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part Vp of V' or is a connected component of the singular part Sing(V),
but none of them intersects simultaneously Vy and Sing(V). In fact,
once fixed the homological dimension * in which we wish to compute
p+(V, S) it is sufficient to assume that the intersection S, N (D)2(™~*) of
Sa with the 2(m — *) skeleton of (D) does not intersect simultaneously
Vo and Sing(V).

Let Us =M -V (the index “A” meaning “ambiant”). Let U, be
the interior of the link of S, for (K’), and U; = |J, U,. From now on,
choose for tubular neighborhood Up of V, the interior of the link of Vp
for (K'). Then, U = (Ua,Us, Un) is a covering of M by open sets, such
that U, is a regular neighborhood of S,, Uy is a tubular neighborhood
of Vo, and U(V) = Up U U is a regular neighborhood of V, which is
covered by U = (U, U1). Furthermore, Uy N U = § for o # B

We have Vo = Uy NV. Let Uy = U NV and Uy = U1 N V.

We define now a honeycomb system of cells (Ra, Ro, R1 = U, Ra)
(see the definition in [Le]) adapted to the open covering U of M, in the
following way:

Let R4 be the union of the (K”)-simplices which do not intersect V.
Let Ry be the union of the (K”)-simplices which intersect V5 but not .
Let R, be the union of the (K”)-simplices which intersect Sg.

As usually, we denote by Rao, Ra1 = Us Raw, Ro1 = U, Rga,
and R0 = Ua R A0a the intersections of the above honeycombs, with
suitable orientations. In fact, we shall often omit the tilde any time
that the given set does not intersect V (i.e. when A does not occur
in the indices). If it does, the omission of the tilde means that we
take the intersection with V: for instance, Rq = RA, Rao = Rao and
Raq = Raa, WhlleR{) ROOV R, =R,NV and Ry —RgaﬂV

We also write R = Ro U Rl, with OR = Rao U Ra;. Let bR =
ORU Ro1 = RaoU Ra1 U Ry

For any (K”)-subcomplex X of M, we denote by Tp(X) the union
of the (D) cells intersecting X. If Y is a subcomplex of X, Tp(X —Y)
denotes the union of the (D) cells intersecting X but not Y.

For instance:

Tp(V) has V for deformation retract,

Tp(X) (resp. Tp(Sa)) has T (resp. S, ) for deformation retract,
Tp(M - V) is a deformation retract of M — V,

Tp(M — %) is a deformation retract of M — 2,

Tp(V — X) has the homotopy type of V — ¥,

and 7p(bR) has bR for deformation retract.
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We shall respectively denote by Cj (M), Cp(V),CH(X2),ChH(M —V),
ChH(M —X) and Cp(V —X) the complexes of cellular cochains with coef-
ficients in C for (D)-cells respectively in M, Tp(V), Tp(X), Tp(M - V),
Tp(M —X), and Tp(V —%). The corresponding cohomology algebras are
respectively canonically isomorphic to H¥(M), H¥V), H¥X), H{(M-V),
H*(M — %) and H*(V - %).

Denote also respectively by Ch(M,M — V), CH(M,M — %) and
Ch(V,V — X) the kernels of the surjections Cj(M) — CH(M - V),
CH(M) - CpH(M — %) and
CH(V) — CH(V — X). Their cohomology are respectively canonically
isomorphic to H*(M,M - V), H*(M,M — %) and H*(V,V - X).

Notice that V, (resp. 8R4, dRo and 8R,,) is a subcomplex of (K”).
Thus, (D)-cells of dimension j are transversal to them, and intersect
them therefore in dimension j — 2k (resp. 2m — 1).

Frame fields and radial frame fields

Let r be an integer (1 < r < n). Weset p=n—r+1, and
g=p+k=m—r+1. We shall denote by F(") = (F("=1 ) a field
of smooth non singular r frames tangent to M near 7p(bR) N (D)%,
(ﬁ’(r_l) denoting the r — 1 frame generated by the r —1 first vectors, and
¥y denoting the last vector field of the frame), and having the following
properties:

(i) Its restriction F(") = (F("=1 y.) to Vp is tangent to V. More
generally F(") remains in H over Tp(dRp) N (D).

(ii) A smooth non singular extension of F("~1) is given in 7p (Ro)N(D)?9,
still in H.

After usual obstruction theory, there always exists such frame fields:
in fact, bR is a deformation retract of 7p (bR), and bRN (D) is2q~1
dimensional.

Among all frame fields having the above properties, there are in
particular after [MHS] radial frame fields, denoted by Fo(r) in the sequel.
(For a precise definition of a radial frame field, see [MHS] or [BS]). Notice
that the properties (i) (ii) are far from characterizing the frame fields
which are radial. For instance, in the case r = 1, if @7 is radial, it is
possible to choose the honeycombs such that 9; be transversal to bR.
After [MHS] all radial frame fields are homotopic.

Particular connections:

We shall call s connection every connection V*¥ on E over M,
which is s trivial (V*Fs = 0) off 7p(V') and in particular over R4.

For any frame field F(") satisfying the properties (i) and (ii) above,
we shall call F") connection every connection V¥ on TM over M,
preserving the subbundle H of TM over Tp(Ry), which is F(*) trivial
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over Tp(bR) N (D)4, the induced connection V¥ over H being F("~1
trivial over 7p(Ro) N (D)24. Notice that the connection V¥, while
having particular properties only over some subspace of M, has been
extended over all of M.

Lemma 1. There always exists a pair of connections (V¥,V*F),
compatible with the projection w : TM — E over Tp(Rq), where VY is
an F) connection, and V*F an s connection.

Such a pair will be called a compatible (F‘ (") 5) pair.
Proof. Obvious, using partition of unity. Q.E.D.

§3. Backgrounds and notations

A) Recall that the Cech de Rham complex CDR*(U{) is the differ-
ential graded algebra of elements

waA Wo wi = (wa)
w=|lwas wal= wAa) wo1 = (w0a) )
WA0l = (WA

(where wy, wo, Wa, w A0, WAa, Woa, WAl denote respectlvely de Rham
forms on the open sets UA, UO, Ua, Uuo =Uan Uo, Usa = UsanU,,
Upa = UoﬂUa, Usoo =U AﬂUoﬁUa, and the parenthesis denote families

of forms indexed by a),
with the differential

dwa dwo (dwe)
Dw = —dwaotwo—wa (—dwaatwae—wa) (—dwoa+wa—wo) |-

(dw Ava+Woa ~wAaa+wao)
This differential is a derivation
D(w—1n) = Dw—n+ (-1)%“w — Dy
for the following product (which is not graded commutative):

wa wo (wa) na 70 (na)

wao  (WAa) {woa) | ~ | nao  (maa)  (moo) | =
(wAaoa) (n4oa)

waAAnA wgANo (waAna)
(—1)PwarnaotwaoAne (—1)PwaAnact+waaAna) ((—1)PwoAnoa+woaAna)
(waAnA0a + (=1 w0 A0 + WA« ATa)
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The cohomology algebra of CDR* (Z:l) is naturally isomorphic to
the de Rham cohomology of M (with complex coefficients), while the
differential subalgebras CDR*(U,M — V) (resp. CDR*(U,M — %),
resp. CDR* (Z], Us U (Uaﬁa)) of elements w such that wy = 0 (resp.
wa =0, wyg =0, and wyg = 0), (resp. wa =0, wp=0, and wyg = O)
provide respectively the relative cohomology H* (M, M — V),
H*(M,M —Y¥) and H*(M,U4 U (U, ﬁa)) with complex coefficients. We
shall write [0] instead of 0 when we wish to insist that some w is taken
in the subalgebra CDR*(U, M — V), CDR*(U,M — %) or
CDR*(U,U4UU;), and not in CDR*(U) itself, writing respectively such
elements

[0] wo  (wa) [ [o] (wa)
(wAO (wAa) (w0a)> ) ({0] (wAa) (wOa))
(UJAOa) wAOoz)

[0]  wo [0]
W A0 [0] (woa) | -

(waoa)

Since the honeycombs R4, Ry, and R, are subcomplexes of (K”),
the cells of (D) are transversal to these honeycombs, so that we may
integrate elements w € CDRY(U) along j cells v of (D) (cf. [Le]): recall
that f,y w is equal to

/ wA+/ ~ OJ()+/ WA0

YARA YN Rg 4N Rao

+Z[/ B wa+/ wAa+/ : w0a+/ WAOa]
YNRa YNRAa YN Roo YNRA0a

e

with suitable orientations of the domains R4 --- Rao - Raoa- _
The integration defines therefore a morphism from CDR*(U) into
the cellular cochains C{p)(M), which commutes with the differentials

and induces an algebra isomorphism in cohomology (see [Le]). We shall

denote by
wa  wo (wa)
wao (waa) (mm)))
(( (wa0a)
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the image of
wa wo (wa)
WA0 (wAa) (wﬂa) in CZ:D) (M) .
(U-’A()a)

Similarly

[0]  wo Wa [0] [0] Wa)
((on (waa) ((wOa)))) ) (([0] (waa) ((wOa)))
(WAOQ) (wA()a)
0] wo [0]
((on 0] (w0a)))
(wAOa)

will denote elements in C{D)(M,M - V), in C’gD)(M,M — %) or in

Clpy (M, Tp(M — V) U Tp(X)).

The notation

0 [0 (wa) [0  wp [0]
(([0] (waa) (wm))) + ((wim (0] (w(,)a))
(wAOO‘) (‘”ima)

will denote in fact the sum

(([g] ( 0 ) ((wa))>) . ([?] 6;6 ( 0 )))
(ono;) - " (W0a) -

of the images in C(p) (M, M — V).
The Cech-de Rham complex CDR*(U) is the differential graded
algebra of elements

or

w = (wo, w1 = (wa),wo1 = (Woa))

{where wp, wq, Woa denote respectively de Rham forms on the open sets
Uo, Uy, Uoa, and the parenthesis denote families of forms indexed by
a), with the differential

Dw = (dwp , (dwa) ,(—dwos + wa — wp)),
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which is a derivation with respect to the (non graded commutative)
product

(wo s (wa) y (w()a)) ~ (770 y (ﬂa) y (’OOa))
= (wo Ao, (Wa Afa) s ((=1)Pwo ANoa + woa A na))-

The cohomology algebra of CDR*(U) is naturally isomorphic to the
de Rham cohomology of V' (with complex coefficients), while the differen-
tial subalgebra CDR*(U,V — X) of elements w such that wy = 0 provide
the relative cohomology H*(V,V — X). We shall write ([0], (wa), (woa))
the elements of CDR*(U,V—X), and (w4, [0], (woa)) those of CDR*(U4, ).

We may integrate elements w € CDR?(U) along j cells v of 7p(V),
and define [ w as being equal to

wo + [ / Wq + / wo. ]
/yﬂRn Z YNRy * ~YNRoa «

03

The integration defines therefore a morphism from CDR*(U) into the cel-
lular cochains CE‘D)(V) on V with complex coefficients, which commutes
with the differentials and induces an algebra isomorphism in cohomo-
logy. We shall denote by (wo, (wa), (woa)) the image of (wo, (wa), (woa))
in Cftpy (V). .

Similarly ([0], (wa), (woe)) Will denote elements in C’(’D)(V, V-3,
and (wo, [0], (woe)) elements in C’fD) (V, ).

The notation ([0], (wa), (woa)) + (wh, [0], (wps)) will denote in fact
the sum (0, (wa), (Woa)) + (w0, 0, (Wpa)) in Cpy (V).

Remark. When w and 7 are j dimensional, f,y w depends only on

the behaviour of w near the j skeleton (D)’ of (D), (i.e the behaviour
of wa near R4 N (D), etc....). Thus, it is sufficient that

wA wo (wa)
w= (on (waa) (wOa))

be defined near (D), for

(w) = ((::o (:fa) (%0?)))
(waoa)

to make sense. However, be careful to the fact that, in this case, the
Stokes formula d(w) = (Dw) does not hold any more necessarily.
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A similar remark holds for (wo, (wa), (woa))).

B) In general, for a Chern polynomial ¢ (i.e., a polynomial of the
Chern classes), and a connection V on a complex C* vector bundle,
C — X, we denote by ¢(V) the cocycle on the base which is the image of
o by the Chern-Weil homomorphism asoociated to V. Thus it is a closed
form whose cohomology class in the de Rham cohomology is the (real)
characteristic class ¢(C) of the bundle associated to ¢. In particular,
the class of ¢!(V) is the real i*" Chern class of A. If (Vo, V1,...,V,)isa
family of r+1 connections on a same vector bundle C, ¢(Vy, Vy,...,V,)
will denote more generally the Bott difference operator ([B]), so that

dp(Vo,V1,..., V) = Y _(-1)'0(Vo,V1,...,Vi, -+, V).
i=0

In particular, for 7 = 1, dp(Vo, V1) = ¢(V1) — ©(Vo).

Denoting by ¢ and by ¢’/ the Chern classes of some smooth complex
bundles C and C’, of ranks n+q and ¢ respectively, over a same manifold
X, recall that the h-th Chern class ¢'" = ¢*([C — C']) of the virtual
bundle [C — C’'] € KU(X) is a polynomial with respect to the c’s and
the ¢/’ ’s, defined as the coefficient of th in the expansion of the expression
(1+ 3t - 1+ ) ,;t7c?)1. This polynomial may be written as a
finite sum

h 1
c” = Z(pe(cl,...,c"+q)'1ﬁe(cl ’”.’c/q)’
£

for some polynomials ¢, and 1.
Let V and V' be connections on C and C’ respectively. Denoting
by V* the pair (V,V’), we set

V) = e(V) A pe(V) -
£

Then c*(V*) is a closed 2h-form on X which defines the class ¢ ([C—C"]).
If Vi = (V1,V}) and V3 = (V2, V3) are two such pairs, we set

(V1 V3) = (V1) - 0e(V1, Va) + ¢e(V1, V5) - 0e(V2)) .
)2

Then we have:
dd"(V},V3) = "(V3) — M (VY).
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If Vi = (V1, V), V3 = (V2,V5) and V§ = (V3, V}) are three such
pairs, we denote by c*(V$, V3, V3) the form

> (#e(V1) - 9e(V1, V3, Va)

L
‘H/}f(vll’ V’z) : QOe(Vz, V3) + "/)e(v/h IZ»Vg) : (PZ(V-'S))'

Then we have

dch(V1, V5, V3) = "(V3, V3) — (1, V3) + (V1 V3).
84. Thom-Gysin homomorphism

The complex CDR*(U) is a quotient of CDR*(U), and we already
observed in [Le| that the cup product

CDR*(U,M - V) — [ker : CDR*(U) — CDR*(U)]
is identically zero, defining therefore a multiplication
CDR*(U,M — V) x CDR*(U) — CDR*(U,M - V),

which induces the product H*(M,M — V) x H*(V) - H*(M,M - V).
Similarly, we get multiplications

CDR*(U,M — V) x CDR*(U,V — ) —s CDR*(U,M — %),
and CDR*(U,M - V) x CDR*(U,| JUs) = CDR* U, T4U(| T%)),

inducing respectively the products H*(M,M — V) x H*(V,V — %) —
H*(M,M — %), and H*(M,M — V) x H*(V,%) — H*(M,M — Ry).

For V = 571(0) as in section 2, the data of the section s, non van-
ishing on M — V, defines a natural lift c*(E, s) of the Chern class c*(E)
by the morphism H?*(M,M — V) — H?*(M). It is proved in [Su2]
that c*(E, s) corresponds to the fundamental class [V] by the Alexan-
der duality. Therefore, the cup product by the so-called “Thom class”
c*(E, s) induces in cohomology the Thom-Gysin morphism 7 such that
AoT = Py.

Let VE be any C™ connection on E, and V' E any s trivial con-
nection on E|p_v (s trivial means : V'¥s = 0). Then the Thom class
c*(E, s) of E is represented by the cocycle

[0] &*(VE) (*(VE)) 3
F(V'E VE) (F(V'F, Vi) 0 € CDR*(U,M - V),
0 .
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and the Thom Gysin morphism is induced by the map
7:CDR*(U) — CDR*(U, M — V) such that

(M0 5 (Ma) 5 (M0a))

[0] cF(VE) Ano (ck(VE) A na)
_ (Ck(v/E,VE) /\,,,,0 (ck(le,vE) /\na) (Ck(VE) /\,’70‘1))
(—ck(V'E, VE) A 7]00)

This Thom-Gysin morphism may then be refined by the maps
72 : CDR*(U,V — ) — CDR*(U, M — X))
and 7o : CDR*U, (| JUa)) — CDR*(U,UaU (| JTa)),

respectively defined by the formulas

TE([O] ’ (770) 3 (770a))
([0] (0] (*(VE) A1) )

0] (F(V'E,VEYARL)  (F(VE) Amoa)
(_ck(V,E7 VE) A 770&)

and

70(0 +[0], (10a))
[0] *(VE) Amo (0]
= c* (VIE7 VE) Ao [0] (ck(vE) A "70(1) .
(=cF(V'F, VE) Anog)

These maps do not depend in cohomology on the choices of VZ and
v'Z. In fact, if VF and V¥ denote two connections on E, then

[0] *(VE) (*(VD))
(ck(v'E,sz) (F(V'E,VE)) 0 )
0
(0] *(VE) (VD))
—(ck(v'E,v*F) (ck(v's,v{f)) 0 )
[0] HVE,VE)  (M(VF, VD)
= D|H&V'Z VEVE) (VP VEVE) 0 )
0

i.e. is a coboundary in CDR*(U, M - V).
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Similarly, if V’ f and V' 2E denote two connections on E|p_y, both
preserving s, then
(0] *(VE) (" (V%))
H(V'3, V) (H(V'5,VE) 0
0
(0] *(VF) (*(V5))
— | K(V'E,VE) (H(V'T,VE)) 0
0

0] 0 0
= D(ck(V'f,v'f VE) (V'] V', VE)) 0)’
0

(because ck(V'},V's) = 0, since V'Y and V' 2F:‘ are both preserving the
same s): we still get a coboundary in CDR*(U, M — V).

Remark. If we take for VZ a s connection, then ¢*(V'?, VE) = 0
off Tp(V'), and in particular over R4 and Raq.

85. Virtual classes

They are characteristic classes of the virtual tangent bundle TV =
[TM—E]|ly in KU(V). Let V* = (VM, VF) be a pair of connections V¥
on TM and VZ on E. Then the p** Chern class cf;.(V) of the above
virtual TV may be represented, in the Chern-Weil theory by the de
Rham form cP(V®) = [c(VM)/c(VE)LD on U(V) = UpuUy, (where [...],
denotes the homogeneous component of dimension 2p), or equivalently
by the element (cP(V*), (cP(V*)),0) in CDR?(U). It does not depend
on V* since, for two choices V* and V* of the pair of connections, we
have: cP(V*) — cP(V*®) = dcP(V*,V*).

Let £{") be a radial frame field. Let V¥ be any E{") connection

on TM, and denote by V¥ the induced connection on H over Ry. Set
Vg, = (VH,VF), and define

Virf = (P(V},),[0],0) and Vi, = ([0], #(VE,),0).

Proposition 1. (i) Virh and Vir}, are relative cocycles modulo
Tp(X) and Tp(Ro) respectively.

(i) Their cohomology class cf ;. (V, F‘ér)) € H®(Ip(V),Tp (%)) =
H?(V,%), and & .(V, FS7) € H?(Tp(V), Tp(Ro)) = H?(V,V - 5).

[Notice that (cP(V$, ), [0],0) and ([0], cP(V}, ), 0) might not be cocycles!]
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For any 2p dimensional (D)-cell o in Tp(V), (Virk, o) is equal to
leng cp(v;'o )

If o is in Tp(Ro), then Ry No is empty or is in Tp(Ro1) N (D)% where
P(Vy,) = (VH) = 0. Thus, (Virg,o) = 0, which proves that Virf,
vanishes on Tp(Rp). Similarly, Vir] vanishes on 7p(X).

On the other hand, for any 2p+ 1 dimensional (D)-cell 7, (d Vir,, 7)
= (Vir}, 97) is equal to [ 5. cP(VE,), that is [z . cP(VE,) after
Stokes formula. If Rg; N 7 is not empty, it is included in 7p (Ro1)N(D)??,
where ¢P(V§, ) = 0: thus Vir§; is a cocycle. A similar proof works for
Vir.

For two different Fér) connections V] i and V3 p , we have:
([01, (V3 £,),0) — ([0, (V3 £,),0) = d([0],0,c”(Vy,F,, Va,r,),

since c?(V1,F,,Va,r,) = 0 near TpRo; N (D)?9, both connections V1 F,
and Vg g, preserving there a same F’ér). Since two radial frame fields
are always homotopic, these classes do not depend neither of the choice
of the radial frame field, as far as it is radial.

After section 4, if we assume furthermore that V=¥ is a s connection,
this decomposition has for image by the Thom-Gysin homomorphism

(([0] F(VHF) A eP(VE,) [0])) (([0] [0] (F(V*P)AeP(VE, )))
0 (0] ol+{[ o 0 .
0 0

§6. SMP classes

Let r, p and g be as above.

Proposition 2. Let V}‘,{ denote some ﬁ‘ér) connection on TM,
for a radial frame field F{".

(i) Then
(([0] A(VH) (cq(v%))))
SMPX = |{f o 0 0 ,
0

is a cocycle in C?1(M,Tp(Ra)).
(ii) Its cohomology class is well defined in

H?1(M,Tp(Ra)) = H*(M,M - V).
(iii) This cohomology class ciip(V) is equal to the image in the coho-

mology with real coefficients of the SMP class defined in [MHS] and [BS]
with integral coefficients.
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In fact, for any 2q (D)-cell o, we have:
(SMP%,0) = [ (VM)

For o in Tp(R4), we get (SMP??,5) = 0 because AVM)=0ifo
intersects R4, and RnNo = 0 if it doesn’t. Thus SMP? is a relative
cochain modulo 7p(R4). On the other hand, for any 2q + 1 dimensional
(D)-cell T, (dSMP?, 1) is equal to [5,, c/(VH¥). If 7 intersects OR,
then c?(VH) = 0. If not, then RNAr = 37 and [5, cI(V¥) =0
after Stokes formula. Thus dSMP?* = 0, and we get part (i) of the
proposition. :

For two different F‘O(T) connections V{‘fFo and ngIFo, we have:

(([0] A(V3l,) (Vi ))) (([0] (Vi) (C"(V{‘,lp,,)))
0 0 0 o 0 0
0 0

0] C"(Vi‘fpo ) Vlz‘flp,,) (Cq(vfflpoa Vé\:[Fo ))
=dfl 0 0 0 )
0

since (V¥ , V3 ) = 0 near Tp(8R) N (D), both connections V4,
and Vé"lFo preserving there a same ﬁ’ér). Two radial frame fields being
always homotopic, these classes do not depend neither on the choice of
the frame field, as far as it is radial, hence part (ii} of the proposition.

Part (iii) results that the above definition is just a differential geo-
metric transcription of the definition given in [MHS] and [BS].

Remarks. (i) For the moment, as far that we wish only define
cg‘pr(V), we do not need the covering i with 3 open sets M — V, Uy and
U;: we could as well work with the 2 open sets M —V and UpUU;. But
we shall need it soon, when decomposing c3%,p (V) into the contributions
cé‘{SMP(V) and c%?SMP(V) of the regular and the singular part of V.

(ii) Notice that

( [0] c1(VM) (c"(VM)))
A(VM, VM) (c(VH, VM) 0
0

might not be a cocycle, because c‘l(V%, ) vanishes only over
Tp(0R4) N (D)?4, and may be not on all of Uag and Uyg.

(iii) The SMP class is an obstruction for the radial frame field ﬁ’o(r)
to be extended to all of U(V)N(D)?. In fact, if such an extension exists,
then ¢?(VH) = 0 on all of the above domain, so that the previous cocycle
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is equal to

(([0] A(VE, VM) (C"(V%vVM))))
aff o 0 0 :

0

In the definition above of the SMP class, we used only that V%
preserves £y over Tp(dRa) N (D)X. If we remember that it is still
true over 7p(Ro1 N (D)?4, the above cocycle providing cdyp (V') may be

decomposed into

(([0] (V) [0]) (([0] (0] (C"(V%,))))
o o of+(f o 0 :
0 0

which are still relative cocycles respectively in C%(M,Tp(RaUR;) and
C? (M, Tp(R4 U Ry), whose relative cohomology classes, respectively
denoted by c§ gup(V, Fér)) and ¢, gpp (V) F}Sr)) in H*(M, Tp(RaURy)
and H24(M,Tp(R4 U Ry) & H? (M, M — %) still do not depend on the
choices of the various connections (similar proof).

§87. Milnor classes

Lemma 2. The relative cohomology classes 1o(c ;. (V, 7)) and

c.smp(V; FSY are equal in H (M, Tp(RaulU, Rs)-

Proof. Choose a compatible (F\", s) pair (VE,V*E) of connec-
tions, and let V¥ be the connection induced by Vf-fl‘o on H over Ry.

(([0] F(VHE) A P(VE,) [0])) (([0] A(VH) [0]>>
0 [0] ofl=1(o [0] o .
0 0

In fact, (Vi) = F(VOE) AP (VE,) + 2 j50[cF I (V2F) AP (V).
But ¢?t7(V}, ) = 0 over Tp(Ro) N (D)%, since it is equal to c?+i(VH)
(because of the compatibility of (VI Vf‘;”a ,V5E) with the exact se-
quence), and since c?*7(VH) = 0 over Tp(Ro)N (D)% for j > 0 (because
VH preserves there the 7 — 1 frame F("—1), Q.E.D.

We deduce the
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Theorem. (i) The cohomology class
m2( o (V, FDY) - % smp(V, ESMY of the cocycle

(([0] [0] (c’“(VS’E)Ac”(Vh)—c"(Vi‘{)))
0 o 0

,vir

0

is well defined in H*A(M, M —¥.), i.e. does not depend on the choice of
the (F~‘0(T), s) pair (VY ,V*E) of connections.
(il) It is a “localization” of T(cb, . (V, EMy) —cup(V, E{), which means:

(ki (V, Fo(r))) _chP(V’ ﬁ'}”):ﬂ[rg(c’z’: v, Fo(r))) —cg],SMP(V7 Fo(r))] )

where 8 : H*A(M,M — X)) — H?(M, M — V) denotes the natural map.
(iii) The a component u(V, Sy) of
(~1)" [75(h, e (Vs 7))~ guap (V. FS7)] in H?(M, M~ S,), defined

by the cocycle

(([01 0] (H(V*E) AP (V3,) - cq<v;‘{>)a>>
-~ {0 o 0 :
0

,vir

corresponds by Alexander duality to the homological Milnor class
pm—q(V,Sa) € Hy(m—q)(Sa) defined in [BLSS].

Proof. The parts (i) and (ii) have already been proved, part (ii)
resulting from Lemma 2. On the other hand, the image of

(([0] [0] (C’“(VS’E)/\C”(V%,,))Q))
[0 o 0
0

by Alexander duality A : H*4(M, M — Sq) — Ha(m—q(Sa) is still equal
to the image of (c?(V%,),[0],0) by the Poincaré morphism

Py : H?(V,V — 85) — Hy(m—q(Sa): this is exactly the definition given
in [BLSS] for the virtual index Vir(F\", Sa) of £ at S,. Similarly,

(([0] [0] (C"(V%{))a))
(- [o] o 0
0

has for image by A the Schwartz index Sch(F‘O(r), Sa) of Fér) at S,. Thus,
A(pd(V, So) = (1) (Vir(F{”, S,) — Sch(F{", S,): this corresponds to
the definition of the homological Milnor class pa(m—gq)(V, Sa) given in
[BLSS]. QED.
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Remarks. 1) The Milnor class u?(V, S,) vanishes for any « such
that S, N (~D)2q is included in Vp: in fact, for such a’s, the definition
of H over Ry may be extended to R, so that we can add R, to Ry in

Lemma 2.

Therefore, (V) arises in fact from a well defined element of
H?(M,M — Sing(V)).

2) For r = 1, it results from the theorem that the Milnor number
of V at Sy, such as defined in [BLSS] (the usual Milnor number if S,
is an isolated point ({M], [H]), or such as defined in [P] when V is an
hypersurface in M), is given by:

ho(V,Sa) = [ [HVE) A (TE,) = (VH)]

o

§8. Virtual and Schwartz indices

Let more generally F'(") be a frame field satisfying properties (i) and
(ii) of the end of section 2, but not necessarily radial.

Replacing the (ﬁ’ér), s) pair of connections (V¥ , V#F) by a (F™),s)
pair (V¥,V*E), we can even take the same V*¥ in both pairs. Then
everything works in the same way as in section 5, for the definitions of

ovir(V; F®™)) and & vir(V, F()). We get the following decomposition
of Tc\z/)ir(V):

3 [0] F(VSE)AP(VE) (0]

To(ch i (V, FM)) = [ 0 [0] 0
0
3 [0] [0] (c*(V*F)AcP(VE))
and  7s(ch ., (V, FT)) = [ [0] 0 0
0

However, as we already mentionned, we would not get the SMP
classes if we just replace FO(T) by F) in sections 6 and 7. Thus, we still
define c§ gp(V, F(M)) by the similar procedure:

. [0] <(V¥) [0]
Esmp(V,FO)) = [ 0 [g] 0.

Therefore, we still have, as in Lemma 2 (similar proof):

eV, F) = G suap (V, FO)).
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But, now, as a transcription of what we did in [BLSS], we define
& snp (Vs F)) = & o (Vs B 475 (R gin (V, B~ 2 iV ES)].

More precisely, we define the “difference” of the two frames, as the
cohomology class §7(E{", F(1) of (0,0,(c*(Vy,, V) € H*(V).
Since (cP(V}) — cP(Vy, ) [0], —cP(VE,, V) = D(cP(VE,, Vi), [0],0),
then [(cf i (V; F7) ~ cf (V. F57)] and (0,[0], (7(V$,, V) are
equal in H?P(V,X).

Similarly [(c% ;e (V, F®) — & oo (V, E§7)] and ([0],0, (~cP(VE,, V)
are equal in HZP(V vV -3%).
By the Thom-Gysin homomorphism, we get:

[0 o 0
Tap(ﬁg’"),ﬁm):((o 0 F(VSE)AP(VY,, ;))),
0

whose cohomology class is defined as well in H?4 (M » To(RaUU, Ra)
as in H2(M, M — X). Thus, we get:

[0] o (V)
& oup (V. F) = (( 0 0 —cF(VF)A CP(V ))) .
0

0 vir

Of course, we have done what we needed for still guetting
pi(V) = (-1)" [Cg],vir(v’ Fy - % smp(V; F(r))]’

which does not depend on the frame field F) In particular, we have:

0 [o] (Vv SE)/\C”(V')—C"(VM))
pi(V,8a) = (=)™ |{ 0] g (*(V *F) A P(VE,, VE)),

On the other hand, as for £\, cdvp (V) is still equal to the sum
of the images of ¢} gyp(V; F™) and cf, gpp (V, M) in H2(M, M - V).
This is an obvious corollary of the generalization of Lemma 2 to F'(").

The virtual index (resp. the Schwartz index) of £(") at S, such
as defined in [BLSS] is nothing else but the image by the Alexander
duality of the a component c§_ ;. (V, F(™) (resp. s, smp(Vs F™M)) of
c%,vir(Vv F (T)) (resp. CqE,SMP(V7 F (r)))-
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