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We lastly prove the last assertion. By the first assertion, the map 
1 - u induces a surjective homomorphism 

¢A(k): A(k)/P(k/F)------. W(k)/P(k/F) 1-a 

of quotients. Let a E A(k) satisfy aP(k/F) E ker¢A(k), i.e., a 1-a = 
,,1 -a for some')' E P(k/ F). Then, a/')' is invariant under u and hence 
lies in px. It follows a E P(k/ F). Therefore, ¢P(k/ F) is an injection 
and hence is an isomorphism. Identity [A(k) : P(k/F)] = [A(k) 1-a : 

P(k/ F) 1-a] follows. The first two assertions and this identity imply the 
last assertion. • 

Lemma 18. Let k CK be CM-fields. Then we have w(k) I w(K), 
w(k)Q(k) I w(K)Q(K) and w(k)Q(k)"'(k) I w(K)Q(K)"'(K). 

Proof. The first assertion is obvious. The second and the third 
assertions are proven in a similar way. Hence, we give a proof for the 
third assertion. 

Since w(k) = 2 [W(k) 1-a : 1], the second assertion of Lemma 17 
implies 1>,(k)Q(k)w(k) = 2 [P(k/k+)l-a : 1]. Similarly, we can obtain 
"'(K)Q(K) w(K) = 2 [P(K/K+) 1-a : 1]. On the other hand, we ob­
viously have P(k/k+) c P(K/ K+)- Hence, [P(k/k+) 1-a : 1] divides 
[P(K/K+)l-a: l]. The desired assertion follows immediately. • 

Remark. If w(K)/w(k) is odd, the latter two divisibilities of 
Lemma 17 imply Q(k) I Q(K) and Q(k)"'(k) I Q(K)"'(K). If further 
we have Q(k) = 2, we get Q(K) = 2. Hence, we can sometimes calcu­
late a Hasse's unit index of a CM-field through calculation of a Hasse's 
unit index ofa smaller CM-field. However, Q(K)/Q(k) = 1/2 sometimes 
happens when w(K)/w(k) is even. Lenstra's example in the preface to 
1985-edition of [1] (see also [9]) is 

Example 19. Let F = Q(~)- Then, h(F) = 2. Let k = 

F(R) and k' = F(A). Then, we have w(k) = 4, w(k') = Q(k) = 
Q(k') = 2, "'(k) = "'(k') = 1 and h-(k) = h-(k') = 4. Set K = kk'. 
We have K+ = Q( v'S, v'17), h(K+) = l. (K+/ F is unramified.} We 
have w(K) = 8,Q(K) = 1, "'(K) = 1, T(K/ F) = 2, c(K/ F) = 4 and 
h-(K) = 4. Therefore, h-(k) and h-(k') divide h-(K). Note that 
Q(K)/Q(k) = Q(K)/Q(k') = 1/2 holds. 

See Hirabayashi and Yoshino [4] for further discussion and examples. 
Determination of indices Q(k) and 1>,(k) is relatively easy if k does 

not contain A. However, it becomes delicate if k contains A. 
Therefore, we prepare a tool for dealing with CM-fields which contain 
A. 
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Definition 20. We define Viete numbers Vo,½, V3 , ... by 

Vo= 2; ½+1 = 2 + J½" (i = 0, 1, 2, ... ). 

The Viete index I of a number field L is the maximal index i such that 
v; E L. The ideal V = (Vi) is called the Viete ideal of L. 

Remark. Viete's historical formula for 1r is 

with square roots taken in positive real numbers. (See e.g. [7, p. 251].) 
Viete numbers are algebraic integers. We see that Q(v;, J=I) is the 

2i+2-th cyclotomic field. Or more precisely, v; = (1 + ()(1 + (-1 ) holds 
for some 2i+2-th root ( of unity. The Viete ideal V is characterized by 
V = ( ( 1 + () ( 1 + (-1 )) for a generator ( of the 2-part of W ( L( H)). 

With notion of Viete ideals, we determine Q(k) and K(k) of CM­
fields k: 

Lemma 21. Let k/ F be a CM-extension. Choose 8 E F such that 
k = F( R). If k =/- F( H), indices Q(k) and K(k) are determined as 
follows: 

Q(k) K(k) condition; 
(i) 1 1 if ( 8) is not a square of any ideal of F; 

(ii) 1 2 if ( 8) is a square of a non-principal ideal of F; 
(iii) 2 1 if ( 8) is a square of a principal ideal of F. 

If k = F(H), indices Q(k) and K(k) are determined as follows: 
Q(k) K(k) condition; 

(iv) 1 1 if V is not a square of any ideal of F; 
(v) 1 2 if V is a square of a non-principal ideal of F; 

(vi) 2 1 if V is a square of a principal ideal of F. 
where V is the Viete ideal of F. 

Proof. We denote the complex conjugation of k by a. 
Case (i): We assume (8) is not a square of any ideal of F. Then, RE 
A( k) and R rf. P( k / F) hold. By the last statement of Lemma 17, we 
conclude Q(k)K(k) = 1. 
Case (ii): We assume (8) is a square of a non-principal ideal of F. 
Obviously, K(k) > 1 follows. By the third assertion of Lemma 17, we 
conclude K(k) = 2 and Q(k) = 1. 
Case (iii): We assume k =/- F(H) and (8) is a square of a principal 

ideal (/3) in F with f3 E px. Then, c = 8 / (32 is a unit in F and 
Fc = h//3 Ek holds. Let ( be a generator of W(k) and set rJ = 
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(F. Then, we get ,,.,1-u = -(2 • Since A fj. k, (r,1-u) 2 = ( 4 

generates the subgroup W(k) 2 of index 2 in W(k). Since f,2 E W(k) 2 

and -1 fj. W(k)2, the unit ,,.,1-u = -(2 does not belong to W(k) 2 • We 
get [E(k) 1-u : W(k)2] > 1. By the second assertion of Lemma 17, we 
conclude Q(k) = 2 and ,.;,(k) = 1. 

We now assume k = F( A). Let ( be the generator of the 2-part 
of W(k) and ~ the generator of the odd-part of W(k). Then e-u = 
f.2 is also a generator of the odd-part of W(k). On the other hand, 
(1+() 1-u = ( generates the 2-part of W(k). Therefore, a 1-u generates 
W(k) for a= (1+()~. On the other hand, (a2 ) = ((1+()(1+(-1 )) = V 
holds. (Recall comment after Definition 20.) 
Case (iv): In addition to k = F( A), we assume that V is not a 

square of any ideal of F. The fact (a)2 = V and the current assumption 
imply [A(k) : P(k/F)] > 1. By the last assertion of Lemma 17, we 
conclude Q(k) = ,.;,(k) = 1. 
Case (v): In addition to k = F( A), we assume that Vis a square of 
a non-principal ideal of F. Then, a generates an ideal of F. Hence, we 
get ,.;,(k) > 1. By the third assertion of Lemma 17, we conclude Q(k) = 1 
and ,.;,(k) = 2. 
Case (vi): In addition to k = F( A), we assume that Vis a square 
of a principal ideal (/3) in F with /3 E F. We see that a/ /3 is a unit 
ink and (a//3) 1-u = a 1-u generates W(k). By the second assertion of 
Lemma 17, we conclude Q(k) = 2 and ,.;,(k) = 1. 

We determined Q(k) and ,.;,(k) in all cases. D 

The following lemma is also well-known and is useful for calculation. 

Lemma 22. Let k be a CM-field. If E+(k+) = E(k+)2 , we have 
Q(k) = 2. If h(k+) is odd, we have ,.;,(k) = 2. 

Proof. Let F = k+. We prove contrapositive of the assertions. 
Assume Q(k) = 2. Then, Case (iii) or (vi) of Lemma 21 holds: 

In Case (iii), there is an element /3 of F and r, E E+(F) such that 
8 = r,/32 . Hence, we have F( ...J=ri) = k =/- F( A). Hence, we get 
r, E E+(F) - E(F)2 and hence E+(k+) =/- E(k+)2 In Case (vi), there is 
an element /3 of F and r, E E+(F) such that½= r,{32 , where I denotes 
the Viete index of F. By definition of Viete index, ½ is not a square in 
F. Hence, we get r, E E+(F) - E(F)2 and hence E+(k+) =/- E(k+)2. A 
proof of the first assertion completes. 

Assume ,.;,(k) = 2. Then, Case (ii) or (v) of Lemma 21 holds. In 
either case, there is a non-principal ideal of F whose square is principal. 
Therefore, h(F) is even. A proof of the second assertion completes. D 
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Lemmata of this subsection is silently used for calculation of exam­
ples through out the current paper. 

2.3. Denominator Constant of Class Number Relation 
We shall prove that the denominator constant of class number rela­

tion belongs to {1, 2, 4}. We also investigate the real delicacy of combi­
nation of indices by several examples. 

Lemma 23. Let k/ F and k' / F be distinct CM-extensions. De­
note by i the Viete index of F. Set r(K/ F) = 2 if K = F( A, y'17;) 
and r(K/F) = 1 otherwise. Then, we have 

Moreover, we have 

[W(K): W(k)W(k')] = r(K/F). 

w(k)w(k') 
w(K) 

2 

r(K/F). 

Proof. We firstly reduce the second assertion to the first assertion. 
We note that kn k' = F implies W(k) n W(k') = W(F) = {±1}. 
Therefore, we have W(k)W(k')/{±1} '.::::'. W(k)/{±1} x W(k')/{±1}. In 
particular, we get 2 #(W(k)W(k')) = w(k)w(k'). Therefore, the second 
assertion is reduced to the first assertion. 

We now prove the first assertion. Let p be the non-trivial conjuga­
tion of K/k and a the complex conjugation of K. Then, pa becomes 
the non-trivial conjugation of K/k'. We consider the maps 1/J : 3 E 
W(K) f----+ (Bl+P,Sl+Pu) E W(k) x W(k') and r.p : (l,f) E W(k) x 
W(k') f----+ ee E W(K). Identities e+P = e, e+pu = Nk/Fl = 1, 

el+p = Nk'/Fl = 1, andfl+pu = e2 imply1/Jr.p(l,0 = (e,e12 ). On the 
other hand, we have r.p'ljJ(B) = 32+p(Hu) = 3 2 • Therefore, 1jJ and r.p in­
duces isomorphisms between the odd-parts of W(k) x W(k') and W(K). 
(They do not necessarily give a pair of inverse isomorphisms.) Since 1/J 
factors through W(k)W(k'), we see that the odd-parts of W(k)W(k') 
and W(K) are identical. Comparison of the 2-part of W(k)W(k') and 
W(K) is left. 

If J=I ri K, then the 2-parts of W(k), W(k') and W(K) are all 
identical to {±1}. Therefore the 2-part of W(k)W(k') and W(K) agrees. 
On the other hand, r(K/ F) = 1 holds in this situation. Therefore, we 
get [W(K): W(k)W(k')] = 1 = r(K/F). 

We now assume A E K. We assume A E k without loss 
of generality. The 2-part of W(k) is generated by a 2i+2-th root of 
unity. The 2-part of W(k') is {±1}. Hence, the 2-part of W(k)W(k') is 
generated by a 2H2-th root of unity. Let I be the Viete index of K+. 
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Then, the 2-part of W(K) is generated by a 21+2-th root of unity. Under 
our situation, T(K/F) = 21-i. Comparison of the order of 2-parts of 
W(k)W(k') and W(K) now implies [W(K) : W(k)W(k')] = T(K/F). 
Our proof for the first assertion completes. • 

We are now ready to prove the following lemma. 

Lemma 24. Let k/ F and k' / F be distinct CM-extensions. Then, 
we have 

[E(K) : E(k)E(k')E(K+)l = 1 or 2. 

Moreover, the denominator constant c(K/ F) of class number relation 
satisfy 

c(K/F) E {1,2,4}. 

If not both of k and k' are obtained by adjoining square roots of units in 
F to F, the denominator constant c( K / F) satisfies 

c(K/ F) E {1, 2}. 

Proof. We firstly reduce the second and the third assertions to the 
first assertion. By (4), we have 

c(K/F) = 21+v /[E(K): E(k)E(k')E(K+)J 

with v E { 0, 1}. Hence, the second assertion is reduced to the first 
assertion. The condition of the third assertion implies v = 0. Hence, 
the third assertion is reduced to the first assertion. 

We now prove the first assertion. We have the following inclusions: 

W(k)W(k')E(K+) c W(K)E(K+) c E(K). 

Identity [E(K) : W(k)W(k')E(K+)J = T(K/F)Q(K) follows. On the 
other hand, we have the following inclusions: 

W(k)W(k')E(K+) c E(k)E(k')E(K+) c E(K). 

Therefore, the index [E(K) : E(k)E(k')E(K+)J divides T(K/F)Q(K). 
The assertion of the theorem follows if T(K/F) or Q(K) is 1. (Recall 
that Lemma 17 and 23 imply T(K/F),Q(K) E {1,2}.) 

We now assume T(K/ F) = Q(K) = 2. Let i be the Viete index of 
F. Under the current assumption, K+ = F( ~) holds by Lemma 23. 
Therefore, i + 1 is the Viete index of K+· By Lemma 21, Q(K) = 2 
implies that the Viete ideal (½+1 ) of K+ is a square of a principal ideal 
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of K+· Choose a E K+ such that (¼+1 ) = (a)2 . Taking norm to 
F, we get (¼) = (NK+/FVi+1) = (NK+/Fa)2. By Lemma 21, we get 
Q(k) = 2. 

Let ( be a generator of the 2-part G of W(k). Set /3 = NK+/Fa 
and,= (1 + ()//3. Then,, E E(k) holds. On the other hand, /3/./V;, E 

E(K+) follows from K+ = F(./V;,). Set~ = , · /3/./V;,. Then, ~ E 
E(k)E(K+) holds. On the other hand~= (1 + ()/v'V;, generates the 
2-part of W(K). Therefore, W(K)E(K+) c E(k)W(k')E(K+) follows. 
Hence, we get W(K)E(K+) c E(k)E(k')E(K+)- Now, we see [E(K): 
E(k)E(k')E(K+)J divides [E(K): W(K)E(K+)J = Q(K) = 2. o 

In the proof, the following fact became apparent: 

Lemma 25. Let k' / F be a CM-extension other than F( A). Set 
k = F( A) and K = kk'. Then, the following implications hold. 

• T(K/ F) = Q(K) = 2 ===} 

• T(K/F) =Q(k) =2 ===} 

• T(K/F) = Q(k') = 2 ===} 

• [E+(F) : E(F)2] = Q(k) = Q(k') = 2 ===} 

Q(k) = 2; 
Q(k') = 2; 
Q(k) = 2; 

T(K/F) = 2. 

Here, E+(F) denotes the group of totally positive units of F. 

When [E+(F) : E(F)2] = Q(k) = Q(k') = 2, equality Q(K) = 2 
is possible but not necessary. An example of Q(K) = 1 is Example 19. 
Two examples of Q(K) = 2 are below: 

Example 26. Let F = Q( J-8 • -3). Then, h(F) = 1. The Viete 
index i of F is O and (¼) = (2 + v'6)2 . Let k = F( R) and k' = 
F(A). Then, we have w(k) = 4, w(k') = 2 · 3, Q(k) = Q(k') = 2, 
1,,(k) = 1,,(k') = 1, h-(k) = 2 and h-(k') = 1. Here, k/F is ramified 
above (2) and k' / F is unramified at all finite primes. Set K = kk'. 
The Viete index I of K+ is 1 and (Vi) = ((1+ v'2 + ../3)/v'2)2. We 
have K+ = F(./8), h(K+) = 1, w(K) = 8 · 3, Q(K) = 2, 1,,(K) = 1, 
T(K/F) = c(K/F) = 2 and h-(K) = 1. Therefore, h-(k') divides 
h-(K). 

Example 27. Let F = Q( J-8 · -7). Then, h(F) = 1. The Viete 
index i of Fis O and(¼) = (4 + Jl4)2 . Let k = F(R) and k' = 
F(A). Then, we have w(k) = 4, w(k') = Q(k) = 2, Q(k') = 2, 
1,,(k) = 1,,(k') = 1, h-(k) = 4 and h-(k') = 1. Here, k/F is ramified 
above (2) and k' / F is unramified at all finite primes. Set K = kk'. We 
have h(K+) = 1. The Viete index I of K+ is 1 and (Vi)= ((1 + v'2 + 
./7)/v'2)2. We have K+ = F(./8), h(K+) = 1, w(K) = 8, Q(K) = 2, 
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rs(K) = 1, T(K/F) = c(K/F) = 2 and h-(K) = 2. Therefore, h-(k') 
divides h - ( K). 

In Examples 26 and 27, the Viete ideal of K+ is a square of a 
principal ideal of K+ which is not a lift of any ideal of F. In some cases, 
the Viete ideal of K+ is a square of a lift of an ideal of F: 

Example 28. Let F = Q( ✓-8 • -3, ✓-4 • -11). Then, we have 
h(F) = 2. The Viete index i of F is 0. We have (¼) = (2 + v16) 2 = 

(3 + v'l1) 2 = (8 + vf66) 2 . The prime ideal (2) ramifies totally in F /Q 
and the prime ideal of F above (2) is generated by 2/ (1 + v16 + v'll). Let 
k = F( R) and k' = F( A). Then, we have w(k) = 4, w(k') = 2 · 3, 
Q(k) = Q(k') = 2, rs(k) = rs(k') = 1, h-(k) = 4 and h-(k') = 2. Here, 
k / F and k' / F are unramified at all finite primes. Set K = kk'. Then, 
we have K+ = F( v'S). The Viete index I of K+ is 1. We have (Vi) = 

(2/(1 + v16 + v'l1)) 2 • We have h(K+) = 1, w(K) = 8 · 3, Q(K) = 2, 
rs(K) = 1, T(K/F) = c(K/F) = 2 and h-(K) = 4. Therefore, h-(k) 
and h-(k') divide h-(K). 

Example 29. Let F = Q( ✓-8 · -3, ✓-4 · - 7). Then, we have 
h(F) = 2. The Viete index i of F is 0. We have (¼) = (2 + v16) 2 = 

(3 + ,/7) 2 • However, the prime ideal of Q( ✓8 • -3 • - 7) above (2) is 
non-principal as it is verified by use of Legendre symbol. The prime ideal 
(2) ramifies totally in F /Q but the prime ideal of F above (2) is non­
principal. (Note that its norm to Q(✓8 • -3 • -7) is non-principal.) Let 
k = F(R) and k' = F(H). Then, we have w(k) = 4, w(k') = 2 · 3, 
Q(k) = Q(k') = 2, rs(k) = rs(k') = 1, h-(k) = 2 and h-(k') = 4. 
Here, k / F and k' / F are unramified at all finite primes. Set K = kk'. 
Then, we have K+ = F(v'S). The Viete index I of K+ is 1. We have 
(Vi) = ( (1 + v'2 + ✓3) / v'2) 2 = ( (1 + v'2 + ,/7) / v'2)2. ( The prime ideal 
of F above (2) capitulates in K+/ F.) We have h(K+) = l, w(K) = 
8 · 3, Q(K) = 2, rs(K) = 1, T(K/F) = c(K/F) = 2 and h-(K) = 4. 
Therefore, h-(k) and h-(k') divide h-(K). 

(Proof of h(K+) = 1 for these two examples is in [13]. Since K+/ F 
is unramified, this implies h(F) = 2 by class field theory.) 

We cannot infer T(K/ F) = 2 from Q(k) = Q(k') = 2 and k = 

k+h/=I) alone, although T(K/F) = 2 is possible as Examples 19, 26 
and 27 show. 

Example 30. Let F = Q(v'S, ✓-8 · -7). Then, we have h(F) = 

1. We also have [E+(F) : E(F)2] = 4. The Viete index i of F is 
1. We have (¼) = ((1 + v'2 + ,/7)/v'2) 2 • Let k = F( R) and 

k' = F ( J-(3 + ,/7)(2 + v'2)/2). Then, we have w(k) = 8, w(k') = 
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Q(k) = Q(k') = 2, K(k) = K(k') = 1, h-(k) = 2 and h-(k') = 4. Here, 
k/F is unramified at all finite primes and k'/F is ramified above (2). 
Set K = kk'. Then, K+/F is ramified above (2). The Viete index I of 
K+ equals i. We have h(K+) = 1, w(K) = 8, Q(K) = 2, K(K) = 1, 
r(K/F) = 1, c(K/F) = 4 and h-(K) = 2. Therefore, h-(k) divides 
h-(K). 

Below is slightly difficult part of calculation of Example 30: 
Data of F: The group E(F) is generated by -1, 1 + J2, (4+ v1l4)/J2, 
(3+v7)/J2. Therefore, E+(F) is generated by (l+J2)2, (l+J2)(4+ 
v'I4)/J2, (1 + J2)(3 + v7)/J2. Hence have [E+(F): E(F)2] = 4. 

A quartic subfield of k': Let Tl= J-(3 + v7)(2 + J2)/2 and ry' =/- ±ry 

a conjugate of Tl over (Ql( v'M). Then, we have (ryry') 2 = l. Since ±ry' 
are conjugate integers of Tl over Q( v'M), we get that ry" = 1 / Tl is a 
conjugate of Tl over (Ql( v'M). It is easy to verify (ry + ry") 2 = -4 - v'I4 
and (ry-ry") 2 = -8-v'M = (-4+v1l4)(3+v'I4)2. Therefore, k' contains 

the normal closure of L = (Ql ( J-4 - v'M). Comparing degrees, we see 

that k' is the normal closure of L. Since the maximal abelian subfield of 
Lis Q(v'M), we have w(L) = 2. Since J-4-v'M belongs to A(L)­
P(L/F), the last assertion of Lemma 17 implies Q(L) = K(L) = l. We 
have h-(L) = 2. (See [10, p 1143].) 
Data of k': Since k' is obtained by composing conjugate fields of L, 
class number relation (2) and (3) imply h-(k') = w(k')Q(k')h-(L)2 /4 = 
w( k')Q( k'). Since the maximal abelian subfield of k' is Q( Js, ✓-8 · - 7), 
we have w(k') = 2. On the other hand, k' /(Ql is non-abelian while k/(Ql is 
abelian. Hence, k' =I- k follows. Moreover, Tl is a unit. These two points 
imply Q(k') = 2 by Lemma 21. We now see h-(k') = 4. Pari (ver. 2.06) 
confirms h(k') = h((Ql[X]/(X8 + 12X6 + 24X4 + 12X2 + 1)) = 1. 
Data of K+: Since the maximal abelian subfield of K+ is F, the Viete 
index I of K+ equals i. Pari (ver. 2.06) computes h(K+) = h((Ql[X]/(X8 

-12X6 + 24X4 - 12X2 + 1)) = 1. 
Data of K: The previous assertion implies Q(K) = Q(k) = 2 and 
r(K/F) = l. Since the maximal abelian subfield of K is k, we have 
w(K) = w(k) = 8. Now, we have enough data to calculate c(K/ F) = 4 
and h-(K) = 2. 

When k = F(H), Q(k) = 2, Q(k') = 1 and r(K/F) = 1 hold, 
Lemma 18 implies Q(K) = 2 and hence c(K/F) = 2. However, the 
situation is again complicated when k = F( A), Q(k) = 1, Q(k') = 2 
and r(K/F) = l. There is an example of Q(K) = 1 (c(K/F) = 4) and 
examples of Q(K) = 2 (c(K/F) = 2.) 
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Example 31. Let F = Q(v-3 · 5 · -7). Then, we have h(F) = 
2. The Viete index i of F is 0. The Viete ideal(¼) of F is not a square 
of any ideal of F. Let E = 41 +4Jios. Then, we have (10+Jios)2 = 5c. 
Let k = F( A) and k' = F( yCT-"5) = F( F). Then, we have 
w(k) = 4, w(k') = 2, Q(k) = 1, Q(k') = 2, fi,(k) = fi,(k') = 1, h-(k) = 4 
and h-(k') = 8. Here, k/F and k'/F are unmmified above (2). Set 
K = kk'. Then, K + / F = F ( v'S) / F is unmmified. The Viete index I of 
K+ is 0. The Viete ideal (Vr) of F is not a square of any ideal of F. We 
have h(K+) = 1, w(K) = 4, Q(K) = fi,(K) = T(K/F) = 1, c(K/F) = 4 
and h-(K) = 8. Therefore, h-(k) and h-(k') divide h-(K). 

Example 32. Let F = Q( v-4 • -3 • 5). Then, we have h(F) = 

2. The Viete index i of F is 0. The Viete ideal (¼) of F is a square of a 
non-principal ideal of F. Let E = 4 + ,v'15. Then, we have (3 + -v'15) 2 = 
6c. Let k = F(A) and k' = F(~) = F(Fc). Then, we have 
w(k) = 4, w(k') = 2, Q(k) = 1, Q(k') = 2, fi,(k) = 2, fi,(k') = 1, 
h- ( k) = 1 and h- ( k') = 4. Here, k / F is unmmified at all finite primes 
and k' / F is unmmified above (2). Set K = kk'. Then, we have K+/ F = 
F(v-8 · -3)/F is ramified above (2). The Viete index I of K+ is 0. 
We have (Vr) = (4+ _./6)2. We have h(K+) = 2, w(K) = 4, Q(K) = 2, 
fi,(K) = T(K/F) = 1, c(K/F) = 2 and h-(K) = 2. Therefore, h-(k) 
divides h- ( K). 

Example 33. Let F = Q(y-8 · -3 · 5). Then, we have h(F) = 

2. The Viete index i of F is 0. The Viete ideal(¼) of F is a square of a 
non-principal ideal of F. Let E = 11 +2v'30. Then, we have (5+v'30) 2 = 

5c. Let k = F(A) and k' = F(yCT-"5) = F(Fc). Then, we have 
w(k) = 4, w(k') = 2, Q(k) = 1, Q(k') = 2, fi,(k) = 2, fi,(k') = 1, h-(k) = 
2 and h-(k') = 4. Here, k/F and k'/F are unmmified above (2). Set 
K = kk'. Then, we have K+ = F(y'S). Then, K+/F is unmmified. 
The Viete index I of K+ is 0. We have (Vr) = (2 + _./6) 2 • We have 
h(K+) = 1, w(K) = 4, Q(K) = 2, fi,(K) = T(K/F) = 1, c(K/F) = 2 
and h-(K) = 4. Therefore, h-(k) and h-(k') divide h-(K). 

§3. Consistency of the Two Competing Tools 

We shall firstly formulate the essential part of the proposed problem 
of consistency in §§3.l. The formulation will be the parity equality of 
Theorems 1 and 2. We shall secondly give non-trivial examples of parity 
equality in §§3.2. We shall lastly prove parity equality in §§3.3. 
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3. 1. Parity Equality as Consistency 

We shall formulate the essential part of the proposed problem of 
consistency. 

Let k/ F and k' / F be distinct CM-extensions. Set K = kk'. We 
display Identity (6) and (5): 

(9) 

(10) c(K/F) E {1,2, ... ,21+v} 

where v is 1 if k and k' are obtained by adjoining square roots of units 
to F and O otherwise. 

Identity ( 9) together with ( 10) suggests h - ( K) / h - ( k) can have non­
trivial denominator. Indeed, it does have non-trivial denominator in 
some cases as Examples 11, 12, 13 and 14 show. 

On the other hand, Propositions 8 and 9 implies (7), i.e., 

(11) 

under the situation 

(A) k / F is unramified at all finite primes or 
(B) K+/ Fis unramified. 

This looks contradicting the mentioned suggestion. We analyze del­
icate relation of ( 9) and ( 11). 
1. If h-(k) is odd, comparison of denominators in the both sides of (9) 
implies (11). 
2. If h - ( k) is even under situation (A) or (B), we need either 2 I h- ( k') 
or c( K / F) = 1 for consistency of ( 9) and ( 11). Indeed, c( K / F) is often 
2. Therefore, we are lead to 

Suspicion: Some principle forces h-(k') to be even when h-(k) is 
even under situation (A) or (B). 

Of course, possibility of c( K / F) = 4 poses a further difficult problem. 
(See Example 19.) However, Suspicion explains some part of consistency 
of (11) with (9). 
3. Under situation (A), we have E+(k+) -j:. E(k+) 2 • If k' /Fis ramified 
at some finite prime under situation (A), h-(k') is even (by Lemma 15) 
and Suspicion is explained. 
4. Therefore, interesting cases are (A') and (B), where (A') is the fol­
lowing situation: 
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(A') k/ F and k' / F are unramified at all finite primes. 

Since situations (A') and (B) have symmetry with respect to exchange 
of k and k', Suspicion is formulated as the following equivalence 

under situation (A') or (B). The equivalence is stated as parity equality 
in Theorems 1 and 2. 

In conclusion, Theorems 1 and 2 are interpretation of some part of a 
delicate competition and consistency of the field theoretic tool and class 
number relation. 

3.2. Examples of Parity Equality 

We shall give delicate examples for Theorems 1, 2, Propositions 8 
and 9. The examples shall illustrate that the formulated problem indeed 
makes sense. 

We begin with Theorem 1 and Proposition 8. 

Example 34. Let F = (Q)( ✓-4 · -3 · 5). Then, h(F) = 2. The 
Viete index i of F is 0. The Viete ideal (¼) is a square of a non­
principal ideal of F. Let k = F( A) and k' = F( A). Then, we 
have w(k) = 4, w(k') = 2 · 3, Q(k) = Q(k') = 1, 11:(k) = 11:(k') = 2 and 
h-(k) = h-(k') = 1. Moreover, k/ F and k' / F are unramified at all 
finite primes. Set K = kk'. The Viete index I of K+ equals i. We have 
(Vi)= (1 + v3)2 • We have K+ = F(v'5), h(K+) = 1, w(K) = 4 · 3, 
Q(K) = 2, 11:(K) = 1, T(K/F) = 1, c(K/F) = 1 and h-(K) = 1. 
Therefore h-(k) and h-(k') divide h-(K). 

Example 35. LetF=Q(✓-4·-3-17). Then, h(F) =2. The 
Viete index i of F is 0. We have (¼) = (7 + v51) 2 • Let k = F( A) 
and k' = F( A). Then, we have w(k) = 4, w(k') = 2 · 3, Q(k) = 2, 
Q(k') = 1, 11:(k) = 1, 11:(k') = 2, and h-(k) = h-(k') = 2. Moreover, 
k/ F and k' / F are unramified at all finite primes. Set K = kk'. The 
Viete index I of K+ equals i. We have K+ = F(✓T7), h(K+) = 1, 
w(K) = 4 · 3, Q(K) = 2, 11:(K) = 1, T(K/ F) = 1, c(K/ F) = 2 and 
h-(K) = 2. Therefore h-(k) and h-(k') divide h-(K). 

The CM-field k' in Example 35 shows that the order of 2 in h-(k') 
can be greater than the lower bound imposed by Lemma 4. 

We turn to Theorem 2 and Proposition 9. 

Example 36. Let F = (Q)(~). Then, h(F) = 2. The Viete 
index of F is 0. The Viete ideal(¼:) is a square of a non-principal ideal 
of F. Let k = F(A) and k' = F(H). Then, we have w(k) = 4, 
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w(k') = 2, Q(k) = Q(k') = 1, K(k) = K(k') = 2 and h-(k) = h-(k') = 
1. Extensions k/F and k'/F are ramified above (2). Set K = kk'. 
Then, K+/F = F(vB)/F is unramified. The Viete index I of K+ is 
1. The Viete ideal (Vi) is not a square of any ideal of K+. We have 
h(K+) = 1, w(K) = 8, Q(K) = 1, K(K) = 1, T(K/F) = 2, c(K/F) = 1, 
and h-(K) = 1. Therefore h-(k) and h-(k') divide h-(K). 

Example 37. Let F = (Q)(-v'B-5). Then, h(F) = 2. Let k = 
F(H) and k' = F(~)- Then, we have w(k) = 2 · 3, w(k') = 2, 
Q(k) = Q(k') = K(k) = K(k') = 1 and h-(k) = h-(k') = 2. Extensions 
k/ F and k' / F are ramified above (3). Set K = kk'. Then, K+/ F = 

F(vB)/F is unramified. We have h(K+) = 1, w(K) = 2 · 3, Q(K) = 1, 
K(K) = 1, T(K/F) = 1, c(K/F) = 2, and h-(K) = 2. Therefore h-(k) 
and h-(k') divide h-(K). 

Example 38. Let F = (Ql(-v's-5). Then, h(F) = 2. Let k = 
F(H) and k' = F(~)- Then, we have w(k) = w(k') = 2, 
Q(k) = Q(k') = K(k) = K(k') = 1, h-(k) = 2 and h-(k') = 4. Ex­
tensions k/ F and k' / F are ramified above (7). Set K = kk'. Then, 
K+/ F = F(vB)/F is unramified. We have h(K+) = 1, w(K) = 2, 
Q(K) = 1, K(K) = 1, T(K/F) = 1, c(K/F) = 2, and h-(K) = 4. 
Therefore h-(k) and h-(k') divide h-(K). 

Example 19 is also an example of Theorem 2 and Proposition 9. 
We have seen non-trivial examples of Theorems 1, 2, Propositions 8 

and 9. 

3.3. Proof of Parity Equality 

We shall firstly reduce Theorem 1 to Theorem 2 and then prove 
Theorem 2. 

Proof of Theorem 1. CM-extensions k / F and k' / F are unramified 
at all finite primes. Then, K / F is unramified at all finite primes. Hence, 
K+/ F is unramified at all finite primes. On the other hand K+/ F is 
unramified at the infinite primes since K+ is totally real. Therefore, 
K+/ Fis unramified. Theorem 2 now implies the desired equivalence. • 

Proof of Theorem 2. We introduce some notation and reformulate 
the assertion. We denote by 9-((2)(£) the maximal 2-extension of L in 
9-C(L) for a number field L. Since 9-C(L)/ Lis abelian, the order of [X(L) : 
9-((2)(£)] is always odd. When Lis a CM-field (i.e., L+ makes sense), 
the ratio [X(L) : LX(L+)]/[9-f(2)(£) : £9-((2)(£+)] is odd. Therefore, 
the parity of [X(L) : LX(L+)l and that of [X(2)(£) : £X(2)(£+)J are 
identical. By the identification ( 1), the former index is h- ( L). On 
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the other hand, 2 I [Jf(2l(L) : £Jf(2l(L+)l is equivalent to [Jf(2l(L) 
£Jf(2l(L+)J > 1. Therefore, we get: 

(12) 21 h-(L) ~ [Jf(2l(L): £Jf(2l(L+)l > 1. 

The assertion of the Theorem is now equivalent to 

By symmetry, it suffice to prove the implication from left to right. We 
assume the left hand side and prove the right hand side in several steps: 
Step 1. (Isolation of essential case): If k = k', our conclusion is trivial. 
Therefore, we assume k f= k'. By class field theory, unramifiedness of 
the quadratic extensionK+/ F implies that the 2-rank of e(F) is positive. 
If the 2-rank of e(F) is greater than 1, Lemma 4 implies that h-(k') 
is even, which is equivalent to our conclusion through (12). We now 
assume that the 2-rank e(F) is 1. By class field theory, Jf(2l(F)/F is a 
non-trivial cyclic extension. 
Step 2. (Construction of extension): Since the quadratic extension K+ 
/F is unramified, we have k' C K = kK+ C kJf(2l(F). Inclusion 
k'Jf(2l(F) c kJf(2l(F) follows. By symmetry, we get the reverse inclu­
sion and hence k'Jf(2l(F) = kJf(2l(F). Hence, our assumption implies 
[Jf(2l(k) : k' Jf(2l(F)] > 1. 
Step 3. (Unramifiedness): On the other hand, Jf(2) ( k) / K is unramified 

since K is an intermediate field of an unramified extension Jf(2l(k)/k. 
The extension Kjk' = k'K+/k' is also unramified since K+/ Fis un­
ramified. Therefore, Jf(2) ( k) / k' is unramified. 
Step 4. (Galois property): Since k/ F is normal, class field theory 

implies normality of Jf(2l(k)/F. It follows that Jf(2l(k)/k' = k'Jf(2l(k) 
jk' F is also normal. On the other hand, k'Jf(2l(F)/k' is cyclic since 
Jf(2) ( F) / F is cyclic by Step 1. 
Step 5. (Abelian extension): Let G = Gal(Jf(2l(k)/k'). Let H be the 

maximal abelian extension of k' in Jf(2l(k). It turns out [H: k'Jf(2l(F)] 
> 1. Suppose contrary H = k'J!(2l(F). Then, the maximal abelian 
quotient of G is cyclic. Hence, Burnside Basis Theorem implies that G 
is cyclic. (See e.g. [12, Theorem 1.16 (p. 92)] for Burnside Basis The­
orem.) Hence Jf(2l(k)/k' is abelian, i.e., H = Jf(2l(k) holds. Now, the 
conclusion of Step 2 contradicts the supposition on H. By contradiction, 
we see [H: k'Jf(2l(F)] > 1. 
Step 6. (Class Field): On the other hand, Step 3 and the definition of 

H implies H C Jf(2l(k'). Therefore, [Jf(2l(k') : k'Jf(2l(F)] > 1 follows. 

• 
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§4. Conclusion 

We reviewed Rorie's theorem on divisibility of relative class num­
bers, i.e., a theorem on an obstacle for class number one. It was ex­
plained that a generalization of Rorie's theorem has been proven by 
cooperation of three tools: the group theoretic tool, the field theoretic 
tool and class number relation. A certain competition of the latter two 
tools was explained. The competition arose when a pair of distinct CM­
extensions k / F and k' / F with K = kk' are in one of the following 
situations: k/ F is unramified at all finite primes or; K+/ F is unrami­
fied. The second tool gave apparently stronger obstacle for class number 
one. In §1, the reason for consistency of application of the two tools, 
i.e., for integrality of the ratio h- ( k') / c( K / F), is asked. 

The two tools were discussed in detail in §2 before analysis of the 
problem. 

Suspicion was responsibility of h- ( k') for consistency and hence for 
the obstacle. (See §§3.1.) Suspicion was formulated as parity equality of 
Theorems 1 and 2. The parity equality and the real problem of consis­
tency were illustrated by an example in §§3.2. The two theorems were 
proven by the field theoretic tool in §§3.3. Unfortunately, the proof was 
one-sided. Hence, it was delicate if the consistency was really explained. 
However, responsibility of h-(k') for the obstacle to class number one 
was established. It was also confirmed by examples. 

A further problem is caused by the possibility of c(K/ F) = 4. In­
deed, Examples 19 and 31 show that c(K/F) = 4 sometimes happen in 
the situation of Theorem 2. As Example 19 of §§2.2 and Examples 26 
through 33 of §§2.3 show, the value of c(K/ F) is hard to understand. 
Therefore, Theorems 1 and 2 constitute a meaningful answer to the 
problem of consistency although they might not constitute the perfect 
answer. 
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