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From Chern classes to Milnor classes 
A history of characteristic classes for singular 

varieties 

Jean-Paul Brasselet 

Abstract. 

In this paper, we give a survey and recent developments about 
the definitions of characteristic classes for possibly singular complex 
analytic (or algebraic) varieties. We recall the classical construc­
tion of characteristic classes in the case of manifolds, by obstruction 
theory and using Schubert cycles. Then, we present various gener­
alizations of characteristic classes to singular varieties, due to M.H. 
Schwartz, W.T. Wu, J. Mather, R. MacPherson, W. Fulton and K. 
Johnson and we discuss relations among these definitions. More re­
cent results concern the definition and properties of so-called Mil­
nor classes, as developped by P. Aluffi, J.P. Brasselet-D. Lehmann-J. 
Seade-T. Suwa, A. Parusiriski-P. Pragacz and S. Yokura. 

§0. Introduction 

The Euler-Poincare characteristic was th~ first characteristic class 
(or number) to be introduced. For a triangulable (possibly singular) 
compact variety X without boundary, it can be defined, as 

where ni is the number of i-dimensional simplices. It is also equal to 
E(-l)ibi where bi = rkHi(X). The Poincare-Hopf theorem says that, 
if X is a manifold and v a (continuous) vector field with a finite number 
of isolated singularities ak of indices I ( v, ak), then 
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This means that the Euler-Poincare characteristic measures the ob­
struction to the existence of a non-zero vector field tangent to X. 

On another hand, characteristic classes of projective varieties have 
been defined by Severi, Todd and others using polar varieties. Then 
Chern defined such characteristic clases for hermitian manifolds, in sev­
eral ways, in particular as measuring the obstruction to the construction 
of complex r-frames tangent to the manifold, and using Schubert vari­
eties (related to polar varieties). During some time, the attractiveness of 
the axiomatic properties of Chern classes caused the viewpoint of polar 
varieties to be somewhat forgotten. 

For singular varieties, it appears that Wu and Mather classes can 
be defined in terms of polar varieties, with a formula similar to the 
non-singular case. On the other hand, the obstruction theory Chern's 
point of view has been generalized by M.H. Schwartz, and the axiomatic 
point of view by R. MacPherson. The Schwartz and MacPherson classes 
coincide, via Alexander duality. 

The Fulton and Fulton-Johnson classes use Segre classes definition, 
without reference to the original definitions of Chern classes of varieties 
(for complete intersections they correspond to the Chern classes of the 
virtual bundle, generalization of the tangent bundle). 

A natural question was to compare the Schwartz-MacPherson and 
the Fulton-Johnson classes. A result of Suwa shows that in the case of 
isolated singularities, the difference is given by the Milnor numbers in 
the singular points. It was natural to call Milnor classes the difference 
arising in the general case. This difference has been described by several 
authors by different means. 

In this paper, cohomology classes will be constructed in the context 
of cell decompositions in order to keep things consistent with Poincare 
duality. We will denote by Ma complex manifold, by (K) a triangulation 
of M, (K') a barycentric subdivision of (K) and (D) the associated dual 
cell decomposition. The dual cell of a simplex a E K will be denoted 
by d(a) or simply d if there is no possible confusion. The barycenter ff 
is the intersection point ff = d(a) = d(a) n a. The (D)-cochain whose 
value is 1 at d(a) and O at other cells of (D) will be denoted by d(a). 

In the sequel, all homology and cohomology groups will be under­
stood with integer coefficients. Recall that if M is a compact complex 
m-dimensional manifold, the Poincare duality isomorphism 

the cap-product with the fundamental class [M] E H2m(M), is repre­

sented at the chain level as the homomorphism c(;;)-\M) -+ ct) (M) 
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sending the elementary {D)-cochain d(a) to the elementary (K)-chain 
a. 

It was a great pleasure for me to participate in the Franco-Japanese 
congress on singularities in Sapporo. I want to thank all people who 
made remarks and comments about a preliminary version of this survey, 
especially P. Aluffi, G. Barthel, P. Pragacz, J. Seade, T. Suwa, B. Teissier 
and S. Yokura. 

§1. Chern classes in the non-singular case. 

In his original paper [Ch], Chern gave several constructions of char­
acteristic classes for Hermitian manifolds: by obstruction theory, using 
the decomposition of the Grassmann manifold in Schubert cycles, using 
differential forms and by transgression cocycles. We will briefly recall 
the first two definitions, which extend to singular varieties. The paper 
[Ch] is highly recommended for the study of Chern classes. 

1.1. Chern classes by obstruction theory. 
Let us recall the idea of constructing Chern classes by obstruction 

theory {see [Ch]), following Steenrod [Ste], part III. 
We denote by TM the complex tangent bundle to the complex m­

dimensional manifold M and by TrM the bundle of complex r-frames 
tangent to M. The fiber of TrM over a point x E M is the Stiefel 
manifold Wr,m of complex r-frames in cm. Let d = d(a) beak-cell in a 
trivialization domain U of TrM, i.e. TrMlu ~ U x Wr,m· Let us suppose 
that we are given an r-frame v(r) = (v1, ... ,vr) on the boundary ad of 
d. This defines a section of TrM over ad and, by composition, a map 

(r) pr 
3k-l ~ ad ~ TrMlu ~ Wr,m 

where pr2 denotes the projection to the second factor. We thus obtain 
an element 

[v(r) j ad] E 1Tk-1 (Wr,m) 

which vanishes if and only if the r-frame v<r) can be extended without 
singularity to all of d. We remark that if this element is non-zero, then we 
can extend the r-frame to the relative interior of d by homothety centered 
at the barycenter d = d(a), thus obtaining an isolated singularity of 
index [v<r); ad]. 

Let us recall ([Ste], §25.7) that 

1Ti Wrm -
. ( ) _ { 0 for i < 2m - 2r + 1, 

' Z for i = 2m - 2r + 1. 
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This result implies that we can construct an r-frame v<r), i.e. a section 
of TrM, by induction on the dimension of cells of the given cell decom­
position of M without singularity up to the (2m - 2r + 1)-skeleton and 
with isolated singularities on the 2p = 2(m - r + 1)-skeleton. For each 
2p-cell d(u), the index of the complex r-frame v<r) at its only singular 
point d = d(u) na ind is I(v<r>,J) = [v<r>;od] E z. Associating to each 
p-cell d(u) the integer I(v<r),J) defines a 2p-cochain that actually is a 
cocycle, called the obstruction cocycle. 

Definition ([Ch]). Thep-th (cohomology) Chern class of M, cP(M) 
E H 2P(M; Z) is the class of the obstruction cocycle. 

By the Poincare duality isomorphism, the image of cP(M) in 
H 2(r-i)(M) is the (r -1)-st homology Chern class of M represented by 
the cycle 

(1) I(v(r) ,d(a)) a. 
dimo-=2(r-1) 

In particular, the evaluation of cm(M) on the fundamental class [M] 
of M yields the Euler-Poincare characteristic. 

1.2. Chern classes using Schubert cycles and polar vari­
eties. 

The construction of Chern classes using Schubert cycles was already 
present in Chern's original paper. This construction was emphasized by 
Gamkrelidze in [Gal] and [Ga2]. A historical introduction and complete 
bibliography can be found in the Teissier's paper [T2]. 

The Schubert cell decomposition of the Grassmann manifold g = 
Q(n, m) of n-planes in cm has been described by Ehresmann [Eh] and it 
was used by Chern to give an alternative definition of his characteristic 
classes. Let 

(V) {O} = Dm C Dm-1 C · · · C Di C Do = cm 

be a flag in cm, with codimcD; = j. 
For each integer k, with O ~ k ~ n, the k-th Schubert variety 

associated to V, defined by 

Mk(V) ={TE Q(n,m): dim(TnDn-k+i) ~ k} 

is an algebraic subvariety of Q(n, m) of pure codimension k. The in­
equality condition is equivalent to saying that T and Dn-k+l do not 
span cm. 

Let on be the universal (sub)bundle over Q(n, m). The cycle 
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(-ll Mk('D) represents the image, under the Poincare duality isomor­
phism, of the Chern class ck(en) E H 2k(Q(n, m)). If Vis an n-dimensio­
nal complex analytic manifold and f : V --+ Q ( n, m) is the classifying 
map for TV, i.e. such that TV ~ f* (en), then the cohomological Chern 
classes of V are ck(V) = ck(TV) = f*(ck(en)) (see [MS]). 

Let us consider the projective situation. We denote by G(n, m) the 
Grassmann manifold of n-dimensional linear subspaces in pm. We fix a 
flag of projective linear subspaces 

('D) Lm C Lm-1 C · · · C Li C Lo= pm 

where codimcLj = j. The k-th Schubert variety associated to 'D is 
defined by 

Mk('D) ={TE G(n, m): dim(T n Ln-k+2) ~ k -1} 

Let us remark that we always have dim(T n Ln-k+2) ~ k - 2. The 
Schubert variety Mk('D) has codimension kin G(n, m). 

Let us denote N =nm= dime G(n, m) and fix O ::;; s ::;; m. The 
Schubert variety 

(2) 
M[-s = {(x, T): x E Ls-k, x ET, dim(T n Ln-k+2) ~ k - 2} 

=Ls-kn Mk('D) 

is the intersection of Mk('D) with a general (s - k)-codimensional plane 
and it has codimension s in G(n, m). The (homological) Chern classes 
of G(n, m) are 

Let us now consider the case of an n-projective manifold V C pm. 
The k-th polar variety is defined by 

Pk= {x EV: dim(Tx(V) n Ln-k+2) ~ k -1}, 

where Tx(V) is the projective tangent space to V at x. For Ln-k+2 
sufficiently general, the codimension of Pk in V is equal to k. Also, the 
class [Pk] of Pk modulo rational equivalence in the Chow group An-k(V) 
does not depend on Ln-k+2 for Ln-k+2 sufficiently general. This class 
is called the k-th polar class of V. 

Let 'Y : V --+ G( n, m) be the Gauss map, i.e. the map defined by 

'Y(x) = Tx(V) C pm_ 
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Then 

The relation between Chern classes and polar classes has been de­
scribed by Gamkrelidze and Todd. 

If .C = Opm(l)lv, then we obtain the Todd formula (compare with 
(3)): 

Cn-s(V) = i)-l)k (: = z ! i) c1 (.C)s-k n [Pk] 
k=O 

(4) 

where the cap-product with c1(.C)s-k is equivalent to the intersection 
with a general ( s - k )-codimensional plane. 

§2. Chern classes in the singular case. 

In the singular case, there are different possible definitions of Chern 
classes, generalizing the ones in the non-singular case. 

The Wu and Mather classes generalize the definitions by Schubert 
cycles and polar varieties. J. Zhou proved that Wu and Mather classes 
coincide. 

The Schwartz classes use obstruction theory, and the MacPherson 
classes, defined in an algebraic geometry way, satisfy good functorial 
properties. J.P. Brasselet and M.H. Schwartz proved that Schwartz and 
MacPherson classes coincide, via Alexander duality. 

The Fulton and Fulton-Johnson definitions of Chern classes use 
Segre classes and correspond to the class of the virtual tangent bun­
dle in the case oflocal complete intersections (for example). 

The relation between Wu-Mather classes and Schwartz-MacPherson 
classes appears in MacPherson's definition itself. The MacPherson con­
struction uses Wu-Mather classes, taking into account the local com­
plexity of the singular locus along Whitney strata. This is the role of 
the local Euler obstruction. 

The difference between Schwartz-MacPherson and Fulton-Johnson 
classes is expressed, in the case of isolated singularities, in terms of 
the Milnor numbers (at the singularities) (Seade-Suwa). In the general 
case, this difference is called Milnor class and has been studied by sev­
eral authors: P. Aluffi, J.P. Brasselet-D. Lehmann-J. Seade-T. Suwa, A. 
Parusinski-P. Pragacz and S. Yokura. 

2.1. The Wu classes {1965). 
In the singular case, Wu [Wu2] generalized Chern's and Gamkre­

lidze's constructions in the following way: Let xn c pm be a complex 
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projective algebraic variety and let X' be a subvariety of X containing 
the singular part Xsing· Denoting by A*(X) the Chow group of classes 
of algebraic cycles of X and with A*(X, X') the subgroup of classes that 
have no component in X', there is a natural inclusion 

Wu defines a notion of transform of X, which coincides with the 
Nash transform (see [Zl]). We recall the definition of Nash transform, 
the original definition of Wu being slightly different. 

Let us denote by v : G - • pm the Grassmann bundle over pm whose 
fibre over xis the Grassmann manifold G(n, m) of n-linear subspaces in 
TxPm. The Gauss map "( : Xreg - • G is defined on the regular part 
Xreg = X \ Xsing of X by 

The Wu ( or Nash) E-"ansform X is defined as the closure of the image of 
'Yin G,:, In general Xis singular; nevertheless, if_X is an analytic variety, 
then X is also analytic, and the restriction v : X - X of the projection 
v : G - pm is analytic. It induces a map 

where X' = v- 1 (X'). 
The (transverse) intersection of cycles with X defines a map 

I - -
Ad-s(G) - An-s(X,X'), 

with dime G = d. 
Finally, let D : As(G) - Ad-s(G) be the duality map in G. The 

composition W =Jo v* o Io Dis a map 

In analogy to the formula (3), we have: 

Definition ([Wul]). The Wu classes are defined by 
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2.2. The Mather classes (1974). 
R. MacPherson named Mather classes the classes that Mather de­

scribed to him on a blackboard (see [M2)). Let us recall their definition. 
Let X be an n-dimensional analytic complex subvarietr X of an m­

dimensional manifold M. We consider the Nash transform X and denote 
by Ethe tautological bundle over the Grassmann bundle G. The fiber 
of E over P E G is 

Ep = { v(x) E Tx(M) : v(x) E P, x = v(P) }. 

Let us denote by E the restriction of E to X. We have a commuta­
tive diagram: 

E '-+ 

! 
E 
! 

X '-+ G 
! ! 
X '-+ M 

Definition ([M2)). The Mather class of Xis defined by 

cM (X) = v*(c*(E) n [X)), 

where c*(E) denotes the usual (total) Chern class of the bundle E in 
H*(X) and the cap-product with [X) is the Poincare duality homomor­
phism (in general not an isomorphism). 

The Mather class can be defined by using polar varieties in the 
following way: First of all, let us consider the local situation. For a 
general flag 'D and an affine variety xn c cm, we define 

Xreg 

x 
O' / !v 
'-+ X 

'-+ Q(n, m) X Cm ~ Q(n, m) 
! 11"2 

'-+ cm 

and we denote by 7 = 1r1lx : X - Q(n, m) the Gauss map. 
Let us define the following analytic subspace of X [LT): 

If the flag 'D is good (sufficiently general), i.e. 7 is transverse to the 
strata 

Mk,i(V) ={WE Q(n,m): codim(W + Dn-k+i-1) = k + 1} 
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of Mk(V), then the cycle Nk(V) is well defined and independent of the 
choice of the (good) flag. In that case, it is called the polar variety 
(Le-Teissier). 

If the flag V is good, and still in the local situation, let 1r : X ----+ 

cn-k+l be the restriction to X of a linear projection with kernel Dn-k+l, 
then Nk(V) is the closure (in X) of the critical locus of the restriction 
of 7r to Xreg [LT]. 

In the projective case, the polar variety is the closure of 

(5) {x E Xreg: dim(Tx(Xreg) n Ln-k+2) 2". k - 1} 

where codimc=Ln-k+2 = n - k + 2. 
Now, if xn c pm is a projective variety, then (see (4) and [Pi2]) 

c!1-s(X) = t(-ll (: =:: U c1(£)s-k n [Nk(V)] 

where£= Opm(l)lx-

Theorem ([Zl]). Let X be a projective variety. Then the Mather 
and Wu classes of X coincide. 

The Mather classes can be also expressed in terms of conormal space, 
notion which is strongly related to the one of polar variety (see [Tl] and 
[S]). The conormal space is the subvariety of the cotangent bundle T* M 
of M defined as the closure of 

TxM = {(x,e) E T*M: XE Xreg,elT.,(Xreg) = O}. 

We denote by C(X, M) c PT* M the projectivization of the conormal 
space and by T the projection T : C(X, M) ----+ X, restriction of the 
projection PT* M ----+ M to C(X, M). By [S] (see also [PP4] and [Kell), 
we have 

c~ (X) = (-1r-n-1c(TMlx) n T* (c(c)-1 n [C(X,M)l). 

The Mather classes do not verify the Deligne-Grothendieck axioms 
that we recall below. That is the MacPherson's motivation for introduc­
ing the so-called Schwartz-MacPherson classes. 

2.3. The Schwartz classes (1965). 
The first definition of Chern class for singular varieties was given 

in 1965 by M.H. Schwartz in two "Notes aux CRAS" [Scl]. We briefly 
recall her construction. Let X C M be a singular n-dimensional complex 
variety embedded in a complex m-dimensional manifold. Let us consider 
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a Whitney stratification {Va} of M [Wh] such that X is a union of 
strata and denote by (K) a triangulation of M compatible with the 
stratification, i.e. each open simplex is contained in a stratum. 

As before, we denote by (K') a barycentric subdivision of (K) and 
(D) the associated dual cell decomposition. Each cell of (D) is transverse 
to the strata. This implies that if dis a cell of dimension 2p = 2(m-r+l) 
and Va is a stratum of dimension 2s, then d n Va is a cell such that 

dim(dn Va)= 2(s -r + 1) 

This means that if d is a cell whose dimension is the dimension of ob­
struction to the construction of an r-frame tangent to M, then d n Va 
is a cell whose dimension is exactly the dimension of obstruction to the 
construction of an r-frame tangent to the stratum Va. 

This fact leads M.H. Schwartz to the very nice construction of a 
stratified radial r'.'"frame in the following way: 

An r-frame v<r), defined on a part A C M, is called a stratified 
r-frame if at each point x E A, v<r>(x) is tangent to the stratum Va 
containing x. In the following we write v<r) as (v<r- 1>,vr), the last 
vector being individualized. 

Proposition ([Scl] [Sc2]). One can construct, on the 2p-skeleton 
(D) 2P, a stratified r-frame v(r), called radial frame, whose singularities 
satisfy the following properties: 

(i) v<r) has only isolated singular points, which are zeroes of the 
last vector Vr- On (D)2P-1 , the r-frame v<r) has no singular point and 
on (D) 2P the (r - 1)-frame v<r-l) has no singular point. 

(ii) Let a E Va n (D) 2P be a singular point of v<r) in the 2s­
dimensional stratum Va. If s > r - 1, the index of v<r) at a, de­
noted by I(v<r>,a), is the same as the index of the restriction of v<r) 
to Van (D) 2P considered as an r-frame tangent to Va. Ifs= r -1, then 
I(v<r>,a) = +1. 

(iii) Inside a 2p-cell d which meets several strata, the only singu­
larities of v<r) are inside the lowest dimensional one ( in fact located in 
the barycenter of d). 

(iv) The r-frame v<r) is ''pointing outward" a (particular) regular 
neighborhood U of X in M. It has no singularity on au. 

The procedure of the construction of radial frames is made by in­
duction on the dimension of the strata, using the properties of Whitney 
stratifications for proving the existence of frames "pointing outward" 
regular neighborhoods and satisfying property (ii). An r-frame already 
known on a neighborhood of the boundary of a stratum is extended with 
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isolated singularities inside ( a suitable skeleton) of the stratum and then 
extended with property (ii) to a regular neighborhood of this stratum. 

Let us denote by T the tubular neighborhood of X in M consisting 
of the (D)-cells which meet X. Let us recall that dis the elementary 
(D)-cochain whose value is 1 at d and Oat all other cells. We can define 
a 2p-dimensional (D)-cochain in 0 2P(T, 8T) by: 

L I(v<r>,d) d. 
dET 

This cochain is a cocycle whose class lies in 

where the first isomorphism is given by retraction and the second by 
excision. 

Definition ((Scl] [Sc2]). The p-th Schwartz class cP(X) is the 
class obtained in H2P(M, M \ X). 

2.4. The MacPherson classes (1974). 
Let us recall firstly some basic definitions. 
A constructible set in a variety X is a subset obtained by finitely 

many unions, intersections and complements of subvarieties. A con­
structible function o: : X -+ Z is a function such that o:-1 (n) is a 
constructible set for all n. The constructible functions on X form a 
group denoted by F(X). If A C X is a subvariety, we denote by lA the 
characteristic function whose value is 1 over A and 0 elsewhere. 

If X is triangulable, o: is a constructible function if and only if there 
is a triangulation ( K) of X such that o: is constant on the interior of 
each simplex of ( K). Such a triangulation of X is called o:-adapted. 

The correspondence F: X-+ F(X) defines a contravariant functor 
when considering the usual pull-back f* : F(Y) -+ F(X) for a morphism 
f : X -+ Y. One interesting fact is that it can be made a covariant func­
tor when considering the pushforward defined on characteristic functions 
by: 

for ally E Y, and linearly extended to elements of F(X). 
The following result was conjectured by Deligne and Grothendieck 

in 1969 and proved by R. MacPherson [M2] in 1974. 

Theorem ([M2]). Let F be the covariant functor of constructible 
functions and let H*( ; Z) be the usual covariant Z-homology functor. 
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Then there exists a unique natural transformation 

c* : F-+ H*( ; Z) 

satisfying that c*(lx) = c*(X) n [X] if Xis a manifold. 

The MacPherson's construction uses Mather classes and local Euler 
obstruction that we briefly recall. 

The notion of local Euler obstruction was defined originally by R. 
MacPherson [M2] in 1974. It has been shown in [BDK] that the local 
invariant of singularities which appear in the Kashiwara formula for the 
index of holonomic modules [Ka] is equal to the local Euler obstruction. 
Definitions equivalent to MacPherson's have been given by several au­
thors. We recall the one in [BS]: Let v be a radial vector field with an 
isolated singularity at x E V0 • Let B be a ball centered at x, small 
enough to be transversal to every stratum V,a with V0 C V,a, and such 
that xis the unique zero of v inside B. Using the Whitney conditions, 
it is possible to prove that there is a canonical lifting v of vlaBnx as a 
section of Elv-1(8BnX) (see [BS], Proposition 9.1). The obstruction to 
the extension of v, on v- 1(B n X), as a non-zero section of .E, evalu­
ated on the corresponding fundamental class, is an integer denoted by 
Eux(X). 

The local Euler obstruction is a constructible function Eux, con­
stant on each stratum of the Whitney stratification. The relation be­
tween the local Euler obstruction and the polar .varieties is given by Le 
and Teissier [LT]: 

Theorem ([LT]). For a sufficiently general/fog Vin cm, the lo­
cal Euler obstruction is expressed as 

n-1 
Eux(X) = ~)-l)n-l-imx(Nn-1-i(V)) 

i=O 

where mx ( C) denotes the multiplicity of C at x. 

For a Whitney stratification, we have the following lemma: 

Lemma ([Ml]). There are integers n0 such that, for every point 
x EX, we have: 

L naEux(Va) = 1. 

°' 
Definition ([Ml]). The MacPherson class of Xis defined by 

c*(X) = c*(lx) = L na i*cM(Va) 

°' 
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where i denotes the inclusion Va <---+ X. 

Note that we have the following relation: C:M(X) = c*(Eux). 
In [BS] was proved the following result: 

43 

Theorem ([BS]). The MacPherson class is the image of the Sch­
wartz class by the Alexander duality isomorphism 

H 2(m-r+i)(M, M \ X) ~ H2(r-1)(X). 

One of the consequences of this result is that the ( r -1 )-st MacPher­
son class Cr-1(X) is represented by the cycle 

L I(v(r),d(o-)) lT 

aEX 

where dimo- = 2(r -1) (see (1)). 
The following theorem gives an expression of the MacPherson class 

in terms of Segre classes (see 2.5). 

Theorem ([A3]). If X is a hypersurface in a nonsingular variety 
M and Y is its singular scheme, then 

c*(X) = c(TM) n s(X \ Y,M) 

Following Sabbah [S] (see also [PP4]), we obtain a formula giving 
the Schwartz-MacPherson classes in terms of characteristic cycles. De­
noting by PCh(lx) c T* M the characteristic cycle associated to the 
constructible function lx on M, we have (see the analogous formula for 
the Mather classes): 

c*(X) = (-1r-:1c(TMlx) n T* (c(c)-1 n [PCh(lx )j). 

2.5. The Fulton classes (1984) ([Fu] exemple 4.2.6 (a)). 
If X is a proper subvariety of a variety M, the Segre class s(X, M) 

of X in M is the class in A*(X) defined as follows (see [F], §4): the 
normal cone to the closed subscheme X in the scheme M is defined as 

C = CxM = Spec (~r/r+i) 
where I is the ideal sheaf defining X in M. We denote by P( C) the 
projectivized normal cone and p the projection p: P(C)-+ X. Then 

s(X,M) = LP*(c1(0(1))i n [P(C)]). 
i:C::O 
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When X is regularly imbedded in M, C = N x M is the normal vector 
bundle, and 

s(X,M) = c(NxM)- 1 n [X]. 

The following Plucker formula, due to R. Piene, gives the relation 
between polar varieties (hence Mather classes) and Segre classes: 

Theorem ([Pill). Let X be an hypersurface of degreed in pm 
and let£= Op ... (l)lx- Then the polar variety Nk is given by 

k 1 k ~(k) · 1 · [Nk] = (d - 1) c (£) n [X] + 6- i (d - l)1c (£)1 n Bk-i(Xsing, X). 

The Fulton classes are defined by: 

Definition ([Fu]). Let X be an algebraic scheme which can be 
imbedded as a closed subscheme of a non-singular variety M. We define 
the Fulton class of X in A*(X) by the formula 

cF (X) = c(T Mix) n s(X, M), 

where c(T Mix) is the total Chern class of the tangent bundle of M 
restricted to X and s(X, M) is the Segre class of X in M. 

This definition is independent of the choice of the embedding. 
If Xis a local complete intersection, then the normal bundle of Xreg 

in M extends canonically to X as a vector bundle N x M and 

(6) cF(X) = c(TMlx)c(NxM)-1 n [X] = c(rx) n [X]. 

Here rx = TMlx - NxM denotes the virtual tangent bundle on X, 
defined in the Grothendieck group of vector bundles on X. 

Let M be a non-singular compact complex analytic variety of pure 
dimension n + 1 and let L . be a holomorphic line bundle on M. Take 
/ E H 0 (M, L), a holomorphic section of L, such that the variety X of 
zeroes of/ is a (nowhere dense) hypersurface in M. Then, the Fulton 
class of Xis 

cF(X) = c(TMlx -Llx) n [X]. 

In [Al] P. Aluffi defines a notion of "thickening" of the scheme X 
along its singular subscheme Y: if Iy denotes the ideal of Y and I 
the locally principal ideal of X, we denote by Xk the subscheme of M 
defined by the ideal I.It. Then the Schwartz-MacPherson class and the 
Fulton class satisfy: 
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2.6. The Fulton-Johnson classes (1980} ([FJ], [Fu] exemple 
4.2.6 (c)). 

The definition (6) can also be generalized to arbitrary singular vari­
eties in another way : for any coherent sheaf :F on an algebraic scheme, 
one defines the Segre class s(:F) in the group A*(X) of cycles modulo 
rational equivalence as follows: Let P(:F) = Proj(Sym(:F)), with pro­
jection p: P(:F) - X. Let us denote by OF(l) the canonical invertible 
sheaf which is the universal quotient of p* ( :F). If the support of :F is X, 
define its Segre class s(:F) in A*(X) by the formula 

s(:F) ~ P• (~c'(O,c(l))' n [P(:F)]) 

p* (c(OF(-l))-1 n [P(:F)l) 

For an arbitrary coherent sheaf :F on X, define s(:F) to be s(:F EB £ 1 ), 

where £ 1 is the trivial locally free sheaf of rank one on X. 

Definition ([FJ]). If X is an algebraic scheme which may be 
imbedded in a non-singular scheme M, we define the Fulton-Johnson 
class of X in A*(X) by the formula 

cFJ(X) = c(TMlx) n s(N), 

where c(T Mix) is the total Chern class of the tangent bundle of M 
restricted to X and s(N) is the Segre class of the conormal sheaf of the 
embedding of X in M. 

Remark. In the case of local complete intersection, the Fulton 
and Fulton-Johnson classes coincide and are equal to 

c(TMlx - NxM) n [X]. 

§3. The Milnor classes. 

The comparison between the Schwartz-MacPherson classes and the 
Fulton-Johnson classes can be viewed in two ways, which coincide in 
some classical situations. We observe that, in the case of isolated sin­
gularities, the difference is given by the Milnor numbers at the singular 
points. On the other hand, for a radial vector field tangent to the singu­
lar locus and with isolated singularity at a singular point, the difference 
between the "Schwartz" (classical) index and the "virtual" ( GSV)-index 
is the Milnor number at this point. This observation motivates defini­
tion 2 below. 
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3.1. Definition and main properties of Milnor classes. 
The following general definition is given by the corresponding au­

thors in particular cases. 

Definition 1 ([A3], [BLSSl], [PP4], [Y2]). The difference class 

µ*(X) = (-lt(cF(X)-c*(X)) 

is called the Milnor class of X. 

Let us consider the following situation (rt): X is an n-subvariety 
in the m-manifold M defined by a regular section, i.e. a holomorphic 
section generically transverse to the zero section, of a holomorphic vector 
bundle E (of rank k = m - n) over M [Su2]. We set N = Elx- The 
virtual tangent bundle of X is denoted by 

Tx =™lx\N 

Let us consider a compact connected subset S c X (in particular 
a component of Xsing) and a neighborhood U of S in M such that 
UnX -Sc Xreg· For each r-frame v<r) tangent to Xreg on 8UnXnD<2v> 
with 2p = 2(m - r + 1) (see §2.3), we can define: 

a) the localized Schwartz (usual) class Sch(v<r>,s) E H2(r-i)(S) 
which computes the obstruction to the extension of v<r) as a 
stratified r-frame inside Un X n n<2v>. It is the contribution of 
S to Cr-1(X) E H2(r-1)(X) ([BLSSl], Theorem 2.13), 

b) the localized virtual class Vir(v<r>,S) E H2(r-i)(S) which com­
putes the "obstruction to the extension of v<r) as linearly inde­
pendent sections of Tx", i.e. which is the contribution of S to 
Cr-1(Tx) E H2cr-i)(X) ([BLSSl], Theorem 5.9). 

Definition 2 ((BLSSl]). The (r - 1)-st localized Milnor class of 
X at a compact component S of Xsing is defined by 

in H2(r-1)(S) 

The total Milnor class is the sum over the components of Xsing: 

µ(r-l)(X) = L (i°')*µ(r-l)(X, S°') E H2(r-1)(X) 
SaCXslng 

where i°' denotes the inclusion S°' c......+ X. 

The Milnor class µ*(X) is supported on the singular locus of X. 
When k = I and r = I, µo(X, S) is the Parusinski generalized Milnor 
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number [Pa]. Also, if S is a point p and X a complete intersection near 
p, then µo(X, S) is the usual Milnor number. 

The two definitions coincide in the case of local complete intersec­
tions, in particular in the case of hypersurfaces. 

In the case r = l, i.e. vCl) = v, and for an isolated singularity p, the 
Schwartz index is the usual index and the virtual index coincides with 
the GSV-index (see [GSV], [LSS], [SS]). The difference of these indices 
is the Milnor number of X at p: 

Sch(v,p) - Vir(v,p) = (-l)n+lµ(X,p). 

Theorem ([SS]). In the situation rt, suppose that X is compact 
and the singularities of X are isolated points { xi} where X is a local 
complete intersection. Then 

q 

µo(X) = (-l)n+l I>cx,xi)[xi] E Ho(X) 
i=l 

Theorem ([Sul). In the previous situation, µi(X) = 0 for i > 0. 

This result was also proved by [Pa] and [PP] for hypersurfaces with 
arbitrary singularities. It is generalized in the following way: 

Theorem ([BLSSl] [BLSS2]). Let X be a subvariety of a complex 
manifold in the situation rt, if X is compact, then we have, for each 
r=O, ... ,n-l: 

in H2r(X). 

In other words, the difference between the total Schwartz-MacPher­
son class c*(X) of X and the total virtual class c*(TMlx -N), regarded 
in homology, is the sum over the connected components of Sing(X) of 
the "total" localized Milnor classes µ* ( X, S) = EB f ;:l µi ( X, S). 

A similar formula for hypersurfaces is given by Aluffi (see [Al] for 
the notations): 

Theorem ([A3]). Let X CM be a hypersurface with its singular 
subscheme Y and£= O(X). Then we have 

c*(X) = cF(X) + c(£)dimX n (µc(Yt ®M £), 

where µc(Y) = c(T* (M) ® £) n s(Y, M). 

We have the following Lefschetz-type formulae for the Milnor class: 
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Theorem ([BLSSl] [BLSS2]). Let us denote by£ the complex di­
mension of S and let H be a complex ( m - £)-dimensional plane trans­
verse to S in M. 

a) If X is a hypersurface in M, defined by a holomorphic section 
of a holomorphic line bundle E, and S a compact component of Xsing, 

then 

µr-1(X, S) = (-llµ(X n H,p) • [c(S)c(E)-1]£-r+i n [S] 

b) If r = £ + 1 and k is arbitrary, then 

µr-1(X, S) = (-llµ(X n H,p) · [S] 

In the case where µ(XnH,p) = 1, the formula (a) is proved in [A3]. 

3.2. Description in terms of constructible functions [PP4]. 

Consider the function x : X -+ Z defined by x(x) := x(Fx), where 
Fx denotes the Milnor fibre at x and x(Fx) its Euler characteristic. 
Define also the functionµ: X-+ Z byµ= (-l)n- 1(x- lx). 

Fix any stratification S of X such that µ is constant on the strata of 
S, for instance any Whitney stratification of X. The topological type of 
the Milnor fibre is constant along the strata of any Whitney stratification 
of Z. Let us denote the value ofµ on the stratum S by µs. 

Let 

a(S) = µs - L a(S') 
8'#8,SCS' 

be the numbers defined inductively on descending dimensions of S. 

Theorem ([PP4]). We have 

µ*(X) = L a(S)c(Llx)- 1 n Cis,x)*c*(S) = c(Llx)-1 n c*(µ), 
SES 

where i8 x : S -+ X denotes the natural inclusion. , 

The formula was conjectured in [Y2] when X is projective. Under 
this last assumption, [PP2] proved earlier that 
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3.3. Description in terms of divisors [A3). 
Let B = Bly M --+ M be the blow-up of M along the singular 

subscheme Y of X. Let X and Y denote the total transform of X and 
the exceptional divisor in B, respectively. 

Theorem ((A2)). Let 1r: X--+ X be the restriction of the blow-up 
to X. Then 

( (X]- [Y]) 
c*(X)=c(TMlx)n1r* l+X-Y , 

where, on the right hand side, X and Y mean the first Chern classes 
of the line bundles associated with X and Y, i.e. those of 1r*(Llx) and 
0 B ( -1), the latter being the canonical line bundle on B. 

Let us denote by X' the proper transform of X, the following for­
mulae are also due to Alufli (A3] 

( (X'] ) cM(X) =c*(Eux) =c(TMlx)n1r* l+X-Y 

cF(X) = c(TMlx) n1r* ( 1 [:~) 

and we deduce (PP4]: 

3.4. Specialization {the hypersurface case) [PP4). 
Suppose that X = 1-1(0) where / is a section of the line bundle 

Lover M. Suppose that there exists a section g E H0(M, L) such that 
g-1 (0) is non-singular and transverse to the strata of a (fixed) Whitney 
stratification of X. Fort EC denote ft= f - tg and set Xt = ft- 1(0). 
We denote by X the following correspondence in M x C: 

X = {(x, t) E M x Clx E Xt}-

Denoting by p: X--+ C the restriction to X of the projection onto the 
second factor, then Xt = p-1(t) for t E C and X = Xo, Denote by 

ap : F(X) --+ F(X) 

the specialization map on constructible functions and 
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the specialization map of homology classes {see [Ve]). For <p E F{X) and 
t sufficiently small, one has O"Hc*(<plx,) = c*(ap<p). 

The Fulton class cF (X) is given, in terms of MacPherson class as: 

and the Milnor class as: 
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