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On the Theta Lift for the 'Irivial Representation 

Eng-Chye Tan 

Abstract. 

We describe the Howe quotient and theta lift for the trivial repre­
sentation of Sp(2n,lll) for the dual pairs (O(p,q),Sp(2n,lll)), within 
the stable range (i:e., min (p, q) > 2n), by explicitly constructing the 
Howe quotients. 

§1. Introduction 

Let Sp(2k, JR) be the symplectic group on JR2k and Sp(2k, JR) be the 

metaplectic group. If His a subgroup of Sp(2k, JR), we shall let ii be the 

pullback of H by the covering map from Sp(2k, JR) to Sp(2k, JR). The 

oscillator representation w of Sp(2k, JR) may be realized on a space of 
holomorphic functions on (Ck, using the Fock model. 

Let (G,G') be a reductive dual pair in Sp(2k,JR). A maximal com-

pact subgroup of Sp(2k,JR) is U(k), the half-determinant cover of U(k). 

In the Fock model, the space of U(k )-finite vectors of the oscillator rep­
resentation is P = P(Ck), the space of complex-valued polynomials on 
(Ck_ We can assume that K = U(k)nG and K' = U(k)nG' are maximal 
compact subgroups in G and G' respectively. We shall let lower gothic 
symbols denote Lie algebras of Lie groups, e.g., g and g' will be the Lie 
algebras of G and G' respectively. 

For a reductive subgroup H (with maximal compact subgroup KH = 
U(k)nH) of Sp(2k, JR); we denote by R(~, KH, w) the set of infinitesimal 

equivalence classes of irreducible(~, KH) modules realizable as quotients 

of P. Consider the dual pair (G, G'). For p E R(g', K', w), the Howe 
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quotient corresponding top is defined by (see [Ho2]) 

n(p) = P/Nµ, 

where Np is the intersection of all (g', K')-invariant subspaces N of P 

such that P /Ne:! pas (g', K') modules. It is known (see [Ho2]) that 

n(p) ~ p' ® P, 

where p' is a quasi-simple (g, K) module of finite length, with a unique 
irreducible quotient O(p). The correspondence 

PI-----+ O(p) 

is commonly known as the (local) theta correspondence, and O(p) is often 
called the theta lift of p. 

The pullback ii of a Lie subgroup of Sp(2k, IR) is a split or non-split 
extension by 'll/2'll depending on the dual pair under consideration. The 
representations which occur in the theta correspondence are genuine, i.e., 
they do not factor to H. In the case where the cover of H is split, this just 
means that they are of the form 7r ® sgn, where 7r is a representation 
of H, and sgn is the non-trivial character of 'll/2'll. If H == O(p, q), 
the non-split cover ii may be realized as H x 'll/2'll with group law 
(g, E)(h, 8) = (gh, E8(det(g), det(h)h~.), where(·, ·)JR. is the Hilbert symbol 

of R The character x of O(p, q) given by 

( ) { \1-1 ifdet(g)=-1, 
X g,E = E. 

1 otherwise 

is genuine, and a genuine representation of O(p, q) is of the form 7r ® x 
for 7r E O(p, q). In either case we will only refer to 1r. 

Consider the dual pairs (O(p,q),Sp(2n,IR)). It is easy to see that 
the theta lift of the trivial representation of Sp(2n, IR) (which we shall 
denote by O(ll; p, q)) exist only if p + q is even: For the dual pair 

( O(p, q), Sp(2n, IR)), Sp(2n, IR) is split if p + q is even and non-split if 

p+q is odd. Son E 'R.(sp(2n,IR),U(n),w) onlyifp+q is even. It is also 
known that O(ll; p, q) is irreducible and unitary (see [HLi], [Li] and [ZH]) 
when min (p, q) ~ 2n, i.e., in the stable range. Beyond the stable range, 
nothing much is known. For n = l, these representations of O(p, q) 
are known as ladder representations (see [AFR], [BZ] and [HT]) and are 
studied in [BZ], [Kol] and [Ko2]. For all n, these representations are 
"small" in the sense that they have small Gelfand-Kirillov dimensions 
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and small rank (in the sense of [Ho4]). They "should" arise from appro­
priate quantization of nilpotent orbits (see [HLi] and [ZH]). In fact, in 
[BZ] (the case where n = 1), it was shown that these are minimal rep­
resentations, i.e., their annihilators in the universal enveloping algebra 
are the Joseph ideals. 

The aim of this paper is to provide a basis of O(p) x O(q) highest 
weight vectors for n(n) when min (p, q) > 2n. With such a basis, irre­
duciblity of n(n)'s results from similar considerations as in [HT] (and 
hence 0(D.; p, q) = n(n)). As we have noted, irreducibility and unitar­
ity for n(n) follow from [Li]'s results (see Theorem 2.2 of [ZH] for the 
argument). But our technique has invariant-theoretic flavour and has 
the advantage of providing a model of the representation space which 
might be useful to those who would like to make explicit calculations 
on these representations. Technical difficulties have prevented a result 
for the entire stable range, i.e., to include the cases min (p, q) = 2n. It 
would seem that our techniques would still apply to these cases when 
p =f. q. Unfortunately, we still find it difficult to extend the results to the 
case when p = q = 2n for n > 1. (In this particular case, by results of 
[HLi], the theta lift of the trivial representation of Sp(2n, JR) is precisely 
the same as the theta lift of the trivial representation of Sp(2n - 2, JR) 
for the dual pair (0(2n, 2n), Sp(2n - 2, JR))). 

Although we do not discuss it here, the construction works for the 
dual pairs (U(p, q), U(n, n)), (Sp(p, q), 0*(4n)), (Sp(2m, JR), O(n, n)) and 
(0*(2m), Sp(n, n)) with appropriate condtions on p, q, m and n. 

Another reason for the construction is to study the Howe quotient. 
We believe that in the stable range (see [H4]), the Howe quotient (cor­
responding to a unitary representation or "small" representation) is ir­
reducible. Evidence in support of this can be found in this paper as well 
as [LZl], [LZ2] and [PT]. The Howe quotient also features prominently 
in many applications; see [KV2] and [Zh] (and the references therein) 
for applicatons to invariant distributions and [KR] (and the references 
therein) for applications to the construction of automorphic forms. The 
setup used here enables one to have control on the Howe quotients and 
it is our hope to try to extend it to other dual pairs. 

§2. Preliminaries 

Consider the dual pair (O(p), Sp(2n, JR)) acting on the U(np)-finite 
vectors of the associated Fock space C[xu, ... , X1p, •.• , Xn1, ..• , Xnp] as 
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follows: 

( a) Action of .so(p )c: n ( 8 8 ) L Xsi-0 . - Xsj~ , 1 Si< j Sp. 
s=l XsJ Xsi 

(b) Action of .sµ ( 2n, IR )c = u( n )c E9 Span { r;j} E9 Span { l:!,.ij} : 

(2.l)(i) u(n)ic = Span {E0 = t Xit a: + 8i,j~ 11 Si S j Sn}; 
t=l Jt 

p 

(ii) r;j = L XifXjt, 1 Si S j Sn, 
t=l 

( ••·) A ~ 02 
111 Uij = ~ O O , 

t=l Xit Xjt 
1 Si S j Sn. 

Observe that the actions of O(p) and U(n) arise from the natural 
right and left multiplication on the polynomial algebra (C[x11 , ... , Xnp]. 

We shall choose a Cartan subalgebra of u(n)ic c:::'. g[(n)ic as 

[)' = {diag (a1, ... ,an) I a1, ... ,an EC}, 

and parametrize (as it is usually done) irreducible representations of 
U(n) by n-tuples of integers (a1, ... , an) where a1 2: a2 2: ... 2: an. 

We shall now describe a root space decomposition for .so(p)ic. Choose 
the Cartan subalgebra as 

{ {H = diag (H1, H2, ... , H1)} 
fJ= . 

{H = diag (H1, H2, ... , Hz, O)} 
if p = 2l, 

if p = 2l + 1, 

where for each 1 S j S l, Hj is a block of 2 x 2 submatrix of the form 

( 
0 H--

1 - -Hhj 

For 1 S j S l, let ej : fJ ----+ (C be the functional defined by 

HE[). 

The root system of .so(p)c with respect to fJ is given by 

<I>_ { {±(ea ± eb) I 1 Sa< b S l} if p = 2l, 

{±(ea ± eb) 11 Sa< b S l} U {±ea 11 Sa S l} if p = 2l + 1. 
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For a E <I>, let so(p)a denote the root space of so(p)c corresponding to 
a. Then 

so(p)c = fJ EB L so(p)a 
<>E4> 

is a root space decomposition for so(p)c. Note that the subalgebra 

fJ EB L so(pk-eb 
l5a,6b5l 

of so(p) is isomorphic to g((l)c. 
If A is apxp matrix, then it contains rnJ 2 blocks of2x2 submatrices. 

For 1 ::; s, t ::;; rnL we denote by (A)st the (s, t) 2 x 2-block of A. If p 
is odd, we shall allow 2 x 1 blocks on the rightmost column and 1 x 2 
blocks in the bottom row. With this notation, we define a basis for fJ 
and the root vectors Ea,-b, E-a,b, Ea,b and E-a,-b (and E±a ifp is odd) 
in so(p)c (where 1::; a::;; rnJ for (1) and 1::; Jal < lb! ::; rnJ for (2) and 
(3)) as follows: 

(1) 

(2) 

(3) 

where 

(2.2) 

{ ( o A) 
(Ha)st = O -Ff 0 

{ 

Xsgn(a),sgn(b) 

(Ea,b)st = ~X;gn(a),sgn(b) 

X+,-= (_Ft 
X+,+= (-Ft 
X+=·(-Ft), 

A) 
1 ' 

-A) 
-1 ' 

ifs=t=a 

otherwise 

if s = Jal and t = lb! 
if t = la! and s = Jbl 
otherwise 

if s = Jal and t = p!l 
if t = Jal and s = ~ 

otherwise 

x-,+= (/4 
X-,- = (Ft 
X_= (Ft)· 

-A) 
1 ' 

A) 
-1 ' 

Then Ea,-b E so(p)ea-ebl E-a,b E so(p)-ea+eb, Ea,b E so(p)ea+eb, 
E-a,-b E so(p)-ea-eb, Ea E so(p)ea and E_a E so(p)-ea• 
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We shall use a more convenient system of coordinates. Define, for 
j = l, ... ,n, 

p 
k=l, ... ,[2], 

if pis odd. 

Lemma 2.1. The actions by the root vectors of so(p)c on 
C[x11 , ... , Xnp] are given by the following differential operators: 

n ( a a ) 
Ha= L Zsa-a -Zsa_a_ ' 

s=l Zsa Zsa 

n ( a a ) 
Ea,-b = L Zsa-a - Zsb-a- ' 

s=l Zsb Zsa 

n ( a a ) 
E-a,b = L Zsaa- -Zsb_a· ' 

s=l Zsb Zsa 

n ( a a ) 
Ea,b = L Zsaa- -Zsb~ ' 

s=l Zsb Zsa 

n ( a a ) 
E-a,-b = L Zsa-a -Zsb-a ' 

s=l Zsb Zsa 

Proof. Omitted. • 
Using the above setup, we shall parametrize representations of SO(p) 

by tuples (a1, q2, ... , am) of integers, satisfying 

a1 ~ a2 ~ ... ~ am ~ 0 

a1 ~ a2 ~ ... ~ lam I 
if pis odd, 

if pis even. 

We shall require some results from the theory of spherical harmonics. 
First, define the following determinants: 

Zn Z12 Z1i 

(2.3) 
z21 Z22 Z2i 

Ci= i = 1, ... ,n 

Zil Zi2 Zii 

It is not difficult to check that Ci are SO(p) x U(n) highest weight 
vectors of weight 

(1, ... (i copies) ... , 1, 0, ... , 0) © (1, ... (i copies) ... , 1, 0, ... , 0). 
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Define the O(p) invariants I 1 and pluri-hannonics H 1 as follows: 

(a) I1 = <C[x11, ... , Xnp]O(p); 

(b) H1 = {J E <C[x11, ... , Xnp] I flijf = 0, 1 ::;i::;j ::;n}. 

The results of [DT], [To], [We] and [KVl] say that: 

Theorem 2.2. (a}((DTJ and (To}) If p > 2n, then 

<C[x11, ... , Xnp] = I1 0 H1. 

{b}({Wej) The O(p) highest weight vectors in I 1 are generated freely by 
2 

rij. 

(c)((KV1}) If p 2: 2n, the O(p) x U(n) highest weight vectors in H 1 are 
generated freely by Ci, i = l, ... , n. 

Remark. To some extent, it is possible to consider the cases for 
p ::; 2n when n is small, but these cases are a little messy {see (PT}). 
We shall omit them in this paper. 

Consider the action of the dual pair (O(q),Sp(2n,JR)) on 
<C[y11 , ... , Ynq]- We shall use the more convenient coordinate system: 
for j = 1, ... , n, 

Wjk = Yj,2k-1 - HYj,2k, 'Wjk = Yj,2k-1 + HYj,2k, 

W-q+1=y.q+1 
J-2- J,-2-

q 
k = l, ... , [2], 
if q is odd 

All of what we have mentioned for (O(p), Sp(2n, JR)) carries over and we 
shall use the superscripts y to denote the corresponding operators from 
u(n)ic and tildes to differentiate the ri/s and /li/s. The description for 
the root space decomposition for .so(q)ic is similar and we shall use small 
f's to denote the roots and capital F's to denote the root vectors of 
.so(q)ic. We will omit the discussion. 

From here on we shall assume min(p, q) > 2n. Let P = <C[x11 , ... , 
X1p,Yll,···,Ylq,···,xn1,••·,xnp,Yn1,••·,Ynq]- This is the space of 
U(np + nq)-finite vectors of the associated Fock model for the dual pair 
(O(p,q),Sp(2n,JR)), and the actions of the complexified Lie algebras of 
O(p, q) and Sp(2n, JR) can be described as follows: 

(a) Action of o(p, q)ic = o(p)ic EB o(q)ic EB p: 

(i) Action of o(p)ic: as in (2.1); 

(ii) Action of o(q)ic: similar to (2.1); 
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n ( a2 ) (2.4) (iii) Action of p: L XsiYsj - 8 _8 . 1 :::; i :::; P, 1 :::; j :::; q, 
s=l Xsi Ys3 

(b) Action of sp(2n,JR)c = u(n)c EB Span {Xij} EB Span {Y;j}: 

(i) u(n)c = Span { Eij = E0 - EJi + 8i,/; q 11:::; i:::; j:::; ri}, 
(ii) Xij = rlj - iiij, 

( """) "t.T -2 A lll Lij = rij - l...l.ij, 

1:::; i:::; j:::; n, 

1:::; i:::; j:::; n. 

§3. The Dual Pairs ( O(p, q), Sp(2n, JR)), for min (p, q) > 2n 

Let n(n) = P /Nn be the Howe quotient corresponding to the trivial 
representation n of Sp(2n, JR). It is not difficult to see that 

(3.1) Nn = {Xf IX E sp(2n,JR)c,f E P}. 

Our next result provides a description of the O(p) x O(q) structure of 
this quotient space. Recall that the space of pluri-harmonics is simply 
1i1 ® 1i2 (see Theorem 2.2). 

Proposition 3.1. Assume that min(p, q) > 2n. A set of represen­
tatives for O(p) x 0( q) highest weight vectors in P / Nn could be chosen 
from the set of O(p) x O(q) highest weight vectors in the space of pluri­
harmonics. 

Proof We shall first note the following formula, which follows from 
a straightforward computation: 

Define 
RR- IT ( 2 )S··(-2 )t·· s t- = l<i<3"<n r-. ,3 r-. ,3 

- - - •J •J 

wheres and tare n(n/l)_tuples of non-negative integers (sij) and (tij) 
respectively. Let '1/J be any pluri-harmonic polynomial and consider the 
polynomial R:.Rt,""1/J. Since XijRsRl1P E Nn and YijRsR.i1P E Nn (see 
(2.4) for the definition of Xij and Yij ), application of the above formula 

shows that R:.R.i1P is expressible as a linear combination of 
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where E· . s!. = E· . Si3' - 1, E· . e. = " .. ti3· - 1 and 'lj;' is another •,J •J •,J •,J •J L.,,,3 
pluri-harmonic polynomial. We conclude that 

if LSij =J Etij• 
i,j i,j 

If Ei,j Sij = Ei,j tij, then in the quotient space P / Nll., R 8Rj't/J is ex­
pressible as a linear combination of the following polynomials 

{rl/r~z1Pi,j,k,l I 1 :s; i :s; j :s; n, 1 :s; k :s; l :s; n, 'l/Ji,i,k,l E 1-l}. 

These can again be simplified, i.e., expressed as elements in 1-£1 01-£2 . 

For instance, take 

(3.2) 

= [.6.11,r?1l't/J = (4Ef1 + 2q)'t/J mod Nll 
= [~11, r?1]'¢ = (4Ef1 + 2p)'l/J mod NJl. 

Thus r?1 r?1 '¢ is congruent to an element in the space of pluri-harmonics. 
This completes the proof of the proposition. • 

Corollary 3.2. Assume that min(p, q) > 2n. The trivial repre­

sentation Il of Sp(2n,IR) does not belong to 'R.(.sµ(2n,IR), U(n),w) unless 
~ '71 2 E u...,. 

Proof. For n E 'R.(.sµ(2n, JR), U(n), w), there must be some pluri­
harmonic 'lj; ¢. 0 mod Nll. Choose one such 'lj; which is homogeneous 
in the x and y coordinates. From (3.2), we observe that 

0 = (4Ef1 -4Ef1 +2p-2q)'t/J = (4deg., '¢-4degy '¢+2p-2q)'t/J mod Nll, 

where deg., '¢ and degy 'lj; are the degrees of '¢ in the x and y coordinates 
respectively. Since deg., '¢ and degy '¢ are integers, we conclude that 

9EZ.I 

From here on, we shall assume that p;q E Z and without loss of 
generality, we shall also assume that p ~ q. Our next task is to extract 
the O(p) x O(q) x U(n) highest weight vectors in P/NJ1. Let Si be the 
permutation group on i symbols and for a permutation O', denote its 
signature by sgn O'. Define for i,j = 1, ... , n, 

n 

D1(i;j) = LZsi'Wsj, 

s=l 
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Di = L (-l)sgn u D1(l; a(l))D1 (2; a(2)) ... D1 (i; a(i)), i # n 
uES; 

(3.3) Dn = Cn (see (2.3)) 

i = 1, ... ,n, 

The last theorem has enable us to look at the pluri-harmonics in the 
study of 'P / Nn. Basically, we have to look at the O(p) x 0( q) highest 
weight vectors which are also U(n)-invariants in 7-l. The following the­
orem describes the situation for n = 2. Although one could ignore this 
result and proceed straightaway to the general case, the computations 
nevertheless are interesting and provide the U(n)-invariant polynomial 
D (for n = 2). 

Proposition 3.3. Assume that n = 2, p 2::: q > 4 and p + q is 
even. A set of O(p) x O(q) highest weight vectors in 'P /Nn could be 
chosen from 

Remark. The SO(p) x SO(q) weight of Df1 D~2 b;2 +v;q is 

p-q p-q 
(6 +6,6,0, ... ,o) ® (6 +6 +-2-,6 +-2-,o, ... ,o). 

We have yet to show that elements in T2 are non-zero. This will be 
done in Theorem 3.9. It is easy to see that two elements with distinct 
SO(p) x SO(q) weights in T2 are not equal unless they are both in Nn. 

Proof. We shall adopt the same notations as in the proof of Propo­
sition 3.1. Continuing from the computation in (3.2), we observe that if 
'1/J f=. 0 mod Nn, we must have 

We note the other 3 relations arising from similar considerations as 
above: 

(a) (2E22 - 2E~2)'1/J = -(p - q)'l/J mod Nn 

(b) Ef2 '1/J = E~1 '1/J mod Nn 

(c) E21 '1/J = Ef2 '1/J mod Nn 
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Basically, these relations boil down to the fact that we only need to look 
at the U(2)-invariant highest weight O(p) x O(q) vectors in ri. 

Fix an SO(p) x SO(q) highest weight: 

(3.4) (e1 + 6,6, o, ... , o) ® ("11 + ,,,2, ,,,2, o, ... , o). 

For i = 1, ... , e1 and j = 1, ... , r71, we define (see (2.3) and (3.3) for the 
definitions of D2 and D2) 

Then an O (p) x 0( q) highest weight vector in the space of pluri-harmonics 
of weight (3.4) is given by 

v= I: 
j=O,l, ... ,771 i=O,l, ... ,e1 

If such a vector lives non-trivially in P /Nn., it must be an U(2)-invariant, 
i.e., 

and 

We compute that 

(a) (Ef2 - E¥1)v = L {(e1 - i + l)Ai-1,j - (j + 1).Xi,Hl} <Pij, 
i,j 

(b) (E~1 - Ef2)v = L {(i + 1).Xi+l,j - ("11 - j + 1).Xi,j-il <Pij• 
i,j 

This gives rise to two recursion relations: 

(a) j.Xi,j = (6 - i + l).Xi-1,j-1 

(b) i.Xi,j = ("11 - j + l).Xi-1,j-1 

For a non-trivial solution to v, we must have 6 = 'T/l· If we assume this, 
there is only one non-trivial solution (up to multiples) given by 

~.;-{ r),,., 
This translates to 

if i = j 

otherwise 
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We also require 

(E"' Ey P - q) - 0 - (E"' EY + P - q) 11 - 11 + -2- V- - 22 - 22 -2- V 

which forces ry2 = 6 + y. This concludes the proof. I 

Proposition 3.4. Assume that p 2'.: q > 2n and p + q is even. A 
set of O(p) x O(q) highest weight vectors in P /Nu could be chosen from 

rrr _ { (rrn-1ne·) n· env-en+T I c c l'l-.T} .Ln - i=l i n n \,l, · · ·, \,n E !''I • 

Remark. See (2.3} and (3.3} for the definitions of Di and Dn. 
The SO(p) x SO(q) weight of (rrf::/nf•) D~nf>~n+y is 

(3.5) (6 + ... + en,6 + ... +en, ... ,en-1 + en,en,0, ... ,0)© 
p-q p-q p-q 

(6 + ... +en+ -2-,· .. ,en-1 +en+ -2-,en + -2-,0, ... ,0). 

As in Proposition 3.3, we will show that elements in Tn are non-zero in 
Theorem 3. 9. 

Proof. Recall from .Theorem 2.2( c) that ¢ = Ilf=1 cf• and ¢ = 
Ilf=1C? are O(p) x U(n) and O(q) x U(n) highest weight vectors in 1£1 

and 1£2 respectively. Look at the tensor product of the O(p) x U(n) and 

O(q) x U(n) modules generated by¢ and¢ respectively. Our objective 
is to extract the U(n)-invariants, since these are the only ones which are 
possibly not killed in the quotient space P /Nu. The respective U ( n) 
highest weights of ¢ and ¢ are 

p p p p 
( 6 + ... + en + 2, 6 + ... + en + 2, ... , en-1 + en + 2, en + 2) and 

q q q q 
(-"In - 2, -'TJn-1 - "In - 2, • · · ,-'T/2 - · · · - "In - 2,-'T/1 - • • • - "In - 2). 

The tensor product of these two U(n) modules yields an U(n) invariant 
if and only if 

i = 1, ... ,n -1, and 
p-q 

"In =en+-2-, 

and there is at most one U(n) invariant (up to scalars). The candidate 
in our situation is 
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One could check immediately that it is an 0(p) x O(q) highest weight 
vector which is also an U(n) invariant of the correct weight if one ob­
serves that 

where 

Zs1,l Zs1,2 Zs1,i 

C(s1, ... , si) = 
Zs2,l Zs2,2 Zs2,i 

and 

Zsi,1 Zsi,2 Zsi,~ 

'llls1,l Ws1,2 'llls1,i 

C(s1, ... , Si) = 
'llls2,l Ws2,2 'Ws2,i 

Wsi,1 iilsi,2 iilsi,i 

This concludes our proof. • 
Next, we shall give a brief description of the so(p)c xso(q)c structure 

of p. Recall from (2.4) that 

o(p, q)c = o(p)c EB o(q)c EB p 

where p ~ (CP 0 Cq as an so(p)c x so(q)c module with highest weight 
(1, 0, ... , 0) 0 (1, 0, ... , 0). 

Identify p with the space of p x q matrices over C and write a p x q 
matrix in blocks of 2 x 2 matrices. If p is odd, we allow 1 x 2 matrices in 
the bottom row and if q is odd, we allow 2 x 1 blocks in the rightmost 
column. For 1 $ lal $ m and 1 $ lbl $ [!], define the following matrices 
(see (2.2) for the definitions of X±,± and X±): 

(z ) _ { Xsgn(a),-sgn(b) 
a,b st - O 

(z ) _ { Xsgn(a) 
a,O st - O 

{ xt 
(z ) _ -sgn(a) 

O,b st -
0 

ifs= lal and t = lbl, 

otherwise, 

if s = lal and t = !I:}!, 
otherwise, 

if s = ~ and t = I bl, 

otherwise, 

The vectors denoted by Z's are all weight vectors of p. We note that 
Za,b is of weight sgn(a)eja/ 0 sgn(b)/jbj, Za,o is of weight sgn(a)eja/ 0 0 
and Zo,b is of weight O 0 sgn(b)f/b/· 
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The following lemma gives the actions of the weight vectors of p on 
P: 

Lemma 3.5. Let 1 ~ a ~ rnJ and 1 ~ b ~ rnJ. The actions of the 
weight vectors of p on P are given as follows: 

n ( a2 ) 
Za,b = L Zsa'Wsb - 4 a- 8 , 

s=l Zsa Wsb 

n ( a2 ) 
Za,-b = L ZsaWsb - 4 a- 8 _ , 

s=l Zsa Wsb 

n( a2) n( a2) 
Z-a,b = L Zsa'Wsb - 4 8 8 , Z-a,-b = L ZsaWsb - 4 8 8 _ , 

s=l Zsa Wsb s=l Zsa Wsb 

n ( a2 ) 
Za,O = L ZsaWso+l - 4 a- 8w , 

s=l 2 Zsa s •tl 

n ( a2 ) 
Z-a,O = L ZsaWs.tl! - 4 8 8 ' 

s=l 2 Zsa Ws~ 

n ( a2 ) 
Zo,b = L Zsti.!'Wsb - 48 8 ' 

2 Z £±!. W 8 b 
s=l 8 2 

n ( a2 ) 
Zo,-b = L Zs£±!. Wsb - 4 8 8 - . 

s=l 2 Zs111 Wsb 

Proof. Omitted. • 
We would be interested in the action of o(p, q)c on the set of vectors 

in Tn (see Proposition 3.4). Algebraically, we should look at the tensor 
product 

(3.6) 

m: p 0 Vei, ... ,en ---+ pU(n) 

m(X@f) = X(f) 

where ¼1 , .•. ,en is a O(p) x O(q) module of highest so(p) x so(q) weight 
given by (3.5). The tensor product p 0 Ve 1 , •• ,,en could possibly have any 
one of the 22n components with so(p) x so(q) highest weight as follows, 
and they can only appear with multiplicity at most one: 

( (6 + • • • + <;n, 6 + · · · + <;n, • • •, <;n-1 + <;n, <;n, 0, •, •, 0) ± es)© 
p-q p-q p-q 

((6 + ... + <;n + -2-, ... ,<;n-1 + <;n + -2-,<;n + -2-,o, ... '0) ± ft), 
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where s, t E { 1, ... , n}. We shall let P ±es ,±f, denote the image of the 
above component under the map in (3.6). Note that P±es,±f, is either 
zero or a highest weight O (p) x O ( q) vector in PU ( n) . 

Recall the root system that we have described for .so(p)ic. Let 

and define 

UJJ = 1, j = l, ... ,n. 

Define for 1 ::; t < j ::; n, the determinant of a (j - t) x (j - t) matrix 
of elements from the universal enveloping algebra of .so(p)rc (see Lemma 
2.1 for the relevant definitions), 

UtJ = 
E-(j-1),J 

E-(j-2),J 

HJ-1,J + 1 
E-(j-2),j-l 

E-(t+l),j-1 

E-t,J-1 

0 

Hj-2,j-l + 2 

E-(t+l),j-2 

E-t,J-2 

0 
0 
0 

Ht+l,j + j - t - 1 

E-t,t+l 

Since we are dealing with a non-commutative algebra, care has to be 
taken to define the determinant. Recall that Skis the permutation group 
on k symbols. We shall use the following definition of the determinant: 

= L sgnada(l)l ... da(k)k 

aESk 

Thus, as an element in the universal enveloping algebra of .so(p)rc, Utj = 

j-t-1 

L L(-l)j-t-!+l E-i1,jE-i1_ 1 ,ii • • • E-t,iJia,iJi,t+I5,a5,j-1 (Haj+j-a). 
l=O Ii 

where Ii = { is I s = 1, ... , l, t + 1 ::; i1 < i2 < ... < i1 ::; j - 1 }. Finally, 
define 

H(j;a,b) = II~=a(Hs - HJ+ j - s), 

H-(j;a,b) = rr:=a(Hs - HJ+ j- s -1), 

1 ::; a ::; b < j, 

1 ::; a ::; b < j. 
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Theorem 3.6. ([HLej,[Lelj) Suppose p 2'.'. 2n. Let We 1 , ••• ,€n be an 
irreducible SO(p) module of highest weight 

A= (6 + • • • + ~n, 6 + • • • + ~n, • • •, ~n-1 + ~n, ~n, 0, • · •, 0). 

Let u and v denote the highest weight vectors in (CP and We 1 , ••• ,€n re­
spectively. The following operators from U(so(p)) gives the projection of 
u 0 v to each of the possible n highest weights ,\ + ej, j = l, ... , n, (in 
the positive direction} of irreducible SO(p) components: 

j 

(2) Qe1 = 10 U1j + ~(-1/+1(E-1,t 0 UtjH-(j; 1, t - 1)), j = 2, ... , n 
t=2 

Remark. It would be nice to have the formulae for the transition 
in the negative directions, even for Q _e1 and Q-e2 • 

Proof These formulae are all in [Lel]. They are the projections if 
the modules were g((rnJ)c modules. Recall that there is an embedding 
of g(([~])c in so(p)c. It therefore suffices to check that Qe;(u 0 v)s are 
killed by another positive simple root. The tedious computations are 
essentially done in [HLe]. • 

Let 

(3.7) ij;e = ij;<€1 ,···,enl = (rrf==-/Dfi) D!nb!n+9 

With the above theorem, we note that (see Lemma 3.5 for the definition 
of Z1,1) 

(3.8) P±es,±f, = m((Q±e8 Q±J,)(Z1,1 0 ij;€)). 

Define the constants, 

(3.9) >.(j; a, b)ij;e = H(j; a, b)ij;€ 

= IT~=a(~s + ... + ~j-1 + j - s)ij;€ 

(3.10) 
>.-(j;a,b)ij;e = H-(j;a,b)ij;€ 

= IT~=a(~s + • .. + ~j-1 + j - S - l)ij;€ 

With the formulae for Qes and QJ,, (3.8) simplifies as follows: 
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s=lt=l 

i j 

= L ~:)-l)i+Hs+tm ( Zs,t 0 r (i; 1, s - l)A-(j; 1, t - l)UsiUtfili) , 
s=lt=l 

j 

= L L(-l)i+j+s+t A-(i; 1, S - l)A-(j; 1, t - l)D1(s; t)UsiUtj'lf}f.. 
s=lt=l 

We will only be interested in the case when i = j. 

Proposition 3.7. Take E-i,i = F-i,i = -1. 

(a) L D1(s; t)(F-tiDi-1) = -8siDi, s = 1, ... ,i; 
t=l 

s = 1, ... ,i -1; 
a=s+l 

(c) Usi'lfJf, = (-l)i+s+l A-(i; s, i - l)(E-siDi-1)'1/Jf.-ei-l, s = 1, ... 'i - 1; 

( d) Suppose f is a polynomial with 

H-(i;s+ 1,a- l)f = r(i;s+ 1,a- l)f, 

then for s = 1, ... , i - 1, 

= L (-1r+s+l A-(i; s + 1, a - l)D1(a; t)Uad + D1(s; t)Usd-
a=s+l 

Proof. Let us abbreviate 

Di_1(1, ... , i - 1; k1, ... , ki_1) 

D1(l;k1) D1(l;h) 
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t=l 
i-1 
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= L D 1(s; t)Di-i(l, ... , i - 1; 1, ... , t - 1, i, t + 1, ... , i - 1) 
t=l 

i-1 
= L(-l)i-t-l D1(s; t)Di-i(l, ... , i - 1; 1, ... , t - 1, t + 1, ... , i - 1, i) 

t=l 
- D1(s;i)Di-1 

D1(s;l) D1(s;2) 
D1(l; 1) D1(1;2) 

D1(i-l;l) Di(i-1;2) 

= -8siDi. 

D1(s;i) 
D1 (1; i) 

We refer the reader to Lemma 4.4 of [Lel] for the proof of (b) and 
Proposition 4.8 of [Lel] for the proof of (c). The proof of statement (d) 
which uses (b), is as follows: 

i 

= L (-l)a+s+l_x-(i;s + l,a - l)E-saUai(D1(s;t)f) 
a=s+l 

(since D 1 (s; t) does not contribute to H-(i; s + 1, a - 1)) 

a=s+I 

(since Uai kills D1(s; t) for a= s + l, ... , i) 
i 

= L (-1r+s+I.x-(i;s+l,a-l)D1(a;t)Uad+D1(s;t)Usd- • 
a=s+I 

For convenience, we shall also use the notation 
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Theorem 3.8. Assume that p ~ q > 2n and p + q is even. Let 
V6, ... ,.;n be the O(p) x O(q) module generated by 'lj.J.; (see (3. 7)). Then 
projections in the "positive directions"of the image of 'lj.J.; (in P /Nll.) to 
various irreducible O(p) x O(q) components under the map m in (3.6} 
are as fallows: 

(1) 

(2) 

p f = .1,.;+e1 
e1, 1 lf/ 

P '('l. 1)'-("1. l)nJ,.;-e· 1+e·. 2 ei,fi=/\J; ,J- /\ Ji ,J- 'f' J- 1 , J= , ... ,n. 

Proof. Using (c) of Proposition 3.7, we have 

Pej,Jj 
j j 

= L L(-l)8+t >,-(j; 1, s - l)>.-(j; 1, t - l)D1(s; t)Us/Utj'lp.; 
s=lt=l 

j j 

='°''°'(-l)s+J+l>,-(" l -1).>._(.·l t-l)r(··t ·-1) L....,L...., J, ,s J, ' J, ,J 
s=l t=l 

j 

= L(-l)s+J+i >.-(j; 1, s - l)>.-(j; 1,j - l)x 
s=l 

j 

L D1 (s; t)Usj{ (F-tjDj-1)'l/J.;-ej-l} 
t=l 

(since r(j; 1,j -1) = >,-(j; 1, t - l)>,-(j;t,j -1)) 
j 

= L(-1)8+1+1 >,-(j; 1, s - l)>.-(j; 1,j - l)'l/Js 
s=l 

where 'l/Js (which is dependent on j) is defined as follows: 

j 

'l/Js = L D1 (s; t)Usj{(F-tjDj_i)'ljJ.;-ej-l }. 
t=l 

Using Proposition 3. 7 (a) and ( d), one can show that for s = l, ... , j -1, 

j 

'l/Js = L (-lt+s >,-(j; S + l, a - l)'l/Ja· 
a=s+l 
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By induction, it follows that for s = 1, ... ,j - 2, 

1Ps = ( -1 )Hs+l ( II{:,~+1 _x -(j; k, k)) 'tj;f.-ej-1 +e; 

= (-l)Hs+l .X(j; S + l,j _ l)'tj;f.-ej-1+ej. 

Another induction gives the formula for Pe; ,Ij. I 

Theorem 3.9. Assume that p ~ q > 2n and p + q even. A set of 
O(p) x 0( q) highest weight vectors in P / Nn could be chosen as 

The SO(p) x SO(q) weight of (nf,:-/D;') D~niJ;,n+v;q is 

(~1 + • • • + ~n,6 + • • • + ~n, • • - ,~n-1 + ~n,~n,0, • • • ,0)® 
p-q p-q p-q 

(~1 + • • • +~n + - 2-, • • • ,~n-1 +~n + - 2-,~n + - 2-,0, • • • ,0). 

The Howe quotient P /Nn is irreducible and 0(D.;p, q) is the (o(p, q), O(p) x 
O(q)) module Mp,q,n generated by the vectors 'tj;f.. 

Remark. The (o(p, q), O(p) xO(q)) module Mp,q,n (forp+q even) 
have Gelfand-Kirillov dimension n(p + q - 2n - 1) (see [ZH}). 

Proof. Everything except the irreducibility under O(p, q) has been 
shown in Proposition 3.4. To get the irreduciblity, we note that the 
lowest joint harmonic (which sits in the unique irreducible quotient of 
Mp,q,n) is just the constant polynomial. The formulae in Theorem 3.8 
shows that we can move from the constant polynomial (trivial O(p) x 

O(q)-type) to any other O(p) x O(q)-type in Mp,q,n· Hence, Mp,q,n must 
be irreducible. • 
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