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Let F be a finite extension of Q. Let p be a prime number. Sup
pose that F 00 is a Galois extension of F and that r = Gal ( F 00 / F) is 
isomorphic to Zp, the additive group of p-adic integers. The nontrivial 
closed subgroups of r are of the form r n = I'Pn for n ?: 0. They form a 
descending sequence and r /r n is cyclic of order pn. If we let F n = F~n, 
then we obtain a tower of number fields 

F = Fo C Fi C · · · C Fn C · · · 

such that Fn/ F is a cyclic extension of degree pn and F00 = Un Fn. In 
1956, at the summer meeting of the American Mathematical Society in 
Seattle, Iwasawa gave an invited address entitled A theorem on Abelian 
groups and its application to algebraic number theory. The application 
which he discussed is the following now famous theorem. 

Theorem. Let pen be the highest power of p dividing the class number 
of Fn. Then there exist integers >., µ, and 1.1 such that en = >.n + µpn + 1.1 

for all sufficiently large n. 

Iwasawa's proof of this theorem is based on studying the Galois 
group X = Gal (L00 / F00 ), where L 00 = Un Ln and Ln is the p-Hilbert 
class field of Fn. (That is, Ln is the maximal abelian p-extension of 
Fn which is unramified at all primes of Fn. By class field theory, L,,. is 
a finite extension of Fn and [Ln: Fn] =pen.) The extension L00 / F is 
Galoisian, and one has an exact sequence 

0 ___, X ___, Gal(L00 /F) ___, r ___, 0. 

Since X is a projective limit of finite abelian p-groups, we can regard X 
as a compact Zp-module. (Zp denotes the ring of p-adic integers.) But 
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there is also a natural action of r on X. If 'Y E r and x E X, one defines 
'Y(x) = 7x:=y-1 , where 7 E Gal (L00 / F) is such that 7jp00 = 'Y· All of this 
structure allows Iwasawa to study the growth of [Ln: Fn] which, as we 
mentioned, is equal to pen. 

The details of the proof of the above theorem were published in 
1959 in [Iw3]. Iwasawa has written more than twenty papers about the 
theory of Zv-extensions. (He referred to extensions F00 / F as described 
above as r-extensions until the late 1960's, when he switched to calling 
them Zv-extensions.) These papers introduced many new ideas which 
have really blossomed over the years. Several hundred papers have been 
written pursuing various aspects of these ideas, which have turned out 
to be fruitful in a number of different ways. In this article we will give 
a somewhat sketchy and personal account of these ideas and how they 
have developed. Along the way we will mention some of the many open 
questions which this topic has provided. 

1. The relationship between the structure of X ( together with the action 
ofr) and the groups Gal (Ln/ Fn) is rather easy to establish ifwe assume 
that F has just one prime µ lying over p and that this prime is totally 
ramified in F 00 / F. The prime µ would then be the only prime of F 
which is ramified in F00 / F. For if q is any prime of F not lying over p, 
then q could be at most tamely ramified in the abelian extension Fn/ F 
for any n. As is well-known, the ramification index for q in Fn/ F must 
then divide N(q)-1, where N(q) denotes the cardinality of the residue 
field for q. It follows that the inertia subgroup of r for q would be 
finite, which implies that it must be trivial since r is torsion-free. This 
argument shows in general that only primes of F lying over p can be 
ramified in a Zv-extension F 00 / F. 

Let L~ denote the maximal abelian extension of Fn contained in 
L 00 • Obviously, F00 C L~ and Ln C L~. Let Pn denote the unique 
prime of Fn lying over µ, which is the only prime of Fn ramified in 
L~/ Fn. Clearly Ln = (L~)1n, where In denotes the inertia subgroup 
of Gal (L~/ Fn) for Pn• Now Inn Gal (L~/ F 00 ) = 0 since L~/ F00 is un
ramified. Therefore L~ = LnFoo and, since Ln n F00 = Fn, we have 
Gal(Ln/Fn) ~ Gal(L~/F00 ). On the other hand, Gal(L00 /L~) is pre
cisely the derived subgroup of Gn = Gal (L00 / Fn)- We have an exact 
sequence 

0 ---. X ---. Gn ---. r n ---. 0. 

Let 'Yo be a fixed topological generator of r. (This means that the 
subgroup generated by 'Yo is dense in r. It suffices to choose 'Yo Er such 
that 'Yo I F1 is nontrivial.) Then 'Yn = if is a topological generator of r n. 
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Since r n acts on X by inner automorphisms, one can see that 'Yn(x)x- 1 

is a commutator in Gn for each x E X. It is not hard to show that the 
derived subgroup of Gn is precisely bn(x)x- 1 I x EX}. Changing to 
an additive notation for X, we write this as wnX, where Wn = 'Yn - 1. 
Therefore, Gal ( L~ / F =) ~ X / wnX, giving the result that 

(1) 

for all n 2': 0. This isomorphism is induced by the restriction map from 
X to Gal (Ln/ Fn)-

Let A be a discrete, p-primary, abelian group on which r acts contin
uously ( as automorphisms). Assume that Arn = { a I a E A, 'Yn (a) = a} 
is finite for all n 2': 0. (Iwasawa uses the term "strictly f-finite" for 
such an A.) The structure theory which lwasawa develops in [Iw3] then 
allows him to prove that !Arn I = p>-n+µpn+v for all sufficiently large n, 
where the integers ,\ and µ are described in terms of the structure of 
A and where v E Z. He applies this to A = Homcont(X, !Qp/Zp)- The 
action of r on this group is induced by the action of r on X. Note 
that X/wnX is the maximal quotient of X on which r n acts trivially. 
Hence Arn = Hom(X/wnX, !Qp/Zp) is finite and has the same order as 
X/wnX. lwasawa's theorem would then follow (in the special case where 
F has just one prime above p, totally ramified in F = / F). 

Serre gave a Seminaire Bourbaki lecture on lwasawa's results in 
1959. There he introduced a somewhat different approach which lwa
sawa soon adopted. The idea is to view X as a module over the ring 
A = Zp[[T]] by letting T act on the Zp-module X as wo = 'Yo - 1. 
This makes X into a Zp[T]-module. One can easily show that the ac
tion of T on X is "topologically nilpotent", i.e., any open subgroup of 
X contains rn X for n » 0. Then X does become a A-module. It 
turns out to be a finitely generated, torsion A-module. (This is true 
without any assumption about the primes of F over p. In the special 
case that we have been considering, it follows easily from the fact that 
X/TX ~ Gal(L0 /F0 ) is finite, together with a version of Nakayama's 
Lemma for compact A-modules.) Serre then derives lwasawa's structure 
theorem from a classification theorem for such A-modules. 

This classification theorem is quite easy to state: 

Theorem. If X is any finitely generated, torsion A-module, then there 
exists a A-module homomorphism 

t 

X----> E9A/(fi(T)a'), 
i=l 
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with finite kernel and cokernel, where each fi(T) is an irreducible ele
ment of A and each ai is a positive integer for 1 S i S t. The value 
oft, the prime ideals (fi(T)), and the corresponding ai 's are uniquely 
determined by X, up to their order. 

A A-module homomorphism with finite kernel and cokernel is often 
called a pseudo-isomorphism. The ring A is a UFD, but not a PID. 
Furthermore, A is a complete, Noetherian local ring (with maximal ideal 
m = (p, T)) and is regular of dimension 2. The prime ideals of height 
1 are principal. One of them is (p) = pA. The others have a unique 
generator of the form J(T) = T 1 + a1-1T1- 1 + · · · + ao, where l 2: 1, 
a0 , a 1, ... , az_ 1 E pZp, and f(T) is irreducible as an element of Qp[T]. 
(A polynomial of this form, irreducible or not, is called a "distinguished" 
polynomial.) We will assume that each Ji (T) is either p or an irreducible, 
distinguished polynomial. Then we define 

t 

fx(T) = IJ!i(Tt'. 
i=l 

One refers to fx(T) as the characteristic polynomial of X. The invari
ants .\ and µ which occur in Iwasawa's theorem can be described just 
in terms of fx(T). (No hypothesis on the primes of F lying over p is 
needed.) It turns out that .\ = deg(f x (T)) and that µ is just the largest 
integer such that pµ divides f x (T) in A ( or Zp [Tl). One can also de
scribe A andµ in terms of the A-module X. We have X/ Xzp-tors ~ z;. 
This determines .\ just in terms of the structure of X as a Zp-module. 
As for µ, let Y = Xzp-tors· Since A is Noetherian, Y is finitely gen
erated as a A-module. It therefore has finite exponent pc as a group. 
For i 2: 0, piY/pi+1Y is a module over the ring A = A/pA, which is 
simply IFp[[T]], with IFp = Z/pZ. Then µ is just the sum of the A-ranks 
of the modules piY/pi+ 1Y, where O S i S c - 1. It is often better 
to think of A in a more intrinsic way as Zp[[r]], which by definition is 
Lim Zp[Gal (Fn/ F)]. This inverse limit is defined by the Zp-algebra ho-
+--

momorphisms Zp[Gal (Fm/ F)] -----+ Zp[Gal (Fn/ F)] (form 2: n) induced 
by the restriction maps (j -----+ (jlFn for (j E Gal (Fm/ F). The identifica
tion of Zp [ [r]] with Zp [ [Tl] depends on the choice of topological generator 
'Yo for r. One identifies 'Yo with 1 + T. 

We continue with the special case where only one prime p of F lies 
over p and Fcxo/ F is totally ramified at p. Then pen = IX/wnXI for 
n 2: 0. To study how these orders grow, one reduces to the case of a 
A-module of the form Y = A/(g(T)), where g(T) is one of the fi(T)a' 's. 
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Then Y / Wn Y will also be finite and we have 

(2) 

where we write a r=::; b to mean that two nonzero p-adic integers a and 
b satisfy ab- 1 E z;. This is not hard to verify. The quotient ring 
A/wnA can be identified with the group ring Zp[Gal (Fn/ F)]. (Thinking 
of A more intdnsically as A= LimZp[Gal(Fn/F)], one has a surjective 

+--

homomorphism A--, Zp[Gal (Fn/ F)] defined by sending T = ,10 - l to 
the element 'YolFn - 1. The kernel of this homomorphism is generated 
by Wn,) Thus, A/wnA is a free ZP-module of rank pn. Multiplication 
by Ton A/wnA is Zp-linear and has eigenvalues ( - 1, where (Pn = l. 
Now Y/wnY is the cokernel of multiplication by g(T) on A/wnA, This 
map is Zp-linear and has determinant TI( g(( - 1), where (Pn = 1. This 

implies (2). If g(T) = pm, then one gets IY/wnYI = pmpn. If g(T) = 
T 1 + az_ 1T 1- 1 + · · · + a0 , where plai for O ~ i < l, then the valuation 
of g(( - 1) is the same as that of (( - 1)1 when ( has sufficiently large 
order. One then finds that IY/wnYI = pln+v when n » 0, where vis a 
constant. Putting all of this together, and taking into account the finite 
kernel and cokernel, one obtains that IX/wnXI = p>-.n+µpn+v for n » 0, 
where v is a constant. 

A more detailed account of the proof of lwasawa's theorem (includ
ing the general case where one must keep careful track of the inertia 
groups for primes above p in Gal (L~/ Fn)) can be found in [Iw3], [Sell, 
or perhaps more conveniently in Washington's book [Wa]. In the gen
eral case, it sometimes happens that X/wnX is infinite. This happens 
precisely when fx(( - 1) = 0 for some pn-th root of unity(. 

2. We know very little about the lwasawa invariants A and µ associated 
to an arbitrary Zp-extension F = / F. We will just mention two rather 
special results. 

Proposition (2.1). Assume that the class number of F is not 
divisible by p and that F has only one prime lying over p. Let F=/ F be 
any ZP-extension. Then A=µ= v = 0. 

Proposition (2.2). Assume that p splits completely in F/Q. Let 
F = / F be a Zp-extension in which every prime of F lying over p is 
ramified. Then ,\(F=/ F) 2". r2, where r2 denotes the number of complex 
primes of F. 
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Proposition 2.1 is stated in [Iw3], and follows easily from a result 
proved in his earlier paper [Iwl]. We can prove it as follows. First 
note that the unique prime p of F lying over p must be ramified in 
A/ F. Otherwise A would be contained in the p-Hilbert class field 
Lo of F = F0 , contradicting the assumption that p doesn't divide the 
class number of F. This implies that p is totally ramified in F 00 / F. 
Using the notation described before, we have X/T X ~ Gal (Lo/ F0 ) = 0. 
Hence TX = X and therefore X = 0 (because the action of T on X is 
topologically nilpotent). But then Gal (Ln/ Fn) = X/wnX = 0 for all n, 
which clearly means that A = µ = v = 0, as stated. 

To prove Proposition 2.2, we need the following existence theorem 
for Zp-extensions. 

Theorem. Let F denote the compositum of all Zp-extensions of F. 
Then 

Gal(F/F) ~ z:, 
where r 2 + 1 :S d :S [F : QI]. 

One consequence of this theorem is that F will have infinitely many 
distinct Zp-extensions when F is not totally real. The proof of the 
theorem is a straightforward application of the idelic form of class field 
theory. Let 

uo -rru:o - p, 

PIP 

where ui denotes the group of principal units in the completion Fp of 
Fat p. Then U 0 can be considered as a Zp-module and 

rankzp(U0 ) = L [Fp : Qlp] = [F: QI]. 
PIP 

The Artin map defines a homomorphism from U0 to Gal (F / F) with 
finite cokernel (isomorphic to Gal(L0 n F/F)). To describe the kernel 
of this homomorphism, let E denote the group of units in F and let 
E 0 denote the subgroup of units E = 1 (mod p) for all pJp, which has 
finite index in E. We can consider E 0 as a subgroup of u0 by using the 
natural injection F ---+ TI Fp. Then the topological closure E 0 of E 0 in 

PIP 

u0 is a Zp-submodule; it is the image of E 0 ®z Zp and thus has Zp-rank 
bounded above by rankz(E0 ). Let H denote the kernel of the Artin 
map u0 ---+ Gal (F / F). Then H can be characterized as the smallest 
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Zp-submodule of UD containing ED and such that UD / H is torsion-free. 

Clearly [H:ED] < CXJ. The theorem follows from this because UD / H has 
Zp-rank equal to [F:(Ql] - rankzP(ED) and rankzP(ED) ::; rankz(E) = 
r1 + r2 - 1, where r1 = [F: (Ql] - 2r2 is the number of real primes of F. 

It is extremely likely that we have the equality d = r 2 + 1 in the 
above theorem. This is known as Leopoldt's Conjecture. It is clearly 
equivalent to the assertion that 

the second quantity being r = r1 + r2 - l. More concretely, it can be 
stated as follows. Let cr1, ... , er n denote the distinct embeddings of F 
into ijp, where n = [F:(Ql]. Suppose that E1, ... , Er are generators of ED 
(modulo the subgroup of roots of unity). Then the conjecture asserts 
that the n X r matrix [logp(crs(Et))h::;s::;n,1::;t::;r has rank r. Leopoldt 
considered just the case where F is totally real. Then he conjectured 
the non vanishing of the so-called p-adic regulator for F, the determinant 
of the r x r submatrix obtained by omitting any row ( well-defined up 

to ±1). The above formulation in terms ofrankzp(Gal(.F/F)) is due to 
Iwasawa and has been proven when F is an abelian extension of (Ql or 
of an imaginary quadratic field. In these cases, it follows from Brumer's 
p-adic version of a famous theorem of Baker concerning linear forms in 
logarithms of algebrai~ numbers. 

Obviously F= CF. But it is also true that F CL= under the stated 
assumption that Fp = (Qlp for all PIP- This is because the inertia subgroup 

Ip of Gal ( .F / F) for each such p is precisely the image of ug ( contained 

in UD as a direct factor) under the Artin map UD ------> Gal ( .F / F). Thus 
Ip~ Zp. But the image of Ip in Gal(F=/F) under the restriction 
homomorphism is also isomorphic to Zp because p is ramified in F = / F. 

Therefore, Ip n Gal ( .F / F =) = 0, which implies that the primes of F = 

lying over any such p are unramified in .F / F =. Since primes not dividing 
p are unramified in every ZP-extension of F, and hence in .F / F, it follows 

that .F c L=. Thus X = Gal(L=fF=) has Gal(.F/F=) ~ zi-1 as a 
quotient. This implies that indeed >, = rankzp (X) ~ d - 1 ~ r 2. In fact, 

r acts trivially on the quotient Gal(.F/F=) and consequently fx(T) is 
divisible by Tr 2 • If r 2 > O, we obtain examples where X / WDX is infinite, 
because WD = T. 

Several of Iwasawa's papers discuss the values of >, and µ in the 
important case where F = (Ql((p), F 1 = (Ql((p2 ), ... , Fn = (Ql((pn+1 ), ... , 
where, for any m ~ 1, we let (m denote a primitive m-th root of unity. 
Then F = = Un Fn is the so-called cyclotomic Zp-extension of F. If p is 



342 R. Greenberg 

a regular prime (i.e., a prime such that the class number of F = (Q)((p) 
is not divisible by p), then Proposition 2.1 immediately implies that 
,\ = µ = v = 0 for this (and any) Zp-extension of F. We will denote the 
Iwasawa invariants for F00 / F by Ap, µp, and Vp. How can one compute 
them for irregular primes p? 

It is customary to factor the class number hp of F as hp = h:;; ht, 
where ht denotes the class number of the maximal real subfield F+ = 
(Q)( (p + (;1 ) of F. There is, of course, a similar factorization of the 
class number of Fn. The maximal real subfields form a Zp-extension 
F;};, = Un F;/: of F+. The Iwasawa invariants can then be written 

' - ,- + ,+ - - + + - - + + h ,+ + + as /Ip - /Ip /Ip' µp - µp µp' Vp - VP VP ' w ere /Ip' µp 'VP 
are the invariants for F;};,/F+. If X = Gal(L00 /F00 ) as before, then 
Gal ( F 00 / F;};,) ~ Z/2'1L acts on X (by inner automorphisms). Assuming 
that p is odd, we then get a decomposition X = x- EB x+. We have 
fx(T) = fx-(T)Jx+(T). The invariants .Xt,µt, and v-;; can be recov
ered from fx+(T) (or from x+) just as described earlier, and similarly 
for .x:;;, µ:;;, and v;. For example, .x; = deg(fx-(T)) = rankzp(x-). 
Let S 0 denote the p-primary subgroup of the ideal class group of F = F0 . 

Then, by class field theory, So~ Gal(Lo/Fo). Now Gal(F/F+) acts on 
S0 in an obvious way and on Gal (£0 / F0 ) by inner automorphisms. The 
isomorphism is compatible with these actions ( and even for the actions 
of~= Gal (F/(Q)) on both groups, which we will consider later). Corre
spondingly, we can write S0 = Sa EB st and the power of p dividing h:;; 

(respectively, ht) is just the order of Sa (respectively, st). Our earlier 
arguments show that 

x-;rx- ~ sa, x+ ;rx+ ~ st. 

A well-known conjecture of Vandiver states that pf ht. That is, st = 0. 
This would imply that x+ = 0, and hence .Xt = µt = v-;; = 0. As we 
will mention later, there is considerable numerical support for Vandiver's 
conjecture. 

Iwasawa's paper On some invariants of cyclotomic fields, published 
in 1958, is devoted to finding criteria for the nonvanishing of µP. One 
such criterion is an infinite sequence of congruences involving Bernoulli 
numbers. We will state the first two of these congruences below. It is 
in fact sufficient to consider µ:;;. To justify this, Iwasawa refers to a 
theorem of Takagi [T] which states that 

(3) 

for all n 2: 0. Here we let Sn denote the p-primary subgroup of the ideal 
class group of Fn, which can be decomposed as Sn = S;;, EB S;t- by the 
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action of Gal (Fn/ F;;). The proof of (3) is based on the Spiegelungsatz 
( the Reflection Principle). It then follows that: 

µt > 0 • µ; > 0, and hence, µP > 0 ? µ; > 0. 

(This is reminiscent of a theorem of Kummer stating that: pjh;; • pjh;. 
That result can also be proved by using the Reflection Principle.) The 
fields Fn are abelian over Q. lwasawa transforms the classical formula 
for the first factor of the class number of Fn, and also uses Stickelberger's 
theorem giving a nontrivial annihilator in Z[Gal (Fn/Q)] for S;;,, to ob
tain necessary and sufficient conditions for the nonvanishing of µ;. We 
will just state here one necessary condition which turns out to be quite 
effective. (Iwasawa uses it to show that µ; = 0 for p = 37, 59, 67~the 
three irregular primes < 100. This condition actually suffices to prove 
the vanishing ofµ; for all p < 16,000,000. See [BCEMS] for the latest 
information on such computations.) 

Ifµ; > 0, then there exists an even integer j, 2 ::::; j ::::; p - 3, such that 

(4) and 
B 

=-] 

j 

Here Bj denotes the j-th Bernoulli number, which we recall is defined 
by the generating function 

The Bj 's are clearly rational numbers and are nonzero precisely when 
j is even or j = 1. If j ¢. 0 (mod p - 1), then Bj/j E Zp and so 
the congruences in ( 4) just involve elements of Zp. Kummer's famous 
criterion for regularity states that: pjhp ? Bj = 0 (mod p::Zp) for some 
even j, 2::::; j ::::; p - 3. The first congruence in (4) then follows because 
µ; > 0 certainly implies that pjhp. The second congruence is stronger 
than the well-known Kummer congruence: 

(5) 
Bj' _ Bj 
---
j' j 

(mod p::Zp) if j' = j ¢. 0 (mod p - 1), 

but it can sometimes hold. For example, we have (B15/l6) - (B4/4) = 
- 7 • 132 /25 • 5 • 17, which implies the second congruence in ( 4) for the 
pair (p,j) = (13,4). 
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A subsequent paper On the theory of cyclotomic fields (published in 
1959) continues with the case F = Q( (p), F = = Q( (p, (p2, ... ) , introduc
ing several new Galois groups into the topic. Let M= denote the maxi
mal, abelian extension of F= which is pro-p (i.e., Y = Gal (M=/ F=) is 
a projective limit of finite p-groups) and in which only the prime of F = 
lying over pis ramified. If L= is as before, then obviously L= C M=, 
and so X = Gal (L=/ F=) is a quotient of Y = Gal (M=/ F=), as A
modules. In contrast to X, Y is not A-torsion. Iwasawa shows that 
rankA(Y) = ½(P - 1), although he doesn't use the terminology of A
modules. Let N= be the field obtained by adjoining to F= all p-power 
roots of units of F=- Then N= CM= and Gal (M=/ N=) is shown to 
be A-torsion. Let S= = Lim Sn, where the maps Sn -+ Sm for m > n 

--+ 

defining this direct limit are as follows: if c E Sn is the class of the 
ideal a of the ring of integers On of Fn, then c is mapped to the class of 
aOm in Sm. Then S= can be regarded as a discrete A-module, which 
Iwasawa shows is isomorphic to Hom(Gal (M=/ N=), µp= ). (Here µp= 
is the group of p-power roots of unity. The isomorphism preserves the 
action of Gal (F=/Q), and in particular the action of r, on both groups.) 

We will state several important results from this paper. The Ga
lois action on µp= gives a canonical isomorphism Gal (F=/Q) ~ z; = 
µp-l x ( 1 +pZP) for any odd prime p. Here µp-l denotes the (p-1 )st roots 
of unity in z;. We write Gal (F=/Q) = ~ x r, where r = Gal (F=/ F) 
as before. We regard~ as Gal (F=/Q=), where Q= is the unique sub
field of F= such that Gal (Q=/Q) ~ Zp. (In fact, Q= is the unique 
Zp-extension of Q.) There is also a canonical isomorphism w : ~ -+ 

µp-l c z; defined by the action of~ on µp=. If A is any Zp-module 
p-2 

on which~ acts, then we have a canonical decomposition A= EB Awk, 
k=O 

where Awk = {ala E A,8(a) = wk(8)a \/ 8 E ~}- We consider this 
decomposition for A = X, Y, and S=. Iwasawa refers to this as the 
~-decomposition. Since Gal (F=/Q) acts on these groups, the corre
sponding actions of ~ and r commute and so we can regard xwk, ywk, 
and S~k as A-modules. For each k, 0 :S: k :S: p - 2, let >-.ik) and µik) 

denote the Iwasawa invariants for xwk, which are determined by the 
. p-2 (k) p-2 (k) 

polynomial f xwk (T). Then Ap = L Ap , µp = L µp . The results we 
k=O k=O 

want to mention are the following. 

Proposition (2.3). Suppose that O :S: i, j :S: p - 2 are integers 
such that i + j = 1 (mod p - 1) and i is odd (so that j is even). Then 
>-. ( i) > A (J) and µ( i) > µ(j). Consequently A - > A+ and µ- > µ+. 
P-P P-P 'P-P p-p 



Iwasawa Theory - Past and Present 345 

Proposition (2.4). Assume that i and j are as in the previous 
proposition. Then there exists a perfect pairing 

which is compatible with the action of r. 

(Note: This means that yw3 ~ Hom(S~, µpoo) as A-modules. The 
pairing is also compatible with the action of~ because wiwi = w.) 

Proposition (2.5). For odd i, xw; has no nonzero, finite A
submodules. For all k, ywk has no nonzero, finite A-submodules. 

Proposition 2.4 is a refined version of the Reflection Principle. The 
pairing is defined roughly as follows. Let s E S;;, have order pm. Suppose 
thats is the class of an ideal a (coming from some level Fm, of F00 ) such 
that a = a-1 and aPm = (a), a E F::,,,. One can choose a so that 
a= a-1 . Let y E Y. Define (s,y) E µPoo by (s,y) = y(/3)//3, where 
f3Pm = a. (One checks easily that /3 E M;_,.) This can be verified to 
induce a well-defined perfect pairing 

S-;;;, X y+--. µpoo 

and one obtains Proposition 2.4 by studying the action of ~- Proposi
tion 2.3 is a consequence of Proposition 2.4. First note that 

F00 C £ 00 C M 00 

and so one has a surjective A-module homomorphism ywk --. xwk for 
all k. Hence, for even j, we see that f xwj (T) divides f ywj (T) in A. 

Therefore >-}P and µv) are bounded above by the A- and µ-invariants of 

yw3 , which the above pairing shows are actually equal to >-1i) and µ1i), 
respectively. This equality follows from Iwasawa's theory of adjoints, 
which allows one to relate the structure of the discrete A-module S~ to 
that of the compact A-module xw;. In particular, the invariant >-1i) can 

be identified as the Zp-rank of xw; or as the Zp-corank of S~. (That 

is, the maximal divisible subgroup of S~ is (S~)div ~ ((Qp/Zp)>.~;J .) As 
we will mention below, Proposition 2.4 and the theory of adjoints gives 
an important relationship between xw; and yw3. 

Now we discuss briefly the proof of Proposition 2.5. The first part 
asserts that x- has no nonzero finite A-submodules. Iwasawa shows 
that this assertion is equivalent to the fact that the maps s;; --. S;;, for 
m > n are injective, which he verifies using properties of the units of 
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F00 , interpreted in terms of Galois cohomology. In a footnote, Iwasawa 
states that the injectivity of the map S0 -+ S1 was proved by F. Pol
laczek in [Po] where, Iwasawa writes, one may trace the germ of other 
results proved in the present paper. Iwasawa also refers to Pollaczek's 
paper in [Iw2]. As for the second part, one crucial ingredient is the fact 
that S00 has no proper A-submodules of finite index. (The pairing in 
Proposition 2.4 would then immediately give the result for even values of 
k.) Actually, it is true for every Zp-extension F00 / F (with F arbitrary) 
that S00 = Lim Sn has no proper A-submodules of finite index. This is -not hard to deduce from the fact that the norm map Nm,n : Sm-+ Sn 
is surjective for m > n > n0 , where n0 is large enough so that at least 
one prime ( over p) is totally ramified in F 00 / Fn0 • The surjectivity of the 
norm maps follows from class field theory together with the surjectivity 
of the restriction maps Gal (Lm/ Fm) -+ Gal (Ln/ Fn) for m > n > no. 

One more result that was already alluded to above relates xw' and 
ywi when i and j are as in Propositions 2.3, 2.4. Let 1,, : r ~ 1 + pZp 
denote the canonical isomorphism giving the action of r on µp=. There 
is an involution of A defined by sending , E r to 1,,(,),-1 E Ax. If ,o is a fixed topological generator of r, then T = ,o - l is sent to 
T = 1,,(,0)(1 + T)-1 - 1. Now if Z is a A-module, we define a new A
module Z by letting 0 EA act on z E Z just as Oz, where 0 is the image 
of 0 under the above involution. Then combining the theory of adjoints 
in [Iw4] with Proposition 2.4 (and the fact that S':;, is the adjoint of 
xw'), Iwasawa obtains the following theorem. 

Proposition (2.6). Let i and j be as in Proposition 2.3. Then, 
ywi is pseudo-isomorphic to _xw'. Hence /ywi (T) generates the same 
ideal as f xw' (1,,(,0) (1 + T)-1 - 1) in A. 

3. Returning to the question of determining Ap, µp, and vp, Iwasawa 
shows in [Iw2] that µP = 0 and Ap = 1 for p = 37, 59, and 67. We've al
ready discussed the vanishing of µP. Now it is known that Pllhp for these 
three primes. Hence Pllh; and so So = So is cyclic of order p. Recall 
that X/T X ~ S0 • Therefore, X is a cyclic A-module (by Nakayama's 
Lemma). Since X = x- has no nonzero, finite A-submodules by Propo
sition 2.5, it follows easily that X is isomorphic to A/(g(T)), where 
g(T) = fx(T). By (2), we have g(O) ~ p, but it is also known that 
!S11 = p2 for the above three primes, and so we have IJg(( - 1) ~ p 2 , 

where ( runs over all p-th roots of 1. By (2), it follows that µP = 0 and 
that Ap = Vp = l, for p = 37, 59, and 67. 

More generally, suppose that S0 is cyclic as a Z[.::l]-module. Equiv
alently this means that s'(/ is a cyclic group for all k. Nakayama's 
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k 
Lemma then implies that xw is a cyclic A-module. We obtain the fol-
lowing result, again using Proposition 2.5. 

Proposition (3.1). Suppose that S0 is cyclic as a Z[~]-module. 
Then, for every odd integer i, 1 :S i :Sp - 2, we have 

Xwi ~ A/I, 

where I is the principal ideal (f xwi (T)) of A. 

The ideal I is called the characteristic ideal of xwi. Under the 
hypotheses of Proposition 3.1, Iwasawa proves in [Iw7] that a certain 
generator gi (T) of I can be chosen in a completely explicit way, which 
can be used quite effectively for computation. Write 

00 

gi(T) = L b~Tm 
m=O 

where bm E Zp for m 2: 0. It is clear (since gi(T) and f xwi (T) differ by 

multiplication by an element of Ax) that µ~i) = 0 if and only if p f b~ 

for some m 2: 0. In this case, ,\~i) is equal to the smallest such value of 

m. The constant term of gi(T) is given by bbi) = -B1,w-i where, for a 
Dirichlet character x of conductor f, one defines 

1 f 

B1,x = f L x(a)a. 
a=l 

One thinks of x = w-i as a Dirichlet character of conductor p by the 
canonical isomorphism ~ ~(Z/pZ) x. A congruence argument shows 

that plbbi) <=} plBj, where i + j = 1 (mod p - 1) as before. Therefore, 

if pf Bj, then gi(T) E Ax and ,\~i) = µ~i) = v~i) = 0. On the other 

hand, if plB1 , then either ,\~i) or µ~i) must be positive. If Vandiver's 
Conjecture (that pf ht) is valid for the prime p, then it follows from 

the Reflection Principle that S'{ is cyclic for each odd i, and so the 
hypothesis in Proposition 3.1 holds. In [I-S], Iwasawa and Sims find 
that for all primes p :S 4001 and for all even j (2 :S j :Sp - 3) such that 

plB1, the coefficient bii) turns out to be in z;. Vandiver's conjecture 

was known to hold for these primes. Thus µ~i) = 0 and ,\~i) = 1 (i.e., 

xwi ~ Zp) for those pairs (p, i). One also finds that S'{ ~ Z/pZ and 

v~i) = 1, both following from the fact that p 2 f bbi) for p :S 4001. 
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Similar computations have been carried out by many others, ex
tending to date up to p < 16, 000, 000. (We refer the reader to [BCEM], 
[BCEMS], and to the references given there.) But so far nothing essen
tially different has been found. That is, for p < 16, 000, 000, one has: 
(i) p f ht, (ii) µP = O, (iii) ,\1i) = v~i) = 1 when pl Bi, and (iv) So 
has exponent p. Concerning (ii), Ferrero and Washington succeeded in 
proving in 1978 that µP == 0 for all primes p. Their proof is based on 

a careful study of the explicit expressions for the b~'s. As for (iii) and 

(iv), this amounts to verifying that Pllb~i) and pf bii) for the pairs (p, i) 
where plBj. One then has the equality 

(6) 

However, it seems reasonable to conjecture ( on probabilistic grounds) 
that ,\1i) ?: 2 holds for infinitely many pairs (p, i), i.e., plb~i) and plbii). 
But no such pair has yet been found. We have already mentioned that 
plb~i) if and only if Bi = 0 (mod pZp), which is the first congruence in 

(4). As we will explain later (by using p-adic £-functions), plbii) if and 
only if the second congruence in (4) holds. It also seems reasonable to 

conjecture that p 2 lb~i) holds for infinitely many pairs (p, i). Assuming 
that p f ht, that would mean that S0 is not of exponent p. 

Suppose now that F is any finite extension of Q). Let p be any prime. 
We will consider the .\- and µ-invariants associated to the cyclotomic 
Zp-extension F 00 / F, which is defined by F 00 = FQ)00 • Concerning the 
µ-invariant, Iwasawa made the following well-known conjecture. 

Conjecture (3.2). Let F 00 / F be the cyclotomic Zp-extension. 
Then µ(F00 /F) is equal to 0. 

We mentioned earlier that S00 = Lim Sn has no proper A-submod--ules of finite index. If µ(F00 / F) = 0, then it would follow that 

(7) 

as a Zp-module, where ,\ = .\(F00 / F). This is an illustration of an 
interesting analogy with the theory of algebraic function fields of one 
variable. Iwasawa discusses this analogy in several places and it seems 
to have been an important source of motivation from the start. (It is 
already mentioned in [Iw2].) Suppose that K = k(x, y) is the function 
field of an absolutely irreducible curve C over a finite field k. Let g 
be the genus of C. Let k denote an algebraic closure of k. Then it is 
known that the p-primary subgroup of the divisor class group ( of degree 
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0) for k(x, y) is isomorphic to (Qp/Zp) 29 , assuming that p =f. char(k). 
(One can identify this divisor class group with J(k), where J denotes the 
Jacobian of C. Ifp = char(k), then the p-primary subgroup is isomorphic 
to (Qp/Zp)°, where O ~ a ~ g.) Now K does have a Zp-extension 
K 00 = k00 (x, y), where k00 denotes the unique subfield of k containing 
k such that Gal(k00 /k) ~ Zp. (Recall that Gal(k/k) ~ Z.) The divisor 
class group (of degree 0) can be identified with J(k00 ) = J(k)Gal(kfk=). 
Its p-primary subgroup is easily seen to be divisible and hence isomorphic 
to (Qp/Zp)\ where O ~ ,\ ~ 2g (or O ~,\~a if p = char(k)). 

The only' general result to date concerning Conjecture 3.2 is the 
following theorem of Ferrero and Washington [F-W] which we already 
alluded to above in the special case F = Q((p)-

Theorem (3.3). Assume that F/Q is abelian and that F00 / F is 
the cyclotomic Zp-extensions. Then µ(F00 / F) = 0. 

The proof for F = Q((p) is based on one of the criteria given in [Iw2], 
together with results about normality of the p-adic expansion of p-adic 
integers. A rather different proof was discovered by Sinnott [Si]. If q is 
a prime and q =f. p, then, under the same hypotheses as in Theorem 3.3, 
Washington proves in [Wal] that the number of elements of order q in 
the ideal class group of Fn is bounded as n ----. oo. (The vanishing of 
µ( F 00 / F) is just this same statement when q = p.) It is not hard to 
deduce that the power of q dividing the class number of Fn must then 
be bounded as n----. oo. 

It is interesting to speculate about the behavior of ,\(F00 / F), but 
quite hard to prove anything of a general nature. The analogy with 
function fields suggests the following possibility: if F is a fixed number 
field, but the prime p is allowed to vary, then ,\(F00 / F) is bounded. 
For F = Q, this is certainly true since Proposition 2.1 implies that 
,\(Q00 /Q) = 0 for all p. But it has not been verified for any other 
number field F. The equality (6) suggests the question of how ,\(F00 / F) 
and dimz;pz(So/pS0 ) might be related. These quantities are certainly 
not necessarily equal. For example, there are many real quadratic fields 
F such that ,\(F 00 / F) = 0, but So =/- 0, where p is either 2 or 3. We will 
mention some examples later. On the other hand, suppose that Fis an 
imaginary quadratic field and that p is an odd prime. Then one has the 
inequality 

,\(F00 /F) ~ dimz;pz(So/pSo)-

This is because S0 = S0 , S00 = S~, and the map S0 ----. S~ is injective. 
Since S00 ~ (Qp/Zp)>..(F=f F), the inequality is obvious. It is often a 



350 R. Greenberg 

strict inequality. For example, suppose that S0 = 0 and that p splits 
in the field F. By Proposition 2.2, we have >..(F00 /F) 2 1. There 
are infinitely many such primes p. T. Fukuda [Fu] has done extensive 
and systematic calculations of >..(F00 /F) when Fis imaginary quadratic 
and p is 3, 5, or 7. It seems reasonable to believe that: if p is a fixed 
prime and F varies over all imaginary quadratic fields, then >..(F00 / F) 
is unbounded. For p = 2, this is not difficult to prove. For p 2 3, it is an 
open question. The record to date is due to Fukuda, namely>..= 14 for 
p = 3. He found three such fields, one of which is F = Q( ✓-956238) 
which has class number 3. 

The following conjecture was proposed and studied in [Grl]. 

Conjecture (3.4). Assume that F is a totally real number field 
and that F00 /F is the cyclotomic Zp-extension. Then >..(F00 /F) = 
µ(F00 / F) = 0. That is, the power of p dividing the class number of 
Fn is bounded as n-----, oo. 

According to Leopoldt's conjecture, L 00 /F00 should be the only Zp
extension of F. The above conjecture states that X = Gal (L 00 / F 00 ) 

should be finite. In [Grl], several sufficient conditions for this to be 
true are proved and a few examples are given where one can verify 
that X is finite, but nontrivial. (That is, >.. = µ = 0, but v > 0.) 
An expanded version of [Grl] was published in 1976 ([Gr3]), including 
many more examples. Since then this conjecture has been studied by T. 
Fukuda, K. Komatsu, H. Taya and many others. If F has just one prime 
lying over p, totally ramified in F 00 / F, then a necessary and sufficient 
condition for Conjecture 3.4 to hold is that ker(So -----, Sm) = So for 
some m 2 0. This is proved in [Grl, 3], but we will now give a simpler 
proof using the fact that X / WnX ~ Sn for all n. This isomorphism is 
equivariant for the action of Gal (Fn/ F). By class field theory, the norm 
map NFn/F : Sn -----, So is surjective. Let 7/n = Wn/wo EA. The image 
of 7/n in A/wnA = Zp[r /r n] is just the norm element and so it follows 
that Im(So -----, Sn) = 7/nSn. If ker(So -----, Sm) = So, then 7/mSm = 0 and 
therefore 7/mX t:;;; wmX. Since 7/mlwm in A, we must have 7/mX = WmX. 
Letting Y = wmX, it follows that w0 Y = Y and Nakayama's lemma then 
implies that Y = 0. Thus, we see that X ~ Sm if ker(So -----, Sm) = So. 
For the necessity, we just remark that, for an arbitrary Zp-extension, 
S00 has no proper A-submodules of finite index. If X is finite, then S00 

would also be finite, and therefore S00 = 0. It would follow that, for 
any n 2 0, there exists an m 2 n such that ker(Sn -----, Sm) = Sn. An 
interesting example illustrating the above criterion is F = Q( \/'254) and 
p = 3. Then S0 ~ Z/3'll. In this case, Kurihara, Ichimura-Sumida, and 
Kraft-Schoof independently found that ker(S0 -----, Sm) = S0 holds for 
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m = 5, but not form= 4. Thus, X ~ S5 , which is cyclic of order 35 . 

For more on this general topic, we refer the reader to [F-K] and also to 
[Ic-S], [O-T] and the numerous references which are given there. 

Suppose now that F is an arbitrary Galois extension of (QJ. We sup
pose also that F n (QJ= = (QJ. Then F = = FQ= is Galoisian over (QJ 
and Gal (F=/Q) ~ ~ x r, where ~ = Gal (F=f(QJ=) can be identified 
with Gal (F /Q). Let x be the character of an irreducible representa
tion of~ over Qp, with underlying representation space Vx. Let dx = 

,dimijp(Vx)- Let X = Gal(L=fF=) as before. Then VF= X ®zp (QJP is 

a finite-dimensional representation space for ~ over (QJP. Its dimension 
is A(F=/F). We define Ax to be the multiplicity of Vx in VF. That is, 
Ax= dimijp (Hom~(VF, Vx)). Then we have 

A(F=f F) = L dxAx, 
X 

where x runs over all irreducible characters of~- (Note that in defining 
each Ax, one can assume that x is faithful, changing F if necessary.) 
Now we can write dx = d~ + d;_, where d~ denote the dimensions of 
the (±1)-eigenspaces for the action of a complex conjugation 80 E ~

( One fixes an embedding of F into (C to define 80 . The dimensions d~ 
are independent of this choice.) If dx = d~, then one can assume that 
Fis totally real. Conjecture 3.4 then implies that Ax = 0 for all such X· 
If dx = d;_, then one can assume that F is a totally complex quadratic 
extension of a totally real number field p+. (That is, F is a so-called 
CM field.) In this case, Ax is often nonzero. As we will mention later, 
the value of Ax is related to the number of zeros of a p-adic Artin £
function which can be associated to X· The simplest case is when F is 
an imaginary quadratic field (i.e. p+ = (QJ and x is an odd Dirichlet 
character of order 2). Then Ax = AF. 

The "mixed" case (where d~ and d;_ are both positive) seems quite 
mysterious. Virtually nothing is known. One can use Proposition 2.2 
to give examples where Ax is nonzero. To explain this, note that ~ = 

Gal ( F / Q) acts on Gal ( F / F) by inner automorphisms and therefore 

Gal ( F / F) ®;zp QP becomes a representation space for ~- One can verify 
that Vx occurs in this representation space with multiplicity at least 
d;_. (That's the exact multiplicity if Leopoldt's conjecture is valid for F 
and p.) If p splits completely in F/(QJ, the proof of Proposition 2.2 then 
shows that Ax ~ d;_. More generally, let ~P denote the decomposition 
subgroup of ~ corresponding to a prime p of F lying over p. Then one 
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can show that 

It would be interesting to find examples where this inequality is strict. 
Are there such examples if one requires that pf [F: (())]? 

Consider the case where F is a totally complex field and ~ = 
Gal (F /(())) is dihedral of order 2m, where mis odd. If m > 1, any faith
ful irreducible representation of ~ is 2-dimensional and of mixed type. 
Also F contains a unique imaginary quadratic subfield K. If K denotes 
the compositum of all Zp-extensions of K, then Gal (K / K) 9! Z~. Con
sidering the action of Gal (K/(Q)) on this group, one can find a unique 
Zp-extension K~ / K such that K~ /(Q) is Galoisian and the nontrivial 
element of Gal ( K / (Q)) acts by -1 on Gal ( K~ / K). One often refers to 
K~ as the "anti-cyclotomic" Zp-extension of K. Assume that p is a 
fixed odd prime and that K is also fixed. For a positive n, let F = K~c, 
the n-th level in the Zp-extension K~ / K. Then F n (())00 = (Q) and 
Gal ( F / (Q)) is dihedral of order 2pn. It seems reasonable to believe that 
Ax = 0 if xis a faithful character of Gal (F /(())) and n » 0. Equivalently, 
this means that A(K~c(Q)00 / K~c) is bounded as n ------, oo. There is an
other interesting interpretation. Let K::X, = K(Q)00 be the cyclotomic Zp
extension of K. Then K = K~ K::X, and Gal ( K / K) = r- x r+, reflect
ing the action of Gal(K/(Q)) on Gal(K/K). Here r- = Gal(K/K::X,), 
r+ = Gal (K / K~)- Let L denote the maximal, abelian, unramified, 
pro-p extension of K (or, more briefly, the pro-p Hilbert class field of 

K). Let X =Gal(£/ K), which can be viewed as a module over the ring 
A = Zp[[Gal (K / K)ll. This ring can be identified with a formal power 

series ring over ~P in two variables. It is known that X is a finitely gen

erated, torsion A-module. It might in fact be pseudo-null, which means 
that it has two relatively prime annihilators in A (which is a UFD). 
(Note: The finitely generated pseudo-null modules over A = Zp[[T]] 

are simply the finite A-modules. But over A= Zp[[T1 , T2]], pseudo-null 
modules can be infinite.) Now we have the following equivalence: 

Ax = 0 for all n » 0 {=} X is a pseudo-null A-module. 

We will just sketch the reason for this. As a module over A - = Zp [ [r-]], 
one can show that X is still finitely generated. (The crucial ingredient is 

to show that X/bo - l)X is finitely generated as a Zp-module, where 
'Yo is a topological generator of r-. This follows from the fact that 

µ(K::X,/K) = 0.) Let w;; = bo)Pn - 1. Now K;;(Q)oo = jfr;: and one 
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can show that >.(K;;Q=/K;;) = rank;zJX/w;;:X) + 0(1) as n--------, oo. 

But it is easy to see that rank;zp (X /w;; X) is bounded if and only if 

rank A - ( X) = 0, and that this will be true precisely when X is pseudo
null as a A-module. 

For several different reasons, including the remarks in the previous 
paragraph, we have been tempted to make the following conjecture. 

Conjecture (3.5). Suppose that F is a number field and that p is 
a prime. Let F denote the compositum of all Zp-extensions of F. Let L 
denote the pro-p Hilbert class field of F and let X = Gal (L/ F), regarded 
as a module over the ring A = Zp [[ Gal ( F / F)]]. Then X is a pseudo-null 

A-module. 

We refer to [N] and to [L-N] for some equivalent versions of this conjec
ture and some additional references. 

4. In his paper, On some modules in the theory of cyclotomic fields 
([Iw7]; published in 1964), Iwasawa proved two versions of what would 
later be known as Iwasawa's "Main Conjecture" under a certain hy
pothesis. This paper concentrates on the case F = Q((p), F= = 

Q( (p, (p2, ... ) . The hypothesis that he makes is the following. 

Cyclicity Hypothesis: S0 is a cyclic Z[b.]-module. 

Under this same hypothesis, one version of the Main Conjecture is al
ready proven (in essence) in the earlier paper A class number formula for 
cyclotomic fields ([Iw6]). We will discuss this first. Under the cyclicity 
hypothesis, it follows that Sn is cyclic as a module for Zp[Gal (Fn/Q)] for 
any n ::::: 0, and then Iwasawa proves that, for any odd i, 3 :S: i :S: p - 2, 
one has 

(8) 

Here 0-a E Gal (Fn/Q) is determined by 0-a((pn+l) = c;n+l' (o-a) is 
the projection of O-a to Gal (Fn/ F) in the direct product decomposi
tion Gal (Fn/Q) = D. x Gal (Fn/ F), and w-i(o-a) is determined by the 
projection of O-a to b., regarding w-i as a character of that group. It is 

not hard to verify that 0~) E Zp[Gal (Fn/ F)]. (For i = 1, this isn't true, 

but it is shown that S':;/ = 0.) The fact that 0~i) annihilates S':;:,' is a 
consequence of Stickelberger's Theorem. 
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A crucial observation is that 0/j} is mapped to 0~i) under the Zp
algebra homomorphism Zp[Gal (Fm/ F)] ~ Zp[Gal (Fn/ F)] form 2: n 2: 
0. We let e(i) = ~0~i) EA= Zp[[r]]. Iwasawa proves the following 

result in [Iw7]. 

Theorem (4.1). Suppose that the cyclicity hypothesis holds. Let i 
be odd, 3::;: i::;: p - 2. Then xw' ~ A/(eCil) as a A-module. 

Here is a sketch of the proof. If one identifies A with Zp[[T]] as before, 
then O(i) is identified with a power series gi(T). This is the power series 

which we referred to in Section 3. Note that gi (0) = b6i) = - B 1,w-'. 

Now Proposition 3.1 asserts that xw' ~ A/ I, where I is the principal 
ideal generated by fi(T) = f xw' (T). Stickelberger's Theorem implies 

that O(i) annihilates xw' ~ ~ s::;,i'. This means that gi(T) E J. That 

is, 

(9) Ji (T) lgi (T) 

in the ring A. Using (1) and (2) for n = 0, it follows that fi(0) ~ IS{I
Using (8) for n = 0, one has S'{ ~ Zp/ B 1,w-,Zp and so gi(0) ~ IS{ I 
too. It then follows from (9) that gi(T)/ fi(T) E Ax, which implies 
Theorem 4.1. 

Without the cyclicity hypothesis, there seems to be no simple way 
to prove the divisibility (9). However, Iwasawa later (in Chapter 7 of 
[IwlO]) proves the following proposition by using the formulas for the 

first factor of the class number of the fields Fn for n 2". 0. Let .A~~~nal 

and µ~~~nal denote the .A- and µ-invariants for A/(gi(T)), which can be 

easily described in terms of the coefficients b/j} of gi(T). Let >.~~~lg and 

µ~~~lg be the >.- and µ-invariants of xw', which we previously denoted 

more simply by >-ii) and µ1i). 
Proposition (4.2). For any odd prime p, we have the following 

equalities: 

p-l p-2 

~ _>.(i) - ~ .A(i) 
~ p,alg - ~ p,anal 
i=3 

i odd 
i=3 

i odd 

and 
i=3 

i odd 
i=3 

i odd 

Thus, if we somehow know that (9) holds for all odd i, 3::;: i::;: p-2, 
then it would still follow that the ideals (Ii (T)) and (gi (T)) are equal. 
This is of course weaker than Theorem 4.1 in that one does not obtain 
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the precise structure of xw'. On the other hand, if one could prove 
the divisibility gi(T)lfi(T) for all these i's, then one would again obtain 
(Ji (T)) = (gi (T)). In 1981, Mazur and Wiles succeeded in proving this 
divisibility, as we will discuss below. 

Several years later Iwasawa discovered that the power series gi(T) 
is intimately connected to the p-adic £-function LP( s, wJ) which was 
constructed by Kubota and Leopoldt in [K-L] (also published in 1964). 
Here i and j are related as before: i + j = 1 (mod p - 1) and pis an 
odd prime. This p-adic L-function can be characterized as the unique 
continuous function from Zp to (Qlp such that 

for all m ~ 1 with m = j (mod p - 1). Here ((z) denotes the Riemann 
zeta function. It is known that ((1-m) = -Bm/m for all m ~ 1, where 
Em denotes the m-th Bernoulli number. Kubota and Leopoldt prove 
that Lp( s, wJ) is actually analytic for all s E Zp, except for a simple 
pole at s = 1 when j = 0 (which corresponds to i = 1). They also 
give the values Lp(l - m,wJ) for all m ~ 1, and in particular one has 
Lp(O,wJ) = -B1,w-'· 

We will state Iwasawa's result in terms of g(i). We assume that 
i -I= 1, and hence j -I= 0. Let r;, : r -----+ 1 + pZp be the isomorphism giving 
the action of r on µp=. That is, r;, = xlr, where xis the usual cyclotomic 
character. For any s E Zp, we can define a continuous homomorphism 
r;, 8 : r -----+ 1 + pZp by r;,8 ('-y) = r;,('-y)s for 'Y E r. One can extend r;,s to 
a continuous Zp-algebra homomorphism cp8 : A-----+ Zp. (If one identifies 
A with Zp[[T]] by setting T = 'Yo - 1, then cp 8 can be defined as fol
lows: cp 8 (g(T)) = g(r;,('y0 ) 8 - 1) for any g(T) EA.) Iwasawa proves the 
following result in [Iw9]. 

Theorem (4.3). Suppose that j is an even integer, 2::; j ::; p - 3. 
Then Lp(s, wJ) = cp8 (0Ci)) for alls E Zp· Equivalently, gi(T) satisfies the 
following interpolation property: gi(r;,(1'0) 1-m - 1) = -(1-pm-l )Bm/m 
for all m ~ l such that m = j (mod p - 1). 

A nonzero element of A has only finitely many zeros and so the above 
interpolation property determines gi(T) uniquely. The Kubota-Leopoldt 
p-adic £-function Lp(s,wJ) is obtained from gi(T) by the substitution 
T = r;,('yo) 8 - l. 

This may be a good place to discuss the congruences in ( 4) again. 

Writing gi(T) = I: b~)Tn as before, it is clear that 
n=O 

- (i) gi(t) = gi(0) = b0 (mod pZp) 
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for all t E p'll,p· It follows that Bm/m = -b~i) (mod pZp) for all m = j 
(mod p - 1), taking t = 11;(1'0 ) 1-m - 1, and so we have 

(10) 

Here, as before, i and j are related by i + j = 1 ( mod p - 1), 2 ::; i, j ::; 
p- 2 with i odd, j even. (Thus, wiwi = w, where wi is an odd character, 
wi is an even character.) On the other hand, if t 1 , t 2 E pZp, then 

(i) gi(t1) - gi(t2) = b1 (t1 - t2) (mod p2Zp)-

It follows that if Bj' /j' = Bi/j (mod p2Zp) for some j' = j (mod p-1) 

where j',j 2': 4 and j' ¢. j (modp), then plbii)_ Conversely, if plbii), 
then gi(t) = gi(0) (mod p2Zp) for all t E p'll,p· Thus, we have 

Bj+p-1 = Bj (mod p2Zp) ~ plbii) 
j+p-1 j 

provided that j 2". 4. In summary, the two congruences in ( 4) hold if 

and only if .x.t~~nal 2': 2 (since we know that µt~~nal = 0). As we have 
mentioned, this does not happen for p < 16, 000, 000. 

The first version of Iwasawa's Main Conjecture can be stated as 
follows. For each odd i, 3 ::; i ::; p - 3, let fi (T) be the characteristic 
polynomial for the A-module xw'. Let gi(T) be the power series which 
is characterized by the interpolation property in Theorem 4.3. (It is 
related to Lp ( s, wi) by a simple change of variable.) 

Conjecture (4.4). The ideals (fi(T)) and (gi(T)) of A are equal. 

As Iwasawa discusses in another article [Iw8], one can view this 
conjectural relationship between fi(T) and gi(T) (which Iwasawa proved 
under the cyclicity hypothesis) as another aspect of the analogy between 
algebraic function fields and algebraic number fields mentioned earlier. 
There is an important theorem of Weil which states that the zeta func
tion of a curve C over a finite field k is closely related to the action of the 
Frobenius automorphism in Gal (k/k) on the p-power torsion points of 
the Jacobian variety for C, where pis any prime such that p-/- char(k). 
The analogy arises from the fact that gi(T) is related to values of the 
Riemann zeta function ((z) by an interpolation property. This analogy 
can in fact be made quite precise. 

Theorem 2.6 shows that Conjecture 4.4 can be formulated in the 
following equivalent form. 
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Conjecture (4.5). The characteristic ideal (f ywj (T)) for the A
module ywj can be generated by gi(T) = gi(K('°Yo)(l + T)-1 - 1). 

Later we will point out that the power series [Ji (T) can also be character
ized by a nice interpolation property. We want to discuss a third version 
of Conjecture 4.4, which lwasawa also proves is equivalent. We first 
observe that there is a natural factorization of the polynomial Jywj (T). 
Recall that F00 C L 00 C M 00 and one therefore has an exact sequence 

(11) 

of finitely generated, torsion A-modules. (Torsion because j is even.) 
Here Z = Gal (M00 / L00 ). It follows that 

(12) 

lwasawa proves that gi(T) has a factorization parallel to (12). If 
n 2: 0, let Un denote the group of units in the completion (Fn)pn, where 
Pn is the unique prime of Fn above p. Let En and Cn denote the group 
of units and the subgroup of cyclotomic units for the field Fn, Let En 
and Cn denote the closures of En and Cn respectively in the topological 
group Un, Let~ = LimUn/Cn, where the maps defining the inverse 

+--

limit are induced by the norm maps Nm,n : Um -----+ Un for m 2: n. Note 
that Nm,n(Cm) ~ Cn (in fact, equal) and Nm,n(Em) ~ En. Also, note 
that Un/Cn is a Zp-module since all nonzero residue classes modulo Pn 
have representatives in Cn. (The residue field is just lFp.) Let X = 
LimEn/Cn and 3 = Lim Un/En. Then lwasawa shows that one has an 
+-- +--

exact sequence 

(13) 

of finitely generated, torsion A-modules and furthermore one has the 
following theorem. 

Theorem (4.6). For even j, 2 < J < p - 3, there is a A
isomorphism 

~wj ~ A/(gi(T)), 

where i + j = 1 ( mod p - 1). 

Consequently, one does have a natural factorization of gi(T), namely 

(14) 
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where u(T) EA x. 

Iwasawa also proves that 3wi ~ zwi as A-modules, the isomorphism 
coming from class field theory: one identifies ~Un/En with the in-

ertia subgroup for pin Gal(M00/F00 ), which of course coincides with 
Gal (M00 / £ 00 ). Comparing (12) and (14), one is then led to a third 
equivalent formulation of Conjecture 4.4. 

Conjecture (4.7). For even j, 2 S:: j S:: p - 3, the characteristic 
ideals of xwj and xwj are equal. 

We should mention that, under the assumption of Vandiver's conjecture, 
one has xwj = 0. But Iwasawa shows that xwj /Txwj ~ E'r{ /C'r{, 
which is also trivial under the assumption of Vandiver's conjecture. It 
would follow that xwi = 0 too. Thus, Conjecture 4. 7 is then obvious 
and Conjecture 4.4 holds. One could also deduce Theorem 4.1 again. 

These conjectures can be formulated in a more general setting. Let 
F be a finite, abelian extension of Q. For simplicity of exposition, we 
will assume that pis an odd prime, that D. = Gal (F/Q) has exponent 
dividing p-1 (so that irreducible characters of D. will have values in z; ), 
and that F contains a primitive p-th root of unity. These assumptions 
are not at all essential. Let x and '1/J be two irreducible characters of 
D. such that x'l/J = w and x is odd (so that '1/J is even). Let F00 = 
FQ00 and let X = Gal(L00 /F00 ), Y = Gal(M00 /F00 ) where L 00 ,M00 

are defined as before. We can define xx and y,J,, which turn out to 
be related just as in Proposition 2.6 ( which is the special case x = 
wi, 'ljJ = wJ). Propositions 2.3-2.5 are also true. There is also a p-adic £
function Lp ( s, 'ljJ) defined by a certain interpolation property and which 
corresponds to a power series gx(T) E A. (We use x as a subscript to be 
closer to the previous notation gi (T) corresponding to x = wi.) One can 
easily state the analogues of Conjectures 4.4, 4.5, and 4. 7, which again 
turn out to be equivalent. We refer the reader to [Co2] or [Gr2] for more 
details. In this generality, the conjectures were proved by Mazur and 
Wiles in [M-Wl]. We should mention that Iwasawa's arguments work 
quite well (and describe xx or y,J,, up to pseudo isomorphism) if one 
makes a certain hypothesis which is slightly weaker than the cyclicity 
hypothesis (which is false in general). We will state it in a form which 
makes sense whenever F/Q is Galois and F00 = FQ00 • Then F00 /Q is 
Galois. We can define Zp[[Gal(F00 /Q)]] as ~Zp[Gal(Fn/Q)]. 

Pseudo-cyclicity Hypothesis. There is a cyclic Zp[[Gal (F00 /Q)]]
submodule Z of X = Gal ( £ 00 / F 00 ) such that X / Z is finite. 
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We do not know of any examples where this hypothesis fails to be true. 
If F /Q is abelian, then Conjecture 3.4 ( applied to the maximal real 
subfield of F((p)) would imply the pseudo-cyclicity hypothesis. (See 
[Gr3].) It also would be true if we somehow knew that all the roots of 
gx(T) were simple for all odd characters x of~ = Gal (F((p)/Q), an 
assertion which is quite likely to be valid. 

Even more generally, one can formulate the analogues of Conjec
tures 4.4 or 4.5 for abelian characters x or 'ljJ of any totally real number 
field K under the assumption that x is totally odd or 'I/; is totally even. 
If x'l/J = WK, where WK = wlcK, then the two conjectures are again 
equivalent, as one shows by using the Reflection Principle. The p-adic 
£-functions Lp(s, 'I/;), which satisfy an interpolation property involving 
the numbers L(l - m, 'lj;wKm) for m 2': 1, were constructed by Deligne 
and Ribet [D-R] using Hilbert modular forms for K and independently 
by D. Barsky and by P. Cassou-Nogues [Ca] using explicit formulas of 
Shintani. In this generality, Wiles succeeded in proving these "Main 
Conjectures" in 1988. The proof appeared in [Wi2]. The approach 
uses 2-dimensional p-adic representations associated to Hilbert modular 
forms for K and is inspired partly by ideas of Hida [Hl]. As a conse
quence of this result of Wiles, an analogous main conjecture for p-adic 
Artin £-functions can be deduced. These functions are associated to 
representations of Gal (F/Q), where Fis any finite, totally real, Galois 
extension of Q, and can be characterized by an interpolation property 
involving values of the corresponding complex Artin £-function. The 
invariant Ax discussed in Section 3 (for an irreducible x which is not of 
"mixed" type) then has an "analytic" interpretation as the number of 
zeros of a certain p-adic Artin £-function. 

Iwasawa gave a course at Princeton University during the academic 
year 1968-69 in which he explained many of the ideas that have been 
mentioned so far. That course was my first introduction to the subject. 
Iwasawa's lectures were beautiful, and usually given without consulting 
any notes. I recall that the notes that I took of his lectures were quite 
in demand and circulated for many years afterwards. The results in the 
course were proved in complete generality and eventually became incor
porated in Iwasawa's 1973 paper On 7Lz-extensions of algebraic number 
fields. The course and this paper included the study of a skew-symmetric 
pairing which was inspired by the analogy with algebraic function fields 
and the Weil pairing. 

5. Barry Mazur gave a series of lectures in Paris during the Spring of 
1970, where he developed a theory aimed at proving the following kind 
of result. 
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Conjecture (5.1). Suppose that A is an abelian variety defined 
over a number field F. Assume that p is a prime such that A has good, 
ordinary reduction at all primes of F lying above p. Let Fx,/ F be the 
cyclotomic Zp-extension. Then A(F00 ) is finitely generated. 

The details of his theory were published in [Mazl]. One case in which 
Mazur succeeded in proving this conjecture is under the following as
sumption: 

(15) A(F) and illA(F)p are both finite. 

Here illA(F)p denotes the p-primary subgroup of the Tate-Shafarevich 
group for A over F. We will formulate several of Mazur's results and 
conjectures in terms of the classical Selmer group, although he uses a 
certain variation of this group. Recall that if K is an algebraic extension 
of F, then the p-primary subgroup SelA(K)p of the Selmer group fits 
into an exact sequence 

0----, A(K)@ (Qp/Zp)----, SelA(K)P----, illA(K)p----, 0. 

Thus (15) means that SelA (F)p is finite. 
One of the main results of [Mazl] is the following. 

Theorem (5.2). Assume that A/ F has good, ordinary reduction at 
all primes of F lying over p. Let F00 / F be the cyclotomic Zp-extension. 
Then the kernel and cokernel of the natural maps 

SelA(Fn)p----; SelA(F00 );'al(Foo/Fn) 

are finite and have bounded order as n ----, oo. 

This is often referred to as Mazur's "Control Theorem" and is valid 
for every Zp-extension F00 /F. Now assume that SelA(F)p is finite. 
SelA(Foo)p is a discrete, p-primary group on which r = Gal (F00 / F) acts. 
We can regard SelA(F00 )p as a discrete A-module and its Pontryagin dual 
XA(F00 ) as a compact A-module. If we are assuming that SelA(F)p 
is finite, Theorem 5.2 implies that XA(F00 )/TXA(F00 ) is finite. Thus 
XA(F00 ) is a finitely generated, torsion A-module. The classification the
orem then implies that XA(F00 ) has finite Zp-corank, which we denote by 
AA(F00 /F). Therefore, the maximal divisible subgroup (SelA(F00 )p)div 
of SelA(F00 )P is isomorphic to (Qp/Zp/'A(Foo/F) from which it follows 
that A(F00 )@ (Qp/Zp) ~ (Qp/Zpy where O:::; r :::; >.A(F00 / F). On the 
other hand, if F00 / F is the cyclotomic Zp-extension, then it is known 
that A(Foo)tors is finite. Mazur proves this in [Mazl] under certain hy
potheses. By a simple argument given in Mazur's paper, it then follows 
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that A(F00 ) is indeed a finitely generated group, provided that (15) 
holds. 

More generally, the same conclusion (i.e., Conjecture 5.1) follows 
from the following conjecture. 

Conjecture (5.3). Under the same assumptions as in Conjec
ture 5.1, the A-module XA(F00 ) = SelA(F00 )p is finitely generated and 
torsion. 

We would then say that SelA ( F 00 )p is cofinitely generated and cotorsion 
as a A-module. In fact, for any Zp-extension F 00 /F and for any abelian 
variety A (with no restriction on the reduction-type at p), SelA(F00 )p is 
always a cofinitely generated A-module, but can fail to be A-cotorsion. 
For example, let F be an imaginary quadratic field. Let A be an elliptic 
curve over (Qi. Suppose that F 00 is the anti-cyclotomic Zp-extension of 
F. Then it often happens that rankz(A(Fn)) is unbounded as n------, CXJ. 

This interesting phenomenon is discussed in [Maz2]. In such a case, it 
is clear that SelA (F 00 )p cannot be A-cotorsion. 

Mazur also states a Main Conjecture somewhat analogous to Con
jecture 4.4 or 4.5. It is for the case where A is an elliptic curve E /(QI 
which is modular and where F 00 is the cyclotomic Zp-extension of a sub
field F of (QI( (p). The prime p is assumed to be odd and such that E has 
good, ordinary reduction at p. For simplicity, we will discuss F = (Qi. 
For such a prime p, Mazur and Swinnerton-Dyer constructed a p-adic 
£-function Lp(s, E) in [M-SwD]. If r = Gal ((Ql00 /(QI) and A = Zp[[r]], 
then Lp(s,E) = '-Ps-1(0E) for alls E Zp, where 0E is an element of -t,A 
for some t 2 0. Here <p8 : A ------, Zp is just as in Theorem 4.3. The 
element 0E is characterized by a certain interpolation property involv
ing the values at z = 1 of the twisted Hasse-Weil £-series L(z, E, p) for 
E /(Qi, where p varies over all Dirichlet characters of p-power order and 
conductor. (They can be regarded as characters of r.) It is now known 
under very mild assumptions that 0 E E A. This should be true in gen
eral. One important idea in [M-SwD] is that 0E can be identified with 
a (Qip-valued measure on the Galois group r. The measure of any open 
subset of r is in -t,zp, and presumably should be in Zp itself. If µE is 
this measure, then 

where Ks-l is viewed as a function on r. 
Mazur's Main Conjecture is the following statement. 
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Conjecture (5.4). The characteristic ideal of XE(Q=) 
SelE(Q=); is generated by 0E. 

Even without assuming Conjecture 5.3, this conjecture makes sense. It 
could be interpreted as asserting that SelE(Q=)p is A-cotorsion if and 
only if 0E -I= 0. It is now known that indeed 0E -=/= 0, a consequence of 
a theorem of Rohrlich [Ro] which states that L(l, E, p) -=/= 0 for all but 
finitely many characters p of r. Just to give a simple illustration of how 
Conjecture 5.4 can be applied, we will mention one corollary, namely 
the following piece of the Birch and Swinnerton-Dyer conjecture: 

(16) L(l, E)-=/= 0-¢=::} E(Q) and IIIE(Q)p are both finite. 

This would follow because the interpolation property implies that 

L(l, E) -=/= 0-¢=::} Lp(l, E) -=/= 0-¢=::} T f 0E 

where T = ,o -l E A as before. If Conjecture 5.4 is valid, then T f 0E is 
equivalent to the assertion that XE(Q=)/TXE(Q=) is finite. Mazur's 
Control Theorem (Theorem 5.2) shows that this last assertion is indeed 
equivalent to the finiteness of SelE(Q)p- We should also add that, if 
L(l, E) -I= 0, then Conjecture 5.4 would imply the p-part of the Birch and 
Swinnerton-Dyer conjecture. (See Chapter 4 of [Gr5] for an exposition 
of this result.) 

If E(Q) is infinite, then Conjecture 5.4 implies the following inequal
ity: 

ords=1(Lp(s,E)) ~ rankz(E(Q)). 

This is because XE(Q=)/T XE(Q=) has Zp-rank equal to the Zp-corank 
of SelE(Q)p- This is at least rankz(E(Q)) (with equality if IIIE(Q)p is fi
nite). The Birch and Swinnerton-Dyer conjecture asserts that 
ordz=1(L(z,E)) = rankz(E(Q)). In order to deduce this from Con
jecture 5.4 one would need to prove three results: 

(i) IIIE(Q) is finite. 
(ii) TXE(Q=)/T2 XE(Q=) is finite. 

(iii) ordz=1(L(z, E)) = ords=1(Lp(s, E)) 

The first result is of course a well-known conjecture, proved by Koly
vagin if ordz=i(L(z,E)) :=;: 1. In this case, Kolyvagin also proves the 
equality of rankz(E(Q)) and ordz=1(L(z, E)). The second result is 
an easy consequence of Theorem 5.2 if SelE(Q)p is finite. (For then 
XE(Q=)/TXE(Q=) is finite and this implies (ii).) More generally, it 
is equivalent to the nondegeneracy of a certain p-adic height pairing. 
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This equivalence is proved in [Pel] for elliptic curves with complex mul
tiplication and in [Sch2] in a more general context. The nondegeneracy 
is trivial if SelE((Q)p is finite. It has been proven by D. Bertrand if E 
has complex multiplication, E(Q) has rank 1, and IIIE((Q)p is finite. 
B. Perrin-Riou [Pe2] has also proven it if ords=i(Lp(s, E)) = l. But 
nothing is known about the nondegeneracy if ordz=l (L(z, E)) > l. 

As for the equality in (iii), it is obvious if L(l, E) =/- 0 and would 
follow from the Gross-Zagier theorem together with Perrin-Riou's p

adic analogue [Pe2] if ords=i(Lp(s, E)) = l. It is also known that 
ordz=i(L(z,E)) and ords=i(Lp(s,E)) have the same parity since one 
can compare the signs in the functional equation for L(z, E) and its 
analogue for Lp(s, E). Beyond this, we know nothing about the rela
tionship between these orders of vanishing. 

We should also mention the interesting case where E has split, mul
tiplicative reduction at p. The corresponding p-adic £-function Lp(s, E) 
has been constructed in [M-T-T]. But it has a "trivial zero". That 
is, the natural interpolation property given in [M-T-T] implies that 
Lp(l, E) = 0, and, concerning the order of vanishing, it is conjectured 
there that ords=l (Lp(s, E)) = 1 +ordz=l (L(z, E)). The functional equa
tion proved in [M-T-T] show that these orders have opposite parities. 

Conjectures 5.3 and 5.4 have been proven by Rubin [Ru2] when E /Q 
has complex multiplication and p is any odd prime where E has good, 
ordinary reduction. For a modular elliptic curve E, Kato has proven 
Conjectures 5.3 and has also proven that 0E is at least contained in the 
characteristic ideal of XE(Q00 ), up to multiplication by a power of p. 

If E is a modular elliptic curve over (Q having good, supersingular 
reduction at p, then a p-adic £-function Lp(s, E) still exists, but now 
corresponds to an unbounded (Qp-valued measure µEon r. (This means 
that the measures of open subsets have unbounded denominators.) Also, 
the Selmer group SelE(Q00 )p will definitely not be A-cotorsion. This 
topic has been studied by Perrin-Riou and by Schneider. We refer the 
reader to [Pe3], where one can even find a formulation of a Main Con
jecture in the supersingular case. We want to mention just one specific 
question, which seems to still be open. Assume that IIIE(Qn)p is finite 
for all n. What can one then say about the growth of IIIIE(Qn)pl as 
n ----+ oo? If E has good, ordinary reduction at p and if Conjecture 5.3 
holds for A= E and the Zp-extension (Q00 /(Q, then one can prove that 
IIIIE(Qn)pl = p.\n+µpn+v for n » 0, where .X, µ, and v are suitable 
integers. But if E has supersingular reduction, we do not even have a 
good guess. More generally, one can consider the analogous question for 
an arbitrary abelian variety A/ F and an arbitrary Zp-extension F00 / F. 

In 1976, Coates and Wiles proved the following theorem. 
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Theorem (5.5). Assume that Eis an elliptic curve defined over Q 
with complex multiplication and that L(l, E) -/= 0. Then E(Q) is finite. 

The proof involves a beautiful argument based on adapting some of 
the results in Iwasawa's paper [Iw7] to a different, but quite analogous, 
situation. We will outline this argument and also take the opportunity 
to state another main conjecture which Coates and Wiles formulated. 

Suppose that E is an elliptic curve defined over Q such that Ende ( E) 
= 0, the ring of integers of an imaginary quadratic field K. We will 
assume that p is an odd prime and that E has good, ordinary reduc
tion at p. Then p splits completely in K. Since K must have class 
number 1, we can write that p = nft, where 1r, ft E O ( complex con
jugates). Let E[n00 ] denote the group of 1r-power torsion points on 
E(Q) : E[n00 ] = Un E[nn+l], where E[nn+l] is the kernel of the endo
morphism nn+l of E(Q). Adjoining coordinates to K, we obtain the 
fields F00 = K(E[n00 ]) = Un Fn, where Fn = K(E[1rn+1]). Considering 
the action of Gal(F00 /K) on E[n00 ] (which is isomorphic to Qp/'lLp as 
a group), one obtains an isomorphism 

"PE : Gal (F00 / K) ~ z;. 
Therefore, Gal (F00 / K) ~ ~ x r, where r = Gal (F00 / F0 ) is isomorphic 
to 1 + p'!LP and ~ ~ ('!L/p'!L) x. The situation is quite analogous to 
that for Q(µp=)/Q, where µp= denotes the group of p-power roots of 
unity. The prime 7r is totally ramified in F00 /K. (But ft is unramified.) 
If F = F0 , then ~ can be identified with Gal ( F / K) and there is a 
canonical isomorphism 

which gives the action of~ on E[n]. (We also regard WE as having values 
in z; . ) The extension F 00 / F is a '/LP-extension, and only the prime of 
Flying above 1r is ramified. (Note: In F/K, the primes of K where E 
has bad reduction are also ramified.) 

Now suppose that E(Q) is infinite and that P is a Q-rational point 
on E of infinite order. We will assume that P (/. nE(K). For each 
n ~ 0, let Pn E E(Q) be such that 1rn+1 Pn = P. Then P0 (/. E(K). 
Let Tn = Fn(Pn), T00 = UnTn. It turns out that Tn/Fn is cyclic of 
order pn+l and is unramified except at the unique prime of Fn above 1r. 
The extension T00 / K is Galoisian, Gal (T 00 / F00 ) ~ 'lLp, and the action of 
Gal ( F 00 / K) on Gal (T 00 / F 00 ) by inner automorphisms is given by '¢ E · 

This can be seen by considering the 1-cocycles an: GK-+ E[1rn+1] de
fined by an(g) = g(Pn)-Pn for all g E GK. One can check that an[GFco 
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induces a compatible set of isomorphisms Gal ( F = (Pn) / F =) ~ E[1rn+l] 
for n 2'.: 0, equivariant for the actions of Gal (F=f K). This implies that 
Gal(T=fF=) ~ T1r(E), the 1r-adic Tate module for E, as Gal(F=/K)
modules. Since T=f F= is ramified only at 1r, we have T= C M=, 
where M= denotes the maximal, abelian pro-p extension of F= which 
is unramified everywhere except at 1r. 

Let X = Gal (L=f F=), where L= is the pro-p Hilbert class field 
of F=. Let Y = Gal (M=/ F=) and Z = Gal (M=f L=), noting that 
L= C Moc,. Then X, Y, and Z are A-modules, where A = Zp[[r]]. 
Since~ acts on them too (because M= and L= are Galoisian over K), 
we can consider the ~-components corresponding to WE and obtain an 
exact sequence 

of A-modules. Coates and Wiles verify that T=f F= is ramified at 1r, a 
crucial fact for their proof. It then follows that T = ct L= and so T = nL= 
is a finite extension of F = since all nontrivial subgroups of Gal (T = / F =) 
have finite index. Therefore Z has a quotient Gal (T = /T = n L=) which 
is isomorphic to Zp and on which Gal (F=f K) acts by 'IPE· Let ,,.,E = 
'IPElr- Then it follows that zwE has a quotient which is isomorphic 
to A/('yo - ,,.,Ebo)), as a A-module where 'Yo denotes any topological 
generator of r. 

If F' is any algebraic extension of K, then the Selmer group for 
E over F' is an 0-module. One can consider its 'Ir-primary subgroup 
SelE(F')1r, which is a subgroup of H 1 (Gp,,E[1r°"]). Now, let F' = F=
Then, since Gp00 acts trivially on E[1r°"l, SelE(Foc,)1r is a subgroup of 
Hom(Gal (F~ / F=), E[1r°"]). Coates proves that 

Thus SelE(Foc,)1r is closely related to the Pontryagin dual Hom(Y, Qp/Zp) 
of the Galois group Y. They are isomorphic as groups, but the action of 
Gal (F=f K) is twisted by 'IPE· Now let r = rank(E(Q)) = ranko(E(K)). 
Then SelE(K)1r has a subgroup isomorphic to (Qp/Zpt and the restric

tion map Sel E ( K) 1r ------, Sel E ( F =) ~al ( F 00 
/ K) can be shown to have finite 

kernel and cokernel. This means that Homr(YwE, E[1r°"]) has Zp-corank 
at least r. If r > 0, then the fact that T = / F = is ramified at 1r im
plies that the image of SelE(K)1r in Homr(ZwE, E[1r°"]) has Zp-corank 
at least 1. It is possible to show that this image then has Zp-corank 
exactly 1 and hence Homr(XwE, E[1r°"]) has Zp-corank at least r - 1. 
Therefore it follows that >.(F=f F) 2'.: r - 1. That is, if r > 1, then 
Iwasawa's >.-invariant for the non-cyclotomic Zp-extension F =IF will 
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be positive. Letting S = T - (x:E('Yo) - 1), we see that srjfywE (T), 
SlfzwE (T), and sr-llfxwE (T). These divisibilities should conjecturally 
be exact. Perrin-Riou proves in her thesis [Pel] that this is so pre
cisely when IIIE(K)71" is finite and a certain p-adic height pairing on 
E(K) ®o K11" is nondegenerate. The finiteness of IIIE(K)71" implies that 
ywE /SYwE has Zp-rank exactly r. The nondegeneracy is shown to im
ply that sywE / S 2YwE is finite, i.e., in the classification theorem applied 
to the A-module ywE, there is no factor of the form A/(Sa) with a 2: 2. 

In their paper [C-Wl], Coates and Wiles show that if E(Q) is in
finite, then the rational number L(l, E/Q)/OE (where O,E denotes the 
real period of E) is divisible by all primes in a certain infinite set, con
cluding that L(l, E /Q) = 0. In another paper [C-W2] they prove a 
perfect analogue of Theorem 4.6 (which Iwasawa proved in [Iw7]). This 
result gives another proof of Theorem 5.5, which is the one we will briefly 
explain. Let Un denote the group of principal units in the Pn-adic com
pletion of Fn, where Pn is the unique prime of Fn lying over 'Tr. Let 
En and Cn denote respectively the groups of global units and elliptic 
units in Fn which are congruent to 1 modulo Pn• Let En, Cn denote the 
corresponding closures in Un. Let X = LimEn/Cn, ~ = LimUn/Cn, 

<-- <--

and 3 = Lim Un/ En. Then X, ~' and 3 are torsion A-modules on 
<--

which ~ = Gal ( F / K) acts. To state the result of Coates and Wiles, 
we must mention the p-adic £-functions that they consider, which were 
first constructed by Manin-Vishik [M-V] and, in a much more precise 
form, by Katz [Ka]. Let ¢E denote the grossencharacter of K asso
ciated to the elliptic curve E by Deuring. It has the property that 
L(z,E/Q) = L(z,'l/;E)- Suppose that 1::; j::; p- 2. For each such j, 
there is a power series G~) (T) with the property that 

for all positive integers k such that k = j (mod p-1). Here u0 = KE('Yo) 
and Ak is a certain explicit, nonzero factor which involves the real period 
O,E and a certain "p-adic period" 0,~l. The coefficients of G~) (T) as well 

as 0,~) belong to the ring of integers I in the completion of the maximal 
unramified extension Q~nr of Qp. Furthermore, there is a power series 

g~)(T) with coefficients in Zp such that G~)(T)/g~\T) is an invertible 

element in the formal power series ring I[[T]]. Only the ideal (g~) (T)) 
of A is uniquely determined. The result of Coates and Wiles can be 
stated as follows. 
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Theorem (5.6). Let p be a prime such that p 2: 5. Suppose that E 
has good, ordinary reduction at p, and 'l/JE(P)/N(p) "¢ 1 (mod p). Then 
for j, 1 5:. j 5:. p - 2, 

as A-modules. 

If '¢E(P)/N(p) = 1 (mod p), then p is called an anomalous prime 
for E. (Equivalently, .E(lFv) has an element of order p, where .Eis the 
reduction of E modulo p.) Then some modification of Theorem 5.6 
holds. There are infinitely many primes satisfying the hypotheses of 
Theorem 5.6. One deduces Theorem 5.5 as follows. If E(Q) is infinite, 
then, as we have discussed, one obtains that S = T - ( u 0 - 1) divides 
fzwE (T). But class field theory shows that Z ~ 3 as Gal (F00 / K)
modules. Thus S also divides f3wE (T) and therefore divides hJwE (T). 

By Theorem 5.6, it is then clear that Slgg)(T) and so gg\u0 - 1) = 0 
since S = T - (u0 - 1). Therefore, by the interpolation property (17), 
L(l, 1PE) = L(l, E /Q) is indeed zero. 

In [C-W2], Coates and Wiles state the following conjecture, which 
is often referred to as the one-variable main conjecture for elliptic curves 
with complex multiplication. 

Conjecture (5.7). With the above notation and assumptions, the 

characteristic ideal of yw1; is generated by g~\T). Equivalently, the 

A-modules xw1: and ;rw1; have the same characteristic ideal. 

Later on, Yager [Y] proved a two-variable analogue of Theorem 5.6 and 
formulated an analogous conjecture, referred to as the two-variable main 
conjecture. The corresponding two-variable p-adic £-function was con
structed by Katz and has an interpolation property involving the num
bers L(l,'¢1k°i/Jk) where k and l are in fixed residue classes modulo p-1 
and k 2: 1, l 5:_ 0. 

6. In their paper Class fields of abelian extensions of Q published in 
1984, Mazur and Wiles gave a proof of Conjecture 4.4. They also prove 
the more general version for any finite abelian extension F /Q. If '¢ 
is an even Dirichlet character, their result gives an interpretation of 
the Kubota-Leopoldt p-adic £-function Lv(s,'¢) (or more precisely its 
zeros) in terms of the x-component of Gal (£00 / F 00 ), where x = w'lj;- 1 

( which is an odd Dirichlet character) and F is chosen so that x can be 
identified in the usual way with a character of Do = Gal (F/Q). Their 
approach was inspired by Ribet's proof of the converse of a theorem 



368 R. Greenberg 

of Kummer-Herbrand in that they use the structure of certain finite 
groups of torsion points on abelian varieties arising as quotients of the 
Jacobian varieties of some modular curves. An important role is played 
by the cuspidal group whose structure is related to Stickelberger ideals, 
and hence to Bernoulli numbers, by results of Kubert and Lang. By 
using the fields generated by these groups of torsion points, Mazur and 
Wiles construct a sequence of finite extensions of F = contained in L=. 
A crucial part of their proof depends on the theory of Fitting ideals 
to prove the divisibility statement that they need. In the special case 
where F = (Q((p), it states that gi(T)lfi(T). (This corresponds to the 
case x = wi, where i is odd.) As we mentioned earlier, such a divisibility 
result would be sufficient because of Proposition 4.2. One can find a good 
outline of their proof in the introduction of their paper, and also a good 
expository account in the Seminaire Bourbaki lecture on this topic given 
by Coates [Co3]. 

We would like to give some idea of why modular Jacobian vari
eties and modular forms provide a natural approach to such questions. 
For this we will just discuss a proof of the converse to the result of 
Kummer-Herbrand alluded to above. Let F = (Q((p)- Suppose that 
2 :S i, j :S p - 2, that i + j = 1 (mod p - 1), and that i is odd (so 

that j is even). The Kummer-Herbrand result asserts that if sf # 0, 
then plBj, As the discussion in Section 4 shows, this follows easily from 
Stickelberger's theorem giving an annihilator in Z[6.] of S0 . Ribet [Ri] 

proves the converse by showing that if plBj, then Gal(L0 /F0ti # 0, 
where Lo denotes the p-Hilbert class field of F0 = F. To do this, he con
structs a nontrivial, unramified p-extension L/ F such that Gal (L/ F) is 
abelian, L / (Q is Galoisian, and 6- = Gal ( F / (Q) acts on Gal ( L / F) by the 
character wi. 

An idea which had been proposed by various people in the 1970s 
was to construct such a field L by using the p-adic representations as
sociated to modular forms. The existence of these representations had 
been conjectured by Serre and proved by Deligne. The motivation for 
approaching the question in this way was suggested by one of the fa
mous congruences proved by Ramanujan, namely that T(n) = O'u(n) 
(mod 691) for all n ;=:: 1, where T(n) denotes then-th coefficient in the q
expansion ( or Fourier expansion) of f12 = q TI:=1 (1- qm )24 , the unique 
normalized cusp form of level 1 and weight 12, and O" u ( n) = ~du, where 
d runs over the positive divisors of n. The above congruence is derived 
directly from the fact that 691IB12 . One then obtains a congruence be
tween the Eisenstein series of weight 12 which has O"u(n) as its n-th 
Fourier coefficient and a cusp form which must be fi 2 . In general, if 
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pl Bi, then a similar congruence must exist involving some cusp form of 
level 1 and weight j. 

Let p be any prime. Let E = {p, oo} and let (h:: denote the max
imal extension of Q unramified outside E. Deligne constructs a 2-
dimensional representation space VP of Gal (QE/Q) associated to fi2 

such that Trv/Frobz) = r(l) for all primes l -I p. Here Frob1 E 
Gal (QE/Q) is the Frobenius automorphism for any prime of QE lying 
above land Trvp is the trace. Now let p = 691. Choose a Gal (QE/Q)
invariant Zv-lattice Tp in VP. Then one obtains a 2-dimensional repre
sentation space Tvf PTp for Gal (QE/Q) over lFp = Z/pZ such that Frobz 
has trace equal to 1 + l11 (mod p), i.e., equal to 1 + w11 (l) (mod pZp)
The Chebotarev Density Theorem then implies that Tvf PTv is reducible 
and has composition factors lFP = lFp(w0 ) (on which Gal (QE/Q) acts 
trivially) and lFp(w11 ) (on which Gal(QE/Q) acts by w11 ). If one knew 
that Vp were irreducible, then it would be easy to show that Tp could 
be chosen so that one has a nonsplit exact sequence 

of Gal (QE/Q)-modules. (But in this specific case, it is possible to verify 
this directly.) In matrix form, the corresponding lF'v-representation looks 

like [ ~ ; 11 ] , where * is nontrivial. It follows that there is a cyclic 

extension L of F of degree p such that this lF'v-representation factors 
through Gal (L/Q) and its restriction to Gal (L/ F) gives a D.-equivariant 
isomorphism 

Thus, starting from the fact that plBi for j = 12 and p = 691, one 
obtains a field Las above such that D. = Gal (F/Q) acts on Gal (L/ F) 
by x = w 1-i = wi where i, j are related as before. In this case, i = 679. 

It turns out that the extension L/F is automatically unramified. 
The easiest way to explain this is to use a later result of Wiles which 
(in a much more general formulation) actually plays an important role 
in his proof of the Main Conjecture over totally real number fields. The 
prime p = 691 is a so-called "ordinary" prime for fi2 • This means that 
pf r(p), as Ramanujan's congruence shows. Wiles' result implies that 
for any such prime p, if one regards VP as a representation space for GQP, 
then it is reducible. More precisely, there is an exact sequence 
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where Wp and UP are I-dimensional representation spaces for GrQip such 
that 

as representation spaces for the inertia subgroup Ip = GrQl~nr. Here we 
use the notation QP ( k) for the I-dimensional space on which any Galois 
group acts by the k-th power of the p-power cyclotomic character. Thus 
UP is unramified as a GrQip -module. This implies that Tp/PTp has a 
GrQip-submodule isomorphic to 1Fp(w11 ). Since it also has 1Fp(w0 ) as a 
GrQip -submodule, we have 

as GrQip-modules. Therefore GrQip((p) acts trivially on Tp/pTP which means 
that the unique prime of F lying over p splits completely in L/ F. Since 
L C QE and :E = {p, oo }, L is indeed a subfield of the p-Hilbert class 
field of F. 

Vandiver's conjecture is true for p = 691. Hence the cyclicity hy
pothesis of Section 4 is valid for this prime and so the Main Conjecture 
has been proven by Iwasawa in this case. The Ribet-Kummer-Herbrand 
theorem is an easy consequence and can be viewed as a first approxima
tion to the Conjecture 4.4. This is because S'{ i- 0 <;=} Ji (T) (/_ Ax, 
whereas plB1 <;=} gi(T) (/_Ax, following the notation of Section 4. Ri
bet proves the converse of the Kummer-Herbrand theorem for all p and 
j by pursuing the idea of finding unramified extensions L / F in the 2-
dimensional representations associated to modular forms. He succeeds 
in making this work by using modular forms of weight 2 which have the 
advantage that the associated l-adic representations arise from abelian 
varieties. He then still obtains a congruence between an Eisenstein series 
and a cusp form if plB1. He can prove the irreducibility of the associ
ated 2-dimensional representation, and then the existence of a suitable 
GrQJ-invariant lattice. To prove that L/ F is unramified, he reduces the 
necessary splitting for GrQip-modules to a theorem of Raynaud concern
ing finite commutative group schemes. In the work of Wiles proving the 
Main Conjecture for p-adic £-functions attached to totally real number 
fields, unramified extensions are constructed in the 2-dimensional repre
sentations associated to Hilbert modular forms. Under the assumption 
of ordinariness, he proves the reducibility as a GrQip -representation space, 
just as we mentioned for fi 2 . The argument adapts ideas of Hida and 
again somehow reduces to the case of 2-dimensional representations ob
tained from abelian varieties (i.e., from weight 2). 
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There are now other proofs of Conjecture 4.4 which proceed by using 
Kolyvagin's Euler systems. This approach was first inspired by Thaine's 
discovery of a method to relate the order of (E0 /Co);i to the order of 

S't for every j, where F = Fo = Q((v) and the notation is just as in 
Section 4. Thaine's technique involves studying the cyclotomic units in 
certain abelian extensions of (Q containing F. In retrospect, Thaine uses 
the first step in an Euler system. Rubin carries this method through 
in [Ru3], proving the equivalent Conjecture 4.7. Rubin also gives an 
Euler system proof of Conjecture 4.4 in [Ru4]. In his paper The "main 
conjectures" of Iwasawa theory for imaginary quadmtic fields, Rubin 
proves the conjectures formulated by Coates and Yager mentioned at 
the end of Section 5. The approach is to study Euler systems formed 
from elliptic units in abelian extensions of an imaginary quadratic field. 
As a consequence, Rubin obtains the best results to date concerning the 
Birch and Swinnerton-Dyer conjecture for elliptic curves with complex 
multiplication. 

The method of Wiles using systematically 2-dimensional representa
tions associated to ordinary modular forms (for a prime p) allows him to 
prove the main conjecture corresponding to abelian characters of totally 
real number fields. The method of Euler systems has given the same 
result only for abelian characters (i.e., Dirichlet characters) of (Q. Ru
bin has succeeded in making the Euler system method work for abelian 
characters of imaginary quadratic fields, as we mentioned in the previ
ous paragraph, obtaining the conjectures of Coates and of Yager. One 
wonders if these conjectures can also be obtained from a modular form 
approach. 

7. There is now a large literature concerning p-adic £-functions. The 
p-adic analogues of various classical complex £-functions have been con
structed. We refer to [Co4], [C-P], [C-S], [H2] and to their references 
as a guide to this topic. We have already described in some detail the 
conjectural interpretation for the Kubota-Leopoldt p-adic £-functions 
which was proposed by Iwasawa and proved by Mazur and Wiles. We 
have described more briefly the conjecture of Mazur which gives an in
terpretation of the p-adic £-function associated to a modular elliptic 
curve over (Q with good, ordinary reduction at p. This p-adic £-function 
is the p-adic analogue of L(z, fE), where fE is the modular form corre
sponding to E, a newform of weight 2 and level equal to the conductor 
of E. But a p-adic analogue of the £-function L(z, f) associated to a 
newform f of weight k 2: 2 and any level not divisible by p had also been 
constructed in the 1970s by Manin-Vishik, and Amice-Velu. Under an 
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"ordinariness" hypothesis, this p-adic £-function corresponds to an ele
ment in the Iwasawa algebra A= O[[T]], where O denotes the integers 
in the finite extension of Qp generated by the coefficients of f. The hy
pothesis is that the p-th Fourier coefficient is a unit in 0. At the time 
it seemed quite mysterious how to interpret this p-adic £-function when 
k > 2. That is, could one formulate an appropriate Main Conjecture? 

In 1987 I gave two lectures on this topic at the conference lwasawa 
Theory and Special Values of £-functions which took place at M.S.R.I.. 
I then described a rather simple, general, and natural way to formulate 
such a conjecture under a certain "ordinariness" hypothesis. This conjec
ture gave a possible interpretation for the p-adic analogue Lp ( s, V) of the 
complex £-function L(z, V) attached to a compatible system V = {Vi} 
of l-adic representations of GIQ. The ordinariness hypothesis for V and 
p is that there should exist a filtration Fi½, of QP-subspaces of½, (for 
i E Z) with the properties: 

(a) pi+l VP C pivp; Fi½, = ½, if i «: 0, Fi½, = 0 if i » 0. 
(b) Fi½, is invariant for the action of GIQp and the inertia subgroup 

I of G" acts on pi V. /Fi+ 1 V, by xi p "P p p p• 

Here Xp: GIQp ---+ z; is thp-power cyclotomic character. Let A= Vp/Tp, 
where Tp is a GQ-invariant Zp-lattice in ½,. Then A is a discrete GQ
module isomorphic to (Qp/Zp)d as a group, where d = dim!Qp(Vp)- We 
define p+vP to be F 1 ½, and p+ A to be the image of p+vP in A. Thus 
p+ A is a divisible subgroup of A invariant under the action of G!Qp. 

We can now define a certain A-module SA(Q00 ), which we refer to 
as the Selmer group for A over Q00 • It is defined by 

SA(Q00 ) = ker(H1 (Q00 ,A)---+ H 1 (L,r,A/F+ A) XII H 1 (Iv,A)) 
vfp 

where 1r denotes the unique prime of Q00 lying over p, I1r denotes the 
inertia subgroup of GIQ00 for a fixed prime of Q over 1r, v varies over all 
primes of Q 00 except 1r, and Iv denotes the inertia subgroup of GIQ~ for 
any prime ofQ over v. Also, as usual, H 1(K,*) denotes H 1(GK,*) for 
any field K. SA(Q00 ) is a p-primary group on which r acts naturally, 
and hence it is a discrete A-module, where A = Zp[[r]]. It is always 
cofinitely generated as a A-module, but not always A-cotorsion. We let 
XA(Q00 ) denote the Pontryagin dual of SA(Q00 ). 

The gamma-factors in the conjectural functional equation for L(z, V) 
have a pole at z = 1 with order rv, say. Then one would expect that 
L(z, V, p) will have a zero at z = 1 of order exactly rv for all but finitely 
many characters p of r, where L( z, V, p) is the £-function for V twisted 
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by the character p. The natural conjecture is that: 

XA(Q00 ) has A-rank equal to rv. 

Let V* = {Vz*}, where Vz* = Hom(½,Q1(l)). Then V* is another 
compatible system of l-adic representations of G<Q. Assume now that 
rv = rv• = 0. This means that L(l, V) is a "critical value" of L(z, V) in 
the sense defined by Deligne. (And so is L(l, V*).) Under this assump
tion, as well as the ordinariness assumption, Coates and Perrin-Riou 
[C-P] formulate a precise conjecture about the existence and the inter
polation property of a p-adic analogue Lp(s, V). It should correspond 
to an element 0v in A ( which is unfortunately only defined up to multi
plication by an element of (Q x). The interpolation property involves the 
numbers L(l, V,p) with p E f and one would expect that 0v-/=- 0. Here 
then is the Main Conjecture. 

Conjecture (7.1). The characteristic ideal of XA((Q00 ) is generated 
by 0v. 

There is an ambiguity in this conjecture. In addition to the fact that 0v 
and hence the ideal ( 0v) are not well-defined, the Selmer group SA ( (Q00 ) 

depends on the choice of the Zp-lattice Tp. Both ambiguities involve only 
the µ-invariant. The µ-invariant of SA((Q00 ) can indeed be positive, but 
it is possible to make a precise conjecture about its value. 

An obvious question to ask (and which stumped us for quite a while) 
was whether the above conjecture is consistent with the functional equa
tion for the corresponding £-functions, which relates the values L(l, V, p) 
to L(l, V*, p- 1 ). For the p-adic £-function one obtains a functional 
equation which can be expressed as 0v• = 0v, where l: A - A is the in
volution of A induced by l('y) = ,,,-1 for all -y Er. For the Selmer groups, 
the question was then whether the characteristic ideals of XA((Q00 ) and 
XA•(Q00 ) are also related by the involution l. Here A*= Vp*/T; where 
r; = Hom(Tp, Zp(l)), which is a G1r,rinvariant Zp-lattice in ½,*. Our 
first attempts to prove this were based on the Reflection Principle ( which 
works in the case where Vis a compatible system of 1-dimensional rep
resentations), but then we found that the Duality Theorems of Poitou 
and Tate were just the right tool. In my paper, Iwasawa theory for p
adic representations ([Gr4]), one can find a detailed description of the 
conjectures, results about the structure of Galois cohomology groups 
and Selmer groups as A-modules, various examples, and the proof of the 
compatibility with the functional equation. 

Consider the compatible system (Q(k) = {Q1(k)} for k E Z, where 
Q1(k) is the 1-dimensional Qi-vector space on which G<Q acts by xf, 
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xz being the Z-power cyclotomic character. Then (Qp(k) satisfies the 
ordinariness condition and p+(Qp(k) = (Qp(k) if k 2 1, p+(Qp(k) = 0 if 
k ~ O. Let :E = {p, oo} and let A= (Qp(k)/Zp(k). Then 

H 1 ((Qyj(Q=, A) 

H~nr((Q=, A) 

if k 2 1 

if k ~ 0 

where H~nr((Q=,A) = ker(H1 ((Qoc,,A)------, f1H 1 (Iv,A)), where v varies 
V 

over all primes of (Q=. This is the group of everywhere unramified co-
cycle classes. Assuming that p is odd, the restriction map H 1 ( (Q=, A) ------, 
H 1 ( F =, A )t,,. is an isomorphism, where F = = (Q(µp=) and .L). = 
Gal(F=/(Q=)- Now H 1(F=,A)t,,. = Homt,,.(Gal(F~/F=),A). The ac
tion of .L). on A is by the character wk. V sing the notation of Section 1, 
we have 

SA((Q=) C:,! Hom(Yw\ A) 

SA((Q=) C:,! Hom(Xw\ A) 

if k 2 1, 

if k ~ 0, 

where the isomorphisms are A-module isomorphisms and come from the 
natural restriction maps. 

If k 2 1 and is odd, then SA((Q=) has A-corank 1 since it is just the 
k 

Pontryagin dual of yw with the A-module structure twisted in a simple 
way (by "'-k). For all other k E Z, SA((Q=) is A-cotorsion. (Vandiver's 
conjecture implies that SA((Q=) = 0 if k ~ 0 and is even. Conjecture 3.4 
would imply that SA((Q=) is finite in this case.) 

Now L(z, (Q(k)) = ((z - k). The corresponding gamma-factor is 
I'( z;k) and we see that rv = l if k 2 1 and is odd, but that rv = 0 
otherwise. Also, (Q(k)* = (Q(l - k). Thus L(l, (Q(k)) is a critical value if 
and only if k is either a positive even integer or a negative odd integer. In 
either case one can use the Kubota-Leopoldt p-adic £-function to define 
both Lp(s,(Q(k)) and the corresponding element 0«:;g(k) (which is in A if 
wk -/- w 0 or w 1) in a precise way. One also finds that Conjecture 7.1 
is then equivalent to Conjecture 4.4 when k ~ 0 and to Conjecture 4.5 
when k 2 1. For more details about this equivalence we refer the reader 
to Section 1 of [ Gr4]. 

Let E be a modular elliptic curve over (Q with good, ordinary reduc
tion at p. This means equivalently that pf ap, where ap = ap(E) denotes 
the p-th Fourier coefficient for the newform f E attached to E. Consider 
the compatible system V(E) = {Vi(E)}, where Vi(E) = T,,(E) 0 (Qz 
and T,,(E) is the Z-adic Tate module for E. As a G«:;gp-representation 

space, Vp(E) does have a natural filtration. If E is the reduction of E 
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modulo p, then Tp(E) ~ Zp since E is ordinary. The natural reduc

tion map ½,(E) -+. ½,(E) is surjective and the inertia group Ip acts 
trivially on Vp(E). If P 1 Vp(E) denotes the kernel of this map, then Ip 
acts by Xp on P 1 ½, (because of the Weil pairing). Thus one can take 
P 0Vp(E) = Vp(E), P 2Vp(E) = 0, and sop is indeed an ordinary prime 
for V(E). We have A= Vp(E)/Tp(E) ~ E(p00], the p--power torsion on 
E, and SE[p=](Q00 ) is a certain A-module. It turns out that 

SelE(Qoo)p = SE[p=] (Qoo)-

This will be explained later. On the other hand, we have L( I, V ( E), p) = 
L(I, E, p) for all p E f, and hence we can just define Lp(s, V(E)) to be 
Lp(s, E), the p--adic £-function constructed by Mazur and Swinnerton
Dyer. This also gives the right normalization: the period involved in the 
interpolation property defining Lp(s, V(E)) should be the real Neron 
period nE for E (which also occurs in the precise formulation of the 
Birch and Swinnerton-Dyer conjecture). Therefore, Mazur's conjec
ture is equivalent to Conjecture 7.1 when V = V(E) and the p--adic 
£-function is as defined in [M-SwD]. 

Now consider V = V(J12) = {Vi(J12)}, the compatible system of 
Z-adic representations defined by Deligne for the unique newform fi2 of 
weight 12 and level 1. The corresponding complex £-function is 

Loo r(n) 
L(z, V) = L(z, V(J12)) = L(z, fi2) = -nZ 

n=l 

where r(n) is Ramanujan's tau-function and where the Dirichlet series 
expression is valid for Re( z) > ~3 • The functional equation relates the 
values L(z, V) and £(12 - z, V). The gamma-factor is simply r(z). The 
critical values of L(z, V) are therefore L(j, V) for integral j, 1 :S: j :S: 11. 
For each such j and for any prime p, there is a p--adic £-function defined 
by an interpolation property involving the values L(j, V,p) for p E f. 
But one can view these values as £(1, V(I - j), p), where V(t) = {Vi(t)} 
denotes the t-th Tate twist. (That is, Vi(t) = Vi 0 xD- The functional 
equation then relates L(I, V(I- j), p) to L(I, V(I - j'), p-1) for j + j' = 
12, reflecting the fact that V(l-j)* = V(I-j') because the determinant 
of Vi is xF. Manin and Vishik found that the corresponding p--adic £
functions Lp(s, V(I - j)), 1 :S: j :S: 11, are associated to a bounded 
measure on r and hence to an element of A ( choosing a suitable period) 
precisely when pf r(p). Thus if pf r(p), one can define elements 0v(l-j) 

in A for each such j. 
In early 1986 I asked Ken Ribet the following question: if p is a 

prime such that pf r(p), then does VP = Vp(J12) have a I-dimensional 
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unramified quotient when considered as a (Qip-representation space for 
GQP, just as is the case for Vp(E) = ½,(JE) when Eis a modular el
liptic curve and pf ap(E)? He told me that Mazur and Wiles had just 
recently proved such a result. (It can be found in [M-W2] and also in 
a more explicit and general form in [Wil].) This result was crucial to 
my speculations at the time because it would then follow that Vp(l - j) 
had a 1-dimensional quotient on which Ip acts by x~-j. That is, if 
V = V(f12 ) and pf T(p ), then Vis ordinary in the sense defined earlier. 
Furthermore, since the determinant for VP is x~1 , it would follow that 
F+Vp(l - j) is 1-dimensional precisely when 1 :S j :S 11 (because Ip acts 
on the composition factors for Vp(l - j) (as a representation space for 
GQp) by x~-j and x~2-j. If Tp is a GQ_-invariant Zp-lattice in Vp, then 
we let A(l-j) = ½,(1- j)/Tp(l-j). We then have A(l-j)* ~ A(l-j') 
where j + j' = 12. If j :S 0, then F+ A(l - j) = A(l - j) and it is not 
hard to show that SA(l-j)((Ql00 ) cannot be A-cotorsion. On the other 
hand, if j 2':: 12, then j' :S O and S A(j-l)• (Q00 ) cannot be A-cotorsion. 
Both of these Selmer groups could possibly be A-cotorsion if 1 :S j :S 11. 
This seemed quite encouraging. 

It may be worthwhile to recount some of the considerations which 
led me to ask Ribet that question about ½,(!12 ). During the academic 
year 1985-86 I was visiting l'Universite de Paris-Sud. In the Fall of that 
year, John Coates described to me his recent work with Claus Schmidt 
in which they construct a p-adic analogue of L(z, Sym2 (E)) and for
mulate a corresponding main conjecture under the assumption that E 
is a modular elliptic curve with good, ordinary reduction at p. They 
could verify that if E is an elliptic curve over (Qi with complex multipli
cation, then the two-variable main conjecture (mentioned at the end of 
Section 5) would imply their conjecture. Their formulation involved an 
lwasawa module defined in terms of the Selmer group for E over the field 
Ql(E[p00 ]) and did not suggest a way to formulate a main conjecture for 
Lp(s, fi 2 ), an example which especially interested me. But that Winter 
I recall looking at some numerical data given in Manin's paper [Man]; 
namely, he writes 

691 
(ro : r2 : r 4) = (1 : - 2 4 2 .3 .5 

691 ) 
23 • 32 • 5. 7 

where rj-l = (j(;;.lt L(j, fi 2 ) and the expression indicates ratios of these 
numbers. What did those 691s mean? Were they related to the fact that 
Tp/pTP is a reducible lFP-representation of GQ if p = 691? Manin also 
gives similar data for the other newforms frn, /18, ho, h2 and /26 of 
level 1 with rational Fourier coefficients and the same pattern continued. 
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It seemed reasonable to guess that the corresponding p-adic £-functions 
might have a positive µ-invariant, i.e., 0v(I-j) E pA for j = 3 and 5. 
This would assume that one chose a period D so that L(l, fi2)/D = 
1, but even then the interpolation property defining Lp(s, fi 2 ) would 
imply that pjLp(l, fi 2 ) for p = 691 because (1- a;1 ) would be a factor. 
Here ap E z; is the p-adic unit root of x2 - T(p )x + p 11 and so ap = 
T(p) = 1 (mod pZp) for p = 691. Thus, perhaps 0vci-j) E pA for 
j = 1 too. For an elliptic curve E /Q with good, ordinary reduction 
at p, Mazur had given many examples where the A-module SelE(Q00 ); 

has a positive µ-invariant. In those examples, E[p] = Tp(E)/pTp(E) 
is always GQ-reducible and, more precisely, possesses a GQ-invariant 
subgroup isomorphic to µP. It occurred to me that there would then 
be a natural map with finite kernel from H 1 (Q00 , µp) to a subgroup of 
H 1 (Q00 , E[p00 ]) and perhaps that might be the source of the positive 
µ-invariant. The fact that Tp(f12)/pTp(f12) would have a GQ-invariant 
subgroup isomorphic to µ: 11 if the Zp-lattice Tp(f12 ) was chosen suitably 
and that this might also account for a positive µ-invariant turned out to 
be another helpful clue. 

These hints led me to look closely at the definition of the Selmer 
group for an elliptic curve E over Q 00 • Its p-primary subgroup is defined 
by 

V 

where fiv : E( (Q00 )v) ® (Qp/Zp) -+ H 1 ((Q00 )v, E[p00 ]) is the local Kum
mer homomorphism for E over (Q00 )v- If vjl where l f. p, then it 
turns out that Im(t>ov) = 0. This is quite easy to prove. For if L 
is any finite extension of Q1, then E(L) contains a subgroup of finite 

index isomorphic to zlL:Qizl. This subgroup is divisible by p and so 
it follows that E(L) ® (Qp/Zp) = 0. This immediately implies that 
E((Q00 )v) ® (Qp/Zp) = 0 and hence Im(t>ov) = 0 for v f p. Let 7r be the 
unique prime of Q 00 lying over p. Let I1r denote the inertia subgroup of 
G(QI=)~. Then it turns out that 

Im(t>o1r) ker(H1 ((Q00 )1r, E[p00 ]) -+ H 1 ((Q00 )1r, E[p00 ])) 

ker(H1 ((Q00 )1r, E[p00 ])-+ H 1(I1r, E[p00 ])). 

The equivalence of these descriptions follows from the easily verified 
fact that the map H 1 ((Q00 )1r, E[p00 ]) -+ H 1 (I1r, E[p00]) is injective. 
One inclusion can be proved by observing that if g E IP = GQunr 

p 
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and if P E E(Qp), the g(P) - P must be in the kernel of the re

duction map E(Qp) -+ E(!Fp)- It then follows that any element of 

Im(K1r) becomes trivial in H 1 (I1r,.E[p00]). Coates and I managed to 
prove the equality. For a complete proof see [Gr5], or [C-G] where the 
local Kummer maps are studied in a more general context. The fact 
that SelE(<!Joo)p = SE[p=] (Q00 ) follows from these considerations. In 
particular, if E[p] contains a GIQl-invariant subgroup isomorphic to µp, 
then it becomes rather clear that the image of H 1 (QE/Q00 , µp) (where 
~ = {p,oo}) in H 1 (Q00 ,E[p00]) is contained in SelE(Q00 )p- Elements 
of this image are unramified at all v f p and are also contained in 
Im( K1r) because of the above description. But it is quite easy to see that 
H 1 (QE/Q00 , µp) is isomorphic to the A-module Hom(Xw1 /pXw 1

, µp) 
and therefore has (A/pA)-corank equal to 1. This shows that SelE(Q00 5;, 
has positive µ-invariant. Similarly, H 1 (QE/Q00 , µ: 11 ) is isomorphic to 

Hom(Xw11 /pXw 11
, µ: 11 ) and this also has (A/pA)-corank equal to 1. 

Since, as Ribet informed me, Vp(f12 ) does have a suitable filtration and 
we would clearly have µ: 11 C F+ A (when A = Vp(f12)/Tp(f12 ) and 
Tp(hi) is chosen as before), it again follows that the µ-invariant of 
SA (Q00f is positive. 

8. In the past decade Perrin-Riou has made considerable progress in 
developing Iwasawa theory in the "non-ordinary" case. The first exam
ple to consider is SelE(Q00 )p when E is an elliptic curve over Q with 
good, supersingular reduction at p. It was realized in the early 1970s 
that SelE(Q00 )p is not A-cotorsion, and so SelE(Q00 )~n has unbounded 
Zp-corank as n -+ oo. In contrast, it is reasonable to conjecture that 
SelE(<!Jn)p has bounded Zp-corank for n ~ 0. In [Pe3], Perrin-Riou 
proves this under the hypothesis that SelE(Q)p is finite and p ~ 5. If E 
is modular, the boundedness of corankzP (SelE(<!Jn)p) has been proven by 
Kato. In either case, it is clear that the analogue of Theorem 5.2 would 
be false. On the analytic side, a p-adic £-function Lp( s, E) for E was also 
constructed in the early 1970s. (Vishik, Manin, and Amiee-Vela studied 
the existence of p-adic analogues of the complex £-functions attached to 
new forms of arbitrary weight. See [Man] and [M-T-T].) But Lp(s,E) 
is not an Iwasawa function if E has supersingular reduction at p. (That 
is, Lp ( s, E) does not correspond to an element 0 E E A as it does in the 
ordinary case.) In fact, Vishik proved that Lp(s, E) must have infinitely 
many zeros for s E Qp, Isip < 1, and Rohrlich's nonvanishing theorem 
[Ro] shows that Lp(s, E) is not identically zero. 

Let o: and /3 denote the two inverse roots of the zeta function for .E, 
the reduction of E modulo p. Since.Eis supersingular, o: and /3 both have 
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p-adic valuation ½- There are actually two distinct p-adic £-functions, 

L1°'\s, E) and £'/) (s, E). Perrin-Riou constructs algebraic analogues 
for these p-adic £-functions in [Pe3] and formulates a main conjecture. 
There are numerous unsolved questions. It is not clear what the zeros of 
these p-adic £-functions or their algebraic analogues really mean, except 
for those zeros corresponding to a character of r = Gal (Ql00 /(Q)) of finite 
order. What do the common zeros mean? (They should conjecturally 
be a finite set.) It would be important to verify some special cases of 
the main conjecture. (For example, if E has complex multiplication, 
then Rubin has proven some deep results in [Rul, 2] which would seem 
to be closely related. Also, recent work of Kato connecting these p
adic £-functions to certain Euler systems should be helpful.) In Perrin
Riou's subsequent papers, she refines and extends her theory, developing 
a rather elegant formulation in terms of the Bloch-Kato logarithms which 
map Galois cohomology groups to Dieudonne modules. The details are 
difficult and we refer the reader to [Pe4], [Pe5], and the references to be 
found in those articles. 

We have neglected to discuss the link between algebraic K-theory for 
rings of integers of number fields and Iwasawa theory. This was discov
ered by Tate for K2 in the early 1970s. More generally, the relationship 
arises from the Chern maps 

chi,1: K2i-1(0F) 0z Zp -----+ H 1 (Fr./F, Zp(i)) 

chi,2: K2i-2(0F) 0zZp -----+ H 2 (Fr./F,Zp(i)) 

for i ?: 2. Here OF denotes the ring of integers of a number field F, Fr. 
denotes the maximal extension of F unramified outside :E = {p, oo}, p is 
any odd prime, and Zp(i) denotes a free Zp-module of rank 1 on which 
Gal (Fr./ F) acts by x\ where xis the p-power cyclotomic character. It 
has been proven that the Chern maps are surjective. (Soule for i ::; p, 
Dwyer-Friedlander for arbitrary i.) This means that theorems about the 
K-groups will give results about the above Galois cohomology groups 
which can then be interpreted in terms of Iwasawa theory. We will 
mention two specific results which I believe have never been proven in 
any other way. Assume for simplicity that µPC F. Then F00 = F(µp=) 
is the cyclotomic Zp-extension of F. Let X = Gal(L00 /F00 ), just as at 
the beginning of this article. Let fx(T) be the characteristic polynomial 
of X (with T = ')'o-1) and let x(,0 ) = uo. As a consequence of a theorem 
of Borel asserting that Km(OF) is finite for even m?: 2, it follows that 
H 2 (Fr./ F, Zp ( i)) is finite, and Soule proves in [So] that this implies that 
fx(u6-i - 1) -/- 0 for all i ?: 2. Secondly, Lee and Szczarba proved in 
1978 that the order of K4 (Z) was not divisible by any prime p > 3. 
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Thus, H 2 (F'2:./ F, '1L,p(3)) = 0 for p 2'. 5. In [Kull, Kurihara deduces from 

this the useful result that Slfp- 3 = 0. Here the notation is the same as 
in Section 2, where F = Q(µp)-

There are many other topics which have been overlooked in this 
article. The literature in Iwasawa theory has become quite vast over 
the years. The following list of references includes just a sampling of 
this literature. In addition to papers cited in the text, we have included 
various others which provide an introduction to important topics and 
also include many valuable references themselves. Thus, indirectly, we 
hope that this list will be rather comprehensive. 
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