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Deformation Theory of CR-Structures 
and Its Application to 

Deformations of Isolated Singularities II 

Kimio Miyajima 

Introduction 

Deformations of an analytic variety with only isolated singular 
points induce deformations of strongly pseudo-convex CR structures on 
its link. It is M. Kuranishi who initiated to consider deformations of 
compact strongly pseudo-convex CR structures expecting to describe 
deformations of isolated singular points of analytic varieties. Since non­
equivalent CR manifolds can bound the same isolated singular point, we 
consider deformations of CR structures up to equivalence weaker than 
the CR-equivalence. This equivalence is induced from wiggling in a 
complex manifold and we will call the deformation theory of CR struc­
tures under that equivalence the Kuranishi deformation theory of CR 
structures. In [Ku3], [Ku4], M. Kuranishi obtained a C 00-family of de­
formations of the CR structure on a compact strongly pseudo-convex CR 
manifold of real dimension five or higher, continuing his early works on 
deformations of compact complex structures ([Kul], [Ku2]). We consider 
holomorphic families of CR structures. In the first half of this survey, 
we will review the holomorphically parametrized deformation theory of 
strongly pseudo-convex CR structures developped by T. Akahori et al. 
([Akl], [Ak2], [Ak3], [Ak4], [Ak-Myl], [Ak-My2], [Ak-My3], [Ak-My4], 
[Bu-Ml], [Myl], [My2], [My3]) and its relationship with algebraic defor­
mation theory of isolated singularities ([Do], [Gr], [Tj]). 

The relationship between compact strongly pseudo-convex CR man­
ifolds and isolated singularities is based on the fact that an embeddable 
compact strongly pseudo-convex CR manifold bounds a unique normal 
Stein complex space ([Ha-Lal) and all compact strongly pseudo-convex 
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CR manifolds of real dimension five or higher are embeddable ([BM]). 
In contrast with the higher dimensional case, embeddable three dimen­
sional CR manifolds are rare. (Embeddability is a major problem in the 
study of three dimensional compact strongly pseudo-convex CR mani­
folds. Refer to the references of [Bl-Du], [Ep] and [Lm] for papers about 
that problem.) Recently, J. Bland and C. Epstein generalized the Kuran­
ishi deformation theory to embeddable compact strongly pseudo-convex 
three dimensional CR structure case and show that the stably embed­
dable formal deformation theory of a strongly pseudo-convex three di­
mensional CR structure is isomorphic to the formal deformation theory 
of the normal isolated surface singularity it bounds ([Bl-Ep]). In the 
latter half of this survey, we will develop their deformation theory to 
the actual deformation level in the higher dimensional case and com­
pare it with the deformation theory of normal isolated singularities. By 
this argument, we will see that the stably embeddable deformation the­
ory of strongly pseudo-convex CR structures fits to the flat deformation 
theory of normal isolated singularities and then we will complete Ku­
ranishi's program describing the semi-uinversal family of normal isolated 
singularities of complex dimension three or higher in terms of the CR 
language. 

Other developments in the study of isolated singularities by CR 
geometry are done in [Lu-Ya] and [Ya]. Refer to [Oh3] for other re­
sults in the study of isolated singularities by transcendental methods. 
The moduli of compact strongly pseudo-convex CR manifolds under 
CR-equivalence is of natural interest from CR-geometry. It is treated 
in [Ch-Le] and [Lm] in three dimensional cases. The moduli space of 
strongly pseudo-convex CR structures on a compact real three-fold di­
vides into two parts; the part of embeddable CR structures and the part 
of non-embeddable ones. In [Ep], moduli of embeddable CR structures 
is considered in connection with deformations of isolated singularities, 
and in [Bl-Du], moduli of non-embeddable ones on S3 is considered. 

In this survey, we consider only the case of real dimension five or 
higher. In Sections 1-4, we will review the construction of the Ku­
ranishi semi-universal family of compact strongly pseudo-convex CR 
structures and its relationship with the semi-universal family of nor­
mal isolated singularities. The main part of the construction of the 
Kuranishi semi-universal family was presented in Part I under the as­
sumption HJ (T 1

) = 0. Hence we will only give a modification needed 
T' 

for treating the general case. In Sections 5 and 6, we will work on the 
stably embeddable deformation theory of strongly pseudo-convex CR 
structures on a link of a normal isolated singularity. 
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Notation 

(N.l) Let V be a closed normal subvariety of a ball 

N 

B(c*) := {w E cN I L lw.81 2 < c*} 
,B=l 

such that the origin 0 E cN is the only singular point of V and V and 
8B(c) intersect transversally for any 0 < c < c*. We denote by Uthe 
regular part of V and by i the natural inclusion map U '-----? cN. We will 
use the following notations throughout this survey: 

N 

G(a, b) := {w E cN I a< L lw.812 < b} (0 <a< b < c*), 
.B=l 

N 

Sc:= {w E cN I L lw.81 2 = c} (0 <a< C::; b), 
,B=l 

O(a, b) := V n G(a, b), 

(N.2) For a holomorphic vector bundle over a CR manifold M, we 
denote by A~'q(E) (resp. r(U,E)) the space of E-valued tangential 
(0,q)-forms (resp. the space of C00-sections of E over a domain U C M). 
A~'HE) (resp. rk(U, E) and r~(U, E)) the completion of A~'q(E) with , 
respect to the Sobolev k-norm (resp. of r(U, E) with respect to the 
Sobolev k-norm and the Folland-Stein k-norm). 

(N.3) Let S be a germ of a (not necessarily reduced) complex space 
at the distinguished point s0 E S and X be a (not necessarily compact) 
complex manifold (in our argument below, Xis a neighbourhood of Mc 
in U). By a family of deformations of X over (S, s0 ), we mean a smooth 
holomorphic map (in Grothendieck's sense) of complex spaces 7r : X---+ S 
with 1r-1 (s0 ) ~ X, that is, for any x E X there exist neighbourhoods 
W of x in X, W of the origin in en (n = dimcX) and an isomorphism 
q so that the diagram 

W ~ W X 8 

s s 
commutes where p2 denotes the projection onto the second factor. As 
a local trivializ&tion of a family of deformations of X, we always take a 
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local trivialization of this type. Then we always have a local coordinate 
(e1, ... , en, 81, ... , sd) of X such that (e1, .. ,, en) (resp. (s1, .. ,, sd)) is 
the coordinate of W (resp. of an ambient space Cd of S) in the above 
trivialization. 

(N.4) Suppose that X is a locally closed sub-manifold of CN. By 
a family of displacements of X in cN over a germ (S, sa), we mean 
a family of deformations of X over (S, sa), n: : X --, S, together with 
an embedding <I> : X --, cN x S such that n: = p2 o <I> holds where 
p2 : cN x S--, S denotes the projection onto the second factor. 

(N.5) There are two approaches to the CR manifolds; the extrinsic 
approach and the intrinsic one (i.e. treatments as a real submanifold of a 
complex manifold and as a real manifold equipped with an abstract CR 
structure, respectively). These approaches are equivalent in the case of 
compact strongly pseudo-convex CR manifolds of real dimension greater 
than or equals to five, while there are differences between them in real 
three dimensional case. Our treatment of deformations of CR structures 
is based on the intrinsic approach. Refer to [Ta] for the systematic study 
of this approach. In order to compare deformations of CR structures and 
that of singularities, we need to take account of the extrinsic approach 
as well. Refer to [Fo-Ko] or [Ko-Ro] for the extrinsic approach. 

Our approach to deformations of normal isolated singularities from 
deformation theory of CR structures will be done through the following 
three steps. In each step, we use several fundamental theories. First 
step: We construct a family of CR structures by a generalized Kodaira­
Spencer construction. Refer to [Ko] for the Kodaira-Spencer construc­
tion in the case of deformations of compact complex manifolds. The 
Kodaira-Spencer construction heavily depends on the harmonic theory. 
Refer to [Fo-Ko] for the standard harmonic theory on a CR manifold. 
Second step: We prove that the family constructed in the first step is 
Kuranishi versal. In order to carry out the ideal theoretic argument 
in the proof, we use the Grauert division theorem. Refer to [Gr] or 
[Fo-Kn] for the Grauert division theorem. Third step: We compare the 
family constructed in the first step with the semi-universal family of 
normal isolated singularities. By the comparison using the Kuranishi 
semi-universality of the family of CR structures and the semi-versality 
of the family of isolated singularities, we have a formal isomorphism of 
their parameter spaces. In order to reach the actual isomorphism, we 
use the Artin approximation theorem. Refer to [Ar] for the Artin ap­
proximation theorem. 

We remark that W. Goldmann and J. Millson established a general 
comparison method. We can compare the above two families directly 
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(without Step 2) using this general method. Refer to [Go-Mll] and [Go­
Ml2] for this general comparison method and to [Bu-Ml] for the approach 
using this method. 

§1. Kuranishi deformation theory of CR structures 

Let M := Mc for some 0 < c < c* (cf. (N.l)) and 0 T 11 be the 
strongly pseudo-convex CR structure on M induced from the complex 
structure of V (cf. Part I, sections 2.1 for the notion of a strongly pseudo­
convex CR structures). In this section, we formulate some fundamental 
notions of Kuranishi deformation theory of CR structures on M. 

A holomorphic family of CR structures is a notion analogous to a 
family of complex structures. We fix a splitting Part I, (2.1.6); 

CT M = 0 T 1 + 0 T 11 + CF 

and denote by T 1 = 0 T 1 + CF the holomorphic tangent bundle of M. 

Definition 1.1. Let T be a germ of a complex subspace of Cd 
at the origin defined by an ideal Jr C C{ti, ... , td}- A holomorphic 

family of deformations of the CR structure 0 T 11 over (T, 0) is ¢(t) E 

A?(T1 )[[t1, ... , tdl] n nk>O A~:!(T1 ){t1, ... , td} satisfying 

(1) ¢(0) = o, 
(2) P(¢(t)) E JrA~:~-l (T1 ){t1, ... , td} for all k >> 0 

where P(¢) = 0 is the integrability condition (cf. Part I, Section 3.2). 

We will simply denote it by ¢(t) (t E (T, 0) ). 
An embedding of M into a family of complex manifolds induces a 

family of CR structures. 

Definition 1.2. Let S be a germ of a complex subspace of ci at 
the origin defined by an ideal Js C C{s1, ... , sd, }. Let 1r: U _____, S be a 
family of complex manifolds. A holomorphic family of embeddings of M 
into that family is a mapping F : M x S _____, U with 1r o F = P2 where P2 
denotes the projection onto the second factor, which is described locally 
as follows: Let {(Wi, ((l, ... , (I', s1, ... , sd' ))}iEA be a system of local 
coordinates ofU as in (N.3). Let {Ui}iEA be an open covering of M such 
that F(Ui x S) c Wi. If Fis described by (f = Ft(xi, s) (a= 1, ... , n) 
on Ui x S with respect to the above local coordinate of Wi and the local 
coordinate (xL ... , x;n-l) of Ui, then 

(1) Ft(s) E I'(Ui, l)[[s1, ... , sd, l] n I'k(Ui, l){s1, ... , sd,} (a= 
1, ... ,n) for all k >> 0, 



252 K. Miyajima 

(2) Ft'(s) - flJ(Fj(s), s) E Jsrk(Ui n Uj, l){s1, ... , sd,} (a = 
1, ... ,n) for all k >> 0, 

where (f = fij ( (j, s) ( a = 1, ... , n) is the coordinate transformation on 
winwj. 

The holomorphic family ¢(s) (s E (S,0)) of CR structures induced 
by F is characterized by 

We call this </J(s) (s E (S, s0 )) the family of CR structures induced by 
F. 

Since the Kuranishi CR deformation theory is arranged suitable for 
deformation theory of normal isolated singularities, we do not consider 
CR structures up to CR isomorphism but consider them up to wiggling 
in an ambient complex manifold. The following notion of the versality 
is reasonable for our deformation theory. 

Definition 1.3. A holomorphic family cp(t) (t E (r, 0)) of de­
formations of 0 r" is Kuranishi versal if it has the following property: 
For any family of deformations of complex manifolds 1r : U --t S over 
(S, s0 ) such that 1r-1 (s0 ) is a neighbourhood of M in U, there exist a 
holomorphic map of germs T: (S, s0 ) --t (r, 0) and a holomorphic fam­
ily of embeddings F : M x S --t U such that F1Mxs 0 = 1, holds and 
the holomorphic family of CR structures induced by F coincides with 
</J(r(s)) (s E (S,so)). 

We will examine the fist derivative of a family of CR structures. Let 
¢(t) (t E (r, 0)) be a holomorphic family of deformations of 0 r". Since 
the linear term of P(cp) is 8T'<P, we have 8T,v(</J(t)) = 0 for v E r0r 
where we denote by r0r the Zariski tangent space of r at 0. Next, if 
cp(t) (t E (r, 0)) and 1/J(t) (t E (r, 0)) are holomorphic families of CR 
structures induced by holomorphic families of embeddings into a family 
of complex manifolds F, G : M x r --t U respectively, then we have 

(E v(F{'(t) - Gf (t)) 8~0 } E A~(r' UIM) 
o=l • 

and 
n 8 

p1,0 (v(cp(t) -1/J(t))) = Bi,(E v(F{'(t) - Gf(t)) 8(!") 
o=l • 
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where p1•0 : CTUIM --. T 1 UIM denotes the projection onto the (1,0)­
part. Hence, it is natural to call the BT, cohomology class of v(¢(t)) the 
infinitesimal deformation class of the family ¢(t) (t E (T, 0)) along the 
direction v E T0T. 

Definition 1.4. For a holomorphic family ¢(t) (t E (T, 0)) of 
deformations of CR structures, the infinitesimal deformation map is a 
linear map p : ToT ---> HA (T1

) given by p(v) := the cohomology class 
T' 

of v(¢(t)). A holomorphic family is called effective if its infinitesimal 
deformation map is injective. 

An effective and Kuranishi versa! family is called a Kuranishi semi­
universal family. 

§2. Construction of the Kuranishi semi-universal family of CR 
structures 

In this section, we consider how to construct the Kuranishi semi­
universal family of CR structures on M. 

(I) First, we consider the case of dimRM ~ 7 and will review the 
construction of the Kuranishi semi-universal family in [Ak3] and [Ak­
Myl]. However we modify the ideal theoretic argument in [Ak-Myl] 
by using the Grauert division theorem instead of a small tric there, 
because the adaptation of the division theorem is the most relevant 
way to treat the case of non-reduced parameter spaces. We first try 
to construct it using J. J. Kohn's solution of the 8,,-Neumann problem 
(cf. [Fo-Ko]). Though it works only on the formal family level, we 
will try it, because this is a straightforward analogue of the standard 
Kodaira-Spencer construction in the case of deformations of complex 
structures on a compact complex manifold and, by this consideration, we 
will well understand the naturality of the adaptation of the sub-complex 
(r(M, Eq), 8q) in [Ak3] (cf. Part I, Section 3). The 8b-Neumann Hodge 
decomposition which we will use is 

where PT' denotes the orthogonal projection onto the harmonic space 

H~(T1
) (cf. [Fo-Ko, Theorem 5.4.12]). Let d = dimHA (T 1

) and 
T' 

¢1 , ... , <Pd be 8T,-closed forms which give cohomology basis of H8! (T 1
). 

T' 
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Set 

(2.2) 

K. Miyajima 

d 

¢1(t1, ... , td) := L <Pata, 
a=l 

¢µ(t1, ... , td) := µ-th homogeneous term of 

-a;, Nr, P( ¢<µ-l) (t1, ... , td)) 

(cf. Part I, section 3.2 for the definition of P(¢)), 

and 
¢(ti, ... , td) := limµ_. 00 ¢(µ) (ti, ... , td)-

Thus we have ¢(t1, ... , td) E A~'1(T1 )[[t1, ... , td]] (we will denote it sim-

ply by ¢(t)) satisfying 

(2.3) 

2 / 
where R(¢) := R2(¢) + R 3 (¢). Take a basis e1, ... , ee of Hb(T ), then 

we have b1(t), ... , be(t) E C[[t1, ... , td]] such that 

£ 

Pr' P(¢(t)) = L b,(t)e,. 
,=l 

Denote by J an ideal of C[[t1, ... , td]] generated by b1 ( t), ... , br ( t). 

Proposition 2.1. 

Proof. By (2.3) and using the Hodge decomposition (2.1), we have 

Using the fact at P(¢) = 0 (cf. Part I, Lemma 3.7.2), we can prove by 
induction on µ that 



Deformation Theory of CR-Structures II 255 

holds for allµ~ 1 where m denotes the maximal ideal of C{ ti, ... , td}­
Q.E.D. 

Proposition 2.2. ¢(t) is formally Kuranishi versal, that is, for 
any family of deformations of a neighborhood of M in U there exist T 

and F in Definition 1. 3 as formal power series in s. 

Proof. Let S be a germ of an analytic sub-space of cl defined 
by an ideal 'Js C C{s1 , ... , sd,} and let 1r : U ---+ S be a family of 
complex manifolds such that 1r-1 (0) is a neighbourhood of Min U and 
{((l, ... , (I', s1, ... , sd, )}iEA be a system of local coordinates of U, as in 
(N.3), with the coordinate transformation (f = f[J((j, s) (a= 1, ... , n). 

Then we will construct {Ff(s)} (a= 1, ... ,n) and f(s) by solving the 
following equations inductively, where we denote by Fi'j,,(s) and Tµ(s) 

the homogeneous terms of Ff(s) and f(s) of degreeµ respectively and 

denote Fi(µ) "'(s) = FilO(s)+· · ·+Fi'j,,(s) and 7(1.t)(s) = To(s)+· · ·+T,,(s). 

(2.4),, F?-l) "'(s) - fi'J(F?- 1\s), s) 
E ('Js + mlL)r(Ui n Uj, l)[[s1, ... , sd, ]), 

(2.5),, (8b-¢(T(µ-l)(s)))F/µ-l) "'(s) E ('Js +m,,)r(Ui, l)[[s1, ... , sd, ]], 

(2.6),, b-y(T(µ-l)(s)) E ('Js + m1.t)C[[s1, ... , sd,]) ('y = 1, ... ,£). 

Let F/0 ) "'(s) = zf (a = 1, ... ,n) and To(s) = 0. Suppose that 

Fi(µ-l) "'(s) and T(µ-l)(s) are obtained such that (2.4),,_1-(2.6)µ-1 hold. 

Let F;1;(s) be the solution of 

t {Fi(µ-1) "'(s) - li'J(F?-1) "'(s), s)} 8~'!' 
a=l i 

Then, there exists 0(s) E A~'1(T' XIM )[[s1, ... , sd, ]] such that 

0(s) - (8b - efJ(T(µ-l)(s))) (t. Ft-l) "'(s) B~f) 
E ('Js + m1.t+l)A~'1(Ui, T 1 X1M )[[s1, ... , sd, ]]. 
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By a direct calculation, we have 

Lemma 2.3. 
(8b - ¢)2 = -P(cp) - Q(cp) 

0 2 ,1, " where Q(cp) E Ab' ("'T ) is given by 

Q(cp)(X, Y)f := 

(8b - cp)f([X, cp(Y)]or" + [cp(X), Y]or" - [¢(X), cp(Y)]or") 

for a function f on M. 

Lemma 2.4. 

(1) b-y(T(µ,-l)(s)) E (Js +mµ,+l)C[[s1, ... ,sd,]] ('y = 1, ... ,r), 

Proof. (1) By Lemma 2.3, we have 

where p1 ,0 : CTUIM -t T 1 UIM denotes the projection onto the (1,0)­
part. Hence 

(2) follows from (1) Q.E.D. 

Let F: " ( s) and T µ, ( s) be the solutions of 

(2.8) 
n d 

8b{L F; °'(s) a~a} - (L c/JaT;(s)) 
a=l i a=l 

= -(8b - <,b(T(µ,-l)(s)) (t(Fi(µ,-l) "(s) + F:,;(s)) B~f) 
mod (J's+ mµ,+ 1 )A~'\T' XIM )[[s1, ... , sd' ]]. 

Then it is clear that 

{ 
Fi(µ) "'(s) := F?-l) "(s) + F;1;(s) + F: °'(s) 

T(µ,)(s) := T(µ,-l)(s) + Tµ,(s) 
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satisfy (2.4)µ-(2.6)µ,- Since the solvability of the equation (2.8) is assured 

by Lemma 2.4, we have {Ft) a(s)} and 7(µ)(s) for allµ 2: 0. Q.E.D. 

In the proof of Proposition 2.2, we used the Grauert division theorem 
(cf. [Gr]) in order to solve the linear equations (2.7) and (2.8). 

In order to show the convergence of ¢(t), {b,(t)h~,::;£, f(s) and 

{ Ft ( s)} with respect to the Sobolev norm, we need the coercive estimate 
for the Neumann problem. Though ab-Neumann problem is not the case, 
we remark that the following weak-coercive estimate 

(2.9) 

is enough for the convergence of them with respect the Folland-Stein 
norm 111 I~ ( cf. Part I, section 3.5 for the definition of the Folland-Stein 

norm), as long as ¢(t) is 0 T 1 -valued. 

In fact, if ¢(t) E Ai' 1 ( 0 T 1)[[t1 , ... , td]] is assured in the above con­
struction, we have 

11¢µ(t)11~ << ll19r' NT, R(¢(µ-ll(t))II~ << Cll¢(µ-l)(t)ll~2 

by (2.9) and Part I, Lemma 3.6.3 (we should remark that the estimate 

in Part I, Lemma 3.6.3 holds for all ¢ E Ai'1 ( 0 T 1
)). Where we use the 

same notation A(t) << B(t) as in Part I, Section 3.7. 
Taking account of the following Lemma together with Part I, The­

orems 3.3.2 and 3.5.2, we can trace the above construciton relying on 
- 0 I - A 

the complex (r(M, Eq), 8q) instead of (Ab'q(T ), Br') and obtain ¢(t) 

which is Ai'1 ( 0 T')-valued and satisfies (2.2) and (2.3). (This is the reson 
- Q I -

why the sub-complex (f(M, Eq), 8q) of (Ab,q (T ), Br') was introduced in 
[Ak3].) 

Lemma 2.5. ([My1, Proposition 1.1/) For <p E f(M, E1), P(¢) is 
in f(M, E2). 

Hence, we obtain convergent cp(t) and {b,(t)}i~,~£, by modifying 
the construction as above using (f(M, Eq), aq) and the Hodge decom-

position in Part I, Theorem 3.5.2 instead of ( Ai'q(T1
), aT,) and the 

standard ab-Neumann Hodge decomposition (2.1) respectively. Ifwe set 

'.J := (b1(t), ... , bt(t)) C C{t1, ... , td}· 

then the Grauert division theorem ([Gr]) says that Proposition 2.1 im­
plies 

Q 2 I 

P(cp(t)) E '.JAb:k(T ){t1, ... , td} for all k >> 0. 
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The proof of convergence off ( s) and { Ft" ( s)} is done by the same calcu­

lation as in [My3, Note], since ¢(t) E A~•1 ( 0 T 1 )[[t1 , .•. , td]] holds. And 
we have, by (2.4)µ-(2.6)µ (µ :::: 0), 

Ft'(s) - ftJ(Fj(s), s) E Jsrk(Ui n Uj, l){s1, ... , sd,} (a= 1, ... , n) 

for all k >> 0, 

(Bi, - </>(r(s)))Ft'(s) E Jsrk(Ui, 1){ s1, ... , sd,} (a= 1, ... , n) 

for all k >> 0, 
b-y(r(s)) E Js ('y = 1, ... ,.e). 

Hence we have a Kuranishi semi-universal family of deformations of 0 T 11
• 

The parameter space of that semi-universal family is described as 
b-1 (0) by means of the holomorphic map b : Hl (T 1

) :::> D -+ H2 ~ 

Hl (T 1
) given by h(t) = pP(</>(t)) where p : r(M, E2 ) ----i H 2 is the 

orthogonal projection onto the harmonic space H2 C r(M, E2 ) (cf. Part 
I, section 2.5). 

(II) Next, we consider the case of dimRM = 5. In this case, 
Hj (T 1

) may be infinite dimensional. However, the ab-Neumann har-
T' 

manic space Hi(T1
) is a closed subspace of the £ 2-completion A~;6(T1

) 

of A~•2 (T 1
) and the projection operator onto it makes sense. The Hodge 

decompositions at degree 2 are obtained as follows using the ab-Neumann 
operators at degree 1 

(2.10) 

where PT' denotes the orthogonal projection onto Hi(T 1
). The con­

struction of ¢(t) E A~•1(r')[[t1, ... , td]] in part (I) can be carried out 
using the decomposition (2.10) as follows: Let 

and 

d 

</>1(t1, .. ,,td) := L¢,,.t,,., 
u=l 

</>µ(t) := µ-th homogeneous term of - NT,a;,P(</>(µ-l)(t)), 

<p(µ)(ti,,,,, td) := <p(µ-l)(ti,,,,, td) + </>µ(t1,,,,, td) 
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And let {b,(t)}>..EA be given by 

for an orthonormal basis {e,x}>..EA of A~:6(T1
). Let J be an ideal of 

C[[t1, ... , td]] generated by {b,x(t)}>.EA· If we note that P(¢(t)) E 

JA~• 2 (T1 )[[t1, ... , td]] is equivalent to (P(¢(t)), e,x) E J for all >. E A, 

Proposition 2.1 also holds and Proposition 2.2 can be proved by the 
same argument. Therefore the construction of a formally Kuranishi 
semi-universal formal family in part (I) of this section is also valid for 
the case of dimRM = 5. 

In the case of normal strongly pseudo-convex CR manifolds of real­

dimension 5, T. Akahori constructed ¢(t) E A~'1(T1 )[[t1, ... , td]] which 

is convergent with respect to the 1111~-norm (cf. [Ak4]). 

§3. Smoothness of the Kuranishi semi-universal families 

In this section, we consider the problem of when the parameter space 
of the Kuranishi semi-universal family of CR structures on M is smooth. 
We denote the parameter space of the Kuranishi semi-universal family 
by TcR (in five dimensional case, we denote the parameter space of the 

formally Kuranishi semi-universal formal family by T'cR)-

(I) The Kodaira-Spencer-type smoothness. By the construction of 

TcR or TcR in §2, it is clear that if Hj (T 1
) = 0 then TcR (TcR in five 

r' 
dimensional case) is smooth. 

(II) The Bogomolov-type smoothness. The Bogomolov smoothness 
theorem is a smoothness theorem based on the other principle: In the 
case of deformations of a compact Kahler manifolds, if the canonical 
bundle Kx is trivial, then by the inner product with a non-vanishing 
holomorphic ( n, 0)-form, the integrability condition P( ¢) is converted 
to an equation of ordinary differential (n - 1, 1)-forms. Using the pure 
Hodge structure on a compact Kahler manifold, the converted equation 
is solved without obstructions. Hence the parameter space of the semi­
universal family is smooth. 

On a strongly pseudo-convex CR manifold, there does not exists 
a natural pure Hodge structure much less a (8b, 8b)-double complex. 
In [Ak-My2], we introduced a sub-space FP,q C A};''q(T'). Let 0 be a 
real contact form (that is, a non-vanishing real 1-form which annihilates 
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0 r' + 0 r") and let 

Then a double-complex (FP,q; a, 8) is naturally induced. The higher part 
of the total simple complex of (FM; a, 8) coincides with ( the higher part 
of) the Rumin complex ( cf. (Ru] for the Rumin complex). If there exists 
a ab-closed non-vanishing (n, 0)-form (i.e. there exists a non-vanishing 

w E r(M, /\n(r1 )*) satisfying 8An(T')•w = 0 or equivalently there exists 

a non-vanishing w E r(M, /\ n(T1 UIM )*) satisfying 8,,w = 0), the inner 
product with that (n, 0)-form induces an isomorphism of complexes 

- 0 ' -where (r(M, Eq), 8q) is the sub-complex of (Ab'q(r ), aT') introduced 
by T. Akahori (cf. Part I, Section 3). Hence, the only difference from 
the compact Kahler case is the lack of the pure Hodge structure on 
(FP,q; 8, 8). Because of this lack, the analogue of the Bogomolov smooth­
ness does not necessarily hold in deformations of CR structures (cf. (Ak­
My3]). Hence, we consider unobstructedness of a subspace of H8! (r'), 

T' 

where we call a subspace unobstructed if there exists a holomorphic fam-
ily of CR structures whose infinitesimal deformation space coincides with 
that space. 

Let JP,q := z;,q n z;,q ;z;,q n aFp,q-1 and JP,q := aFp-l,q n 

z;,q /8FP-l,q n 8Fp,q-l with denoting z;,q := Kera n FP,q and z;,q := 

KerBnFM. 

Theorem 3.1. ([Ak-My2}, {Ak-My4}) Suppose that dimRM 2:: 7. 
If Jn- 1,2 = 0 then i-1un-1,1 ) is unobstructed. 

Further developments in connection with deformations of isolated 
singularities are done in (My5] and [My6] using the Hodge structure on 
a strongly pseudo-convex domain ([De], [Ohl], [Oh2], [Oh-Ta]). 

§4. Deformation theory of normal isolated singularities 

In this section, we review briefly deformation theory of normal iso­
lated singularities. Refer to (Tj] and [Gr] for details. 

Let V be a germ of an analytic variety with a unique singular point 
o. In this article, we assume that V is a normal complex space. 
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Definition 4.1. A family of deformations ofV over a germ (S, s 0 ) 

is a fiat holomorphic mapping of germs f: V-; S with f- 1 (s 0 ) '.:::'. V. 

The equivalence of two families are defined by the equivalence of 
the two flat holomorphic mappings and the notion of versality is defined 
in a usual manner. The infinitesimal deformation map is a map p : 

T80 S-; Ext1 (0~,0v) and a holomorphic family is called effective if 
the infinitesimal deformation map is injective. An effective and versal 
family is called a semi-universal family. It is shown in [Tj] that the 
obstruction space is Ext2 (0~, Ov) and H. Grauert ([Gr]) proved the 
existence of the semi-universal family. 

We may assume that Vis a closed subvariety of a ball B(c*) in CN 

defined by h1 = · · · = hm1 = 0 and o is the origin of cN. Denote B := 
B(c*), n := O(a,b), and M := Mc for some fixed O <a< c ::s; b < c*. 

We recall Tjurina's description of Extq(O~, Ov) (cf. [Tj]): The 

sheaf of germs of Kahler differentials n~ is given by n~ := 01/n1v 

where n' is the sub-sheaf of 01 consisting of germs of forms w such that 
- - 1 

w = L>. f>.dh>. + L>. h>.¢>. with J>. E OB and¢>. E Ow Hence, we have 
a free resolution of 0~, 

0 nl nl '°' 0 do om1 d1 om2 d2 oms ds 
+----Hy+---- HB '61 V +---- V +---- V +---- V +---- ••• 

where do(u1, ... ,umJ := L>. U>,dh>,. 
Ext* (0~, Ov) is the cohomology groups of the following complex: 

Since V is normal, this complex is quasi-isomorphic to the following 
complex: 

o - H 0 (n, eB 0 On)~ H 0 (n, 0;'1 ) .'i H 0 (n, 0;'2 ) -1 H 0 (n, 0;'3 ) -

- - 0 
where we note that di(v) = (v(h1), ... , v(hmJ) v E H (0, E>B 181 On). 
Using the commutative diagram, 

0 - E>n 
II 

.!._,, 8B00n 

II 
- Nn;B 

F d* 
-; 8B00n ~ 

! 
0 

where F : E>n -; 8 B 0 On denotes the differential of the natural em­
bedding i: n-; G and Nn;c is the normal bundle of n in G, we have 
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Proposition 4.1. 

(1) Ext0 (n~, Ov) c:::: H 0(n, 8n), 

(2) Ext1(n~, Ov) c:::: Ker{H1 (!1, 8n) ---t H 1 (n, eB 0 On)}, 

(3) Ext2 (!1~, Ov) C:::'. Ker{H1 (n, Nn;B) - H 1 (!1, 0~1 )}. 

Using [Ya, pp.81-82] and [Ho, Theorem 3.4.9] and noting that 
depth Ov,o ~ r is equivalent to Hq(V \ o, Ov\o) = 0 (1-::; q-:;; r - 2) (cf. 
[Bal), we have 

Theorem 4.2. If depth Ov,o ~ 3 and dime V ~ 4, 

(1) Ext1 (!1~,0v) c:::: Hl(T1 U1M), 

(2) Ext2 (n~,Ov) C:::'. Hl(Nn/GIM) C H~JT 1 U1M)-

Remark. (Cf. [Bl-Ep], Propositions 6.1 and 6.2 below.) In the case 
of dimeV = 2: 
(1) Ext1 (!1~,0v) is a finite dimensional subspace of Hl(T1 U1M), 

though the latter space is infinite dimensional. 
(2) Ext2 (!1~, Ov) is a finite dimensional subspace of H1JNn/GIM ). 

Suppose that dime V ~ 4. Take a model of the semi-universal fam­
ily of deformations of V, say f: V ---t S, such that f- 1 (s0 ) c:::: V (s0 ES) 
as germs at the singular point o. We may assume that n c f- 1 (s0 ) and 
let ¢(t) (t E (TcR, 0)) be the Kuranishi semi-universal family of defor­
mations of CR structures on M constructed in §2. Based on Theorem 
4.2, the following comparison theorem is proved. 

Theorem 4.3. ([Bu-Ml}, [My2}) If dime V ~ 4 and depth 
Ov, 0 ~ 3, then (TcR, 0) c:::: (S, s0 ) and the holomorphic family cp(t) (t E 
(TcR,0)) is induced by a holomorphic family of embeddings F: 

F 
MxTcR <---+ V 

l P2 l f 
TcR c:::: S. 

§5. Stably embeddable deformations of CR structures 

A compact strongly pseudo-convex CR manifold arises as a bound­
ary of a Stein space if and only if it is embedded in a complex Euclidean 
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space ([Ha-Lal). Such CR manifolds are called embeddable CR mani­
folds. While all compact strongly pseudo-convex CR manifold of real 
dimension five or higher are embeddable ([BM]), embeddable CR mani­
folds are rare in the three dimensional case. In [Bl-Ep], J. Bland and C. 
Epstein formulated deformation theory of embeddable three dimensional 
CR structures and showed that it is equivalent on the formal deformation 
level to the deformation theory of normal isolated surface singularities. 

In the higher dimensional case, though all compact strongly pseudo­
convex CR manifolds bound Stein spaces, there are differences between 
the Kuranishi deformation theory of CR structures and the deformation 
theory of normal isolated singularities, unless depthOv,o ~ 3 ( cf. [Bu­
Ml, §10]). The Kuranishi deformation theory of CR structures would 
correspond to the non-flat deformation theory (cf. [Es]), while the flat 
deformation theory corresponds to a special deformation theory of CR 
structures. Recently, [My6] generalizes the stably embeddable deforma­
tion theory of three dimensional CR structures in [Bl-Ep] to the higher 
dimensional complex structure case, and shows that it fits to the de­
formation theory of normal isolated singularities. In this section and 
the next one, we consider the CR-version of [My6] and complete the 
Kuranishi program describing the semi-universal family of normal iso­
lated singularities in terms of the CR-language, in the case of complex 
dimension three or higher. 

Let V be as at the beginning of §4 and use the same notation about 
M, 0 r", Band Oas in §4. 

Definition 5.1. Let r be a germ of a complex subspace of Cd at 
the origin defined by an ideal 'Jr C C{ t 1 , ... , td}. A stably embeddable 

" N family of deformations of the CR structure 0 r in C over (r, 0) is 

a holomorphic family ¢(t) of deformations of 0 r" over (r, 0) such that 
there exists 

satisfying 

for all k >> 0. 

We consider a stably embeddable family of CR structures up to 
wiggling in an ambient complex manifold. Hence, we take the following 
notion of versality. 
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Definition 5.2. A stably embeddable family ¢(t) (t E (r, 0)) of 
II N deformations of 0 r in C is K uranishi versal if it has the following 

property: For any family of displacements (in cN) of a neighbourhood 
of M in U, over a germ (S, s 0 ), say 

U '---+ CN X 8 

! 7r ! P2 
s s, 

there exist a holomorphic map r (S, s0 ) - (r, 0) and a holomor­
phic family of embeddings F : M x S - U such that F]Mxo = i and 
the holomorphic family of CR structures induced by F coincides with 
¢(r(s)) (s E (S, so)). 

Let ( ¢( t) ( t E (r, 0)) be a stably embeddable family of deformations 

of 0 r" with which g(t) is associated. Since 

we have 

and 8bv(g(t)) - div(<p(t)) = 0 

for v E r0r. Hence v(¢(t)) is 8r,-closed and div(¢(t)) is ab-exact. 

Definition 5.3. For a stably embeddable family ¢(t) (t E (r, 0)) 
of deformations of a CR structure, the infinitesimal deformation map is 
the linear map 

p: ror- Ker{Hl(r') - Hl(r' cNIM)} 

given by p(v) := the cohomology class ofv(¢(t)). A holomorphicfamily 
is called effective if its infinitesimal deformation map is injective. 

An effective and Kuranishi versal family is called a Kuranishi semi­
universal family. 

§6. Construction of the Kuranishi semi-universal family of 
stably embeddable deformations of CR structures 

In this section, we will use the same notation as in §5. In [M6], we 
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introduced a double-complex Kfi••: 

0 0 

! ! 
0 

Q - I H Ho(n, E0m1 lu) 0 - H (O,T B1u) - -! ! i ! i 
0 A~(T1 U) 

F 
A~(T1 B1u) 

H 
A~(E0m11) 0 - - - -!8 !8 !8 

0 Ari1(r'u) 
F 

Ari1(T1 B1u) 
H 

Ari1(E0m11) 0 - - - -!8 !8 !8 
0 Ari2(T1U) 

F 
Ari2(T1 B1u) 

H Ari2 ( E0m1 1) 0 - - - -!8 !8 !8 

where K~•0 = A~(T1 U) and we denote H 0 (0,E) := {u E A~(E) I Bu= 
O} for a holomorphic vector bundle E over U, i denotes the inclusion 
map and F (resp. H) is the differential of the natural embedding i : 

U-+ B (resp. the homomorphism given by H(v) = (v(h1), ... ,v(hm1 )) 

for VE T 1 Biu), 

Proposition 6.1 ([My7]). 

Extq(O~, Ov) ~ Hq(Kfi••) (q = 1, 2). 

As the CR-version of Kfi••, we consider the following double complex 
K•••· M> 

0 0 

! ! 
0 Hg(T1 B1M) 

H Hg(E0m11) 0 - - -! ! i ! i 
0 Ag(r'u1M) 

F Q I H Ag(E0m11) 0 - - Ab(T B1M) - -! 8b ! 8b ! 8b 
0 A~'1(T1 U1M) 

F 
A~'1 (T1 BIM) 

H A~•1 ( EE)m11) 0 - - - -! 8b ! a,, ! 8b 
0 A~'2(T1 U1M) 

F 
A~'2(T1 B1M) 

H A~•2 ( EE)m1 1) 0 - - - -! 8b ! 8b ! a,, 
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where K'J)r° = Ag(T1 UIM ), Hi(E) denotes the space of all CR-sections 
of a holomorphic vector bundle E on M and we denote by the same 
symbol F the composite of the projection p1 '0 : T 1 --+ T 1 UIM and F : 

T 1 U1M--+ T 1 B1M, and i and Hare the same as above. 

The analytic restrictions T : A~q (T1 U) --+ A~,q (T' UIM) and T : 

A~q --+ A~,q induce a homomorphism of double complexes 

· K•,• K•,• T. {l--+ M· 

Proposition 6.2. T induces an isomorphism 

for q = l, 2. 

For the proof, we use the following lemma. 

Lemma 6.3. Let M be a real hypersurface of a complex manifold 
U and ry : E 2 --+ E 3 a surjective homomorphism of C 00 -vector bundles 
over U. We suppose that there exists a splitting j : E3 --+ E2. Then, 
for any U3 E r(u, E3) and U2 E r(M, E21M) with -y(u2) = U31M, there 
exists u2 E r(U,E2) such that ry(u2) = u3 and u21M = u2. 

Proof. We may assume that O = M x (-E, E). Let u2(x, t) := 

j(u3(x, t))-j(u3(x, 0))+u2(x). Then u2(x, 0) := u2(x) and ry(u2(x, t)) = 

u3(x, t) - u3(x, 0) + -y(u2(x)) = u3(x, t). Q.E.D. 

Proof of Proposition 6.2. The case of q = 2: First, we prove the 
surjectivity. Let 

satisfies d('-P2, g 1 , h0 ) = (0, 0, 0). We will find 

satisfying d(¢2, g1 , ho) = (0, 0, 0) and T(¢2, g1 , ho) = ('-P2, g1, h0 ). Ap­
plying [Ko-Ro, Theorem 7.5] to k0 := -yh0 E Hi(EIM ), there exists 

ko E H 0 (fl, E) such that k0 = k0 where we denote by E the quotient 
bundle t1r1 lu/Nu/B· By Lemma 6.3, there exists ho E A~(EB=1 1u) 

such that ry(ho) = ko and holM = h0 . Since ry(8h0 ) = 8k0 = 0, by 

Lemma 6.3, there exists g1 E A~ 1 (T'B1u) such that a:(gi) = 13-1 (8ho) 

and Tg1 = g1. Since /3 o a(8g1) = 0, by Lemma 6.3, there exists 
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0 2 ' -c/J2 E Afl (TU) such that F¢2 = 8g1 and T<P2 = 'P2· Next, we prove the 
injectivity. Let 

and suppose T(¢;2,[h,ho) = d(c.p1,g0,h_i) where 

('Pl, go, h-1) E Ai•1 (T' UIM) EB A~(T' BIM) EB Hg( EBm1 lM ). 

By the Lewy extension theorem, we have h_ 1 E H 0 (0.,EBm1 0u) such 
that h-llM = h_1. Since 8,y(ho - h_1) = ,y8ho = ,y(3a(g1) = 0 and 
,y(ho - L1)1M = ,y(3a(go) = 0, ,y(ho - Li) = 0. Hence, by Lemma 6.3, 

there exists g0 E A~(T' Biu) such that a(go) = ho - h_1 and 9olM = go. 
- - - - 01 ' 

Since (3a(g1 -ogo) = 8ho-8(ho-L1) = 0, g1 -8go E Afl (TU). Hence, 

if we set F¢1 := -g1 +8go, then 8¢1 = ¢2 because F8¢1 = -8g1 = Fcp2. 

The case of q = 1: First, we prove the surjectivity. Let 

('Pi, go, h_1) E Ai•1(T' UIM) EB A~(T' BIM) EB Hg(EBm1 lM) 

satisfies d(c.p1,go,h_i) = (0,0,0). We will find 

- - 01 ' O ' 0 -(¢1,90,h-1) E Afl (TU) EBA0 (T B) EBH (!1,EBm1 0u) 

satisfying d(¢1,9o,h_i) = (0,0,0) and T(¢1,9o,h_i) = ('P1,go,h-1). 
By the Lewy extension theorem, there exists h_ 1 E H 0 (0., EBm1 0u) such 
that h-llM = h-1• If we set L1 := ,y(L1) E H 0(0., E), L1 = 0 

because k_ 1 1M = 0. Hence h_ 1 E H 0 (0., Nu;B) and by Lemma 6.3, 

there exists 9o E A~(T' B) such that (30:(90) = L1 and 90IM = go. 
- -- - 0 1 ' 

Since (30:(890) = 8h_1 = 0, 890 E Afl (TU). Hence, there exists 
- 01 ' - - -
¢1 E An' (TU) such that F¢1 = 890 and Tcp1 = c.p1. Next, we prove the 
injectivity. Let 

- - - 0 ' and suppose T(¢1, go, h_i) = d(c.po, g_i) where ('Po, g_i) E Ab(T UIM )EB 

Hg(T' BIM ). We have 9-1 E H0(0., T' B) such that 9-llM = g_1 by the 

Lewy extension theorem. Since (h-1 - H(9-1))1M = 0, h_1 - H(9-1) = 
0. Since (3a(90 - 9_1 ) = L 1 - H(9_ 1) = 0, there exists ¢0 E A~(T'U) 

such that F¢o = 9o - 9-1 and ¢01M = 'Po• Since F¢1 = 890 = F8¢o, 
we have ¢1 = 8¢0• Q.E.D 

Let (KM, d) be the total simple complex of the double complex K:J•. 
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Proposition 6.4. If dimRM ~ 5, there exist operators Z : K'lvr -+ 

Ker d and Q : Ker d-+ K'Ji 1 (q = 1, 2), satisfying 

(1) ZIKerd = idKerd, 

(2) do Q o d = d. 

Hence, if we set Hit- := (1-doQ)oZ(K'lvr) and PH:= (1-doQ)oZ: 
K'lvr-+ Hit-, then we have 

Corollary 6.5. For q = 1, 2, 

(1) The natural homomorphism Hit- -+ Hq(K;;/) is an isomor­
phism, 

(2) a homotopy formula u =PHU+ do Q o Zu + (1- Z)u holds for 
u EKivf. 

The existence of Zand Q is proved by a parallel argument of [My6, 
§4] with the 8-analysis on O replaced by the ab-analysis on M, where 

- 0 1 ' we use the standard 8b-Neumann Hodge decompositions at Ab' (T ), 
01 01 - - - -

Ab' (Nu/BIM) and Ab' ; say T/ = PTJ+aba;; NbTJ+a;;abNbTJ, and the ones at 

A~(T1 BIM) and A~; say T/ = pTJ+a;; Nb[)bT/· These Hodge decompositions 
are all possible if dimRM ~ 5 (cf. [Fo-Ko]). At the same time, we have 

the following estimates. We denote by II Ilk and II II~ the Sobolev norm 
and the Folland-Stein norm respectively of order k. 

Proposition 6.6. 

(1) For (a1, bo, c_1) E K 0;/ EB Kii0 EB Kt-1, let Z(a1, bo, c_1) 

(a~,b~,c~ 1) and Q(a~,b~,L 1) = (a~,b~ 1). Then 

holds. 
(2) For (a2,b1,eo) E Kt2 EB Kii1 EB Kt0 , let Z(a2,b1,eo) 

(a;,b~,c~) and Q(a;,b~,c~) = (a~,b~,c~ 1). Then 

holds. 

Here C and c' denote constants independent of (a1 , b0 , c_1) nor 

(a2, b1, co)-

Furthermore, the same adjustments as [My6] are possible. 
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Let 

OK';;/:= {aq E A~'q(0 r') I abaq E A~,q+1 ( 0 r')}, 

° K}/ := {bq E A~'q(0 T1 B1an) I abbq E A~,q+l(0 T1 B1an)} 

where 0 T1 B is the subbundle of r' B given by 

N 

0 T1 B := {v Er' BI v(L lw13 12) = 0}. 
/3=1 
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Then by the parallel argument as in the latter part of [My6, §3], we can 
construct Z and Q so that the following proposition holds. 

Proposition 6. 7. For any cohomology class in H 1(KM) has a 
t t . • oKOl 0 K1O K2-1 represen a ive in M EB M EB M . 

Proposition 6.8. 

(1) Z(a2, b1, ca) E ° K'J,,:/ EB° Ki/ EB K';,j°, 
"f ( b ) E oK0,2 a-, oKl,1 ffi K2,0 
i a2, 1, Co M CD M CD M, 

(2) Q(a2, b1, ea) E ° K}/ EB° K}/ EB Kii-1, 

if (a2, b1, co) E ° K~:/ EB° Ki/ EB Kii0 • 

Using Zand Q, we construct the Kuranishi semi-universal family of 
stably embeddable deformations of 0 r" by the argument in §2. Though 
a stably embeddable deformation of 0 r" is represented by ¢ E K}/ with 

which a g E K }/ satisfying ( 8 - <p) ( i + g) = 0 is associated, we consider 

a triple ( ¢, g, k) E K 01:/ EB K ii4-0 EB Kii-1 satisfying 

P(</>,g,k) := 

(ab</>+ R2(<1>) + R3(<1>), (a - <t>)(i + g), (ii+ k) o (i + g)) = (o, o, o) 

where k denotes a holomorphic extension of k over B(c). Note that 
the holomorphic extension of k is possible in a unique way (cf. [Bl-Ep, 
Theorem A.I]), and that k o (i + g) is considered as a Taylor series. We 
remark that the last term concerns the equation of the image (i+g)(M); 
that is, h+k is the defining equation of the subvariety which (i+g)(M) 
bounds. 

The construction of the Kuranishi semi-universal family using the 
complex (KM, d) is parallel to the argument in §2. In fact, by the 
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0 I - -- -

argument with (Ab'.(T ),ch), p+aba;N and a;N replaced by (KM,d), 
Zand Q respectively, we can prove the existence of 

such that 

(6.1) (¢(0), §(o), k(o)) = (o, o, o), 

(6.2) (<,b(t),g(t),k(t)) = "'£!= 1 (c/Jcr,gcr,kcr)tcr mod m2 

where {[(¢cr,gcr,kcr)]}~=l is a cohomology basis of H 1 (Kl/) and m 
denotes the maximal ideal of C{ti, ... , td}, 

(6.3) there exists an extension k(t) E H0 (.B, OB) of k(t) such that 

P(<,b(t),§(t),k(t)) := 

( 8¢(t) - ~ [¢(t), ¢(t)], (8 - <,b(t))(l + g(t)), (h + k(t)) 0 (l + g(t))) 

E 'J(Kt2 EB Kif1 EB K~0 )[[t1, ... , tJ]], 

where 'J is an ideal of C[[t1, ... ,tJ]] generated by b1(t), ... ,be(t) 
A - £ A 

and P1tP(cp(t), g(t), k(t)) = "'£/3=l b13(t)e13 with respect to a basis 

e1, ... , ee of ri2, 

(6.4) it is formally Kuranishi versal, that is, there exists T and F in 
Definition 5.2 as formal power series in s. 

The proof of (6.4) needs to treat an extra term other than the 
argument in the proof of Proposition 2.2. Let 1r : U ~ S together 
with an embedding W : U <-> cN x S be a family of displacements 
(in CN) of a neighborhood of M in U. Suppose that W is expressed 

by wf3 = wf((i,s) ((3 = l, ... ,N) with respect to a local coordinate 
((l, ... , (f, s1, ... , sd') of U as in (N.3) and the coordinate (w1, ... , wN) 

of CN. By the argument parallel to the proof of Proposition 2.2, we can 
prove the existence of 

f(s) E Cd[[s1, ... , sd, l] 

F?(s) Er(Ui,T1 U1M)[[s1, ... ,sd,]] (a= l, ... ,n) 
A/3 0 - _ 

rJ (s) EH (B(c), OB)[[s1, ... , sd, l] ((3 - 1, ... , N) 



satisfying 

(1) 

(2) 

(3) 

(4) 

(5) 
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f(0) = 0, Ft'(O) = idM, 1,,6(0) = w13 

Ft(s) - J:(j(Fj(s), s) = 0 mod 'Js 

(a- ¢(f(s))) F?(s) = 0 mod 'Js 

rl(wi(Fi(s), s), s) -§f (f(s)) = 0 mod 'Js 

b-y(f(s)) = 0 mod 'Js, 
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where ( 0 = nj ( (j, s) ( a = 1, ... , n) is the coordinate transformation 
and 'Js denotes the defining ideal of S in C{ s 1 , ... , sd, }. Then (6.4) 

follows from the existence of the above { Ft ( s)} and f ( s). 

In order to assure the convergence of ¢(t), g(t), b-y(t) ('y = 1, ... , 

£), f(s) and {F?(s)}, we need the adjustment of Z and Q as above. 
Indeed, by these adjustment and by starting the construction with the 
initial term 

d 

(¢1(t),§1(t),k1(t)) = L(<Pu,9u,ku)ta 
o-=1 

such that 

(<Pu, 9a, ku) E ° K°;l EB° K"Jj0 EB K~-i (a= 1, ... , d) 

holds (it is possible by Proposition 6.7),we have ¢(t) E ° K~/[[t1, ... , td]] 
which assures the convergence of ¢(t) and §(t) for the same reason as in 
§2, using the estimate of Zand Q (cf. Proposition 6.6). The convergence 

of b-y(t) follows from the fact that Pl'H : 1i - K°d EB K}i is injective 

where P denotes the projection operator of K°,:/ EB K"Jj1 EB K~0 onto the 

first two factors. The convergence of f(s) and {F?(s)} is proved by the 
same calculation as in [My3]. 

Hence we have 

Theorem 6.9. Let V be a locally closed normal Stein subvariety 
in cN and Ma link of one singular point V. If dimcV ~ 3, then there 
exists a K umnishi semi-universal family of stably embeddable deforma­
tions of CR structures on M. 

Let V and M be as in Theorem 6.9 and o the normal isolated singular 
point which M bounds. Let f : V - S be the semi-universal family of 
flat deformations of the germ (V, o). We may assume that V C cN x S 
is a subspace and MC f- 1 (s0 ) (s0 ES). 
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Theorem 6.10. Let V and M be as in Theorem 6.9 and f: V-+ S 
as above. Let <jJ(t) (t E (T, 0)) be the Kuranishi semi-universal family 
of stably embeddable deformations of CR structures on M ( obtained in 
Theorem 6.9). Then (T, 0) c:,: (S, s0 ) and there exists a holomorphic 
family of embeddings of M into the family V -+ S such that <jJ(t) (t E 

(T, 0)) is induced from this family of embeddings. 

Outline of the proof. A formal family h1 + k1(t), ... , hm1 + km1 (t) 
of holomorphic functions on B(c) (obtained in Theorem 6.9) defines a 

formal family of subvarieties of B(c), say V C B(c) x T, and we can 
prove that it is a flat family by the same argument as [Bl-Ep, Theorem 
5.1]. Hence, we can compare </J(t) (t E (T, 0)) with f : V -+ S using 
their Kuranishi semi-universality and formally semi-universality respec­
tively. Theorem 6.10 follows from this comparison taking account of 
Propositions 6.1 and 6.2. 

In the case of dime V = 2, our notion of stably embeddable defor­
mations of CR structures is nothing but the one of three dimensional 
embeddable CR structures in [Bl-Ep]. In fact, H 1 (KM) coincides with 
Def 1 ( M, Z, X 0 ) ( the space of first order embeddable deformations) in 
[Bl-Ep], where Z denotes the original CR structure on Mand X 0 coin­
cides with the embedding i. However, the construction of the ( conver­
gent) semi-universal family of stably embeddable deformations of three 
dimensional CR structures on Mis still open due to the difficulty of the 
analysis at KivJ. 
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