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Finiteness of a certain Motivic Cohomology Group 
of Varieties over Local and Global Fields 

Kanetomo Sato 

INTRODUCTION 

In this paper, I would like to survey my recent research [22]. I would 
like to express gratitude to the organizers for giving me this opportunity 
to write this manuscript. 

Let k be a global field, i.e., an algebraic number field ( case (N)) or 
a function field in one variable over a finite field ( case (F)). Let X be a 
projective smooth geometrically connected k-variety. ·Let l be a prime 
number invertible in k. The l-adic regulator map of Soule [24] 

r{'n: H~(X,Q(n))IQJ1 ----; H~ont(X,Qi(n)). 

is a central topic in the arithmetic geometry. Here H~ ( X, Q( n)) denotes 
the motivic cohomology and is defined by the n-th Adams eigenspace 
of the algebraic K-group K 2n-i(X)IQJ ([17] and [25]), and the right hand 
side is the continuous etale cohomology group ( cf. Jannsen [9]). The 
coefficient Qz(n) in the right hand side means then-th Tate twist of Qz. 
In the case i = 2n, it is known that this map coincides with the cycle 
map for the Chow group of algebraic cycles of codimension n modulo 
rational equivalence ([9] 6.14): 

di: CHn(X)1QJ1 ----; H~.;"nt(X,Qz(n)). 

We write F• for the Hochschild-Serre filtration on the continuous etale 
cohomology group w.r.t. the covering X i3)k ksep ----; X. For instance, 
F 2 of H~ont ( X, Qz ( n)) is defined by the image of the Hochschild-Serre 
mapping 
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and it is trivial if i < 2. In this manuscript, we start from the follow
ing conjecture, which is based on the philosophy of mixed motives of 
Beilinson [2] and Bloch [3] (cf. Jannsen [11] 11.6) and the Beilinson
Deligne-Jannsen conjecture (cf. [11] 11.4, 12.18). 

Conjecture 1. For arbitrary integers i and n satisfying O :S n :S 
d + 1 and O :Si :S 2n (d := dimX), the following map induced by r?, 

is injective. 

The cases (n, i) = (0, 0) and (d + 1, 2d + 2) are trivial. It is also the 
case, when (n, i) = (1, 2), by the fact that the Picard group of X is a 
finitely generated Z-module and by the Kummer theory for the Picard 
variety (cf. Reskind [19] Appendix). As for the conjecture on the image 
of r:,n, see [11], 12.18, and Bloch [4], §5. Conjecture 1 at least implies 
the following: 

Conjecture 2. For integers i and n satisfying l :S n :S d + 1 and 
2 :S i :S 2n, the image of the l-adic regulator map r{'n intersects with F 2 

trivially: 

This is clearly true in the case (n, i) = (1, 2) by the above remark. In 
this manuscript, we are concerned with Conjecture 2. The main result 
is 

Theorem 3 ([22] Corollary 5.4). Let k be the case (F), and X 
be a proper smooth variety over k. Then Conjecture 2 is true in the case 
i = n + l with n at least 2. 

In the proof, the finiteness result stated below (§2, Theorem 6) will 
play an important role (see §2). By the Merkur'ev-Suslin theorem ([15], 
§18), a result of Soule ([25], Theoreme 4 (iv)), and Theorem 3, we can 
show the following: 

Corollary 4 ([22] Theorem 0.2). Let k, X, and l be as in The
orem 3. Then we have 

Here the superscript (2) means the second Adams eigenspace, and the 
subscript l-div means the maximal [-divisible subgroup. 
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We will not prove this corollary here (cf. [22], §6). Accoding to 
Bass' general conjecture [1], §9 (predicting that algebraic K-groups of 
a regular scheme of finite type over Spec Z should be finitely generated 
Z-modules), the right hand side in Corollary 4 would be trivial. In other 
words, the injectivity problem of rf '2 is reduced to the Bass conjecture 
by this corollary. 

If k is a function field, Conjecture 2 is true in several cases. We will 
review them in the first section. On the other hand, if k is a number 
field, there are only a few known cases ( cf. Langer and Raskind [14], 
Theorem 0.2). One of the difficulties lies in the point that one needs, in 
a step of proofs, some local-global principle (cf. (1.2) below), which is 
known to hold in the function field case, but have not been proven yet 
in general in the number field case ( cf. [14] Theorem 5.5). 

§1. Review of known results 

Throughout this section, k, X and Z are as in Theorem 3. We write 
d for the dimension of X. Then Conjecture 2 is known to be true in the 
following cases (Figure 1). 

(0) (n,i) = (1,2). 
(1) X has potentially good reduction everywhere. 
(2) i::; n. 
(3) (n, i) = (d + 1, 2d + 1). 
(4) (n,i) = (d,2d). 
(5) i = 2n, 2 ::; n ::; d - 1 (with an additional geometrical assump

tion). 

Theorem 3 corresponds to the line (6) in Figure 1. 
We shall review the local-global argument of Raskind briefly ([19] 

Proposition 3.6; see also [22] Theorem 5.1), which is a key step in the 
proof of the cases (1)-(5). We will also use this argument in our proof of 
Theorem 3 (cf. §2). For a place j) of k, we write kp for the completion of 
k at j), and write r;:; for the regulator map for Xkp. We fix a finite set 
S of places of k containing all the places where X does not have good 
reduction. 

First, in the cases (1)-(5), we have 

(1.1) 

for any place j) of k (Case (1): Deligne [6] Corollaire 3.3.9, and Nekovat 
[16] Theorem D (i). Case (2): Remark 5 below. Case (3): Saito [20] 
p.64, Theorem 4.1. Case (4): Raskind [19] the earlier part of the proof 
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i // i = 2n 

2d + 2 --------------------------------------------------------------------:( 

2d + 1 ---------------------------------------------------------------.:,/j (3) 

2d ----------------------------------------------------------,.{~) ! 

0 1 2 d d+l 

Fig. 1. Table of the known cases 

.· i = n + l 

.· i = n 

n 

of Proposition 3.2. Case (5): [16] Theorem D (ii). See also Corollary 
7 below). Then by a diagram chase which is not so difficult, we can 
see that Im(r;,n) n F2H~ont(X,Q1(n)) is contained in the image of the 
following Q1-vector space: 

(1.2) 

ker (at: Hia1(Gs,H!~2 (X,Q1(n))) - EB Hia1(kp,H!~2 (X,Q1(n)))). 
pES 
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Here Gs:= Gal(ks/k), and ks denotes the maximal galois extension of 
k unramified outside of S. Finally, the map a~n is injective by results 
of Jannsen since i :S: 2n ([10] §6 Theorem 4, [19] Theorem 4.1). 

Remark 5. 
p of k, 

(1.3) 

In the case i :S: n, one can show that for every place 

2 i-2 -
Hca1(kp, Het (X, (Q)z(n))) = 0. 

Therefore F 2 H!t(Xkp, (Qlz(n)) = 0 for any place p of k. If X has po
tentially good reduction at p, (1.3) immediately follows from Deligne's 
proof of the Weil conjecture [6] 3.3.9. If X does not have potentially 
good reduction at p, (1.3) follows from the alteration theorem of de 
Jong [12], the Rapoport-Zink theorems [18] Satz 2.21, 2.23, and the 
Weil conjecture. 

§2. Finieness theorem 

In this section, we will prove the vanishing (1.1) for the case i = n+l. 
We call the completion of a global field at a non-archimedean place a 
local field. The essential result is the following: 

Theorem 6 ([22] Theorem 2.1). Let K be a local field, and X a 
proper smooth variety over K. Let l be a prime number different from 
the characteristic of K, and n an arbitrary integer at least 2. Then the 
group 

N1H~/1 (X, (Qlz/Z1(n)) n F2H~/1 (X, (Qlz/Zz(n)) 

is finite. Here (Q)z/Zz(n) := ~ v (µ1v )®n, and µzv denotes the etale sheaf 
of lv -th roots of unity. N• denotes the coniveau filtration and F• denotes 
the Hochschild-Serre filtration (see the map of below). 

In the case n = 2, this finiteness was originally proved by Salberger 
[21]. We will give a rough proof of Theorem 6 later. Admitting Theo
rem 6, ·we prove 

Corollary 7. Let k be a global field, and X be a proper smooth 
variety over k. Let l be a prime number which is different from the 
characteristic of k, and n be an arbitrary integer at least 3. Then for 
every non-archimedean place p of k, we have 

n+l n ' Here r1,P ' denotes the regulator map for Xkp. 
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This corollary and the argument in §1 imply Theorem 3. The con
dition that "k is a function field" in Theorem 3 was used to control the 
(Qz-vector space (1.2). 

Proof of "Theorem 6 ===} Corollary 7". Let p be an arbitrary 
place of k. Consider the image of the group 

I:= Im(r~:l,n) n F 2H;/1 (Xkp, (Qz(n)) 

under the canonical map 

(2.1) 1r: H;/1 (Xkp, (Qz(n)) - H;/1(Xkp, (Qz/Zz(n)). 

Note that I is a divisible group. By a result of Soule [25] 2.1 Theoreme 
1, the image of I is contained in the subgroup 

which is finite by Theorem 6. Therefore I has trivial image in this 
group and is contained in ker( 1r). On the other hand, ker( 1r) is finitely 
generated as a Z1-module by the exact sequence 

H;/1 (Xkp, Zz(n)) - H;/1 (Xkp, Qz(n)) ~ H;/1 (Xkp, (Qz/Zz(n)) 

and the fact that H;/1 (Xkp, Z1(n)) is a finitely-generated Z1-module. 
Hence ker(1r) contains no non-trivial divisible subgroup, and J is trivial. 

Q.E.D. 

Finally, we state the outline of a proof of Theorem 6. In the follow
ing, cohomology groups of a scheme are taken over the etale topology. 
Cohomology groups of a field mean etale cohomology groups of the spec
trum, or equivalently, Galois cohomology groups of the absolute Galois 
group. We consider the following composite map: 

o:1 : H2 (K,Hn-1 (X,Q1/Z1(n))) - Hn+1(X,Qz/Zz(n)) 

- Hn+1 (K(X),Qz/Z1(n)). 

Here the first arrow is the Hochschild-Serre mapping, and the subgroup 
F 2 of H;/1(X,(Qz/Z1(n)) is defined by the image. On the other hand, 
the subgroup N1 is defined by the kernel of the second map. Therefore, 
our task is to prove that o:f has finite kernel. 

We write OK for the ring of integers of K, and write IF for the 
residue field of K. Thanks to the alteration theorem of de Jong [12], the 
problem is reduced to the case X has a regular model proper flat over 
OK with strict semi-stable reduction (cf. [22] (2.1)). In the following, we 
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assume that X has regular model X/OK as above, and that l =f- ch(lF) 
(see [22] §4 for the ch(lF)-primary case). We write R*\J!Q1/Z1 for the 
sheaf of vanishing cycles, and Jn (resp. ]n) for the set of the generic 
points of the intersections of n irreducible components of Y := X 0ox lF 
(resp. Y 0JF lF). 

Intuitively, we compute the quotient of weight -2 of Hn-1 (X, Q1 

/Z1(n)) by the Rapoport-Zink theorems [18] Satz 2.21, 2.23 and the 
Weil conjecture [6], and prove the finiteness of ker(a:1). Precisely, we 
can construct the following commutative diagram (cf. [22] (2.2)): 

H2 (K, Hn-i (X, Qz/Z1(n) )) 

(2.2) ,i' 1 
H2 (K, ~ Rn- 1 wQz/'1l..1(n)z) 

zEJn 

and prove that the map {3[' is injective (loc. cit. (2.3)-(2.4)), and that 
the map 'Yz has finite kernel (loc. cit. Lemma 2.6). Moreover, we can 
show that 'Yz is injective for almost all primes ( =/- ch(lF)) by a theorem of 
Gabber [7], and hence that the group in Theorem 6 is trivial for almost 
all l ([22], Lemma 3.2). 

Remark 8. The local-global principle of Jannsen ([10], Theorem 
3) and Theorem 6 imply that for a proper smooth variety over a number 
field and for an arbitrary integer n 2: 2, the group 

is finite [22], §4. 
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