Factorization of Kazhdan-Lusztig Elements for Grassmanians

Alexander Kirillov, Jr. and Alain Lascoux

Abstract

. We show that the Kazhdan-Lusztig basis elements C_{w} of the Hecke algebra of the symmetric group, when $w \in S_{n}$ corresponds to a Schubert subvariety of a Grassmann variety, can be written as a product of factors of the form $T_{i}+f_{j}(v)$, where f_{j} are rational functions.

§1. Notation

In this section, we briefly list the main facts and notations related to Kazhdan-Lusztig polynomials and their parabolic analogues (see [D], [S]). We use the following notations:
\mathcal{H}-the Hecke algebra of the symmetric group S_{n}; we consider it as an algebra over the field $\mathbf{Q}(v)$ (the variable v is related to the variable q used by Kazhdan and Lusztig via $v=q^{1 / 2}$), and we write the quadratic relation in the form

$$
\left(T_{i}-v\right)\left(T_{i}+v^{-1}\right)=0
$$

$C_{w}-\mathrm{KL}$ basis in \mathcal{H}, which we define by the conditions $\overline{C_{w}}=C_{w}$, $C_{w}-T_{w} \in \oplus v \mathbf{Z}[v] T_{y}$.

For any subset $J \subset\{1, \ldots, n-1\}$, we denote by $W_{J} \subset S_{n}$ the corresponding parabolic subgroup, and by W^{J} the set of minimal length representatives of cosets S_{n} / W_{J}. We also denote by M^{J} the \mathcal{H}-module induced from the one-dimensional representation of $\mathcal{H}\left(W_{J}\right)$, given by $T_{j} m_{1}=-v^{-1} m_{1}, j \in J$. We denote $m_{y}=T_{y} m_{1}, y \in W^{J}$ the usual basis in M^{J}.

We define the parabolic KL basis $C_{y}^{J}, y \in W^{J}$ in M^{J} by $\overline{C_{y}^{J}}=$ $C_{y}^{J}, C_{y}^{J}-m_{y} \in \oplus_{z \in W^{J}} v \mathbf{Z}[v] m_{z}$.

Received February 17, 1999.
The first author was partially supported by NSF grants DMS-9610201, DMS-97-29992.

Denote for brevity $C_{J}=C_{w_{0}^{J}}$ the element of KL basis in \mathcal{H} corresponding to the element of w_{0}^{J} of maximal length in W_{J}. The following result is well-known (see, e.g., $[\mathrm{S}]$).

Lemma 1. (i)

$$
C_{J}=\sum_{w \in W^{J}}(-v)^{l\left(w_{0}^{J}\right)-l(w)} T_{w}
$$

(ii) Let $w \in W$ be such that it is an element of maximal length in the coset $w W_{J}$ (which is equivalent to $w=\tau w_{0}^{J}$ for some $\left.\tau \in W^{J}\right)$. Then $C_{w}=X C_{J}$ for some $X \in \oplus_{y \in W^{J}} \mathbf{Z}\left[v^{ \pm 1}\right] T_{y}$.
(iii) Let $X \in \oplus_{y \in W^{J}} \mathbf{Z}\left[v^{ \pm 1}\right] T_{y}$. Then

$$
X m_{1}=C_{\tau}^{J} \Longleftrightarrow X C_{J}=C_{\tau w_{0}^{J}}
$$

Let us now consider the special case of the above situation. From now on, fix $k \leq n-1$, and let $J=\{1, \ldots, k-1, k+1, \ldots, n-1\}$ so that $W_{J}=S_{k} \times S_{n-k}$ is a maximal parabolic subgroup in S_{n}. In this case, the module M^{J} can be described as follows:

$$
\begin{align*}
& M=\bigoplus_{\varepsilon \in E} \mathbf{Q}(v) \varepsilon, \\
& T_{i} \varepsilon= \begin{cases}s_{i} \varepsilon, & \left(\varepsilon_{i}, \varepsilon_{i+1}\right)=(+-) \\
-v^{-1} \varepsilon, & \left(\varepsilon_{i}, \varepsilon_{i+1}\right)=(--) \text { or }(++), \\
s_{i} \varepsilon+\left(v-v^{-1}\right) \varepsilon, & \left(\varepsilon_{i}, \varepsilon_{i+1}\right)=(-+)\end{cases} \tag{1}
\end{align*}
$$

where E is the set of all length n sequences of pluses and minuses which contain exactly k pluses. The relation of this with the previous notation is given by $m_{y} \leftrightarrow y(\mathbf{1})=T_{y}(\mathbf{1})$, where

$$
\begin{equation*}
\mathbf{1}=(\underbrace{+\cdots+}_{k} \underbrace{-\cdots-}_{n-k}) \tag{2}
\end{equation*}
$$

In particular, $m_{1} \leftrightarrow \mathbf{1}$.
The set of minimal length representatives W^{J} also admits a description in terms of Young diagrams. Namely, let λ be a Young diagram which fits inside the $k \times(n-k)$ rectangle. Define $w_{\lambda} \in S_{n}$ by

$$
\begin{equation*}
w_{\lambda}=\prod_{(i, j) \in \lambda} s_{k+j-i} \tag{3}
\end{equation*}
$$

where (i, j) stands for the box in the i-th row and j-th column, and the product is taken in the following order: we start with the lower right
corner and continue along the row, until we get to the first column; then we repeat the same with the next row, and so on until we reach the upper left corner.

Example 1. Let λ be the diagram shown below, and $k=7$ (to assist the reader, we put the numbers $k+j-i$ in the diagram).

7	8	9	10	11.12
6	7	,		
5	6			
4				

Then $w_{\lambda}=s_{3} \cdot s_{4} \cdot s_{7} s_{6} s_{5} \cdot s_{8} s_{7} s_{6} \cdot s_{12} s_{11} s_{10} s_{9} s_{8} s_{7}$ (for easier reading, we separated products corresponding to different rows by \cdot).

The proof of the following proposition is straightforward.
Proposition 2. The corespondence $\lambda \mapsto w_{\lambda}$, where w_{λ} is defined by (3), is a bijection between the set of all Young diagrams which fit inside the $k \times(n-k)$ rectangle and W^{J}.

§2. The main theorem

As before, we fix $k \leq n-1$ and let $J=\{1, \ldots, k-1, k+1, \ldots, n-1\}$. Unless otherwise specified, we only use Young diagrams which fit inside the $k \times(n-k)$ rectangle.

For a Young diagram λ, we define the shifts $r_{i, j} \in \mathbf{Z}_{>0},(i, j) \in \lambda$ by the following relation

$$
\begin{equation*}
r_{i j}=\max \left(r_{i, j+1}, r_{i+1, j}\right)+1 \tag{4}
\end{equation*}
$$

where we let $r_{i j}=0$ if $(i, j) \notin \lambda$.
Example 2. For the diagram λ from Example 1, the shifts $r_{i j}$ are shown below.

6	5	4	3	2	1
4	3	2			
3	2	1			
2					
1					

Next, let us define for each diagram λ an element $X_{\lambda} \in \mathcal{H}$ by

$$
\begin{equation*}
X_{\lambda}=\prod_{(i, j) \in \lambda}\left(T_{k+j-i}-\frac{v^{r_{i j}}}{\left[r_{i j}\right]}\right) \tag{5}
\end{equation*}
$$

where, as usual, $[r]=\left(v^{r}-v^{-r}\right) /\left(v-v^{-1}\right)$, and the product is taken in the same order as in (3).

The main result of this paper is the following theorem.
Theorem 3. Let λ be a Young diagram. Then

$$
X_{\lambda} \mathbf{1}=C_{w_{\lambda}}^{J}
$$

Note that by Lemma 1, this is equivalent to

$$
\begin{equation*}
X_{\lambda} C_{J}=C_{w_{\lambda} w_{0}^{J}} \tag{6}
\end{equation*}
$$

We remind the reader that the Kazhdan-Lusztig elements $C_{w w_{0}^{J}}$, where $w \in W^{J}$, and W_{J} is a maximal parabolic in S_{n} (they are also known as KL elements for Grassmanians), have been studied in a number of papers. A combinatorial description was given in [LS1]; it was interpreted geometrically in [Z], and in terms of representations of quantum $\mathfrak{g l}_{m}$ in [FKK]. However, it is unclear how these results are related with the factorization given by the theorem above. A similar factorization was given in [L] for those permutations which correspond to nonsingular Schubert varieties-i.e., for those w such that, for any $v \in S_{n}$, the Kazhdan-Lusztig polynomial $P_{v, w}$ is either 1 or 0 .

Note that one can easily check that the elements X_{λ} are invariant under the Kazhdan-Lusztig involution: $\overline{X_{\lambda}}=X_{\lambda}$; thus, all the difficulty is in proving that they are integral and have the right specialization at $v=0$.

A crucial step in proving this theorem is the following proposition.
Proposition 4. Theorem 3 holds when λ is the $k \times(n-k)$ rectangle.
Proof. For any $w \in S_{n}$, choose a reduced expression $w=s_{i_{\ell}} \ldots s_{i_{1}}$. Define the element $\nabla_{w} \in \mathcal{H}$ by

$$
\begin{equation*}
\nabla_{w}=\left(T_{i_{\ell}}-\frac{v^{r_{\ell}}}{\left[r_{\ell}\right]}\right) \ldots\left(T_{i_{1}}-v\right) \tag{7}
\end{equation*}
$$

where $r_{1}, \ldots, r_{\ell} \in \mathbf{Z}_{+}$are defined as follows: if $s_{i_{m-1}} \ldots s_{i_{1}}(1, \ldots, n)=$ (\ldots, a, b, \ldots) (in i_{m}-th, $\left(i_{m}+1\right)$-st places), then $r_{m}=b-a$. Then $\left\{\nabla_{w}, w \in S_{n}\right\}$ is a Yang-Baxter basis of the Hecke algebra, and we have (see [DKLLST, §3]):

Lemma 5. (i) The element ∇_{w} does not depend on the choice of reduced expression.
(ii) If w_{0}^{J} is the longest element in some parabolic subgroup $W_{J} \subset$ S_{n}, then $\nabla_{w_{0}^{J}}=C_{J}$.

Now, let us prove our proposition, i.e. that $X_{\lambda} C_{J}$ is a KL element for rectangular λ. In this case, w_{λ} is the longest element in W^{J} :

$$
w_{\lambda}(\mathbf{1})=(\underbrace{-\cdots-}_{n-k} \underbrace{+\cdots+}_{k}) .
$$

Let us choose the following reduced expression for the longest element w_{0} in $S_{n}: w_{0}=w_{\lambda} w_{0}^{J}$, where we take for w_{λ} the reduced expression given by (3). Then one easily sees that definition (7) in this case gives

$$
\nabla_{w_{0}}=X_{\lambda} \nabla_{w_{0}^{J}}
$$

By Lemma 5, we get $C_{w_{0}}=X_{\lambda} C_{J}$, which is exactly the statement of the proposition.
Q.E.D.

The proof in the general case is based on the following proposition. Denote

$$
\begin{equation*}
O\left(v^{m}\right)=\{f \in \mathbf{Q}(v) \mid f \text { has zero of order } \geq m \text { at } v=0\} . \tag{8}
\end{equation*}
$$

Proposition 6.

$$
X_{\lambda} \mathbf{1}=w_{\lambda}(\mathbf{1})+\sum_{\varepsilon \in E} O(v) \varepsilon
$$

A proof of this proposition is given in Section 3.
Now we can give a proof of the main theorem. First, one easily checks the invariance under the bar involution, since

$$
\overline{T_{i}-\frac{v^{r}}{[r]}}=T_{i}-\frac{v^{r}}{[r]}
$$

Combining this with Proposition 6, we see that it remains to show that $X_{\lambda} C_{J}$ are integral, i.e. $X_{\lambda} C_{J} \in \oplus \mathbf{Z}\left[v^{ \pm 1}\right] T_{w}$ (note that it is not true that X_{λ} itself is integral.) This will be done by induction.

Let λ be a Young diagram. Then we claim that any such diagram can be presented as a union $\lambda=\lambda^{\prime} \sqcup \mu$, where μ is a rectangle, and λ^{\prime} is again a Young diagram such that for $(i, j) \in \lambda^{\prime}$, the shifts $r_{(i, j)}^{\lambda^{\prime}}=r_{(i, j)}^{\lambda}$. It can be formally proved as follows: if one writes the successive widths and heights of the stairs of the diagram

$$
\infty,\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots\left(a_{k}, b_{k}\right), \infty
$$

then there is at least one index i for which $a_{i} \leq b_{i-1}$ and $b_{i} \leq a_{i+1}$. In that case, the rectangle μ has the lower right corner i.

Example 3. For the diagram λ from Example 1, the sequence $\left(a_{k}, b_{k}\right)$ is given by $\infty,(1,2),(2,2),(3,1), \infty$, and the subdiagram μ is the shaded 2×2 square, as shown below. As before, we also included the shifts $r_{i j}$ in this diagram. The subsets I^{μ}, J^{μ} in this case are given by $I^{\mu}=$ $\{6,7,8\}, J^{\mu}=\{6,8\}$.

Let us choose for λ the presentation $\lambda=\lambda^{\prime} \sqcup \mu$, where μ is a rectangle, as above. Then $X_{\lambda}=X_{\mu} X_{\lambda^{\prime}}$.

Define the subsets $I^{\mu}, J^{\mu} \subset\{1, \ldots, n-1\}$ by $I^{\mu}=\left\{k^{\prime}-a+1, \ldots, k^{\prime}+\right.$ $b-1\}, J^{\mu}=I^{\mu} \backslash\left\{k^{\prime}\right\}$, where $k^{\prime}=k-i+j,(i, j)$-coordinates of the UL corner of μ, a and b are numbers of rows and columns in μ respectively.

We need to show that $X_{\mu} X_{\lambda^{\prime}} C_{J} \in \sum \mathbf{Z}\left[v^{ \pm 1}\right] T_{y}$. By induction assumption, we may assume that $X_{\lambda^{\prime}} C_{J}=C_{\sigma}$, where we denoted for brevity $\sigma=w_{\lambda^{\prime}} w_{0}^{J}$. It is easy to show that if μ is chosen as before, then σ is the maximal length element in the coset $W_{J^{\mu}} \sigma$. Thus, by Lemma 1, we can write $C_{\sigma}=C_{J^{\mu}} Y$ for some integral $Y \in \mathcal{H}$. Therefore, $X_{\mu} X_{\lambda^{\prime}} C_{J}=X_{\mu} C_{J^{\mu}} Y$. Since $W_{I^{\mu}}$ is itself a symmetric group, and $W_{J_{\mu}}$ is a maximal parabolic subgroup in it, we can use Proposition 4 , which gives $X_{\mu} C_{J^{\mu}}=C_{I^{\mu}}$, and therefore, $X_{\mu} X_{\lambda^{\prime}} C_{J}=C_{I^{\mu}} Y \in$ $\sum \mathbf{Z}\left[v^{ \pm 1}\right] T_{w}$.
Q.E.D.

§3. Proof of regularity at $v=0$

In this section we give the proof of Proposition 6. Before doing so, let us introduce some notation.

As before, assume that we are given n, k, λ and a collection of positive integers $r_{i j},(i, j) \in \lambda$ (not necessarily defined as in (4)). Let $\varepsilon \in E$ be a sequence of pluses and minuses. We define the weight $r_{\lambda}(\varepsilon)$ as folllows.

Define $a(i), i=1 \ldots k$ by $a(i)=k+\lambda_{i}-i+1$. Equivalently, these numbers can be characterized by saying that $w_{\lambda}(\mathbf{1})$ has pluses exactly at positions $a(k), \ldots, a(1)$.

Define $r_{\lambda}(\varepsilon)=\sum_{t=1}^{n} r_{t}(\varepsilon)$, where $r_{t}(\varepsilon)$ is defined as follows:
(i) if $t=a(i), \varepsilon_{t}=-$ then $r_{t}(\varepsilon)=r_{i, \lambda_{i}}-1$
(ii) if $a(i)>t>a(i+1), \varepsilon_{t}=+$ then $r_{t}(\varepsilon)=r_{i, j}, k+j-i=t$
(iii) otherwise, $r_{t}(\varepsilon)=0$

In a sense, $r_{\lambda}(\varepsilon)$ measures the discrepancy between ε and $w_{\lambda}(1)$. Indeed, let us denote the numbers of rows and columns in λ by i, j respectively, and let ε be such that

$$
\begin{align*}
& \varepsilon_{t}=+ \text { for } t \leq k-i \\
& \varepsilon_{t}=- \text { for } t>k+j \tag{9}
\end{align*}
$$

Then one easily sees that

$$
\begin{equation*}
r_{\lambda}(\varepsilon) \geq 0, \quad r_{\lambda}(\varepsilon)=0 \Longleftrightarrow \varepsilon=w_{\lambda}(\mathbf{1}) \tag{10}
\end{equation*}
$$

Example 4. Below we illustrate the calculation of $r_{\lambda}(\varepsilon)$, where λ is the diagram used in Example 1. The positions $a(i)$ are shaded (thus, the sequence of colors encodes $w_{\lambda}(\mathbf{1})$, with "shaded" $\leftrightarrow+$, "unshaded" $\left.\leftrightarrow-\right)$, and we connected unshaded pluses with the corresponding box (i, j), defined in (ii) above. For convenience of the reader, we also put the numbers $k+j-i$ (not the shifts $r_{i j}$!) in the diagram.

Lemma 7. Let λ be any Young diagram inside the $k \times(n-k)$ rectangle, and let $r_{i j},(i, j) \in \lambda$, be positive integers satisfying $r_{i j}>r_{i, j+1}, r_{i j}>$ $r_{i+1, j}$. Define $\mathcal{L}_{\lambda} \subset M^{J}$ by

$$
\mathcal{L}_{\lambda}=\sum_{\varepsilon \in E} O\left(v^{r_{\lambda}(\varepsilon)}\right) \varepsilon
$$

Then

$$
X_{\lambda} \mathbf{1} \in \mathcal{L}_{\lambda}
$$

Before proving this lemma note that due to (10), this lemma immediately implies Proposition 6.

Proof. The proof is by induction. Let (i, j) be a corner of λ, and $\lambda^{\prime}=\lambda-(i, j)$, so that $X_{\lambda}=\left(T_{k-i+j}-\frac{v^{r_{i j}}}{\left[r_{i j}\right]}\right) X_{\lambda^{\prime}}$. Since $\frac{v^{r}}{[r]} \in O\left(v^{2 r-1}\right)$, it suffices to prove that $\left(T_{k-i+j}+O\left(v^{2 r_{i j}-1}\right)\right) \mathcal{L}_{\lambda^{\prime}} \subset \mathcal{L}_{\lambda}$. Since this operation only changes $\varepsilon_{a}, \varepsilon_{a+1}(a=k-i+j)$, we need to consider 4 cases: $(++),(+-),(-+),(--)$. This is done explicitly. For example, for the (+-) case, we have

$$
\left(T_{a}+O\left(v^{2 r_{i j}-1}\right)\right)(\cdots+-\ldots)=(\cdots-+\ldots)+O\left(v^{2 r_{i j}-1}\right)(\cdots+-\ldots)
$$

In this case, the first summand has the same weight and comes with the same power of v as the original ε (note that in the original ε, this (+-) didn't contribute to the weight), so it is in \mathcal{L}_{λ}. As for the second summand, its weight is increased by $2 r_{i j}-1$ (the plus contributes r and the minus, $r-1$), but it comes with the factor $O\left(v^{2 r_{i j}-1}\right)$, so again, it is in \mathcal{L}_{λ}. The other cases are treated similarly.
Q.E.D.

§4. Divided differences and parabolic Kazhdan-Lusztig bases

In this section, we give a factorization for the dual Kazhdan-Lusztig basis for Grassmanians.

To induce a parabolic module, one can start from the 1-dimensional representation $T_{j} \mapsto v$ instead of $T_{j} \mapsto-1 / v$ which was used in $\S 1$. We now denote the corresponding module by M^{\prime} and its Kazhdan-Lusztig basis by $C_{y}^{\prime J}$ to distinguish from previous case. Note that there exists a natural pairing between M and M^{\prime}, and C_{y}^{J} and C_{y}^{J} are dual bases with respect to this pairing (see, e.g., $[\mathrm{S}],[\mathrm{FKK}]$). However, we will not use this pairing.

A simple element $T_{i}-v$ acts now by

$$
\begin{align*}
M^{\prime} & =\bigoplus_{\varepsilon \in E} \mathbf{Q}(v) \varepsilon, \\
\left(T_{i}-v\right) \varepsilon & = \begin{cases}s_{i} \varepsilon-v \varepsilon, & \left(\varepsilon_{i}, \varepsilon_{i+1}\right)=(+-) \\
0, & \left(\varepsilon_{i}, \varepsilon_{i+1}\right)=(--) \text { or }(++), \\
s_{i} \varepsilon-v^{-1} \varepsilon, & \left(\varepsilon_{i}, \varepsilon_{i+1}\right)=(-+)\end{cases} \tag{11}
\end{align*}
$$

Consider the space $\mathcal{P}(k, n)$ of polynomials in x_{1}, \ldots, x_{n} of total degree $n-k$, and of degree at most 1 in each x_{i}. For any partition λ, denote by $x^{[\lambda]}$ the monomial $w_{\lambda}\left(x_{k+1} \cdots x_{n}\right)$, the symmetric group acting now
by permutation of the x_{i}. In other words, if $w_{\lambda}(\mathbf{1})=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$, then $x^{[\lambda]}$ is the product of the x_{i} 's for those i such that $\varepsilon_{i}=-$. Consider the isomorphism of vector spaces

$$
\begin{align*}
M^{\prime} & \simeq \mathcal{P}(k, n) \\
w_{\lambda}(\mathbf{1}) & \mapsto v^{-|\lambda|} x^{[\lambda]} . \tag{12}
\end{align*}
$$

Then $T_{i}-v$ induces the operator ∇_{i}, acting only on x_{i}, x_{i+1} as follows:

$$
\left\{\begin{array}{l}
\nabla_{i}\left(x_{i}\right)=v x_{i+1}-v^{-1} x_{i}, \tag{13}\\
\nabla_{i}(1)=\nabla_{i}\left(x_{i} x_{i+1}\right)=0, \\
\nabla_{i}\left(x_{i+1}\right)=-v x_{i+1}+v^{-1} x_{i},
\end{array}\right.
$$

Therefore ∇_{i} is the operator

$$
f \mapsto\left(v x_{i+1}-v^{-1} x_{i}\right) \partial_{i}(f)
$$

denoting by ∂_{i} the divided difference

$$
f \mapsto \frac{f-f^{s_{i}}}{x_{i}-x_{i+1}}
$$

(for a more general action of the Hecke algebra on the ring of polynomials, see [LS2], [DKLLST]).

We intend to show that divided differences easily furnish the KazhdanLusztig basis of $\mathcal{P}(k, n)$ (i.e. the image of the Kazhdan-Lusztig basis $C_{y}^{\prime}, y \in W^{J}$ of $\left.M^{\prime}\right)$.

To any element $\varepsilon:=w_{\lambda}(\mathbf{1})$ of E one associates a polynomial Q_{ε} as follows

1) pair recursively,-+ (as one pairs opening and closing parentheses)
2) replace each pair $(-,+)$, where - is in position i and + in position j, with a $x_{i}-v^{j+1-i} x_{j}$
3) replace each single - , in position i, by x_{i}

The product of all these factors by $v^{-|\lambda|}$, where $|\lambda|=\lambda_{1}+\lambda_{2}+\cdots$, is by definition Q_{ε}.

Theorem 8. Let E be the set of sequences of $(+,-)$ of length n with k pluses. Then the collection of polynomials $Q_{\varepsilon}, \varepsilon \in E$, is the KazhdanLusztig basis of the space $\mathcal{P}(k, n)$.

Proof. We shall show that

$$
Q_{\varepsilon}=\nabla_{j} \cdots \nabla_{h}\left(x_{1} \cdots x_{k}\right)
$$

when $\varepsilon=w_{\lambda}(\mathbf{1})$, and when $s_{j} \cdots s_{h}$ is a reduced decomposition of w_{λ}. Now, it is clear that the inverse image of Q_{ε} in M^{\prime} is invariant under involution, and it is easy to check the powers of v to get that for $v=0$, it specializes to ε.

Assume by induction that we already know Q_{ε}. Let us add on the right of ε sufficiently many pluses, so that all minuses are now paired (the original polynomial is recovered from the new one by specializing x_{n+1}, x_{n+2}, \ldots to 0). Take now any simple transposition s_{i} such that $\varepsilon_{i}=+, \varepsilon_{i+1}=-$. The variables x_{i}, x_{i+1} involve two or one factor in Q_{ε}, depending whether ε_{i} is paired or not. The only possible cases for those factors and their images under ∇_{i} are

$$
\begin{aligned}
\left(x_{i-a}-v^{a+1} x_{i}\right)\left(x_{i+1}-v^{b+1} x_{i+b+1}\right) & \mapsto\left(x_{i-a}-v^{a+b+2} x_{i+b+1}\right)\left(v^{-1} x_{i}-v x_{i+1}\right) \\
\left(x_{i+1}-v^{b+1} x_{i+b+1}\right) & \mapsto\left(v^{-1} x_{i}-v x_{i+1}\right)
\end{aligned}
$$

but now the new pairing of,-+ differs from the previous one exactly in the places described by the factors on the right.
Q.E.D.

Corollary 9. Let $\sigma_{j} \cdots \sigma_{h}$ be a reduced decomposition of $w \in W^{J}$. Then the corresponding Kazhdan-Lusztig element $C_{w}^{\prime J} \in M^{\prime}$ is equal to $\left(T_{j}-v\right) \cdots\left(T_{h}-v\right)(\mathbf{1})$.

This factorization is equivalent to the one given in [FKK, Theorem 3.1]. One can check on examples that this factorization is compatible, via the duality between the two modules M and M^{\prime}, with the factorization given by Theorem 3. However, deducing Theorem 3 from Theorem 8 seems more intricate than proving the two factorization properties directly.

Example 5. Let $\lambda=[5,3,2]$ and $\mu=[5,3,3]$. Then one has

places	1	2	3	4	5	6	7	8	9
$w_{\lambda}(\mathbf{1})$		-	-	+	-	+	-	-	+
pairing			-	$+$	-	$+$	-	-	$+$
polynomial		x_{2}	$\left(x_{3}\right.$	$-v^{2} x_{4}$)	$\left(x_{5}\right.$	$\left.-v^{2} x_{6}\right)$	x_{7}	${ }^{(x)}$	$\left.-v^{2} x_{9}\right)$
$w_{\mu}(\mathbf{1})$		-	-	-	+	+	-	-	+
pairing		-	-			+	-		
				-	+			-	+
polynomial		x_{2}	x_{3}	$\left(x_{4}\right.$	$\left.-v^{2} x_{5}\right)$	$-v^{4} x_{6}$	x_{7}	${ }^{(x)}$	$\left.-v^{2} x_{9}\right)$

and thus

$$
\begin{align*}
& Q_{w_{\lambda}(\mathbf{1})}=v^{-10} x_{2} x_{7}\left(x_{3}-v^{2} x_{4}\right)\left(x_{5}-v^{2} x_{6}\right)\left(x_{8}-v^{2} x_{9}\right) \\
& Q_{w_{\mu}(\mathbf{1})}=v^{-11} x_{2} x_{7}\left(x_{3}-v^{4} x_{6}\right)\left(x_{4}-v^{2} x_{5}\right)\left(x_{8}-v^{2} x_{9}\right) \tag{14}
\end{align*}
$$

Note that the pairing between,-+ , which was a key point in the description of Kazhdan-Lusztig polynomials for Grassmannians in [LS1], is provided by divided differences, starting from the monomial $x_{k+1} \cdots x_{n}$.

References

[D] V. V. Deodhar, On some geometric aspects of Bruhat orderings II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. of Algebra 111 (1987), 483-506.
[DKLLST] G. Duchamp, D. Krob, A. Lascoux, B. Leclerc, T. Scharf, and J.Y. Thibon, Euler-Poincaré characteristic and polynomial representations of Iwahori-Hecke algebras, Publ. RIMS, 31 (1995), 179-201.
[FKK] I. B. Frenkel, M. G. Khovanov, and A. A. Kirillov, Jr., KazhdanLusztig polynomials and canonical basis, Transf. Groups 3 (1998), 321-336.
[L] A. Lascoux, Ordonner le groupe symétrique: pourquoi utiliser l'algèbre de Iwahori-Hecke?, ICM Berlin 1998, Documenta Mathematica, vol. III (1998), 355-364.
[LS1] A. Lascoux, M.-P. Schützenberger, Polynômes de Kazhdan \mathcal{B} Lusztig pour les grassmaniennes, Astérisque 87-88 (1981), 249266.
[LS2] , Symmetrization operators on polynomial rings, Functional Anal. Appl., 21 (1987), 77-78.
[S] W. Soergel, Kazhdan-Lusztig polynomials and combinatorics for tilting modules, Represent. Theory (electronic journal), 1 (1997), 83-114.
[Z] A. V. Zelevinski, Small resolutions of singularities of Schubert varieties, Functional Anal. Appl., 17 (1983), 142-144.

Alexander Kirillov

Institute for Advanced Study, Princeton, NJ 08540, USA
E-mail address: kirillov@math.ias.edu

Alain Lascoux
CNRS, Institut Gaspard Monge, Université de Marne-la-Vallée, 5, boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2, France
E-mail address: Alain.Lascoux@univ-mlv.fr

