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The Milnor fiber as a virtual motive 

Fram;ois Loeser 

In this text, which correponds to our talk at the Conference "Sin
gularities in Geometry and Topology" held in Sapporo in July 1998, we 
present our results, obtained in collaboration with Jan Dene!, on the 
virtual motive associated to the Milnor fiber. 

§1. Introduction 

1. 1. Let X be a smooth and connected complex algebraic variety 
and consider f : X --* C a non constant morphism. For any singular 
point x of J-1 (0), the Milnor fiber at x is defined as 

for O < !ti « c « 1, with B(x, c) the open ball of radius c centered 
at x. There is some abuse of notation here, since, strictly speaking, Fx 
depends on the choice of c and t, but all the invariants we shall consider 
will not. 

Maybe the most natural invariants of the Milnor fiber to look at 
first are the Betti numbers 

In fact, these numbers are in general very difficult to compute as soon 
as the singularity of f = 0 at x is not isolated. Much more easy to 
determine is the Euler characteristic 

When X is of dimension n and the singularity of f = 0 at x is isolated, 
x(Fx) = 1 + (-l)n-1bn-1(Fx), and bn-1(Fx) is nothing else but the 
Milnor number. 
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1.2. Of course, the information given by this Euler characteristic 
is quite weak. An already better invariant may be obtained by taking in 
account the natural monodromy action on the cohomology of Fx- The 
action of the monodromy operator M gives a canonical decomposition 

(1.2.1) Hi(Fx, C) = E9 Hi(Fx, C).x, 
.\ECX 

with Hi(Fx, C)>. the part where the eigenvalues of M are equal to >.. 
Hence one can refine the invariant x(Fx) by defining 

x(Fx)>. := 1)-l)irkHi(Fx, C),x. 
i 

By A'Campo's formula [1] (in fact a direct consequence of the commu
tation of the nearby cycle functor with the direct image with proper 
support functor (22]), the following simple formula for x(Fx)>. in terms 
of a resolution of f = 0 holds: 

x(Fxh = L x(Sm n 1r-1(x)). 
A"'=l 

Here the notation is the following: we are given a resolution 1r : X - X of 
f = 0, Xis smooth, 1r is proper and birational, the preimage E of the 
singular locus of J-1(0) is a divisor with (strict) normal crossings, and 
7r is an isomorphism onto its image outside E, and Sm denotes the open 
subvariety of E where 1r-1u- 1(0)) is locally given by zm = 0, z being 
a local coordinate. 

Since the cohomology groups Hi(Fx, C) carry a natural mixed Hodge 
structure [19] [21] [12] [13] [14], one can consider generalized Hodge num
bers 

and 
etq := L(-l)ihp,qHi(Fx,C)>.. 

In fact the data of the etq's is equivalent to that of the Hodge spectrum 
defined in (19] [21] (20] [14]. (For an analogue of A'Campo's formula for 
the Hodge spectrum see Remark 4.2.2.) 

The commun feature for all these invariants is that they all may 
be defined as some kind of Euler characteristics. The main object of 
this paper is to provide, in some sense, universal invariants of Euler 
characteristic type for the Milnor fiber. 
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§2. Universal Euler characteristics and motives 

2.1. Universal Euler characteristics 

205 

Invariants of Euler characteristic type take usually their values in a 
ring and satisfy relations of the type F(AUB) = F(A)+F(B)-F(AnB) 
and F(A x B) = F(A)F(B). Consider now Sch, the category of reduced 
and separated schemes of finite type over C (i.e. varieties) and define 
the abelian group K0 (Sch) as the quotient of the free abelian group 
generated by symbols [S], S in Sch, by the relations 

[S] = [S'], 

for S' isomorphic to S and 

[S] = [S'] + [S \ S'], 

for S' closed in S. There is a natural product on K 0 (Sch) such that 

[Sl[S'] = [S x S'], 

which provides K 0 (Sch) with a ring structure. To any constructible 
subset W of a variety S one can naturally associate an element [W] in 
Ko(Sch) such that 

[WU W'] = [W] + [W'] - [W n W'] 

(just write W as the disjoint union of a finite family of varieties Si and 
set [W] = I:[Si]; this is independent of the choice of the Si's). Clearly 
Sf----> [S] is the "universal Euler characteristic" of algebraic varieties. 

2.2. Motives 
In our situation we are interested in keeping track of the monodromy 

action, in particular we want to have some analogue of the eigenvalue 
decomposition (1.2.1). This is in fact one of the reasons why motives en
ter in the picture: if a finite group G acts on a smooth projective variety 
X, there is a direct sum decomposition h(X) = EB h(X)a of the motive 
h(X) associated to X, with a running over the set of irreducible charac
ters of G. The notion of motives being maybe not so familiar to people in 
singularity theory (though they are in fact easy to define, natural, and, 
we hope to convince the reader, useful), we shall give now some basic 
definitions (a good recent reference is [18]). Let V denote the category of 
smooth and projective C-schemes. For an object X in V and an integer 
d, zd(X) denotes the free abelian group generated by irreducible subva
rieties of X of codimension d. We define the rational Chow group Ad(X) 
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as the quotient of zd(X)@Q modulo rational equivalence. For X and Y 
in V, we denote by Corrr(X, Y) the group of correspondences of degree r 
from X to Y. If X is purely d-dimensional, Corrr ( X, Y) = A d+r ( X x Y), 
and if X = lJXi, Corrr(X, Y) = EBCorrr(Xi, Y). The category Mot of 
C-motives may be defined as follows (cf. [18]). Objects of Mot are 
triples (X,p,n) where Xis in V, pis an idempotent (i.e. p2 = p) in 
Corr0 (X, X), and n is an integer in Z. If (X,p, n) and (Y, q, m) are 
motives, then 

HomMot((X,p,n), (Y,q,m)) = qCorrm-n(X, Y)p. 

Composition of morphisms is given by composition of correspondences. 
The category Mot is additive, Q-linear, and pseudo-abelian. There is a 
natural tensor product on Mot, defined on objects by 

(X,p,n) © (Y,q,m) =(Xx Y,p©q,n+m). 

We denote by h the functor h : V0 - Mot which sends an object 
X to h(X) = (X, id, 0) and a morphism f : Y - X to its graph in 
Corr0 (X, Y). This functor is compatible with the tensor product and 
the unit motive 1 = h(Spec C) is the identity for the product. We denote 
by L the Lefschetz motive L = (SpecC,id, -1). One can prove there is 
a canonical isomorphism 

so, in some sense, L corresponds to H 2 (P1 ). We denote by v the invo
lution v: Mot0 - Mot, defined on objects by (X,p, n)v = (X, tp, d-n) 
if X is purely d-dimensional, and as the transpose of correspondences 
on morphisms. For X in V purely of dimension d, h(X) v = h(X) © L -d 
(Poincare duality). For any field' E containing Q one defines similarly 
the category Mot © E of motives with coefficients in E, by replacing the 
Chow groups A by A @Q E. 

Since algebraic correspondences naturally act on cohomology, any 
cohomology theory on the category V factors through Mot and Mot© E, 
for E an extension of Q, hence motives have canonical Betti and Hodge 
realizations. 

Consider Ko(Mot), the Grothendieck group of the pseudo-abelian 
category Mot. It is the abelian group associated to the monoid of iso
morphism classes of motives with respect to EB. The tensor product on 
Mot induces a natural ring structure on K0 (Mot). One defines similarly 
the ring Ko(Mot © E) for E an extension of Q. Of particular interest to 
us will be the case when Eis the extension Q(µ00 ) of Q generated by all 
roots of unity in C. To simplify notation we set A:= K 0 (Mot@Q(µ 00 )). 
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Realization functors on Mot induce realization morphisms on the 
level on Grothendieck groups. In particular, we shall consider the Hodge 
realization morphism 

H : A - Ko(MHSc), 

with Ko(MHSc) the Grothendieck group of the abelian category of com
plex mixed Hodge structures. 

By the following result of Gillet and Soule [9] and Guillen and 
Navarro Aznar [10] one can assign to any algebraic variety a natural 
Euler characteristic ( with proper supp ports) with value into the ring 
Ko(Mot) of virtual motives. 

Theorem 2.2.1. There exists a unique morphism of rings 

Xe : Ko(Sch) - Ko(Mot) 

such that Xe([X]) = [h(X)] for X projective and smooth. 

Remark that Xe([A1]) = L. From now on we shall also denote by L 
the element [A1] in K 0 (Sch). 

Let G be a abelian finite group (in fact the assumption that G is 
abelian is irrelevant). Let X be an algebraic variety over C endowed with 
a G-action. We say X is a G-variety if the G-orbit of any closed point 
in X is contained in an affine open scheme ( this condition is always 
satisfied when X is quasi-projective). One defines in the usual way 
isomorphisms and closed immersions of G-varieties and so one may define 
a ring K 0 (Sch, G), the Grothendieck ring of G-varieties over k, similarly 
as we defined Ko(Sch). 

For any character a of G, let us denote by Pa. the corresponding 
idempotent in Q(µ00 )[G]. Let X be a smooth projective variety on 
which G acts. There is a natural ring morphism µ from Q(µ00 )[G] to 
the ring of correspondences on X with coefficients in Q(µ00 ) sending a 
group element g onto the graph of multiplication by g. Let us denote by 
h(X, a) the motive (X, µ(pa.), 0) in Mot 18) Q(µ00 ). 

The following equivariant analogue of Theorem 2.2.1 is proved in 
[6]. 

Theorem 2.2.2. For any character a of G, there exists a unique 
morphism of rings 

Xe(-, a) : Ko(Sch, G) - A 

such that Xc([X], a) = [h(X, a)] for X projective and smooth with G
action. 
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2.3. An example: Fermat Hypersurfaces and Jacobi mo
tives 

An important and classical example of varieties with group action 
giving rise to interesting motives are Fermat hypersurfaces. These mo
tives will also occur naturally in our motivic analogue of the Thom
Sebastiani formula (Theorem 5.4.2). For n 2'. 1, we consider the affine 
Fermat variety FJ' defined by the equation xf + • • • + x~ = 1 in An. The 
action of µd, the group of d-th roots of unity, on each coordinate induces 
a natural action of the group µd on FJ'. Hence, for 0:1, ... , O:n characters 
of µd, one defines the Jacobi motive J(o:1, ... , an) as the element 

in A. It is clear that J(o:1, ... , an) is symmetric in the a;'s. In fact, as is 
quite clasical, one can recover from J(o:1, ... ,an) the usual Jacobi sums 
(via etale realization using the Galois action) and the Beta function (via 
the period pairing for the Hodge realization) (cf., e.g., [2]). 

The following identities which are analogues of classical identities 
for Jacobi sums and Beta functions are proved in (8]. 

Proposition 2.3.1. (1) We have J(l, 1) = L. 
(2) We have J(l, a) = 0 if a =I- 1. 
(3) If a =/-1, J(a,a- 1) = -1. 
(4) We have 

with c: = 8 = 0 if 0:10:2 =/- 1, c: = 1, 8 = (L - 1), if 0:10:2 = 1 and 
0:1 =/- 1, and c: = 1, 8 = L, if 0:1 = 0:2 = 1. 

§3. An interlude: Motivic lgusa Zeta functions 

3.1. Let p be a prime number and let K be a finite extension of 
Qp- Let R be the valuation ring of K, P the maximal ideal of R, and 
K = R/ P the residue field of K. Let q denote the cardinality of K, 
so K ~ Fq. For z in K, let ordz denote the valuation of z, and set 
lzl = q-0rd z. Let f be a non constant element of K[x1,- .. ,xm]- The 
p-adic Igusa local zeta function Z(s) associated to f (relative to the 
trivial multiplicative character) is defined as the p-adic integral 

(3.1.1) Z(s) = { lf(x)l81dxl, jR,,. 
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for s E C, Re(s) > 0, where ldxl denotes the Haar measure on Km 
norrrialized in such of way that Rm is of volume 1. For n in N, set 
Zn= {x E Rm I ordf(x) = n}. We may express Z(s) as a series 

(3.1.2) Z(s) = L vol(Zn)q-ns_ 
n2;:0 

Now, if we denote by Xn the image of Zn in (R/ pn+l )m, we may rewrite 
the series as 

(3.1.3) Z(s) = L card (Xn) q-ns-(n+l)m 
n2;:0 

since vol (Zn) = card (Xn) q-(n+l)m. 
3.2. Now let X be a smooth and connected complex algebraic 

variety and consider f : X - C a non constant morphism. We denote 
by .C(X) the space of formal arcs on X: there is a natural bijection 
between the space of C-points of .C(X), .C(X)(C), and X(C[[t]]). There 
is a natural structure of C-scheme on .C(X), but we shall always consider 
.C(X) with its reduced structure. Similarly, for n ~ 0, we can consider 
the space .Cn(X) of arcs modulo tn+l: a C-point of .Cn(X) corresponds 
to a C[t]/tn+lC[t]-point on X. The space .Cn(X) may be endowed with 
a natural structure of C-scheme of finite type, and there is a natural 
morphism 

7rn : .C(X) --+ .Cn(X) 

given by truncation. In this setting .C(Am) and .Cn(Am) may be consid
ered as analogues of Rm and ( R/ pn+l )m. Pursuing this analogy further, 
one considers the reduced subscheme Zn of .C(Af) whose points are the 
series cp such that ordtf(cp) = n and the image Xn of Zn in .Cn(Af), 
which has a natural structure of variety over C. More generally, for W 
closed in X, we shall denote by Zw,n the closed subscheme of Zn whose 
points are arcs cp with cp(O) in Wand by Xw,n its image in .Cn(Af). 

A natural analogue of the right-hand side of (3.1.3), which is a series 
in z(p- 1][[p-s]], is the following series in K 0 (Schk)[L- 1][[L- 8 ]l 

(3.2.1) Zgeom(s) = L [Xn] L-ns-(n+l)m. 
n2;:0 

Here L -s is just the name for a formal variable which could as well be 
written T = L-8 . 

3.3. More generally, p-adic Igusa local zeta functions involve mul
tiplicative characters. Let 1r be a fixed uniformizing parameter of R and 
set ac(z) = z1r-0rd Z for z in K. For any character a : RX - ex (i.e. 
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a group morphism with finite image), one defines the p-adic Igusa local 
zeta function Z ( s, a) as the integral 

(3.3.1) Z(s,a) = [ a(ac(J(x)))lf(x)l81dxl, 
jR"' 

for s Ee, Re(s) > 0 (see [11], [41). To extend definition (3.2.1) to the 
more general situation involving characters, we shall use motives in the 
following way. 

We fix an integer d 2:: 1. Let g : W - ex be a morphism of e
varieties. For any character a of µd, one may define an element [W]9,a 

of Ko(Motk © Q) as follows. 
The morphism [d] : ex - ex given by X f--+ xd is a Galois covering 

with Galois group µd, We consider the fiber product 

Wg,d- w 

The scheme W9,d is endowed with an action of µd, so we can define 

[W]g,a := Xc(Wg,d, a). 

In our setting we can consider the morphism In: Xn - ex whose 
value at a series <pis the coefficient of order n of f(<p). When d divides 
d' we have a canonical surjective morphism of groups µd, - µd given by 
x f--+ xd' /d which dualizes to a injective morphism of character groups 
JLd - µd,. We set µ := ~ µd, We shall identify µd with the subgroup 
of elements of order dividing d in µ. 

Now let a be inµ, an element of order d. Viewing a as a character 
of µd, we may now define the series 

(3.3.2) Z (s a) = ~ [X ]J L -ns-(n+l)m mot , L....,, n n,a 

n:2'.0 

in Ko(Motk © Q) [[L -sl]. More generally, for W a closed subvariety of X, 
one defines similarly a series Zmot, w ( s, a) by replacing in the previous 
definition Xn by the variety Xw,n• 

3.4. Rationality and formula on a resolution 
Let D be the divisor defined by / = 0 in X. Let (Y, h) be a res

olution of /. By this, we mean that Y is a smooth and connected 
k-scheme of finite type, h : Y - X is proper, that the restriction 
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h : Y \ h- 1(D) ------, X \ D is an isomorphism, and that (h- 1(D))red 
has only normal crossings as a subscheme of Y. Let Ei, i E J, be the 
irreducible (smooth) components of (h- 1(D))red· For each i E J, denote 
by Ni the multiplicity of Ei in the divisor of f o h on Y, and by vi - 1 
the multiplicity of Ei in the divisor of h*dx, where dx is a local non 
vanishing volume form, i.e. a local generator of the sheaf of differential 
forms of maximal degree. For i E J and J C J, we consider the schemes 
Ef := Ei \ U#iEj, E1 := niEJEi, and E'} := E1 \ UjEJ\JEj. When 
I= 0, we have E0 = Y. 

Now denote by Jd the set of IC J such that d I Ni for all i in J and 
by Ud the union of the E'}'s, with I in Jd. Let Z be locally closed in Ud. 
For any character a of µd(k) of order d, we will construct an element 
[Z]t,a in Ko(Motk 0 Q) as follows. If on Z we may write f oh = uvd 

with u non vanishing on Z, we set [Z1, 0 ] = [Z]u,a· In general, one covers 
Z by a finite set of Zr's for which the previous condition holds, and we 
set 

One can check this definition does not depend of any choice. 
We can now state the following result which is proved in [6]: 

Theorem 3.4.1. For any element a of fl of order d, 

(3.4.1) Zmot,w(s, a) 

in A [[L- 8 ]]. 

L -m I:)(E'} n h- 1(W))1,a] 
lEJd 

(L - 1) L-N;s-v; 

· IT 1 _ L-N;s-v; 
iEJ 

In particular it follows that Zmot,w(s,a) is a rational series in L-8 • 

It also follows that if the order of the character a does not divide any 
of the Ni's, then Zmot,w(s, a) is identically zero (hence only of finite 
number of the functions Zmot,w(s, a) are not identically zero). 

The proof of Theorem 3.4.1 is based on the following geometric 
lemma which is a special case of Lemma 3.4 in [7]. 

Let X, Y and F be algebraic varieties over C, and let A, resp. B, be 
a constructible subset of X, resp. Y. We say that a map 1r: A------, Bis 
piecewise trivial fibration with fiber F, if there exists a finite partition of 
Bin subsets S which are locally closed in Y such that 1r- 1 (S) is locally 
closed in X and isomorphic to S x F, with 1r corresponding under the 
isomorphism to the projection S x F------, S. We say that the map 1r is a 
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piecewise trivial fibration over some constructible subset C of B, if the 
restriction of 1r to 1r- 1 ( C) is a piecewise trivial fibration. 

Lemma 3.4.2. Let X and Y be connected smooth schemes over 
C and let h : Y -+ X be a bi rational morphism. For e in N, let b.e be 
the reduced subscheme of £(Y) defined by 

b.e := {<p E Y(C[[t]]) I ordtdetJ.,, = e}, 

where J.,, is the Jacobian of h at <p. For n in N, let hm : Cn (Y) -+ Cn ( X) 
be the morphism induced by h, and let b.e,n be the image of b.e in Cn(Y). 
If n ~ 2e, the following holds. 

a) The set b.e,n is a union of fibers of hm-
b) The restriction of hn* to b.e,n is a piecewise trivial fibration with 

fiber A e onto its image. 

Remark 3.4.3. These motivic Igusa functions specialize, by consid
ering the trace of the Frobenius on their etale realization, in the p-adic 
case with good reduction, to the usual p-adic Igusa local zeta functions. 
They also specialize, by considering Euler characteristic of their Betti 
realization, to the topological zeta functions Ztop(s) introduced in [5], 
which were, heuristically, obtained as a limit as q goes to 1 of p-adic 
Igusa local zeta functions. We refer to [6] for details. 

§4. The virtual motive attached to the Milnor fiber 

4.1. Since Zmot,w(s, o:) is an A-linear combination of rational se
ries of the form L-Ns-n /(1 - L-Ns-n), with N and n in N \ {O}, one 
can consider its limit as s-+ -oo, by defining 

L-Ns-n 
lim ----- = -1. s--+-oo 1 - L-Ns-n 

One easily checks that one obtains in this way a well defined element 

lim Zmot,w(s, o:) 
s----+-<X> 

in A. It follows from Theorem 3.4.1 that we have the following expression 
for lims--+-oo Zmot,w(s,a) in terms of a resolution off= 0: 

(4.1.1) 8 _!!~
00 

Zmot,w(s,a) = L-m L [(E1 n h- 1 (W))1,a](l - L)l1 1. 
lEJd 

Note that it is not a priori clear that the right hand side of (4.1.1) is 
independent of the resolution, but it follows from the fact that the left 
hand side is canonical. 
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4.2. We assume from now on that W is contained in J-1(0). In 
that case, it follows from (4.1.1) that lims-+-oo Zmot,w(s, a) is divisible 
by 1 - L, so we may define 

Lm 
st Wf := -L lim Zmot,w(s,a). ' ' 1 - S-+-00 

Strictly speaking st,w,J is only defined up to (L - 1)-torsion in A, but 
this is not a serious problem, since (L - 1 )-torsion is killed by realization 
functors. (In fact we do not know whether there exists or not any non 
trivial (L - 1 )-torsion element in A.) 

By the following result, proved in [6], the Hodge realization of 
st,{x},f is equal to the virtual Hodge structure defined by the Milnor 

fiber at x for the eigenvalue a(e21rifd). Hence it is very natural to con
sider s"' { } f as the virtual motive associated to the Milnor fiber at x a, X, 

for the eigenvalue a( e21rifd). 

Theorem 4.2.1. Let x be a point of J-1(0). Denote by 
[Hi(Fx, C)a(e2"i/d)] the class in Ko(MHSc) of Hi(Fx, C)a(e2,,;/d) with 
its canonical Hodge structure. The equality 

holds in Ko(MHSc). 

Remark 4.2.2. As a consequence of (4.1.1) and Theorem 4.2.1, one 
deduces an analogue of A'Campo's formula for the Hodge spectrum. 

§5. Exponential integrals and a motivic Thom-Sebastiani The
orem 

5.1. We begin by reviewing exponential integrals in the p-adic case, 
so we use again the notations of 3.1. 

Let f E R[x1, ... , Xm] be a non constant polynomial. Let <I> : Rm -+ 

C be a locally constant function with compact support. Let a be a 
character of Rx . For i in N, we set 

ziJ!,J,i(a) := r <I>(x)a(acf(x))ldxl. 
J{xER"' I ordf(x)=i} 

We denote by W the standard additive character on K, defined by 
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For i in N, we consider the exponential integral 

(5.1.1) E<I>,f,i := [ <P(x)'11'(71"-(i+l) f(x))ldxl. 
}gm 

For a a character of Rx, the conductor of a, c(a), is defined as the 
smallest c ~ 1 such that a is trivial on 1 + pc, and one associates to a 
the Gauss sum 

g(a) = ql-c(a) 

vE(R/Pc(<>))X 

The following result is a consequence of§ 1 of [4]. 

Proposition 5.1.1. For any i in N, 

(5.1.2) E<I>,f,i = [ <P(x)ldxl 
J{xeRm I ordf(x)>i} 

+ (q-1)-1 Lg(a-1)Z<I>,f,i-c(a)+1(a). 

"' 
Here i - c(a) + 1 ~ 0. If moreover the critical locus off in Supp <P is 
contained in 1-1(0), then, for all except a finite number of characters 
a, the integrals Z<I>,J,;(a) are zero for all j. 

Using Theorem 3.3 of [4], one deduces from Proposition 5.1.1 that, 
assuming that <P is residual, i.e. that Supp <P is contained in Rm and that 
<P(x) depends only on x modulo P, that the critical locus off in Supp <P 
is contained in J-1 (0) and that the divisor f = 0 has good reduction (in 
the sense that the conditions in Theorem 3.3 of [4] are satisfied), then 

(5.1.3) E<I>,f,i = [ <P(x)ldxl 
l{xeRm I ordf(x)>i} 

+(q -1)-1 L g(a- 1)Z<I>,J,i(a). 
a 

c(a)=l 

5.2. Exponential integrals 
Let X be a smooth connected variety over C of dimension m . and 

let f : X ---t C be a morphism. If one is looking for a motivic ana
logue of p-adic exponential integrals, a hint is given by formula (5.1.3) 
which expresses p-adic exponential integrals as linear combinations of 
p-adic integrals involving multiplicative characters with Gauss sums as 
coefficients. Though Gauss sums are not motivic themeselves, they are 
related to Jacobi sums by the familiar relation 

(5.2.1) g(a)g(f3) = g(af3)j(a, (3), 
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when o:, /3 and 0:/3 are not equal to 1 and have conductor 1, with 

j(o:, /3) = L o:(x)/3(1 - x). 
xEK\{0,1} 

But the Jacobi sums j ( o:, /3) are motivic, being equal to the trace of 
the Frobenius on the etale realization of a Jacobi motive, hence we may 
follow the idea, introduced by Greg Anderson in [2], of enlarging the 
world of motives by adding Gauss sums motives related to Jacobi motives 
by a relation similar to 5.2.1. More precisely, one considers the free A
module U with basis Go:, o: in µ(k). We define an A-algebra structure 
on U by putting the following relations: 

(5.2.2) G1 = -1 

(5.2.3) Go:Go:-1 = L for o: =/ 1 

(5.2.4) Go:1 Go:2 = J(o:1, 0:2) Go:10:2 for 0:1, 0:2, 0:10:2 =/ l. 

It follows from Proposition 2.3.1 that U is a commutative and associative 
algebra. 

Form in Z, let Fm A denote the subgroup of A generated by h(S, f, i), 
with i - dim S ~ m. This gives a filtration on the ring A; we denote 
by A the completion of A with respect to this filtration and we set 
fJ := U ©A A. We shall also consider the subring A10 c of A generated by 
the image of A in A and the series (1-L-n)-1 , n EN\ {O}. We denote 
by U10 c the tensor product U ©A A1oc, which is naturally a subring of fl. 

Let W be a closed subvariety of J-1(0). We define, for i ~ 0, the 
motivic analogue Ei,W,f,mot of Eil!,f,i as the series 

( ) E '°' xc([Xw,n]) '°' 1 G [Xw,i]/;,o: 
5.2.5 i,W,f,mot := ~ L(n+l)m + ~ L _ l 0:- 1 L(i+l}m 

n>i o:Eµ(k} 

in fJ. Remark that, since only a finite number of the functions Zmot, w (s, o:) 
are non zero, the second sum in (5.2.5) is finite. Furthermore, one can 
deduce from Theorem 3.4.1 that Ei,W,f,mot belongs in fact to the ring 
U1oc• In [8] the definition of Ei,W,f,mot is extended to the case where X 
is no longer smooth. 

Now the standard multiplicativity property of exponential integrals 
is no longer trivial. In fact the following result is one of the main results 
in [8]: 

Theorem 5.2.1. Let X and X' be irreducible complex algebraic 
varieties over C, let f : X -+ C and f' : X' -+ C be morphisms of 
C-varieties. Denote by f EB f' : X x X' -+ C the morphism (x, x') i--+ 
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f(x) + f'(x'). Let W (resp. W') be a reduced subvariety of J-1(0) (resp. 
f'- 1(0)). For every i ~ 0, 

(5.2.6) Ei,ffBf',WxW',rnot = Ei,f,W,rnot · Ei,f',W',rnot· 

5.3. An algebraic lemma on power expansions of rational 
functions 

Denote by B the ring U1oc• We consider the ring of Laurent polyno
mials B[T, T-1] and its localisation B[T, T-1],at obtained by inverting 
the multiplicative family generated by the polynomials 1 - La Tb, a, b 
in Z, b I- 0. Remark that, in this definition, we could restrict to b > 0 
or to b < 0. Hence, by expanding denominators into formal series, there 
are canonical embeddings of rings 

and 
expr-1: B[T,T-1]rat '----+ B[(T-1,T]. 

Here B[T-1, Tl] (resp. B[[T-1, Tl) denotes the ring of series LiEZ aiTi 
with ai = 0. for i ~ 0 (resp. i » 0). By taking the difference expr -
expr-1 of the two expansions one obtains an embedding 

where B[[T-'-1, Tl] is the group of formal Laurent series with coefficients 
in B. 

Let cp = LiEZ aiTi and 1/J = LiEZ biTi be series in B[[T- 1 , T]]. We 
define their Hadamard product as the series 

cp * 1/J := L aibi Ti. 
iEZ 

A basic elementary result (see Proposition 5.1.1 of (8] for a proof) 
states that if two series cp and 1/J in B[[T-1 , Tl] belong to the image of r, 
then their Hadamard product 'P*1P is also in the image of T. It follows in 
particular that the intersection of B[[T]] with the image of expr, which 
we shall denote by B[(T]]rat, is stable under Hadamard product. 

Let cp = expr(P) be in B[(T]]rat· We denote by A(cp) the constant 
term in the expansion of expr-1 (P). 

We shall need the following lemma, whose proof is completely ele
mentary (see Proposition 5.1.2 of (8] for the proof). 

Funny Lemma 5.3.1. Let cp and 1/J be series in TB[[Tllrat• Then 

A(cp * ,,µ) = - A(cp) · A('i/J). 
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5.4. A motivic stationary phase formula 

Now we consider the Poincare series 

Ew,J(T) := LEi,W,f,motTi. 
i>O 
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Note that Ew,f (T) has no constant term. One may deduce from Theo
rem 3.4.1 that the series Ew,1(T) belongs in fact to U1oc[[T]]rat• 

We shall now consider S!,w,f as an element of A10 c (note there is 

no (L - 1)-torsion in A1oc), and we define S!,w,f = s:f:,w,f for a: ¥- 1, 

and S!,w,f = s:f:,w,f - Xc([Wl), for a: = 1, in A1oc• Remark that, 

since s:f:, W,f corresponds to motivic Euler characteristic of nearby cycles, 

S!, W,f corresponds to motivic Euler characteristic of vanishing cycles. 
One easily gets the following formula, which may be viewed as a 

motivic analogue of the stationary phase formula: 

Motivic stationary phase formula 5.4.1. The following rela
tion holds in A10 c: 

.X(Ew,1(T)) = -L-m L Ga-1S!,w,r 
aEµ(k) 

The following Motivic Thom-Sebastiani Theorem follows directly 
from the motivic analogue stationary phase formula and the Funny 
Lemma 5.3.1. 

Theorem 5.4.2. Let X and X' be smooth and connected algebra
ic varieties over C of pure dimension m and m'. Let f : X ---+ Al and 
/' : X' ---+ Al be morphisms of k-varieties. Let W ( resp. W') be a 
reduced subscheme of 1-1(0) (resp. f'- 1(0)). Then 

(5.4.1) L Ga-1S!,wxW',fEBf' 
°' 

°' °' 
One can observe that the appearance in the Thom-Sebastiani for

mula of vanishing cycles instead of nearby cycles is explained here by 
the Funny Lemma 5.3.1 which is only valid for series without constant 
terms! 

5.5. We now explain how one can deduce from Theorem 5.4.2 a 
Thom-Sebastiani Theorem for the Hodge spectrum. 
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Since a C-Hodge structure of weight n is just a finite dimensional 
bigraded vector space V = EBp+q=n VP,q, or, equivalently, a finite di-

mensional vector space V with decreasing filtrations F" and F. such 
that V = FP EB F" when p + q = n + I, one can define similarly a rational 
C-Hodge structure of weight n, by allowing p and q to belong to Q but 
still requiring p + q E Z. 

We denote by Ko(RMHSc) the Grothendieck group of the abelian 
category ofrational C-Hodge structures. Ford~ I, there is an embed
ding of µd(C) in Q/Z given by a 1-• a with a(e21ri/d) = e21ria. This gives 
an isomorphism µ(C) ~ Q/Z. We denote by 'Y the section Q/Z-+ [0, 1). 

The morphism H : A-+ Ko(MHSc) may be extended to a mor
phism H : U -+ Ko(RMHSc) as follows. For p and q in Q with p + q in 
Z, we denote by HP,q the class of the rank 1 vector space with bigrading 
(p,q). We set H(G1) = -1 and H(Go.) = -Hl--y{o.),r(o.) for a ::/= 1. 
This is compatible with the relations 5.2.2-5.2.4 since, by a standard 
calculation, 

H(J. ) = -Hl-{-y(o.1)+-y(o.2)--y(o.1 +0.2)),-y(o.1)+-y(o.2)--y(o.1 +0.2) 
ct1 ,a2 ' 

when a1 ::/= 1, a2 ::/= 1 and a1a2 ::/= 1. 
By using a weight argument one can prove that H : A -+ Ko(MHSc) 

is zero on the kernel of the morphism A -+ A. Hence H vanishes also on 
the kernel of the morphism U -+ fJ, and we can extend it to the image 
of this morphism. 

Assume now Xis smooth and let x be a closed point of 1-1 (0). We 
shall denote by Sp(f,x) the Hodge spectrum as defined in (19) and [14) 
(which differs from that of [20) by multiplication by t). 

By applying H to both sides of (5.4.1), when X and X' are smooth 
and W and W' are points one obtains the following Thom-Sebastiani 
Theorem for the Hodge spectrum, which was first proved by A. Varchenko 
in [21) when f and/' have isolated singularities (see also [17)), the gen
eral case being due to M. Saito [20), (15), [16)). 

Theorem 5.5.1. Let X and X' be smooth and connected complex 
algebraic varieties. Let f : X -+ Ab and f' : X' -+ Ab be morphisms of 
algebraic varieties. Let x and x' be closed points in J- 1(0) and f'- 1(0). 
Then 

Sp(/ EB /', ( x, x')) = Sp(!, x) · Sp(/', x'). 
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