theorem for arbitrary function fields whose base field need 
not be perfect and, hence, there may not exist separating elements. In this 
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3. A certain difficulty arises for F.K. Schmidt because the base field 
K is not assumed to be algebraically closed. On several occasions he 
has to enlarge the base field K in order to be able to follow the lead of 
Dedekind-Weber. Then he has to show that those base changes do not 
disturb the arithmetic of the function field and are admissible for the 
respective problem. In doing this he relies heavily on the fact that K is 
perfect and, hence, algebraic extensions of the base field are separable. 
Today we would say that a function field over a perfect base field is 
conservative. But this notion did not exist at the time; in fact, F.K. 
Schmidt just proves it and uses the consequences. 34 

4. After those preparations F.K. Schmidt is now ready for the proof 
of the Riemann-Roch theorem. Let C be a divisor class of FIK and 
C' = W - C its dual class 35 , where W denotes the differential class of 
FIK. Then the Riemann-Roch theorem says that 

(6) dimC = degC - g + l + dim(C') 

or, in symmetric form: 

(7) dimC - ~ degC = dimC' - ~ degC'. 

But F.K. Schmidt does not present the proof explicitly. He assumes the 
reader to be familiar with the book of Hensel-Landsberg and is content 
with saying that the Riemann-Roch theorem is important and can now 
be proved quite as in Hensel-Landsberg (" . . . der wichtige Satz, der 
sich nunmehr ganz wie bei Hensel-Landsberg (S.301-304} beweisen liifit 
. . . "). 

In fact, this is correct: When checking the cited pages of Hensel
Landsberg the reader will find that all the notions and facts which are 
used in the proof there, had been transferred by F.K. Schmidt to the 
more general case of a perfect base field. The main fact is the construc
tion of so-called "normal bases" which permit the explicit determination 
of the dimension of a divisor. 

general situation he defined the genus as the constant which appears in the 
Riemann part of the Riemann-Roch theorem; this is a truly birationally invari
ant definition and is generally used today. Perhaps it is not without interest to 
add that this idea for the invariant definition of the genus arose directly from 
the correspondence of F.K. Schmidt with Hasse. In a letter to Hasse dated 
May 22, 1934 F.K. Schmidt outlined already the plan for his paper [100]. 

34F.K. Schmidt's proof of the Riemann-Roch theorem in [98] holds for 
any conservative function field, even if the base field is not perfect. 

35 "Erganzungsklasse" in the terminology of F.K. Schmidt. 
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To repeat: Concerning the Riemann-Roch theorem, the transition 
from the base field (C (Dedekind-Weber) to an arbitrary perfect base 
field and hence to finite base fields (F.K. Schmidt) is familiar to us and 
easily performed - but only thanks to F .K. Schmidt who did it first in 
his 1931 paper. His procedure was adequate, elegant and paved the way 
for further development. With this paper, F.K. Schmidt opened the 
general arithmetic theory of algebraic function fields. 

4.3.3. Theory of the zeta function: But most important of all is his 
discovery that the Riemann-Roch theorem, in case the base field K is fi
nite, is intimately connected with the properties of the zeta function (( s). 
In fact, in the second part of the paper he gives as almost immediate 
consequences of the Riemann-Roch theorem the following fundamental 
results. 

Let q = IKI denote the order of the base field. The zeta function 
((s) of Fis defined by the expansions (4) which converge if the real part 
of the complex variable s is 9i:( s) > 1. 

(i) (( s) is a rational function of the variable t = q-s. In particular 
it follows that (( s) is analytically extendable to the whole complex 
plane as a periodic function with period ,!;~ . It admits essentially 
only two poles, of order 1, at the points s = 1 and s = 0 ( and at 
those points which differ from these by an integral multiple of the 
period}. 

{ii) The residue of ((s) at s = 1 is 

(8) 

{iii) 

(9) 

(10) 

g-l 

lim(s-l)((s)=( q )I -h s---+l q-1 ogq 

where h is the class number of the field F, i.e., the number of the 
divisor classes of degree 0, and where g is the genus of F. 
((s) satisfies the functional equation 

((1- s) = q(g-1)(2s-l)((s) 

or, in symmetric form: 

q(g-l)(s-½)((s) = q(g-1)(-s+½l((l - s) 

Let us add some comments: 
Ad {i) In the context of the proof of (i) F.K. Schmidt discovered 

the important fact that every function field with finite base field admits 
a divisor of degree 1. This is today known as "F.K. Schmidt's theorem". 
It is remarkable that the proof of this algebraic statement was discovered 
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and proved by analytic means. Later Witt provided an algebraic proof; 
we shall discuss this in section 8.1. 

Ad (ii) The limit formula (8) looks somewhat different from the 
original limit formula (3). The reason is that now F.K. Schmidt uses a 
different zeta function, i.e., the birationally invariant one. In a separate 
section of his paper he explains the relation of the new zeta function 
((s) with the former zeta function which now should be denoted by 
(x(s) since it refers to a given transcendental element x E F. 36 This 
is easily explained: (x(s) is obtained from ((s) by multiplying with the 
finite product I]q(l - lql-s) where q ranges over the poles of x. Hence 
the earlier limit formula (3) can be deduced from (8). 

Ad (iii) In fact, the Riemann-Roch theorem is equivalent to the 
functional equation of ( ( s). To put this into evidence we may perhaps 
borrow from an idea of Witt which consists of rewriting the definition ( 4) 
of ((s) in such a way that the functional equation becomes obvious. 37 

We use the variable u = q½-s; then the transformations f---+ 1- s of 
the functional equation appears as u f---+ u-1 . Witt introduces the formal 
relation 

(11) 

which is interpreted in the following way: breaking up this relation at 
any index n into two partial sums, and adding the two rational functions 
in u which arise that way, this will always yield zero. 

Now in the expansion on the right hand side of ( 4) we combine 
those divisors a which belong to the same divisor class C; they have 

dimC l 
the same degree deg C and their number is q q-l- . A straightforward 

manipulation, adding a suitable multiple of (11) to the right hand side 
of ( 4) gives the following expansion: 

(12) q(g-l)(s-½)((s) = _l_ ~ qdimC-½ degCUdegC-½ degW 
q-lL., 

C 

where C ranges over all divisor classes of the function field FIK, in
cluding those of negative degree. (Note that dimC = 0 if degC < 0).) 
The Riemann-Roch theorem in its symmetric form (7) now says that 

36Note that, as said above already, our notation differs from F.K. 
Schmidt's. 

37This idea has been recorded by Hasse in his survey [53]. - Witt used 
this idea in the paper [124] where he proved the functional equation for the 
zeta function of a simple algebra. We shall discuss that paper in section 6.2. 
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the coefficient qdim C-½ deg c remains invariant under the substitution 
C f---+ C'. On the other hand, this substitution transforms udeg 0 -½ deg W 

into its inverse. In other words: the substitution C f---+ C' ( which is just a 
permutation of all divisor classes and hence leaves the right hand side of 
(12) invariant) is equivalent to u f---+ u-1 . This is the functional equation 
in its symmetric form (10). 

4.3.4. General comments: From what has been said above it is clear 
that F .K. Schmidt had conceived this paper with the explicit aim to 
transfer those tools of analytic number theory which are necessary to 
develop class field theory in the function field case. But the paper has 
exerted its influence much further than class field theory. The paper 
constitutes the first systematic presentation of the theory of algebraic 
function fields over arbitary base fields ( or at least over perfect ones). It 
has served several generations of mathematicians as a basis for further 
research; in this sense it became a classic. 

In this connection I would like to point out that F.K. Schmidt's 
paper appeared just in time in order to serve as a basis for Hasse's in
vestigation of the Riemann hypothesis for function fields. As I have 
mentioned in another article [88], Hasse had been introduced by Daven
port to the problem of diophantine congruences. Hasse first met Dav
enport in the summer of 1931; at that time Hasse was already familiar 
with F.K. Schmidt's paper. Therefore he was able to realize at once 
that Davenport's problem was equivalent to the Riemann hypothesis for 
F.K. Schmidt's zeta functions. 

In a later publication [50] Hasse presented the theory of F.K. 
Schmidt's zeta function in a form which he wished to use in further 
references. There he added some facts which were not explicitly men
tioned in F.K. Schmidt's paper but which had been communicated to 
him by F .K. Schmidt in writing. One of those facts is the following 
representation of ((s) in terms of the variable t = q-s: 

(13) 
L(t) 

((s) = (1- t)(l - qt) 

where L(t) is a polynomial with integer coefficients. Of course this is an 
immediate consequence of F.K. Schmidt's theorem (i) above, the poles 
t = 1 and t = q-1 corresponding to s = 0 and s = 1 respectively. 
The numerator polynomial L(t) is known to play an important role in 
connection with the Riemann hypothesis for ((s). The degree of L(t) is 
2g, and this is given correctly by Hasse [50]. In F.K. Schmidt's paper 
(98] the formula (13) does not appear but if we would follow up F.K. 
Schmidt's arguments in [98] then we would obtain the degree 2g - 1. 
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The reason is that F.K. Schmidt's formulas in [98] contain an "annoying 
misprint" as Hasse calls it ( durchweg ein storender Druckfehler). 38 It 
seems that F.K. Schmidt had observed this "misprint" and informed 
Hasse about it, and at the same time he pointed out to Hasse the formula 
(13) with 

(14) L(t) = 1 + (N1 - (q + l))t + -.. + q9 t 29 

which gives the correct degree of L(t). (Here, N 1 is the number of places 
of degree 1 in the given function field). By the way, a similar "misprint" 
occurs in the follow-up paper of F.K. Schmidt about class field theory 
[99] which we are going to discuss in section 5. 

F.K. Schmidt's discovery that analytic properties of its zeta function 
are equivalent to the Riemann-Roch theorem of a function field, inspired 
several authors to look for an analogue of the Riemann-Roch theorem in 
a number field. One such analogue can be found in Tate's thesis [111]. 

4.4. Summary 

• As a first step towards transferring class field theory, F.K. 
Schmidt transferred the necessary tools from analytic number the
ory. Thereby he generalized the analytic part of Artin's thesis and 
developed the theory of the zeta function of an arbitrary function 
field. Already in August 1926 he was able to report to Hasse the 
residue formula for the zeta function at s = 1. A preliminary 
announcement about his results was published in November 1926. 
But in a note ''Added in Proof" F.K. Schmidt changed his point 
of view and introduced his new, birationally invariant definition 
of the zeta function. 

• F.K. Schmidt's final version of his paper, dealing with the bira
tionally invariant zeta Junction, appeared in 1931 only, but the 
manuscript had been finished already in 1927 when he had sub
mitted it to the Faculty in Erlangen for his "Habilitationsschrift". 

• In its first part he developed the birationally invariant theory of 
divisors of function fields up to the Riemann-Roch theorem. His 
theory was modeled after the Dedekind-Weber paper {1880} on 
the classical theory of algebraic functions, and after the book of 
Hensel-Landsberg {1902}. F.K. Schmidt was able to transfer the 

38This misprint occurs in the statement of the Riemann part of the 
Riemann-Roch theorem. It says that for a divisor class C we have dim C = 
degC - g + l, provided degC > 2g - 2. But F.K. Schmidt says in his paper 
that the condition deg C ~ 2g - 2 is already sufficient which is obviously not 
true. 
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methods of those classical sources to the case of arbitrary perfect 
base fields. 

• In its second part F.K. Schmidt developed the birationally in
variant theory of the zeta function (( s) of a function field. He 
had discovered that the main properties of the zeta function were 
closely connected with, and in fact immediate consequences of the 
Riemann-Roch theorem. This includes the rationality of the zeta 
function, the determination of the poles, their order and residues, 
and also the functional equation. 

• Although the main aim of F.K. Schmidt was directed towards the 
establishment of class field theory in characteristic p, this paper 
obtained importance in a much wider context. It constitutes the 
beginning of a systematic theory of algebraic function fields from 
the algebraic-arithmetic point of view. In addition, his theory 
of the zeta function proved to become the proper background for 
Hasse's investigations on the Riemann hypothesis in characteris
tic p. 

§5. Class field theory: the first step 

5.1. General comments 

In his next paper [99] F .K. Schmidt started to deal with class field 
theory proper. As with the foregoing paper on analytic number theory 
in characteristic p, this paper [99] appeared in 1931 but it had been 
completed in the summer of 1927 already, when F.K. Schmidt had used 
it as Part II of his Habilitationsschrift in Erlangen. 

The title announces "Class field theory in the case of function fields 
with finite base fields". But a closer examination of the content of the 
paper shows that there are serious shortcomings and that this paper does 
not contain a full account of class field theory as announced in the title. 
The paper can be viewed only as a first approach to class field theory. It 
seems that F.K. Schmidt was well aware of this and had conceived the 
paper as a kind of a preliminary announcement, similarly as [96] which 
was published as a preliminary announcement of [98]. An indication for 
this is the fact that [99] appeared in the same not widely known journal 
as did [96], i.e., in the "Erlanger Berichte". Moreover, the presentation 
of the material is not as clear and final as it is in F.K. Schmidt's paper 
[98] on analytic number theory in function fields. While the latter has 
become a "classic" (we had mentioned this above already) this attribute 
cannot be given to the paper under discussion now. 

The first serious shortcoming is stated already in the introduction 
of [99]. There the author says: 
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Die vorliegende Darstellung beschrankt sich zunachst auf 
den Fall derjenigen Abelschen Erweiterungen, deren Grad 
zur Charakteristik prim ist. Diejenigen Abelschen Erweit
erungen, deren Grad durch die Charakteristik teilbar ist, 
erfordern noch einige weitere Betrachtungen und sollen an 
anderer Stelle behandelt werden. 

The present account is restricted to the case of abelian ex
tensions whose degree is relatively prime to the character
istic. Those abelian extensions whose degree is divisible by 
the characterictic do require some further considerations 
and will be dealt with elsewhere. 

Abelian extensions whose degree are divisible by the characteristic can
not be generated by radicals, not even after adjoining the proper roots 
of unity. Thus F.K. Schmidt excludes precisely those cases which can
not be dealt with by the classical methods employed by Takagi. Those 
new cases would require a new idea which is adapted to characteristic p 
particularly and cannot be obtained by transfer from characteristic 0. 

Such an idea appeared in the same year 1927, namely in the paper 
by Artin and Schreier [8]. There it was shown that cyclic extensions 
of degree p in characteristic p are generated by the roots of (today) so
called Artin-Schreier equations: yP - y = a. Since F.K. Schmidt does 
not mention this result of Artin-Schreier we have to assume that he did 
not yet know about it; perhaps he had something different in mind when 
he mentioned "some further considerations" which he would deal with 
elsewhere. In any case, he never came back to this and it was Hasse 
in [51] who introduced Artin-Schreier theory into class field theory for 
function fields. 

5.2. The main theorems of class field theory 1927 
Now let us see what F.K. Schmidt did prove in [99]. 
We have said in the introduction already that class field theory in 

characteristic p was developed parallel and in analogy to the character
istic O case. This can be well observed here, for the main theorems in 
characteristic p as formulated and proved in this paper, do reflect pre
cisely the state of Takagi's class field theory in characteristic O in the 
year 1927. The source for F.K. Schmidt was Hasse's class field report 
[36] about which he had heard Hasse lecture at the Danzig meeting; 
Hasse later had sent him an offprint of the published version. 

Let FIK be a function field with finite base field K. Given a positive 
divisor m, F .K. Schmidt defines the ray modulo m in the usual way: it 
consists of those principal divisors which can be generated by elements 
a with a = 1 (mod m). The full ray class group Cm is defined to be 
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the factor group of the group of all divisors relatively prime to m, by 
the ray modulo m. Class field theory deals with subgroups Hm c Cm. 
Unlike in the number field case, however, Cm is not finite in the function 
field case. Therefore, in the context of class field theory one has to add 
the additional requirement that the index hm = (Cm : Hm) is finite. 
F.K. Schmidt observes that this is satisfied if and only if Hm contains 
at least one ray class of positive degree. For ray class groups belonging 
to different modules the following equivalence relation is introduced: 
Hm ~ Hm' if and only if there exists m" ~ m, m' such that Hm and Hm' 
have the same inverse image under the natural projections Cm" ---+ Cm 
and Cm" ---+ Cm' respectively. If this is the case then, following Hasse 
[37] the groups Hm and Hm' are said to be "equal". In this way every 
Hm C Cm defines an equivalence class H of "equal" ray class groups. 
H is regarded as some kind of abstract ray class group which at m 
admits Hm as its "realization". m is called a "module of definition" 
( Erklarungsmodul) for H. The smallest module of definition for H is 
called the "conductor" (Fuhrer) of H, to be denoted by the letter f. 

In modern terms, H indeed can be viewed as a group in the proper 
sense, namely as an open subgroup of the inverse limit 

which may be called the "universal ray class group" of F. The equiva
lence class corresponding to an open subgroup H C C* consists of all Hm 
which have H as their inverse image under the natural map C* ---+·Cm. 
Thus it does not matter whether we talk about equivalence classes of 
"equal" ray class groups, or of open subgroups of C*. 

But the notion of inverse limit of algebraic structures was not yet 
well established at the time when F.K. Schmidt wrote his paper. It 
was Chevalley who, at a later stage, realized C* as the idele class group 
of F and so simplified the conceptual framework of class field theory 
considerably [17]. Viewed from today, it does not matter whether we 
use the language of inverse limit of ray class groups, or avoid this and 
talk about equivalence classes of ray class groups; these are but two ways 
of describing the same object. F.K. Schmidt still used the old definition 
of Hasse [36] referring to equivalence classes of ray class groups. 

Now let EIF be a Galois extension of degree n, say. Consider a 
module m in F and its ray class group Cm. The norm map N: E ---+ F 
yields a map of ray class groups whose image Nm C Cm is of finite index, 
say hm. Following Takagi, EIF is called a class field defined modulo m 
if hm = n. 
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This being said, the main theorems of class field theory as announced 
by F .K. Schmidt can be stated as follows: 

I. Existence- and uniqueness theorem: Given any module m in 
F and any subgroup Hm C Cm of finite index, there exists one and only 
one class field EIF defined over m which admits Hm as its norm group, 
i.e., Hm = Nm. If Hm' is "equal" to Hm in the sense as explained above 
then its class field coincides with E, and conversely. 

II. Isomorphism theorem: EIF is abelian and its Galois group 
is isomorphic to the norm factor group Cm/ Hm. 

III. Discriminant-conductor theorem: The discriminant of EIF 
contains precisely those places which are contained in the conductor f of 
H. 

IV. Decomposition theorem: If pis a prime of F not contained 
in m and if f denotes the order of p modulo Hm then p splits in E into 
different primes of relative degree f. 

V. Inversion theorem: Every abelian field extension EIF i.s a 
class field in the above sense. 

In fact, these are the main theorems of class field theory which had 
been stated essentially in this form in Hasse's report [36]. We see that 
F.K. Schmidt is closely following Hasse's presentation indeed. He is 
going to prove those theorems under the additional hypotheses that the 
group index (in theorem I) and the field degree (in theorem V) are not 
divisible by the characteristic p. 

Looking at the above list we observe the second serious shortcoming 
of this paper, namely that Artin's Reciprocity Law is completely miss
ing. Artin had published his proof (in the case of number fields) in 1927 
already, and according to Hasse it constituted a "progress of greatest im
portance" ( einen Fortschritt von der allergrojJten Bedeutung) [38]. F .K. 
Schmidt certainly must have heard of this by the time when his paper 
was sent to print (1930). So why didn't he attempt to prove Artin's 
reciprocity law in the function field case? Why didn't he even mention 
the reciprocity law? Again, we have only one explanation, namely that 
he had completed his paper in 1927 already (for his Habilitationsschrift) 
and at that time he did not yet know about Artin's result. Later, he did 
not change the text at all. 

We shall see in section 6.1.1 that Hasse took up the problem and 
proved the reciprocity law in the function field case. 

5.3. The £-series of F .K. Schmidt 

Having stated the above 5 theorems F.K. Schmidt says: 
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Der Beweis dieser Satze vollzieht sich in entsprechenden 
Schritten wie in der Takagischen Theorie. 

The proof of these theorems proceeds in analoguous steps 
as in Takagi's theory. 

Accordingly he follows Hasse's report and starts with the proof of the 
so-called "first inequality" of class field theory. This inequality refers 
to the following situation: E[F is a Galois extension of finite degree n 
and mis a positive divisor in F. Let hm = (Cm : Nm(E)) denote the 
corresponding norm index. Then the first inequality says that 

(15) 

It is the proof of this inequality where F.K. Schmidt had to use ana
lytic methods; the situation is just like in the number field case. More 
precisely, he had to use: 

1. the theory of the zeta function; in particular the fact that ((s) 
has a pole of order 1 at s = 1; 

2. the theory of £-series; in particular the fact that for any non
principal character x of Cm of finite order, its £-series L(s, x) 
assumes a finite value at s = 1. 

F.K. Schmidt had dealt with item 1. in his former paper [98] which we 
have discussed above in section 4.3.3. In order to cover item 2., F.K. 
Schmidt introduces the £-series in the usual way: 

(16) L(s,x) = IT' 1 _ (~)[µ[-s = I:'x(a)[a[-s 
p X a>O 

where the dashes ' at the product sign and at the sum sign indicate 
that only those places µ and divisors a are to be considered which are 
relatively prime to the given modulus m. 

Using the Riemann-Roch theorem F.K. Schmidt is able to show that 
for every non-principal character x the series on the right hand side of 
(16) terminates, i.e. that L(s, x) is a polynomial in the variable t = q-s. 
Therefore, of course, L(l, x) is finite. 39 Thus the analytic theory in 
function fields turns out to be much simpler than in the number field 
case - thanks to the Riemann-Roch theorem. 

Once having obtained item 2. above, F .K. Schmidt does not bother 
to present the proof of the first inequality (15) but he is content with 
saying: 

39 F.K. Schmidt doesn't say anything about L(l, x) i- 0. 
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Die L-Reihen des Funktionenkorpers verhalten sich bei 
Annaherung an s = 1 genau ebenso wie die L-Reihen 
eines endlichen algebraischen Zahlkorpers. Man kann da
her die bekannten zahlentheoretischen Schluftweisen auf 
die L-Reihen des Funktionenkorpers ubertragen und ge
winnt so nach dem Vorbild von Hasse die Ungleichung ... 

Approaching s = 1, the L-series of the function field show 
the same behavior as the L-series of a finite algebraic num
ber field. Therefore, it is possible to transfer the known 
number theoretic arguments to the L-series of the func
tion field, and one obtains in this way, following Hasse, 
the inequality ... 

He is referring to Part Ia of Hasse's report [37] ( the part where the proofs 
are presented). In other words: F.K. Schmidt assumes the reader to be 
familiar with Hasse's report including the proofs, and his arguments 
here are given only to the extent that the reader can do the transfer by 
himself: from characteristic O to characteristic p. 

The paper does not contain any further systematic study of £-series 
in function fields. In particular the functional equation of the £-series 
is not discussed. This has been proved later by Witt; see section 7.4. 

5.4. Further remarks 

Takagi's original proof of the main theorems of class field theory for 
number fields is not straightforward. The structure of proof is a com
plicated net of back-and-forth arguments which finally yield the desired 
theorems but otherwise are quite unsatisfactory, in as much as they do 
not yield sufficient insight into the structure of the mathematical objects 
to be studied. 40 

This initiated the search for simplification and re-organisation of 
class field theory. That process was quite under way in 1931 when F.K. 
Schmidt's paper [99] appeared. But we do not see any sign of that 
development reflected in this paper. The paper refers to Hasse's report 
Parts I and Ia only, and it closely follows the lines of arguments as given 
there. 

In accordance with this, after having proved the first inequality F.K. 
Schmidt now switches to the proof of the inversion theorem for cyclic 
extensions EIF of prime degree n (where n ¢. 0 mod p). To this end he 

40 See the remarks by Hasse which we have cited in section 2.2.3 from part 
II of his class field report. 
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is performing a lengthy computation of group indices, including the so
called "Hauptgeschlechtssatz" which (from today's viewpoint) asserts the 
vanishing of a certain 1-cohomology group of ray classes. F.K. Schmidt 
puts into evidence that those computations ( which were later much sim
plified by Herbrand [64]) can be carried out quite in the same manner 
as in the number field case. There are even certain simplifications due 
to the simple unit structure ( every unit is a constant) and to the simple 
structure of cyclotomic fields ( every cyclotomic extension is a base field 
extension and hence unramified). 

This being done, the rest of the paper is more or less hand waving. 
F .K. Schmidt seems to be in haste and therefore leaves all the rest to 
the reader, with the following comment: 

Dabei wird man ganz van selbst auf eznige leichte Ab
weichungen van den zahlentheoretischen SchlufJweisen ge
Jiihrt, die aber durch das oben Gesagte bereits so nahe 
gelegt sind, daft es sich eriibrigt, naher auf sie einzuge
hen. 

One will be led automatically to some minor differences to 
the number theoretical arguments; but it does not seem 
necessary to discuss them in detail since they are sug
gested sufficiently by what has been said above already. 

This does not sound very convincing. In particular the transfer of the 
existence theorem of class field theory, which uses several delicate index 
computations, would remain doubtful unless it is presented explicitly -
even if one restricts the discussion to the case where the characteristic p 
does not divide the relevant group index n. In fact, some years later in 
1935 Witt, when presenting a simple proof of the existence theorem, did 
not say that F.K. Schmidt had already proved it for n ¢. 0 mod p, but 
that F .K. Schmidt "had already discussed the possibility of transferring 
the proof" (hat die Moglichkeit einer Ubertragung schon erortert). See 
section 7.2 below. 

This paper is the last one by F .K. Schmidt about class field theory 
in function fields. In the late twenties and thirties he had a number of 
other important papers on algebraic function fields and also on other 
topics, e.g., from the theory of local fields, some of them in cooperation 
with or inspired by Hasse. 41 I am planning in a separate publication 
to cover in more detail the results of his cooperation with Hasse. But 
since we are concerned with class field theory in function fields we have 

41 For a list of publications of F.K. Schmidt see [75). 
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now to turn to other authors who completed the work initiated by F.K. 
Schmidt. 

5.5. Summary 

• As a follow-up to his paper on analytic number theory in char
acteristic p, F.K. Schmidt published a second paper announcing 
class field theory in characteristic p. As with the former paper, 
the manuscript for this one too was finished already in the sum
mer of 1927. 

• Notwithstanding its title the paper does not give a comprehensive 
presentation of all of class field theory. The following items are 
missing in the function field case: 
1. Abelian extensions of degree divisible by the characteristic p, 
2. Artin's Reciprocity Law, 
3. Functional equation of the L-series. 
Thus the paper can be regarded as a first approach only to class 
field theory. 

• The arguments of the paper follow closely the presentation of class 
field theory in Parts I and Ia of Hasse 's class field report. The 
proofs are given only partially, and the reader is assumed to be 
able to transfer himself, mutatis mutandis, the proofs given by 
Hasse in his class field report. 

§6. The reciprocity law 

6.1. Hasse's paper on cyclic function fields 

After F.K. Schmidt's paper [99], the next one which contains a con
tribution to class field theory for function fields was Hasse's [51], pub
lished in 1934 with the title: Theorie der relativ-zyklischen algebraischen 
Funktionenkorper, insbesondere bei endlichem Konstantenkorper (The
ory of relatively cyclic algebraic function fields, in particular with finite 
base field). 

This paper is a product of Hasse's cooperation with Davenport who, 
as said in section 4.3.4 already, had introduced him to the problem of 
diophantine congruences which is equivalent to the Riemann hypothe
sis for the zeta function of function fields. In January 1933 Hasse had 
succeeded in proving the Riemann hypothesis in the case of elliptic func
tion fields [46]. 42 As a step towards the general case, i.e., function fields 
of arbitrary genus, Davenport and Hasse investigated fields of the form 

42 For more details on that story see [88]. 
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K(x, y) with defining relation of one of the following types: 

(17) 

where p is the characteristic and m, n are integers not divisible by p ( the 
base field K is assumed to be finite and containing the m-th and the 
n-th roots of unity, respectively). In fact, in these cases Davenport and 
Hasse succeeded in proving the Riemann hypothesis since the roots of 
the zeta function can be interpreted by means of certain Gaussian sums 
and related expressions whose absolute value is known [19]. 

Now, from (17) we see that the field E = K(x, y) can be regarded 
as a cyclic extension of F = K ( x) ( and also of F' = K (y)). Therefore 
Davenport and Hasse wished to write a preparatory paper for reference 
purposes, containing the necessary general facts from the theory of cyclic 
extensions of function fields and their corresponding L-series. 

The paper [51] under consideration was written for this purpose; it 
appeared in the same volume of Crelle's Journal as the Hasse-Davenport 
paper [19]. However, as it is often the case in Hasse's papers, he not only 
presented the facts which were necessary for the intended application but 
in addition he developed a comprehensive and systematic study of the 
objects under consideration, in this case the cyclic extensions EIF of 
function fields. 

Thus Hasse's paper [51] was not written primarily with class field 
theory in mind. Class field theory is only one aspect of the theory 
of cyclic extensions of function fields, and Hasse deals with it only in 
passing. From the 18 pages of the paper, only 2 are concerned with class 
field theory proper (pages 45-46). Nevertheless these pages constitute 
an important step in the development of class field theory for function 
fields. For, Hasse proves the analogue of Artin's Reciprocity Law in the 
case of function fields. 

In its proof Hasse uses quite new ideas when compared to the former 
papers by F.K. Schmidt or by Artin. This reflects the state of the art in 
class field theory as of 1934: recently Hasse had introduced the theory 
of algebras into class field theory of number fields, following an idea 
of Emmy Noether [40], [43]. Now he uses algebras also in the case of 
function fields. 

The general reciprocity law as conceived by Artin is concerned with 
abelian extensions. But it suffices to prove it for cyclic extensions only. 
For, as Hasse remarks, the general abelian case is reduced "immediately 
in a well known manner" to the cyclic case ( ohne weiteres in gelaufiger 
Weise). This is the justification for Hasse to include class field theory 
and the reciprocity law in a paper which is devoted to the study of 
cyclic function fields. In the following discussion we shall formulate the 
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reciprocity law for arbitrary abelian extensions. Later, while discussing 
Hasse's proof we shall point out where and how Hasse uses the assump
tion that the extension is cyclic. In section 6.1.4 we shall discuss what 
Hasse may have had in mind when he mentioned, without reference, the 
"immediate and well known" reduction to the cyclic case. 

6.1.1. The reciprocity law: Theorems A, B and C: Let E\F be an 
abelian extension of function fields, with Galois group G. For each 

unramified prime p of F, let ( Et) E G denote its Frobenius automor-

phism. 43 The map p f-+ (Et) extends uniquely to a homomorphism 

a f-+ ( Et) of the group of unramified divisors (i.e., those divisors a 
which are composed of unramified primes only) into G. This is the 
"Artin homomorphism". Artin's reciprocity law is concerned with this 
homomorphism and can be formulated as follows. 

Theorem A. The kernel of the Artin homomorphism contains the 
my modulo m where m denotes a sufficiently large positive divisor which 
contains all primes which are mmified in E. The smallest m with this 
property is the conductor m = f of the extension E\F. (Definitions see 
below.) 

Theorem B. Regarded as a homomorphism from the my class 
group, the Artin homomorphism Cm - G is surjective, and hence yields 
an isomorphism of the factor group Cm/ Hm onto G, where Hm denotes 
the kernel of the Artin homomorphism. This kernel is called the Artin 
group of E\F modulo m. Ifm' is another module with the same properties 
and Hm' its Artin group then Hm and Hm' are "equal" in the sense as 
explained above in section 5.2. 

Theorem C. The Artin group Hm equals the norm group Nm 
which consists of those my classes modulo m which are norms from E, 
i.e., Hm = Nm . The norm group is called the Takagi group of E\ F 
{modulo m). 44 

As to the definition of a "ray" modulo m and the corresponding full 
ray class group Cm we refer to section 5.2. 

The notion of "conductor" (Fuhrer) also had been defined in section 
5.2 but there the definition is of group theoretic nature: it refers to a 

43Hasse [51] calls it "Artin automorphism". 
44The terminology of "Artin group" and "Takagi group" has been intro

duced by Chevalley. It is not used in Hasse's paper [51]. (But in his Marburg 
Lecture Notes [44] Hasse uses the terminology "Artin classes" for the residue 
classes modulo the Artin group.) 
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ray class group of finite index. It is only after establishing the main 
theorems of class field theory that the conductor, as defined in section 
5.2, can be associated to an abelian extension. In the present context, 
however, the conductor is defined a priori, without recourse to class 
field theory, for any finite abelian extension EIF, namely by local norm 
conditions. For each prime j) of F let Ep IFP denote the corresponding 
local extension. Then the j)-component fp off is defined to be minimal 
such that every a E Fp with a= 1 (mod fp) is a norm from Ep. 45 

As to the existence of this conductor, Hasse refers to his paper [49] 
which had just appeared in the Science Journal of Tokyo University. 
There, Hasse discusses local number-fields only. But the paper [49] is 
based on the theory of local division algebras [40] which immediately 
can be transferred to the function field case; therefore, Hasse says, all 
the results of [49] hold also in the function field case. 46 

Examples: If j) is not ramified in Ethen fp is trivial. If j) is ramified 
and [E : F] is not divisible by the characteristic p then fp = j) (there is 
tame ramification only). If [E : F] = p then E = F(y) with yP - y = 
a E F; supposing that the pole order of a at j) ism -=I= 0 (mod p), the 
multiplicity of j) in f is m+ 1. For the proof of these examples Hasse again 
refers to [49] but mentions that one could easily obtain them directly. 

The above reciprocity law contains all the main theorems on class 
field theory which had been listed by F.K. Schmidt (see section 5.2) 
except the existence theorem (Theorem I in 5.2). 

6.1.2. Hasse 's proof of Theorem A, in the cyclic case, by means of 
algebras: Let A be a simple algebra over F. 47 For each prime j) of F 
consider the j)-adic completion Ap over Fp. Hasse refers to his former 
paper [43], published one year earlier in the Mathematische Annalen, 
where he had defined what today is called the Hasse invariant of Ap 
which is a rational number modulo 1 . 48 In that former paper Hasse 
had worked with local number fields but, as said earlier, the local theory 

45 After establishing the main facts of class field theory it turns out that 
both notions of conductor become equivalent: the conductor of an abelian 
extension coincides with the group theoretical conductor of its Artin group. 

46Witt has pointed out in [127] that the existence of the conductor is 
equivalent to the fact that the norm map is open in the topology of local 
fields, and that this is an easy consequence of Hensel's lemma. 

47It is tacitly assumed that A is finite dimensional and that Fis its center. 
48That paper, dedicated to Emmy Noether, is the one where Hasse suc

ceeded to prove the Artin reciprocity law in the number field case by means of 
the theory of algebras. The starting point for this was the fact that the local 
Hasse invariant ( ~) could be defined, following Chevalley [14], by purely local 
considerations whereas formerly, as in [41], Hasse could give the definition by 
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can be transferred without problems to the case of local function fields 
(which are power series fields over finite base fields). In particular, the 

p-adic Hasse invariant ( ~) is defined also in the function field case, as 

a rational number modulo 1. 
The essential step in proving Theorem A is the proof of the sum 

formula 

(18) 

where p ranges over all primes of F. For this, the proof in the number 
field case cannot be transferred directly to the function field case, be
cause of the different behavior of cyclotomic fields in these two cases. 
Now in the function field case, Hasse proves (18) with the help of what 
today is known as Tsen's theorem. 

In his Gottingen thesis [113], [114] Ch.C. Tsen had proved, shortly 
before Hasse's paper, that there are no nontrivial simple algebras over a 
function field with algebraically closed base field. Tsen had studied with 
Emmy Noether as his advisor; in the preface of his thesis he mentions 
that he had also received valuable help from Artin. 49 

Because of Tsen's theorem, for each algebra A over F there exists a 
finite base field extension LIK such that A splits over FL. This is quite 
analogous to the fact, known from number theory, that every algebra 
admits a cyclotomic splitting field. But in the function field case the 
situation is much simpler because the splitting field FL is unramified 
over F. Moreover, FL is cyclic over F and its Galois group admits the 
Frobenius automorphism 7r of LIK as its generator. 

means of the global class field product formula only. - As Auguste Dick [26] 
reports, Emmy Noether was extremely glad ("ganz besonders erfreut") about 
Hasse's results in this paper which confirmed her belief that non-commutative 
arithmetic can be profitably used to study commutative number fields. 

491 am indebted to Falko Lorenz for pointing out to me that also F.K. 
Schmidt is mentioned in Tsen's thesis, namely as his referee (Referent). This 
reflects the state of affairs at the Gottingen mathematical scene in 1933/34. 
Emmy Noether had been dismissed from her university position in early 1933, 
due to the antisemitic policy of the National-Socialist regime in Germany since 
1933. Also, many other mathematicians had left Gottingen; see the report by 
Schappacher and M. Kneser [90]. F.K. Schmidt had been called to Gottingen 
in the fall of 1933 as a temporary replacement of H. Wey!. In this position he 
took care of a number of students who had been advised by E. Noether, and 
in particular of Tsen. - F.K. Schmidt remained in Gottingen for one year; 
after that he received a position as a full professor at the University of Jena. 
For more biographical information about F.K. Schmidt see [75]. 
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In this situation A is similar to a crossed product algebra: A ~ 
(/3, FL, 7r), defined as being generated by FL and an element u with the 
defining relations 

(x EFL) 

where m = [L: K]. /3 is an element of F which is determined modulo 
norms from FL only. Now since F LjF is unramified the local Hasse 
invariants of such a crossed product are easily read off from their defi

nition, namely ( ~) =;:: deg(p 2:'P (,B) ( mod 1). (Here, Vp (/3) is the order of 

/3 atµ.) Hence the sum formula (18) is a consequence of the formula 

(19) L deg(µ )vp (/3) = 0 
p 

which expresses the fact that every /3 -/- 0 admits as many poles as 
there are zeros. Having established the sum relation (18), the proof of 
Theorem A above is straightforward, once one has accepted Hasse's use 
of the theory of algebras in arithmetic: 

At this point Hasse uses the assumption that EjF is cyclic. Accord
ingly let a be a fixed generator of the Galois group G. Let n = [E : 
F]. For each O -/- a E F consider the cyclic crossed product algebra 

A = (a, E, a). Writing the j:)-adic Hasse invariant in the form ( ~) = ~ 
(mod 1) with rp E Z, Hasse defines the local norm symbol as follows: 50 

(20) 

We have (°',!IF) = 1 if and only if a is a norm from Ep jFp. 

By means of the definition (20) the sum formula (18) is translated 
into the product formula 

(21) g (a,:jF) = 1. 

Now if a = 1 ( mod f) then for every ramified 1J we have by definition 
that a is a local norm from Ep, hence the corresponding algebra A splits 

at p and therefore ( °',!IF) = 1. On the other hand, for unramified 1J 

50The minus sign in front of the exponent rp on the right hand side is for 
normalizing purposes only and is not important for the following argument. 
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it follows from the definition that ( a,;IF) is a power of the Frobenius 

( EIF) (EIF)-vp (a) automorphism, namely T = -P- and hence the product 

formula (21) yields for the principal divisor a= (a): 

( E~F)-l = II (-EIF)-vp(o:) = II (-a,E_IF) = l 

unramified p p all p p 

which shows that, indeed, a= (a) is in the kernel of the Artin homo
morphism . 

. 6.l.3. The proof of Theorems Band C: For the proof of Theorem B 
Hasse uses the fact, proved by F.K. Schmidt, that the zeta function of 
every function field has a pole of order 1 at the point s = l. He argues 
as follows: Let G' be the image of the Artin homomorphism and E' the 
subfield of E corresponding to G' by Galois theory; put n' = [E' : F]. 
Then every prime p of F which is not contained in m splits completely in 
E', i.e., it has precisely n' extensions in E'. It follows from the product 
representation of the zeta function of E' that (E, ( s) is the n' -th power 
of (F(s) - except perhaps for finitely many Euler factors belonging to 
the primes of m. In any case, the zeta function of E' has a pole of order 
n' at s = l. Thus n' =land E' = F. 

We see that for Theorem B, Hasse used the following lemma which 
he proved with the help of F.K. Schmidt's zeta function: 

Lemma 1. Let EIF be an abelian field extension such that almost 
every prime 51 p of F splits completely in E. Then E = F. 

For the proof of Theorem C Hasse uses the "first inequality" hm :S n 
of (15) which had been proved by F.K. Schmidt by means of £-series. 
Here, hm is the index of the Takagi group. Hasse remarks that this 
part of F.K. Schmidt's paper [99] in which he proved the first inequality, 
is generally valid and does not depend on the assumption, otherwise 
imposed in [99], that the field degree n ¢. 0 (mod p). 

According to Theorems A and B, the field degree n equals the index 
of the Artin group. Since the Takagi group is contained in the Artin 
group it follows hm = n and both groups coincide. 

6.1.4. Further remarks: We have discussed Hasse's proof in such 
detail in order to put into evidence that his idea of using algebras in 
class field. theory did contribute essentially to simplify and systematize 

51This means every prime but finitely many. 



Class Field Theory in Characteristic p, its Origin and Development 595 

the proofs. There are two comments of Hasse on his proof which perhaps 
need some further attention. The first of these comments, found on page 
142, we have mentioned above already: 

Der obige Klassenkorperhauptsatz ubertragt sich ohne wei
teres in gelaufiger Weise auf beliebige separable abelsche 
Erweiterungskorper. 

The above main theorem of class field theory can be ex
tended immediately and in a well known manner to the 
case of arbitrary separable abelian extension fields. 

By "main theorem" Hasse means the union of what we have called The
orems A, B and C. His proof, as presented above, covers only cyclic 
extensions. In order to obtain class field theory in its full extent one has 
to reduce the general abelian case to the cyclic case. Hasse does not give 
any reference, nor does he explain what he means by an "immediate" 
and "well known" method to carry out this reduction. A closer look 
may perhaps reveal what he had in mind. Let us explain the situation: 

Our above presentation puts into evidence that the proofs of Theo
rems B and C are generally valid, and it is only Hasse's proof of Theorem 
A where the cyclic property of the extension EIF is used. 

Let EIF be an arbitrary abelian extension with group G. Consider 
the cyclic subextensions EilF of EIF, with conductors fE;· Let the 
divisor a of F be unramified in E and (Et) E G its image under the 

Artin map. When restricted to Ei this gives (E~F). Hence, if a is 
contained in the ray modulo f E; then, by the cyclic case of Theorem 
A, the restriction of (Et) to Ei is trivial; if this is true for all i then 

(Et) = 1 in G. Now by the very definition of the conductor, we have 

(22) 

That is, the ray modulo the conductor fE is contained in the intersection 
of the rays modulo the conductors fE; of its cyclic subextensions. It 
follows that the Artin homomorphism vanishes on the ray modulo fE. 

Thus indeed, this "immediate" argument shows that Theorem A 
holds for any abelian extension EIF - except for the fact that the con
ductor fE is the smallest divisor with the property as stated in the 
theorem. For the proof of this additional contention one has to use that 
equality holds in (22): 

(23) 
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Since conductors are defined locally, this is a purely local affair, con
cerning the local abelian extensions Ep\Fp for each prime p of F. It is 
clear that this formula is a consequence of local class field theory. 

Already in 1930 Hasse and F.K. Schmidt had developed local class 
field theory [39], (97] in the number field case. But in their first approach 
the local theory was based on the global theory, because it was not 
possible, at that time, to define the norm residue symbol on purely local 
terms. It was Chevalley who in his famous thesis [15] had developed the 
local class field theory directly, without using global arguments. 

But, considering the year of publication (1934), where Chevalley's 
thesis had just appeared, is it conceivable that Hasse would refer to it by 
naming it "immediate and well known", without mentioning explicitly 
what he has in mind? And without giving any particular reference ? 

In looking for further evidence we discover that two pages earlier, 
on page 140, Hasse gives a reference to another of his papers (49], on the 
norm residue theory of Galois fields with applications to conductor and 
discriminant of abelian fields. (We have mentioned this earlier already.) 
That paper appeared right after Chevalley's thesis in the same Japanese 
journal. 52 It contains a detailed study of the norm map when compared 
with the higher ramification groups. Although it is concerned with local 
number fields, it is clear from the context and mentioned explicitly by 
Hasse that the local theory can be transferred directly to the function 
field case. 53 For us it is of interest that this paper [49] contains an 
explicit formula for the conductor of an abelian extension, from which 
(23) can be deduced. In proving that formula, Hasse had to use certain 
facts from local class field theory, and he said about it: 

Was den Beweis . . . angeht, so bildet der Spezialfall, wo 
die Erweiterung zyklisch ist, den einen Hauptpunkt ... 
Fur diesen zyklischen Spezialfall hat Herbrand einen sehr 
eleganten Beweis gegeben. {Eine Darstellung dieses Be
weises siehe in der These von C. Chevalley, die dieser 
A rbeit unmittelbar vorangeht . . . ) Den Uberyang zum all
gemein abelschen Fall kann man entweder unter voller 

52See also Hasse's Comptes Rendus Notes [47],[48] where he announced 
the results of [49]. 

53Hasse's paper [49] became widely known because it contains the Hasse 
part of the "Theorem of Hasse-Arr' on the ramification numbers of local 
abelian extensions. The Hasse part is concerned with local fields whose residue 
field is finite. Hasse conjectured that the same result would hold for arbitrary 
perfect residue fields and he gave this problem to his student Cahit Arf who 
solved it in his thesis [2]. 
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Ausnutzung der Hauptsiitze der Klassenkorpertheorie im 
Grossen durch Entwicklung der Theorie des N ormenrest
symbols vollziehen - das ist aber methodisch unschon -
oder aber auch direkt durch methodisch in die Klassen
korpertheorie im Kleinen gehorende Betrachtungen aus
fiihren. (Eine Ausfiihrung dieses Beweises siehe eben
falls in der Chevalleyschen These.) - Die Ausfiihrungen 
meiner vorliegenden Arbeit ergiinzen den Herbrandschen 
Beweis fur den zyklischen Fall und den Chevalleyschen 
Ubergang zum allgemein-abelschen Fall eben in der Weise, 
dajJ sie die genaue Bestimmung des p-Fiihrers liefern ... 

Concerning the proof ... , the main point is the special 
case where the extension is cyclic . . . For this cyclic case 
a very elegant proof has been given by Herbrand. (For an 
exposition of this proof see Chevalley's thesis which im
mediately preceeds this paper . . . ) The transition to the 
general abelian case can be given either with full use of 
the main theorems of global class field theory by develop
ing the norm residue symbol - but that is not desirable 
from a methodical point of view - or else directly, using 
arguments which methodically belong to local class field 
theory. (For an exposition of this see Chevalley's thesis 
again.) - The discussion in my present paper supplement 
Herbrand's proof in the cyclic case and Chevalley's tran
sition to the general abelian case in such a way that they 
yield the exact determination of the p-conductor. 

Thus here in [49] we find what we have missed in [51], namely an ex
planation of how Hasse envisages the transition from the cyclic to the 
abelian case, i.e. the proof of (23). From today's viewpoint, since local 
class field theory is well known nowadays, the proof of (23) is indeed 
"immediate and well known", but it seems doubtful whether this could 
be said in 1934 already. In 1934, the reader of [51] would perhaps have 
preferred a more detailed explanation of what Hasse had in mind. 

In any case, as said earlier already, Hasse says explicitly that the 
results of [49] which were stated and proved there for local number fields, 
remain valid for local function fields. 

By the way, in 1933 Hasse had already accepted a paper by Chevalley 
for Crelle's Journal [14], where the latter also presented his method how 
to prove (23). It is quite apparent that his method is of cohomological 
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nature, as the "crossed products" ( verschrankte Produkte) of E. Noether 
are used to compare the norm groups of different cyclic extensions. -

Now we quote the second comment of Hasse on page 142 in [51], on 
his proof of Artin's reciprocity law: 

Damit ist eine dem heutigen Stande angepajJte Begrun
dung der van F.K. Schmidt entwickelten Klassenkorper
theorie gegeben und insbesondere die dortige Beschrankung 
auf zur Charakteristik p prime Grade beseitigt. 

Herewith we have given a presentation, adapted to the 
present state of knowledge, of the class field theory which 
had first been developed by F.K. Schmidt; in particular 
we have eliminated the restriction to those degrees which 
are relatively prime to the characteristic. 54 

Hasse's wording that his presentation corresponds to the "present 
state" of knowledge may reflect that he did not consider it as final; 
he leaves it open that further simplifications are to come in due time. 
Had he envisaged already the penetration of cohomology into class field 
theory? 

If we review the above proof of Theorem A we see that simple alge
bras are used mostly in a formal way: as crossed products which, in the 
cyclic case, reflect the norm class structure for the splitting field. 55 Nev
ertheless it seems unlikely that Hasse was contemplating to substitute, 
as regards class field theory, the theory of algebras by a more formal cal
culus of cohomological nature. In fact, he has always propagated Emmy 
Noether's dictum: Use non-commutative arithmetic to get results in the 
commutative case! And later in the forties and fifties, when cohomol
ogy indeed had found its place in class field theory due to the works of 
Hochschild, Nakayama, Artin and Tate [9], [112], then Hasse did never 

54 Hasse's citation list includes all 4 papers by F.K. Schmidt which we 
have discussed above: [95], [96], [98], [99]. He gives full credit to F.K. Schmidt 
for having developed the general theory of function fields, in particular with 
finite base fields. (Side remark: Erroneously Hasse cites [95] as F.K. Schmidt's 
thesis in Erlangen but as we have mentioned above, this thesis was written 
at the university of Preiburg. This seems quite curious since Hasse had sent 
the proof sheets of his paper to F.K. Schmidt and asked for his comments. It 
seems that F.K. Schmidt himself did not discover this error.) 

55 lt is only in the local case that Hasse had to regard algebras not only 
through the crossed product formalism but in fact with their arithmetic struc
ture: In order to prove that a local division algebra admits an unramified split
ting field Hasse extended the canonical valuation of the center to the division 
algebra and studied its arithmetic properties [40]. 
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take up those ideas in his own work - although of course he himself had 
started all this by using crossed products in class field theory. It seems 
that he did not wish to part from Emmy Noether's idea about the role 
of non-commutative algebras incommutative number theory. 56 

More likely, Hasse may have had in mind to free class field theory 
from analytic methods and to find proofs which are based solely on 
algebra and arithmetic. Such tendency was spreading in the thirties, 
with the intention to gain more insight into the structures connected 
with class field theory. 

Hasse's proof of Theorem A is certainly of algebraic-arithmetic na
ture. But Theorems B and C still rested on analytic arguments. We 
shall see in section 8 how it became possible to replace these analytic 
arguments by algebraic ones. 

6.2. Witt: Riemann-Roch theorem and zeta function for 
algebras 

In the year 1934, at about the same time when Hasse's paper [51] was 
published, there appeared a paper by Witt [124] which also contained 
important contributions to class field theory for function fields. This 
was Witt's Gottingen thesis of 1933. The aim of Witt's thesis was to 
transfer the theory of Kathe Hey to the function field case. 

In the year 1929 Kathe Hey had completed her thesis [65] in Ham
burg, with E. Artin as her advisor. She had considered simple algebras 
over a number field and developed analytic number theory in this setting; 
in particular the zeta function was defined and investigated in the non
commutative case, in analogy to the Dedekind zeta function of a number 
field. Hey's thesis has never been published 57 but it was well known 
at that time in the context of algebraic and analytic number theory. It 
contained also a new analytic foundation of the main theorems in class 
field theory; according to Deuring [22] "die stiirkste Zusammenfassung 
der analytischen Hilfsmittel zur Erreichung des Zieles" (the strongest 
concentration of analytic tools in order to reach the goal). 

Now, after F.K. Schmidt had succeeded in transferring the theory of 
the Dedekind zeta function to characteristic p there arose the question 
whether Hey's theory of the zeta function for division algebras could 
be transferred too. E. Noether had posed this question to Witt and he 
answered it in his thesis. 

56 See the last words of Hasse in his paper on the history of class field 
theory [56]. 

57The thesis contained some errors which, however, could be corrected. 
See e.g., Zorn [133], Deuring [22] chap.VII, §8. 
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E. Witt had studied one year in Freiburg (since 1929) and then 3 
years in Gottingen. As he himself recalls [131]: 

Tief beeindruckt haben mich 1932 die beriihmten 3 Var
trage van Artin iiber Klassenkorperthearie. Die ansch
liessenden Ferien verbrachte ich in Hamburg, um dart die 
Klassenkorperthearie intensiv zu studieren. In den falgen
den Jahren war es mein Ziel, diese Klassenkorperthearie 
auf Funktianenkorper zu iibertragen. 

In the year 1932 I was deeply impressed by the famous 
three lectures of Artin on class field theory. 58 In the next 
academic vacations I went to Hamburg for an intensive 
study of class field theory for number fields. In the fol
lowing years it was my aim to transfer class field theory 
to function fields. 

Witt was 21 when he decided to complete what F.K. Schmidt had 
started. From the above we see that Witt in his work was much in
fluenced by E. Artin. Other people who influenced Witt were Emmy 
Noether, his thesis advisor, and H. Hasse whose assistant in Gottingen 
he became in 1934. 59 

The title of Witt's thesis is: "Riemann-Rachscher Satz und (-Funk
tian im Hyperkamplexen" (Riemann-Roch theorem and (-function in 
the hypercomplex domain). Witt cites F.K. Schmidt's already classical 
paper [98]. In fact, Witt's proof of the Riemann-Roch theorem in the 
non-commutative case copies F.K. Schmidt's proof very closely; he says 
that F.K. Schmidt's proof served him as a model ("nach dem Varbild 
van F. K. Schmidt"). After establishing the proper notions of "divisor" 
etc. of a simple algebra, Witt showed that the Riemann-Roch theorem 
can be formulated and proved precisely as in the commutative case, with 
the exception that the genus of the algebra may be negative. In fact, the 
treatment by Witt puts into evidence that the Riemann-Roch theorem 
essentially belongs to linear algebra, hence the non-commutativity of the 
multiplication does not disturb the general picture. 

Thus this paper continues the historical line which had been started 
1880 by Dedekind-Weber [21], which was followed 1902 by Hensel
Landsberg [61] and had been taken up 1927 by F.K. Schmidt [98]. Witt 

58There were notes taken by Olga Taussky from Artin's lectures. A copy 
is preserved in the library of the Mathematics Institute in Gottingen [7]. I am 
indebted to F. Lemmermeyer for pointing out to me that an English trans
lation of these lecture notes has been included as an appendix to H. Cohn's 
"Classical Invitation to Algebraic Numbers and Class Fields" [18]. 

59 More biographical information about Witt can be obtained from [74]. 
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seems to have been fully aware of this background; he says that his 
construction of a normal basis follows the usual way ( "in der iiblichen 
Weise"). But in contrast to F.K. Schmidt [98], Witt presented fully 
the algebraic proof of the Riemann-Roch theorem. (Recall that F.K. 
Schmidt had been content to wave his hands and just said that the 
Riemann-Roch theorem can be proved in quite the same way as in 
Hensel-Landsberg; see section 4.3.2). 

Similarly as in the case of fields, in the case of division algebras the 
Riemann-Roch theorem leads to a birational invariant zeta function; 
this is the function field analogue to Rey's zeta function. Comparison 
of Witt's new zeta function of the division algebra with F.K. Schmidt's 
zeta function of its center field leads to the following conclusion (as in 
Rey's thesis for number fields): 

Every non-trivial division algebra (or, more generally, simple alge
bra) over a function field F admits at least two places where the algebra 
does not split. In other words: If a simple algebra splits locally for all 
but possibly one place then it splits globally. 

Based on this local-global principle Witt presents an alternative 
proof of the sum formula (18) which Hasse had used for the proof of 
Artin's reciprocity law in function fields. 

Thus in this paper, Witt's result concerning class field theory for 
function fields overlaps widely with Hasse's [51]. But the methods are 
different: whereas Hasse's proof of the sum formula (18), based on Tsen's 
theorem, is essentially of algebraic nature, Witt's proof of (18) is based 
very much on analytic properties of the zeta function of algebras. It con
stitutes, to use Deuring's words once more, "the strongest concentration 
of analytic tools in order to reach the goal". But the trend in the further 
development was more towards the algebraic direction. Witt's analytic 
proof of the reciprocity law is not widely known today, and his paper 
[124] is known mainly for the Riemann-Roch theorem for algebras, i.e., 
as a contribution to non-commutative algebraic geometry. 60 

By the way, in this paper Witt also gives a complete description of 
the Brauer group of algebras over function fields. The result is of the 
same type as Hasse had found a year ago in the number field case [43]. 

6.3. Summary 

• In 1934 Hasse published a paper on cyclic extensions of func
tion fields. His original motivation came from his joint work 
with Davenport on the Riemann hypothesis for certain function 

60See e.g., the Remarks by Gunter Tamme in [132], page 60. 
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fields of higher genus. But Hasse 's paper contained also impor
tant contributions to class field theory for function fields. Its 
main achievement regarding class field theory was Hasse's proof 
of Artin's general reciprocity law in the function field case. 

• The methods used in that proof belong to the arithmetic theory of 
algebras and their splitting behavior; these methods had recently 
been successfully used by Hasse in the number field case (respond
ing to a question of Emmy Noether} and were now transferred to 
the function field case. 

• Hasse 's proof in the function field case relied heavily on the the
orem which Tsen had just obtained in his Gottingen thesis (with 
Emmy Noether as his main advisor). 

• In 1934, parallel to Hasse's paper, there appeared Witt's Gottin
gen thesis (again with Emmy Noether as thesis advisor}. This 
paper was concerned with the transfer of Kathe Hey 's theory to the 
function field case; i.e., developing the theory of zeta functions for 
simple algebras over function fields. To this end Witt proved the 
Riemann-Roch theorem for simple algebras over function fields, 
in generalization of F.K. Schmidt's work. Witt's theory of zeta 
functions for division algebras leads to a local-global principle for 
algebras over function fields and, consequently, to a new proof of 
the A rtin reciprocity law for function fields. Hence, Witt's results 
overlap with those of Hasse but the methods used are different. 

• Witt's paper was conceived as the first of a series in which Witt 
planned to complete class field theory for function fields, which 
had been started by F.K. Schmidt. 

§7. The final steps 

7.1. H.L. Schmid: Explicit reciprocity formulas 

In the case when the ground field is arational function field, F = 
K(x), Hasse in his 1934 paper [51] provided a second proof of Artin's 
reciprocity law, not depending on Tsen's theorem and being of "elemen
tary" nature in the sense that only elementary manipulations of poly
nomials and rational functions are used. In doing this he distinguished 
two different cases, depending on the degree n = [ E : F], namely n ¢. 0 
(mod p) and n = p. (Recall that p denotes the characteristic.) In the 
case n ¢. 0 (mod p) Hasse observed that his arguments are essentially 
identical to those which lead to the power reciprocity law (1) in F.K. 
Schmidt's thesis which we have discussed in section 3.2.2. 

But the arguments in the case n = p, where Artin-Schreier theory 
had to be used, were new. Hasse's computations in this case involved 
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logarithmic derivatives of rational functions. He pointed out that these 
are the precise analogues of Kummer's logarithmic derivatives which 
appear in the explicit reciprocity formulas in the number theory case. 61 

There arose the question whether those computations could be gen
eralized to arbitrary function fields F, not necessarily rational. Hasse 
had put this question to his student H.L. Schmid. 62 

H.L. Schmid solved Hasse's question in his 1934 Marburg thesis 
which appeared in print one year later [91]. The paper has the title 
Uber das Reziprozitiitsgesetz in relativ-zyklischen Funktionenkorpern mit 
endlichem Konstantenkorper (On the reciprocity law in relatively cyclic 
function fields with finite fields of constants). It is conceived as a follow
up to Hasse's paper [51], with the aim of supplementing it by giving 
explicit formulas for the local norm symbols. 

Let EIF be cyclic of degree n. Following Hasse, H.L. Schmid deals 
separately with the two cases n ¢. 0 (mod p) and n = p. 

The most interesting is the case n = p. Then EIF admits an Artin
Schreier generation 

E=F(y), 

with (3 E F. For any a E Fx and any prime p of F consider the 

local norm symbol ( "';,E) as defined above in (20). For computational 

purposes it is convenient to replace this symbol, which is an element in 
the Galois group G, by another symbol which is an element in the prime 

field Z/p. Namely, if the automorphism ( "';,E) is applied toy then the 

result is y + c with c in the prime field Z/p. This c is then denoted by 

{ "';/3 }; in other words, the defining relation for the new symbol is 

(a,E) { a, (3} y p = y+ -- . 
j) 

This symbol is multiplicative in the first variable a and additive in the 
second variable (3. 63 

61 Hasse had discussed and generalized Kummer's formulas in Part II of 
his class field report [38]. 

62 Not to be confused with F.K. Schmidt. For biographical information 
about H.L. Schmid see the obituary [55], written by Hasse in 1958. 

631n the literature there is no unique notation for this symbol. Here we 
use H.L. Schmid's notation. Note that this symbol is asymmetric; there is no 
formula for exchanging the arguments a and /3. See e.g., the notation used by 
Witt in [127]. 
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Now, H.L. Schmid gives the following explicit formula for the com
putation of this symbol: 

(24) 

Here, resp ( ... ) denotes the residue at 1J of the differential in question; 
this is an element in the residue field Kp. 64 And Spp: Ki, --+ K is the 
trace function ("Spur") to K, whereas 6 : K --+ Z/p is the absolute 
trace from K to its prime field. 

The formula (24) contains the logarithmic differential d"'a which 
again puts into evidence the analogy to Kummer's formulas in num
ber theory - this time for an arbitrary function field F instead of the 
rational field as in Hasse's paper. The importance of the formula lies in 
the following: 

Firstly, in view of the theorem of the residues in function fields: 

(25) 

it follows immediately from ( 24) that 

(26) ~f~/} =0 

which is equivalent to the sum formula (18) for the algebra A= (a, E, a), 
i.e., for all algebras A over F which admit a cyclic splitting field EIF of 
degree p. This proof of (18) does not need the theorem of Tsen. In this 
way it is possible to prove Artin's reciprocity law for cyclic extensions 
of degree p without Tsen's theorem, using the theorem of the residues 
instead. 

Secondly, the formula (24) immediately gives the multiplicity of lJ 
in the conductor of EIF: it ism+ 1 if m cj. 0 (mod p) is the pole order 
of f3 at JJ. (Note that by definition, a is a norm from Ep if and only 

if { 7} = 0.) Whereas Hasse [51] had to rely on the theory of higher 

ramification groups and its connection to conductors, as developed in 
[49], the formula (24) shows this result immediately. 

Thirdly, the formula (24) gives rise to a formalism about p-algebras 
over arbitrary fields of characteristic p; this has later been observed and 
used, e.g., by Witt [127] (see section 7.2). 

64H.L. Schmid defines Sppresp ( • • •) to be the residue of the differential. 
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Let us add some remarks concerning the case n '¥= 0 (mod p). It is 
assumed that the n-th roots of unity are in F. Then EIF is a cyclic 
Kummer extension: 

E = F(y), 

with /3 E F. Again for any prime p of F, H.L. Schmid is concerned with 

the local norm symbol ( °'/) which is an element of the Galois group 

G. The corresponding numerical symbol ( °'/t is now to be defined 

multiplicatively, in the form: 

y("/) = y. ( a~/3} 

This time the symbol ( °'1/3 t is an n-th root of unity; it is multiplicative 

in both variables a, (3. 65 Now H.L. Schmid arrives at the following 
explicit formula. For simplicity let us write a = Vp (a) and b = vp (/3). 

(27) 

where Np is the norm function from the residue field to K. (For any 
function f E F we denote by f(p) its image in the residue field Kp.) 

H.L. Schmid points out that the formula (27) is the multiplicative 
analogue to (24). But, he says, while (24) leads to a new proof ofHasse's 
sum formula (18) (via the theorem of the residues) and hence to Artin's 
reciprocity law in the case n = p, the formula (27) does not so in the 
case n '¥= 0 mod p. 

Hasse, when reporting about H.L. Schmid's work in 1958, also says 
that a multiplicative analogue to the residue theorem has not been found 
in this connection [55]. 

It seems that both H.L. Schmid and Hasse had overlooked the rela
tion of then-th norm symbol ( °';/3 t to the universal symbol in arbitrary 

conservative function fields, over any base field. That universal symbol 

( °';/3) is defined by the same formula (27) but without the exponent q~l 

on the right hand side. It is well known that for this universal symbol 
the product formula 

IJ (a/)= 1 

651n the literature this symbol is called the Hilbert symbol. 
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holds. See, e.g., the treatment of those symbols in Serre's book on 
algebraic groups and class fields [103], or in [87]. This product formula, 

when taken into its q~ 1 -th power, yields the product formula for ( °'/t 
and hence formula (21), thus it gives a new proof of Artin's reciprocity 
law, independent of Tsen's theorem, also in the case n ¢. 0 mod p - at 
least if the n-th roots of unity are contained in K. 

7.2. The existence theorem 

As we have said above already, Artin's general reciprocity law does 
not cover the existence theorem of class field theory as formulated in 
statement I in section 5.2. Witt takes up the challenge in his second 
paper [127] of his series on class field theory, which appeared 1935 in 
Crelle's Journal with the title "Der Existenzsatz fiir abelsche Funktio
nenkorper" (The existence theorem for abelian function fields). 

The existence theorem is a major ingredient in general class field 
theory. In the case of number fields, the existence theorem had been 
part of the results of Takagi [108]. The proof had been included in 
Hasse's class field report but was later much simplified by Herbrand and 
in Chevalley's thesis [15]. 

For function fields, F.K. Schmidt [99] had claimed to have a proof in 
the case when the index is not divisible by p. As I have said already in 
section 5.4 his claim was not too convincingly substantiated since F.K. 
Schmidt did not go into the details of proof which would involve delicate 
index computations. And for subgroups of index divisible by p, before 
Witt's paper there had been no hint of how to approach this problem. 

Witt's paper constitutes a major advance in the development of class 
field theory for function fields. It is a masterpiece not only because of 
its results but also because of its concise and precise style which became 
the characteristic of Witt's papers. Witt's reputation as a first rate and 
very original mathematician was fully established with this paper. 

The existence theorem can now be formulated as follows: 

Theorem D. Given a module m in a function field F and a sub
group Hm of finite index in the ray class group Cm, there exists a unique 
abelian extension EIF such that (i) every prime p of F which does not 
appear in m is unramified in E; (ii) Hm is the kernel of the Artin ho
momorphism from Cm to the Galois group G of EIF. 

Consequently the factor group Cm/ H m is isomorphic to G in view of part 
B of Artin's reciprocity law (see section 6.1.1). Moreover, Hm = Nm in 
view of part C. 
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Let n denote the exponent of the factor group Cm/ Hm. Witt dis
cusses separately the two cases n ¢. 0 mod p and n = p ; the general case 
is then treated by induction. 

It suffices to prove the existence theorem for the smallest ray class 
group in Cm whose factor group is of exponent n, i.e., for the group c;;;. 
For, if there exists a class field EIF for this group, then the subgroups 
Hm between c;;; and Cm correspond, via the isomorphism of Artin's reci
procity law and Galois theory, 1 - 1 to the intermediate fields between 
E and F; it is immediate that for each such subgroup (ii) holds with 
respect to the corresponding field. 

Witt cites Hasse's class field results in [51] and says that, by Hasse, 
every abelian field extension EIF is a class field for some ray class group. 
So he is going, for given m and n, to construct a certain field extension 
EIF bythe usual algebraic procedures, namely Kummer extension in case 
n ¢. 0 mod p ( after adjoining the n-th roots of unity) and Artin-Schreier 
extension in case n = p ; then he verifies that because of his careful 
construction of EIF its Artin group is precisely c;;;. This requires some 
rather straightforward index computations. 

In case n ¢. 0 mod p there will be tame ramification only and m can 
be assumed to be "square free", which means that every prime occurring 
in m has multiplicity 1 in m. Witt says that his proof in this case is just 
a copy of "Herbrand's proof". For this he cites Hasse's Marburg lecture 
notes [44] where Herbrand's computations are presented. (As it is to 
be expected, the computations in the function field case require some 
modifications.) It seems strange that Witt does not cite Chevalley's 
thesis [15]. It is also strange that Witt does not cite the paper by 
Chevalley and Nehrkorn [16] which appeared at about the same time 
as Witt's. In that paper the existence theorem is discussed (in the 
number field case) from the point of view of arithmetic-algebraic proofs 
(see section 8). Neither do Chevalley-Nehrkorn cite Witt, and hence it 
seems that none of the two parties knew about the work of the other 
party before it was too late to insert a reference. 66 

661n November 1934, Chevalley informed Hasse about the results of his 
paper with Nehrkorn. At the same time Chevalley announced that he was 
working on a proof of the existence theorem in characteristic p. Hasse replied 
that just recently Witt had submitted to him a paper containing the proof of 
the existence theorem, and he added a sketch of Witt's proof. He also informed 
Witt about Chevalley's letter. It appears that Chevalley's ideas were quite 
similar to Witt's on this matter. Thus Witt and Chevalley were informed 
about the work of the other through Hasse. 
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As a side result, Witt develops the theory of arbitrary abelian Kum
mer extensions ( not necessarily cyclic) of a given exponent n ¢. 0 mod p. 
This is the form which today is usually given in algebra textbooks. 67 

The case n = p was new and Witt could not rely on analogues in 
number fields; Herbrand and Chevalley did not cover this case. Witt 
relied, however, on H.L. Schmid's paper [91] and the formula (24); it 
permits to estimate in advance the conductor of an abelian extension 
of exponent p. Actually, Witt generalized H.L. Schmid's formula in the 
following way: For a =I= 0 and /3 in F Witt defines the algebra ( a, /3] 
over F given by generators u, y with the defining relations: 

(28) 

Let p be a prime of the function field F and Fp its completion. Over 
Fp one can perform a similar construction; the corresponding algebra 

is denoted by ( °'/]. (Witt's notation is (a, /3] since he considers p as 

being fixed.) Now Witt states and uses the formula 

(29) 

where ~ denotes the equivalence of algebras and t is a uniformizing 
variable at p. In this formula, like in H.L. Schmid's formula (24), there 
appears a logarithmic derivative. Witt mentions H.L. Schmid's paper 68 

and refers to the proof there, although the formula (24) is not quite 
the same as Witt's (29): for (24) concerns Hasse invariants of algebras, 
whereas (29) holds for the algebras themselves. Accordingly Witt's for
mula is more general: it holds over arbitrary perfect base fields while 
H.L. Schmid's formula (24) makes sense only if the base field is finite. 
But his formula, Witt says, is proved by the same methods as H.L. 
Schmid's. It is straightforward to extract H.L. Schmid's formula from 
Witt's. 

Again as a side result, Witt develops the theory of abelian extensions 
of exponent p, not necessarily cyclic, thereby generalizing Artin-Schreier 
[8]. 

It turns out that the computations in case n = p are easier than 
those in case n ¢. 0 mod p. Let us cite Witt: 

67 See e.g., Lorenz [76). 
68 This had not yet appeared when Witt wrote his manuscript; so he 

referred to [91) by saying: "erscheint demnachst in der Math. Zeitschr." (will 
appear soon in the Mathematische Zeitschrift). 
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Ein Analogon der Theorie der Kummerschen Karper er
halten wir im Falle n = p, indem wir die Produkte ad
ditiv schreiben. Es ist bemerkenswert, daft der Existenz
beweis im vorliegenden Falle viel einfacher gefiihrt werden 
kann. Durch direktes SchliefJen mit Hilfe des Riemann
Rochschen Satzes werden Zange Indexrechnungen vermei
den. 

In case n = p we obtain an analogue to the theory of Kum
mer fields by writing all products in an additive manner. 
It is remarkable that in this case the existence proof can 
be given in a much easier way. By direct recourse to the 
Riemann-Roch theorem one can avoid long index compu
tations. 

With Artin's reciprocity law and the existence theorem, the foundation 
of general class field theory was now achieved in the function field case. 
But we have still to mention two other items which concern class field 
theory for function fields: Explicit reciprocity formula for cyclic exten
sions of p-power degree, and the functional equation for F.K. Schmidt's 
£-series. The relevant papers for these were published by H.L. Schmid 
and Witt who, both being assistants to Hasse in Gottingen, seem to 
have worked closely together. 

7.3. Cyclic field extensions of degree pn 

Jn 1937, as a result of the legendary Gottinger Arbeitsgemeinschaft 
(workshop) headed by E. Witt, there appeared his great paper [130] 
where he introduced what is now known as Witt vectors. The construc
tion of Witt vectors "is of fundamental importance for modern algebra 
and some of the most recent developments in arithmetical algebraic ge
ometry" (G. Harder in [132], page 165). 

It seems not to be widely known that Witt vectors were discovered 
in connection with a problem belonging to class field theory in function 
fields. The problem was to generalize H.L. Schmid's explicit formula for 
the norm symbol (24) (section 7.1) to cyclic extensions ofp-power degree, 
not just of degree p. This was not necessary for the proof of Artin's 
reciprocity law or of the existence theorem since for those purposes one 
had an argument using induction with respect to the degree. But the 
problem was of importance in order to fully transfer class field theory, 
including the explicit reciprocity formulas, to the function field case. 

Witt had transformed H.L. Schmid's formula (24) into (29) which 
concerned algebras of rank p ; now the problem was to arrive at similar 
formulas for cyclic algebras of p-power rank. 
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In order to attack this problem one first had to generalize the Artin
Schreier generation of cyclic fields of degree p to cyclic fields of p-power. 
This had been done in 1936 by H.L. Schmid [92]. He had found that 
an earlier solution of the problem, given by Albert [1], was not suited 
for the intended arithmetical application. Instead, he had discovered 
that a cyclic field extension EIF of degree pn in characteristic p can be 
generated in the form 

E = F(y) = F(yo, ... , Yn-1) 

where the Witt vector y = (y0, y1 , ... , Yn-1) oflength n has components 
in E and satisfies an equation of the form 

(30) 

with a vector (3 = ((30 , (31 , ... , f3n-i) over F. In formula (30) one has to 
interpret yP as the vector with the components yf (as it is usual with 
Witt vectors), and the minus sign is to be interpreted in the sense of the 
additive group of Witt vectors. 

H.L. Schmid, however, had not yet the formalism of Witt vectors at 
his disposal. Recall that every Witt vector y = (y0 , y1 , ... ) is also given 
by its "ghost components" (Nebenkomponenten) y = (yC0), yU), ... ); the 
algebraic operations are given componentwise in the ghost components 
which yield polynomially defined operations for the main components 
Y. 69 •· 

Those polynomials are quite complicated to work with explicitly. It 
was a high accomplishment that H.L. Schmid was able to get through 
with the very complicated polynomial computations, proving associativ
ity, distributivity etc. for those operations and, moreover, using this to 
study the arithmetic notions like Artin-symbol, norm symbol etc. in this 
situation. 

H.L. Schmid had reported about his results in Witt's workshop. It 
was again a high accomplishment, this time by Witt, to see through this 
jungle of polynomial identities and to find out that it could be reduced 
to simple operations on the ghost components. This then was the birth 
of the Witt vector calculus, soon to be amended by Teichmiiller's mul
tiplication and so providing a solid foundation for the structure theory 
of complete unramified local fields. 

69The connection between ghost components and main component~ is de
fined in characteristic 0. Hence if we talk about ghost components of vectors 
over a field of characteristic p then we tacitly assume that the given field has 
been represented as the reduction mod p of some integral domain in charac
teristic 0, and the ghost components belong to foreimages of those vectors. 
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Here we are interested in that part of Witt's paper [130] which con
cerns the arithmetic of function fields. 

Given an element a=/- 0 in F and a Witt vector {3 = ({30 , ... , f3n-I) 

over F of length n, Witt considers the algebra ( a I {3] defined by gener
ators u, y0 , ... , Yn-I where the Yi are commuting with each other and 
the following defining relations hold, with y = (y0 , ... , Yn-I) considered 
as a Witt vector: 

uyu- 1 = y + 1. 

Here, 1 = (1, 0, ... , 0) denotes the unit element of the ring of Witt 
vectors, and uyu- 1 means ( uyou-1 , ... , UYn-I u-1). These relations 
define a simple algebra with center F; it has the cyclic splitting field 
E = F(y), and this is of precise degree pn if {30 is not of the form 1-J' - b 
with b E F. The symbol ( al {3] , when considered as an element in the 
Brauer group over F, is multiplicative in the first variable a and additive 
in the second Witt vector variable {3. 

Note that the algebra (a I {3], defined with Witt vectors, is a direct 
generalization of (a,{3] which is defined by field elements (28). There 
arises the question whether for these new algebras the formula (29) can 
be generalized, and how the generalization looks like. Witt gives the 
following solution. 

If j:J is a prime of F then one can consider the same algebra over the 

corresponding j:J-adic completion Fp. This is to be denoted by (a~ /3] . 70 

Consider the j:J-adic completion Fp as power series field over the 
residue field Kp of j:J. Consider the ghost components {J(i) as power 
series and let the operation resp {3 d; be defined ghost-componentwise. 
There results a Witt vector which Witt calls the "residue vector" and 
denotes by ( a, {J)p. The components of this Witt vector are contained 
in the residue field Kp. Now the analogue of (29) is as follows: 

where, again, t is a uniformizing variable at j:J. For the computation of 
the Hasse invariant of this algebra similar formulas are available, which 
generalize H.L. Schmid's formula (24). 

Without proof Witt mentions the relation 

70Witt writes ( a I /3) and regards p as fixed. 
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which is a generalization of the residue theorem, now for residues of Witt 
vectors. (Sp denotes the trace from the p-adic residue field Kµ to K, 
extended to Witt vectors.) 

In the same volume of Crelle's Journal as Witt's paper [130] there 
appeared another paper of H.L. Schmid on the arithmetic of cyclic fields 
of p-power degree [93]. There, building on the now established theory 
of Witt vectors he continues his investigation of [92]. Given a cyclic 
extension E = F(y) of degree pn with Witt vector generation yP-y = /3, 
H.L. Schmid establishes formulas for the conductor, the discriminant and 
the genus of E in terms of /3. These formulas are very useful in various 
arithmetic and geometric applications. 71 

7.4. The functional equation for the £-series 
In the preface to his paper [127] on the existence theorem, Witt men

tioned the proof of the functional equation of the £-series for function 
fields as a further desideratum. According to his own testimony [131] 
he had completed the proof one year later in 1936. But he abstained 
from publication because he was asked by Artin to do so; Artin had a 
doctoral student who was working on the same subject. 72 

Let x be a non-trivial ray class character in F with conductor f. 
Thus x( a) is defined for divisors which are relatively prime to f, and 
x(a) = 1 if a= (a) with a = 1 mod f. For divisors a which are not 
relatively prime to f we may put x(a) = 0. Then F.K. Schmidt's £
series is 

L(s,x) = II 1- (~)IPl-s = I:x(a)la1-s. 
p X a;;,:o 

The product ranges over all primes p of F and the sum over all positive 
divisors; hence the dashes at TI and I; which appear in formula (16) 
are not necessary here. 

The functional equation establishes a relation between L(s, x) and 
L(l - s, x) where x denotes the conjugate complex character; x has the 
same conductor f as does X· Let d = deg f; then the functional equation 
can be written in the following form: 

(31) q(2g-2+d)s/2 L(s, x) = c:(x). ql2g-2+d)(l-s)/2 L(l - s, x) 

71 H.L. Schmid's paper [93] and Witt's [130] were two papers out of seven 
which all arose in the Gi:ittingen workshop and which all appeared in a single 
fascicle of Crelle's Journal, together with a paper by Hasse. 

72 This was J. Weissinger; his proof of the functional equation appeared 
1938 in [122]. - Later, Weissinger went to applied mathematics. 
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with lc(x)I = 1. 
Although not publishing this result, Witt presented his proof in the 

Gottingen seminar, and so in the course of time it became known in 
wider circles. We know about the proof from various sources, namely: 

1. In a letter from Hasse to Davenport dated April 30, 1936, Hasse 
gave a three page outline of Witt's proof. 73 

2. In a letter from Hasse to A. Weil dated July 12, 1936, Hasse 
informed Weil about Witt's proof (among other number theoretic 
news) and included a sketch of it. 74 

3. In the year 1943 the Hamburger Abhandlungen accepted a paper 
by H.L. Schmid and 0. Teichmiiller for volume 15, which con
tained essentially a presentation of Witt's proof as seen by those 
authors [94]. 75 

4. The recently published Collected Papers of E. Witt [132] contain 
a note, written by Schulze-Pillot, where Witt's proof is sketched 

73This letter is contained among the Davenport papers at the archive of 
Trinity College, Cambridge. - Somewhat later Davenport himself gave another 
proof which, as Hasse said in a letter to Weil (Feb 4, 1939), proceeds in a more 
computational way ("auf mehr rechnerische Art"). 

74Weil seemed to have forgotten about it, for on Jan 20, 1939 he informed 
Hasse that he had a proof of the functional equation. In his reply Hasse 
mentioned Witt's proof again and sent Weil a new, more detailed exposition; 
but he also mentioned Weissinger's and Davenport's proof. Upon this Weil 
wrote to Hasse that he had checked Weissinger's proof which had already 
appeared in [122], and he found that his (Weil's) proof was essentially the 
same as Weissinger's. He also apologized to Hasse that he had forgotten 
Hasse's former information about Witt's proof in 1936. -

As a side remark it may be mentioned that in this letter Hasse informs 
Weil also about other news, one of them being Deuring's algebraic theory of 
correspondences of algebraic function fields (published later 1937 and 1941 in 
[23],[24]). Hasse explains to Weil that this theory will open the way to the 
proof of the Riemann hypothesis for function fields of arbitrary genus: one 
would have to prove that the algebraic analogue of the hermitian form from 
the period matrix is positive definite. In his reply ( dated July 17, 1936) Weil 
appreciated Deuring's promising idea (" . . . es ist sehr schon, dass durch die 
!dee von Deuring nunmehr die Losung dieses Problems in Aussicht gestellt 
wird."). And he adds a reference to Severi's "Trattato" [104]. It seems re
markable that Deuring's idea turned out to be precisely the same which A.Weil 
several years later used when he indeed arrived at the proof of the Riemann 
hypothesis [120]. 

75Due to war time difficulties of publication, volume 15 was completed in 
1947 only. 
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after Witt's own handwritten notes (which are not dated, how
ever). 

It seems remarkable that Witt had conceived his proof as an analogue 
to the classical proof by Hecke [58) who worked with theta functions 
and the theta transformation formulas. Although in the function field 
case the analogues to these are purely algebraic identities and hence of 
quite another type, Witt named those algebraic lemmas in the same way 
as their classical counterparts - in order to stress the analogy between 
both. This analogy is not so transparent, however, in the presentation 
given by H.L. Schmid and Teichmiiller [94). 

Any known proof so far is based on a generalization of the Riemann
Roch theorem, much the same way as the functional equation of the or
dinary zeta function by F .K. Schmidt is based on the ordinary Riemann 
Roch theorem. Perhaps it is not without interest to cite from the first 
paragraph of Hasse's letter to Davenport 1936 where he gave an outline 
of Witt's proof. (This letter is handwritten in English.) 

The main source for Riemann-Roch's theorem and gener
alizations to character classes is, according to Witt, the 
following theorem: 

Let k be an arbitrary field and K the field of all power 
series I::~va avtv with av in k and t an indeterminate; 
furthermore: 

R 1 the ring of all polynomials in ¼ over k, 
R2 the ring of all integral power series I:;~0 avtv over 

k, 
both subrings of K. Let M be a matrix with determinant =fa 
0, consisting of elements in K. Then there are a matrix A1 

over R1 and a matrix A 2 over R 2 , both with determinant 
a unit ( element =fa O in k) such that 

We observe that this theorem embodies the classical method of so-called 
"normal bases" which had been used by Dedekind-Weber and Hensel
Landsberg in proving the Riemann-Roch theorem, taken up by F.K. 
Schmidt (see section 4.3.2), and also used by Witt himself in his•proof 
of the Riemann-Roch theorem in non-commutative algebras (see section 
6.2). This same theorem appears here again in connection with Witt's 
proof of the functional equation. And this time it is formulated as a 
separate result, independent of the intended application. 
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Hasse was convinced that this theorem is an important result which 
should be included as a separate lemma (or theorem) in his textbook 
"Zahlentheorie" which he had finished in 1938. And the name "Witt's 
lemma" seemed to him justified because Witt had fully seen its impor
tance, had used it in various different situations, and now had formulated 
it as a separate statement. Hasse was fully aware of the role of this 
lemma in the historical development connected to the Riemann-Roch 
theorem. In his letter to Weil on March 7, 1939 he says: 

Den Inhalt von § 1 habe ich iibrigens in meinem Buch ver
arbeitet, indem ich von diesem Hilfssatz aus - der ja im 
Wesentlichen der Satz von der Existenz der Normalba
sis ist - direkt zum Riemann-Rochschen Satz vorstosse, 
also ohne Einfiihrung des Wittschen Formalismus mit der 
Theta-Funktion. 76 

Geyer [33], p.125 has pointed out, however, that this "Witt's lemma" 
had been formulated already in various other situations in the course of 
history. 

7.5. Summary 

• A student of Hasse, H.L. Schmid, gave in his thesis {1934} an 
amendment to Hasse 's paper on cyclic extensions of function 
fields (see section 6.1). H.L. Schmid 's main achievement was 
an explicit formula, involving logarithmic differentials, for the p
th norm symbol when p is the characteristic. As a side result, 
this yields another proof of Artin's reciprocity law, without refer
ring to Tsen's theorem, for cyclic extensions of degree p, namely 
with the help of the residue theorem in function fields. H.L. 
Schmid found also an explicit formula for the n-th norm sym
bol in case n =fc. 0 mod p. But he failed to see that this too could 
have been used to give another proof of Artin's reciprocity law, in 

76Hasse's "Zahlentheorie" appeared in 1949 only, with another publisher 
as originally planned. 11 years earlier (more precisely: in a letter dated Nov 
28, 1938) the original publisher had rejected the book because it had become 
larger than originally planned. When Weil heard of this situation he wrote 
that he was highly indignant ( "aufs hochste em port") about this situation 
and he offered to try to have Hasse's book published in France. But Hasse did 
not consider this possibility. Later, on June 8, 1939, the publisher accepted a 
recommendation by C.L. Siegel and, reversing his former decision, agreed to 
publish Hasse's book. But due to the outbreak of the second world war this 
could not be realized. 
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case n =f= 0 mod p, namely with the help of the product formula 
for the universal symbol. 

• In 1935 Witt published a proof of the class field existence theorem 
for function fields. In the case of exponent n =,E O mod p his proof 
supersedes that of F.K. Schmidt, and he follows the methods of 
index computations as given earlier by Herbrand and Chevalley 
for number fields. In the case of exponent p he relies on H.L. 
Schmid's formulas for the norm symbol in order to have an es
timate for the conductor of an abelian extension of exponent p. 
His methods are original and quite new. - This paper was the 
second in Witt's planned series devoted to class field theory for 
function fields. It provided the last missing stone for the building 
of general class field theory in function fields. 

• In 1936 there appeared Witt's great paper where he introduces 
what is now called Witt vectors. The discovery of Witt vectors 
was intimately connected with problems from class field theory 
for function fields, namely the search for explicit formulas for the 
norm symbol in function fields. H.L. Schmid had done this in 
case of degree p, and now this became possible also in the cyclic 
case of p-power degree, thanks to the calculus of Witt vectors. 

• In 1936 Witt arrived at a proof of the functional equation for F.K. 
Schmidt's £-series with ray class characters for function fields. 
The proof presents, in the function field case, the algebraic ana
logues to the analytic tools which Hecke had used in the number 
field case. Witt never published his proof; it is preserved as hand
written note only, by him and by other mathematicians who had 
heard him lecture on this. The main ingredient is still another 
variant of the Riemann-Roch theorem, whose proof is based on 
the classical method of "normal bases". 77 There is also a paper 
by H.L. Schmid and Teichmuller in which they present Witt's 
proof as they saw it. 

§8. Algebraization 

Let us recall the main steps in the foundation of class field theory 
for function fields which we have discussed above. 

1. F.K. Schmidt's theory of the zeta function and the £-functions: 
1927-31 (sections 4 and 5) 

2. Hasse's proof of the Artin reciprocity law: 1934 (section 6) 

77It seems not to be widely known in the mathematical public that Witt, 
in proving this Riemann-Roch theorem, preceeded Rosenlicht [89] by 16 years. 
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3. Witt's existence theorem for function fields: 1935 (section 7) 

In the thirties there arose the question whether the use of analysis was 
really necessary for the foundation of class field theory. Would it be 
possible to prove the Artin reciprocity law and the existence theorem 
without F.K. Schmidt's analytic theory? 

Looking more closely into the matter we see that only little "analy
sis" was involved. For, F.K. Schmidt had proved that his zeta functions 
and £-series were rational functions and polynomials, respectively, in the 
variable t = q- 1 . Hence what was considered an "analytic" argument 
turns out, from this point of view, to be "algebraic" after all. But this 
is algebra over the field of complex numbers, not over the given function 
field. Hence the search for algebraic proofs in the function field case did 
not so much care about the relation between algebra and analysis: it 
was the search for intrinsic, structural proofs which yield more insight 
into the relevant structures of function fields. 

But the terminology was not quite clear. Some authors spoke of 
"algebraic" proofs, and some of "algebraic-arithmetic" proofs. It is not 
quite clear what should have been the difference between both. Some 
authors used "arithmetic" in the sense that the proof works for function 
fields over finite base fields: these are global function fields which resem
ble the global number fields most. But other authors used "arithmetic" 
also for function fields over arbitrary base fields; in such case the meth
ods used were valuation theoretic or ideal theoretic and, in this sense 
the methods came from the study of ordinary arithmetic of algebraic 
numbers. 

Let us here use the terminology of "algebraic proof" for a proof 
which avoids the use of zeta functions and £-functions and works with 
structures inside the function field only. In this sense, it turned out that 
the algebraization of class field theory for function fields was indeed 
possible. In the following we shall report on the work in this direction, 
and the results. 

8.1. F.K. Schmidt's theorem 

The first instance where the use of analysis had been found to be 
unnecessary was F.K. Schmidt's theorem. As explained in section 4.3.3, 
this theorem asserts that every function field FIK with finite base field 
admits a divisor of degree 1. F.K. Schmidt was quite aware of the curious 
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fact that his original proof used analytic arguments. In a letter to Hasse 
dated January 21, 1933 he comments on this: 78 

Bekannte Tatsache im Fall der algebraischen Punktionen 
mit bel. komplexen Zahlkoeffizienten! Aber hier, wo der 
Konstantenkorper ein Galoisfeld ist, keineswegs trivial, ja 
bisher nicht einmal rein algebraisch, sondern nur mit tran
szendenten Methoden beweisbar. 

Known fact in case of algebraic functions with arbitrary 
complex numbers as coefficients! But here, where the field 
of constants is a Galois field, it is by no means trivial, up 
to now it is not even provable purely algebraically, but 
with transcendental methods only. 

But some months later; on August 7, 1933, he reported to Hasse on a 
postcard: 

Witt schrieb mir vorige Tage, er konne nun bei algebr. 
Fkt. mit einem Galoisfeld als Konstantenkorper rein arith
metisch einen Divisor von der Ordnung 1 nachweisen. 
Sein Beweis sei allerdings langer als mein analytischer. 
Leider teilte er mir aber seinen Beweis nicht mit. 

Witt wrote me some days ago that he was able, in al
gebraic function fields with a Galois field as its field of 
constants, to construct a divisor of degree 1. However his 
proof was longer than my analytic proof. Unfortunately 
he did not convey his proof to me. 

Witt included his proof in the first section of his paper [125] which 
appeared in 1934. Its title is "Uber ein Gegenbeispiel zum Normensatz" 
(On a counter example to the norm theorem). This title does not give 
any hint that the paper also contains a new algebraic proof of F.K. 
Schmidt's theorem; this is perhaps the reason why Witt's proof did not 
become widely known at the time and was rediscovered several times. It 
seems that Witt included that proof because of the similarity of methods 
used in both cases: for F.K. Schmidt's theorem and for the discussion of 
the norm theorem for function fields. In the introduction to this paper 
Witt writes: 

Fur den Satz "In einem Funktionenkorper iiber einem Ga
loisfeld gibt es Divisorenjeder Ordnung" hat F.K. Schmidt 

78Strictly speaking, in this letter F.K. Schmidt did not directly refer to 
his theorem but to the following result which is a consequence of his theorem: 
Every function field of genus zero is rational. 
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einen sehr kurzen und eleganten analytischen Beweis ge
geben. Vom algebmischen Standpunkt ist es wohl nicht 
unniitz, wenn bei dieser Gelegenheit ein gruppentheoretis
cher Beweis mitgeteilt wird. 

The theorem "In a function field over a Galois field there 
exist divisors of every degree" has been given by F.K. 
Schmidt with a very short and elegant analytical proof. 
From the algebraic point of view it may not be super
fluous if on this occasion we present a group theoretical 
proof. 

The "group theoretical" proof which Witt mentions is of cohomological 
nature. Of course, Witt does not explicitly use the modern notions and 
notations of algebraic cohomology; they did not yet exist at the time. 
But in fact, Witt's computations can be interpreted as determining the 
Galois cohomology of the divisor group and related groups, with respect 
to the Galois group G of a finite base field extension F LIL. Here, L 
is chosen as the field whose degree [L : K] equals the smallest positive 
divisor degree of FIK. This choice implies that every prime p of FIK 
splits completely in the extension FL. Hence the divisor group, as a 
G-module, is cohomologically trivial and from this Witt deduces that 
[L: K] = 1. 

In his computations Witt uses a technique very similar to what today 
is known as "Herbrand's lemma" in cohomology; note that G is cyclic 
and hence Herbrand's lemma is applicable. With today's cohomological 
formalism it is possible to rewrite Witt's algebraic proof such that it 
does not appear longer than F.K. Schmidt's. In fact, with only minor 
changes 79 Witt's proof yields the following more general 

Lemma 2. If EIF is a cyclic extension such that every prime p 
of F splits completely in E then E = F. 

79The changes are as follows: Witt uses the fact that the multiplicative 
group Lx of any finite extension L of K is cohomologically trivial, with respect 
to the action of the Galois group. Now with respect to any cyclic group 
action the cohomology of Lx may not be trivial, but since Lx is finite both 
cohomology groups H 0 (Lx) and H 1 (Lx) have the same order. That is what 
is actually needed. (H0 is to be understood in the sense of Tate's modified 
cohomology.) 
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This is almost the statement of the Lemma 1 (see section 6.1.3) 
which Hasse had used in the proof of Theorem B. 80 The differences are 
that, firstly, here we deal with cyclic extensions whereas Lemma 1 refers 
to arbitrary abelian extensions. But this is not essential: if Lemma 1 
holds for cyclic extensions ( or only for cyclic extensions of prime degree) 
then trivially it holds for arbitrary abelian extensions. The second dif
ference seems to be more essential: whereas in Lemma 1 it is assumed 
that almost all primes are completely split, in Lemma 2 this is required 
for all primes. 

Now it has been shown by Chevalley and Nehrkorn [16] how to 
reduce Lemma 1 to Lemma 2. They show (in case EIF is cyclic of prime 
degree) that if almost all primes p of F split completely in E then there 
exists a field F' containing F, linearly disjoint to EIF, such that indeed 
all primes p' of F' split completely in the composite field EF'; hence 
(using Lemma 2) EF' = F' and so E = F. 

Chevalley and Nehrkorn, however, discuss only number fields; their 
construction uses radicals, i.e., Kummer theory, and this is not always 
applicable in the function field case, not if the field degree equals the 
characteristic p. It has been observed by Moriya [80], [81] that the 
Chevalley-Nehrkorn construction works also in the case of degree p if 
Kummer theory is replaced by Artin-Schreier theory. 

Accordingly, Lemma 1 can be reduced to Lemma 2, also in the 
function field case. Now we have said above already that Lemma 2 had 
been proved algebraically by Witt; more precisely, it could have been 
proved with the same cohomological arguments as are used in Witt's 
proof [125] of F.K. Schmidt's theorem. In 1937 Moriya [80] published 
a proof along similar lines as Witt's proof. He does not seem to have 
known Witt's paper because he says: 

I ch vermeide es, diese Tats ache [ daft es einen Divisor I
ten Grades gibt] zu benutzen, weil man, soweit ich weifl, 
zum Beweis die Kongruenzzetafunktion zu Hilfe nehmen 
mufl. 

I avoid to use this fact [that there exists a divisor of degree 
1] because, as far as I know, for its proof it is necessary to 
use the congruence zeta function. 

Moriya's paper carries the title: "Rein arithmetisch-algebraischer Aufbau 
der Klassenkorpertheorie iiber algebraischen Funktionenkorpern einer 

80We use the notations as introduced earlier: Theorems A,B and C are 
stated in section 6.1.1; they concern Artin's reciprocity law. Theorem D is 
the existence theorem in 7.2. 
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Unbestimmten mit endlichem K onstantenkarper" (Purely arithmetic
algebraic foundation of the class field theory for algebraic function fields 
in one indeterminate with finite field of constants). Thus his aim is pre
cisely to eliminate the use of analytic arguments from class field theory 
for function fields. In the course of this he discusses Hasse's Theorem B 
and, as we have said above, reduces it to Lemma 2 and then presents a 
proof of Lemma 2. 

We have seen: Hasse's 1934 proof of Theorem A [51] was of algebraic 
nature. His proof of Theorem B was not, but Moriya [81] gave an 
algebraic proof in 1938. The methods are of cohomological nature and 
very similar to those which Witt used 1934 in his proof of F.K. Schmidt's 
theorem [125]. 

8.2. The new face of class field theory 

Witt says in the introduction to his 1935 paper [127] on the existence 
theorem: 

Die Voranstellung des Artinschen Reziprozitatsgesetzes 
hat eine grof]e Wandlung mit sich gebracht. Die frii,here 
Klassenkarpertheorie ist heute einer Theorie der abelschen 
Karper gewichen. Die frii,her an die Spitze gestellte Ta
kagische Definition des Klassenkarpers hat heute eine an
dere Bedeutung. Sie dient nur noch zur Gewinnung eines 
handlichen Kriteriums fiir abelsche Karper. Ein solches 
Kriterium wird namlich fiir den vollstandigen Beweis des 
Existenzsatzes benatigt. 

Putting Artin's Reciprocity Law first has brought great 
changes. Today the former class field theory has given 
way to a theory of abelian fields. Takagi's definition of a 
class field, which formerly had been the starting point, is 
today regarded from a different perspective. It is consid
ered as a convenient criterion for abelian fields only. For, 
such a criterion is necessary for the complete proof of the 
existence theorem. 

What does this mean? What kind of changes did Witt have in mind? 
Witt distinguishes between "former class field theory" and "theory 

of abelian fields". Takagi's definition of a class field, he says, is not fun
damental in the body of the "theory of abelian fields" but of secondary 
importance only. 

This seems to indicate that Witt proposes to include into the body 
of his "theory of abelian fields" the union of Theorems A, B and D only 
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while Theorem C, referring to the Takagi groups, is separated and not 
regarded any more to be fundamental. 

Note that Theorems A and B are those which we just have listed 
as having been proved algebraically. Is Witt's proof of the existence 
theorem D also algebraic? 

Witt himself does not discuss this question. But since he is separat
ing Theorem C (which was not yet proved algebraically) from the body 
of the other theorems, he seems to have been aware of the problem. In 
his proof of the existence theorem he says that he accepts the full result 
of Hasse's paper which is partly based on analytic properties of L-series. 
But if one looks more closely into his proofs then it turns out that in 
fact, from Hasse he uses only Theorems A and B in order to prove D. 
Consequently, Witt's proof yields an algebraic foundation of what he 
calls "theory of abelian fields" in the function field case. 

As to Theorem C, the case was discussed carefully by Chevalley
Nehrkorn in their 1935 paper [16] (which Witt seemed not to know). 
They presented a method how to reinterpret Witt's proof in a purely 
algebraic manner, such that at the same time it also yields C. This is 
a nice idea and is worthwhile to be discussed a little bit further. To be 
sure, Chevalley and Nehrkorn did not discuss function fields; they were 
concerned with class field theory in number fields ( and apparently did 
not know Witt's paper). But the same idea applies to the function field 
case, and this was explicitly pointed out by Moriya [81]. 

Let EIF be an abelian extension of degree n, and Hm its Artin group 
for a suitable module m (e.g., we can take form the conductor of EIF). 
By Theorems A and B we see that the index ( Cm : Hm) = n. The Takagi 
group, or norm group Nm is a subgroup of Hm, as follows immediately 
from the definitions. Hence for the index hm = (Cm : Nm) of the Takagi 
group it follows 

(32) 

This is the "second" inequality of classical class field theory. Usually, in 
classical class field theory one proves first the "first" inequality hm ::; n, 
namely by analytic means. The "second" inequality then shows hm = n 
and hence Hm = Nm. 

Thus in the new algebraic setting, the second inequality is proved 
before the first inequality! This has led several authors to rename those 
inequalities: what formerly was the first was now named second, and 
vice versa. As could be expected, this produced a certain amount of 
uncertainty. Anyone reading the literature of the time should be aware 
that the terminology in this respect is not uniform. 
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Using the inequality (32), be it called "first" or "second", Chevalley 
and Nehrkorn proved the following result which we state as a lemma. 

Lemma 3. Let F CE' CE be a tower of abelian fields over F, 
of degree n', n over F respectively. Let m contain the conductor of EIF. 
If hm = n then also h~ = n'. In other words: If EIF is a class field in 
Takagi's sense then E'IF is so too. 

This being said, Witt's existence proof can now be interpreted as 
being purely algebraic, also yielding C, as follows: We use the same 
notations as in our discussion of Witt's proof in section 7.2. Given 
m and n, Witt's construction yields an abelian field EIF whose Artin 
group is precisely C~ and coincides with its Takagi group. Then for 
all intermediate groups Hm between C~ and Cm there exists, by Artin's 
reciprocity isomorphism and Galois theory, an intermediate field between 
F and E whose Artin group is Hm; using Lemma 3 we conclude that 
Hm coincides with the Takagi group of that field. 

A slight difficulty arises when n =fa O mod p and the n-th roots of 
unity are not contained in F. Then in order to construct the field E 
Witt has first to adjoin then-th roots of unity and then perform his con
struction via Kummer theory. One has to be sure that the constructed 
field is abelian over the original field F. For this Witt uses Takagi's 
theorem C as a "convenient criterion for abelian fields", as he had an
nounced in the introduction ( see above). He sketches a new proof of this 
criterion 81 and informs us that it is based on an idea of Iyanaga. 

8.3. Summary 

• In the thirties we observe a tendency to eliminate analytic ar
guments from the foundations of class field theory, in particular 
from class field theory for Junction fields. The motivation was to 
arrive at a better understanding of the underlying structures of 
class field theory. 

• The first theorem which was freed from analytical proofs was F.K. 
Schmidt's theorem on the existence of a divisor of degree 1. Witt 
discovered an algebraic proof in 1933. He included his proof in 
his paper on a counterexample of the norm theorem, but it seems 
that it did not become widely known at the time. 

81 The criterion had been stated and proved already by Hasse in §5 of Part 
II of his class field report (38]. 
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• Chevalley and Nehrkom 1935 supplied useful ideas for the alge
braization of the proofs in class field theory. They discussed num
ber fields only but M oriya 1937 showed that their results could be 
transferred to the function field case. 

• Consequently it became possible to give algebraic proofs of all 
main theorems of class field theory in the function field case. The 
main ingredients are (i) Hasse 's algebraic proof of the sum rela
tion for the local invariants of a simple algebra, and (ii) Witt's 
proof of the existence theorem. The latter rests on an idea of 
Herbrand in the case when the index is not divisible by the char
acteristic, and otherwise on H.L. Schmid 's explicit formulas for 
the norm residue symbol. 

• An exposition of the algebraic foundation of class field theory in 
function fields was given in M oriya 's paper 1937. 
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