A Method of Prolongation of Tangential Cauchy-Riemann Equations

Chong-Kyu Han and Jae-Nyun Yoo*

§0. Introduction

In this paper we present a method of prolongation of tangential Cauchy-Riemann equations. The technique is, roughly speaking, separating the holomorphic derivatives of CR functions from their complex conjugates and applying the tangential Cauchy-Riemann operators to the holomorphic part. Using this method we show that under generic assumptions mappings of a CR manifold into a CR manifold of higher dimension satisfy a certain Pfaffian system in the jet space, which implies the rigidity and the regularity of CR mappings.

Let M be a differentiable manifold of dimension 2m+1. A CR structure on M is a subbundle \mathcal{V} of the complexified tangent bundle $T_{\mathbb{C}}M$ having the following properties:

- i) each fiber is of complex dimension m,
- ii) $\mathcal{V} \cap \bar{\mathcal{V}} = \{ 0 \},$
- iii) [\mathcal{V}, \mathcal{V}] $\subset \mathcal{V}$ (integrability).

It is well known that if (M, \mathcal{V}) is real analytic (C^{ω}) M is locally embeddable into \mathbb{C}^{m+1} as a real hypersurface. In this paper we are concerned with CR mappings of M into a C^{ω} real hypersurface N of \mathbb{C}^{n+1} , $n \geq m$. Let N be a C^{ω} real hypersurface of nondegenerate Levi form in \mathbb{C}^{n+1} defined by $r(z,\bar{z})=0$, where $z=(z_1,\cdots,z_{n+1})$. Let A and B be (n+1)-tuple of nonnegative integers and let $z^A=z_1^{a_1}\cdots z_{n+1}^{a_{n+1}}$ if $A=(a_1,\cdots,a_{n+1})$. After a holomorphic change of coordinates $r(z,\bar{z})$ can be written as

(0.1)
$$r(z,\bar{z}) = z_{n+1} + \bar{z}_{n+1} + \sum_{j=1}^{n} \lambda_j z_j \bar{z}_j + \sum_{A,B} c_{AB} z^A \bar{z}^B,$$

Received September 21, 1995

Revised December 11, 1995

^{*}Both authors were supported by GARC-KOSEF 1995

where each λ_j is either 1 or -1 and each term in the last summand is of weight ≥ 3 . Weight of a term $c_{AB}z^A\bar{z}^B$ is $\sum_{j=1}^n (a_j+b_j)+2(a_{n+1}+b_{n+1})$ as in [Ch-M]. Now let $\{L_1,\dots,L_m\}$ be a local basis for \mathcal{V} . A mapping $f=(f_1,\dots,f_{n+1}):M\to N$ is a CR mapping if and only if

(2.1)
$$\bar{L}_i f_j = 0, \quad i = 1, \dots, m, \quad j = 1, \dots, n+1$$
 (tangential Cauchy-Riemann equations).

For an *m*-tuple of non-negative integers $\alpha = (\alpha_1, \dots, \alpha_m)$ let

$$L^{\alpha} = L_1^{\alpha_1} \cdots L_m^{\alpha_m}.$$

Our main result is

Theorem 2.1. Let M^{2m+1} be a C^{ω} CR manifold of nondegenerate Levi form. Let $\{L_1, \dots, L_m\}$ be C^{ω} independent sections of the CR structure bundle \mathcal{V} . Let N be a C^{ω} real hypersurface in \mathbb{C}^{n+1} , $n \geq m$, defined by $r(z,\bar{z}) = 0$, where $r(z,\bar{z})$ is normalized as in (0.1). Let $f: M \to N$ be a CR mapping. Suppose that for some positive integer k the vectors $\{L^{\alpha}f: |\alpha| \leq k\}$ together with $(0,\dots,0,1)$ span \mathbb{C}^{n+1} . Then f satisfies a complete system of order 2k+1. Thus, f is determined by 2k-jet at a point and f is C^{ω} provided that $f \in C^{2k+1}$.

If m = n, $f: M \to N$ is a CR equivalence, then $\{L_1 f, \dots, L_n f\}$ together with $(0, \dots, 0, 1)$ span \mathbb{C}^{n+1} , thus k = 1 and f satisfies a complete system of order 3. In the case n > m, the fact that f is dertermined by finite jet at a point is the local rigidity of CR mappings. If M is a real hypersurface in \mathbb{C}^{m+1} , a CR mapping f extends holomorphically to a neighborhood of M if and only if f is analytic, thus, if f satisfies the hypothesis of Theorem 2.1 then f extends holomorphically. One can also apply the argument of the Lewy-Pinchuk reflection principle [Forst] to (2.4) of $\S 2$, to get the holomorphic extension of f.

§1. Complete systems

Let f be a smooth (C^{∞}) mapping of an open subset X of \mathbb{R}^n into an open subset U of \mathbb{R}^m . In this section we use superscripts for each components of vectors, thus $x=(x^1,\cdots,x^n)$ and $u=(u^1,\cdots,u^m)$ are the standard coordinates of \mathbb{R}^n and \mathbb{R}^m , respectively, and $f(x)=(f^1(x),\cdots,f^m(x))$.

Let U_k be the space of all the different k-th order partial derivatives of the component of f at a point x. Set $U^{(q)} = U \times U_1 \times \cdots \times U_q$ be the Cartesian product space whose coordinates represent all the derivatives of a mapping u = f(x) of all orders from 0 to q. A point in $U^{(q)}$ will be denoted by $u^{(q)}$.

The space $J^q(X,U)=X\times U^{(q)}$ is called the q-th order jet space of the space $X\times U$. If $f:X\to U$ is smooth, let $(j^qf)(x)=(x,f(x),\partial^\alpha(x):|\alpha|\leq q)$, then j^qf is a smooth section of $J^q(X,U)$ called the q-graph of f.

Consider a system of partial differential equations of order $q \ (q \ge 1)$ for unknown functions $u = (u^1, \dots, u^m)$ of independent variables $x = (x^1, \dots, x^n)$,

(1.1)
$$\Delta_{\lambda}(x, u^{(q)}) = 0, \qquad \lambda = 1, \dots, l,$$

where $\Delta_{\lambda}(x, u^{(q)})$ are smooth functions in their arguments. Then $\Delta = (\Delta_1, \dots, \Delta_l)$ is a smooth map from $X \times U^{(q)}$ into \mathbb{R}^l , so that the given system of partial differential equations describes the subset \mathcal{S}_{Δ} of zeros of Δ_{λ} in $X \times U^{(q)}$, called the solution subvariety of (1.1). Thus, a smooth solution of (1.1) is a smooth map $f: X \to U$ whose q-graph is contained in \mathcal{S}_{Δ} .

A differential function $P(x, u^{(q)})$ of order q defined on $X \times U^{(q)}$ is a smooth function of x, u, and derivatives of u up to order q. The total derivatives of $P(x, u^{(q)})$ with respect to x^i is the unique smooth function defined by

$$D_i P(x, u^{(q+1)}) := \frac{\partial P}{\partial x^i} + \sum_{r=1}^m \sum_{J} u^a_{J,i} \frac{\partial P}{\partial u^a_J},$$

where $J=(j_1,\cdots,j_n)$ is a multi-index such that $|J|\leq q$ and $J,i=(j_1,\cdots,j_i+1,\cdots,j_n)$. For each nonnegative integer r, the rth-prolongation $\Delta^{(r)}$ of the system (1.1) is the system consisting of all the total derivatives of(1.1) of order up to r. Let $(\Delta^{(r)})$ be the ideal generated by $\Delta^{(r)}$ of the ring of differential functions on $X\times U^{(q+r)}$. If $\widetilde{\Delta}\in(\Delta^{(r)})$ for some r, the equation

(1.2)
$$\widetilde{\Delta}(x, u^{(q+r)}) = 0$$

is called a prolongation of (1.1). Note that any smooth solution of (1.1) must satisfy (1.2). If k is the order of the highest derivative involved in $\widetilde{\Delta}$, we call (1.2) a prolongation of order k.

We now define the complete system.

Definition 1.1. We say that a C^k $(k \ge q)$ solution f of (1.1) satisfies a complete system of order k if there exist prologations of (1.1) of order k

(1.3)
$$\widetilde{\Delta}_{\nu}(x, u^{(k)}) = 0, \quad \nu = 1, \dots, N$$

which can be solved for all the k-th order partial derivatives as smooth functions of lower order derivatives of f, namely, for each $a = 1, \dots, m$ and for each multi-indix J with |J| = k,

(1.4)
$$f_J^a = H_J^a(x, f^{(p)} : p < k)$$

for some function H_I^a which is smooth in its arguments.

The idea of complete system is found in the so-called equivalence problem of E. Cartan: Let G be a Lie-subgroup of $GL(n;\mathbb{R})$ and $\pi:Y\to E$ be a principal fibre bundle with the structure group G over a manifold E of dimension n. The equivalence problem is finding canonically a system of differential 1-forms

(1.5)
$$\omega^1, \dots, \omega^N, \text{ where } N = n + \dim G,$$

so that a mapping $f: E \to \tilde{E}$ preserves the G-structure if and only if there exists a mapping $F; Y \to \tilde{Y}$, which is a lift of f, that is, $\tilde{\pi} \circ F = f \circ \pi$, and such that

$$(1.6) F^*\tilde{\omega}^i = \omega^i, \quad i = 1, \dots N,$$

where $\tilde{\pi}: \tilde{Y} \to \tilde{E}$ is principal fibre bundle of the same structure group G and $\tilde{\omega}^i$ are the corresponding 1-forms on \tilde{Y} . (see [Burns,],[BS]). (1.5) is called a complete system of invariants of the G-structure and (1.6) is a complete system of order 1 for F in the sense of Definition 1.1. It turns out that (1.6) is equivalent to a complete system of order 2 for f (see [H3]).

Now we recall that solving the given system of partial differential equations (1.1) is equivalent to finding an integral manifold of the corresponding exterior differential system

$$du_I^a - \sum_{i=1}^n u_{I,i}^a dx^i = 0$$

for all multi-index I with |I| < q and $a = 1, \dots, m$, with an independence condition $dx_1 \wedge \dots \wedge dx_n \neq 0$ on \mathcal{S}_{Δ} (see [BCGGG]). If a solution of (1.1)

satisfies a complete system of order k then we have the following Pfaffian system on $J^{k-1}(X,U)$:

(1.7)
$$\begin{cases} du^{a} - \sum_{j=1}^{n} u_{j}^{a} dx^{j} = 0, \\ \vdots \\ du_{I}^{a} - \sum_{j=1}^{n} u_{I,j}^{a} dx^{j} = 0, & |I| = k - 2, \\ du_{I}^{a} - \sum_{i=1}^{n} H_{I,i}^{a} dx^{i} = 0, & |I| = k - 1. \end{cases}$$

with an independence condition $dx^1 \wedge \cdots \wedge dx^n \neq 0$, where $H_{I,i}^a$ are as in (1.4). Thus, a solution u = f(x) of (1.1) of class C^k satisfies a complete system of order k if and only if

$$(x) \mapsto (x, f(x), \partial_J f(x) : |J| \le k - 1)$$

is an integral manifold of the Pfaffian system (1.7). In particular, we have

Proposition 1.2. Let f be a solution of (1.1) of class C^k . Suppose that f satisfies a complete system (1.4), then f is determined by (k-1) jet at a point and f is C^{∞} . Furthermore, if (1.1) is real analytic and each H_a^a is real analytic then f is real analytic.

§2. Prolongation of CR mappings

In this section we shall prove the following

Theorem 2.1. Let M^{2m+1} be a C^{ω} CR manifold of nondegenerate Levi form. Let $\{L_1, \dots, L_m\}$ be C^{ω} independent sections of the CR structure bundle \mathcal{V} . Let N be a C^{ω} real hypersurface in \mathbb{C}^{n+1} , $n \geq m$, defined by $r(z, \bar{z}) = 0$, where $r(z, \bar{z})$ is normalized as in (0.1). Let $f: M \to N$ be a CR mapping. Suppose that for some positive integer k the vectors $\{L^{\alpha}f: |\alpha| \leq k\}$ together with $(0, \dots, 0, 1)$ span \mathbb{C}^{n+1} . Then f satisfies a complete system of order 2k+1. Thus, f is determined by 2k-jet at a point and f is C^{ω} provided that $f \in C^{2k+1}$.

Proof. $f=(f_1,\cdots,f_{n+1})$ is a CR mapping of M into N if and only if

(2.1)
$$\bar{L}_i f_j = 0$$
, for each $i = 1, \dots, m$ and $j = 1, \dots, n+1$ (tangential Cauchy-Riemann equations)

and $r \circ f = 0$, that is,

(2.2)
$$f_{n+1} + \bar{f}_{n+1} + \sum_{j=1}^{n} \lambda_j f_j \bar{f}_j + \sum_{A,B} c_{AB} f^A \bar{f}^B = 0,$$

where $f^A := f_1^{a_1} \cdots f_{n+1}^{a_{n+1}}$ and the terms in the last summand are of weight ≥ 3 . Let $\alpha = (\alpha^1, \dots, \alpha^m)$ be a m-tuple of non-negative integers. Apply \bar{L}^{α} to (2.2), then by (2.1) we have

(2.3)
$$\bar{L}^{\alpha}\bar{f}_{n+1} + \sum_{i=1}^{n} \lambda_{j} f_{j} \bar{L}^{\alpha}\bar{f}_{j} + \sum_{i=1}^{n} c_{AB} f^{A}(\bar{L}^{\alpha}\bar{f}^{B}) = 0.$$

Since the set of vectors $\{\bar{L}^{\alpha}\bar{f}: |\alpha| \leq k\}$ and $(0,\dots,0,1)$ contains (n+1) linearly independent vectors, we can solve (2.2) and (2.3) for (f_1,\dots,f_{n+1}) in terms of $\bar{L}^{\alpha}\bar{f}, |\alpha| \leq k$, to get

(2.4)
$$f_j = H_j(\bar{L}^{\alpha}\bar{f}: |\alpha| \le k), \quad \text{for each} \quad j = 1, \dots, n+1,$$

where each H_j is an analytic function of the arguments in the parenthesis.

Let $\beta=(\beta_1,\cdots,\beta_m)$ be any multi-index. Apply L^β to (2.4). Then we have

(2.5)
$$L^{\beta} f_j = L^{\beta} H_j(\bar{L}^{\alpha} \bar{f} : |\alpha| \le k).$$

Now let T be a C^{ω} real vector field on M which is transversal to the $\mathcal{V}\oplus\bar{\mathcal{V}}$, so that the set $\{T,L_j,\bar{L}_j,j=1,\cdots,m\}$ forms a basis of the complexified tangent space of M. Let $[L_j,\bar{L}_k]=\sqrt{-1}\rho_{j\bar{k}}T\mod(\mathcal{V},\bar{\mathcal{V}})$. Then $(\rho_{j\bar{k}})$, $j,k=1,\cdots,m$ is a non-degenerate hermitian matrix. We may assume that $[\rho_{j\bar{k}}(0)]$ is diagonal at the referce point $0\in M$. In the right hand side of (2.5), each time we apply L_i to $H_j(\bar{L}^{\alpha}\bar{f}:|\alpha|\leq k)$, computations by chain rule show that T-directional derivatives occurs when commuting L and \bar{L} , and by (2.1) the total order of the derivatives

remains $\leq k$, for example,

(2.6)
$$\bar{L}_{1}L_{1}f_{j} = (L_{1}\bar{L}_{1} - [L_{1}, \bar{L}_{1}])f_{j}$$

$$= \{L_{1}\bar{L}_{1} - (\sqrt{-1}\rho_{1\bar{1}}T + \sum_{i=1}^{m}(a_{i}L_{i} + b_{i}\bar{L}_{i}))\}f_{j}$$
for some functions a_{i} and b_{i}

$$= -\sqrt{-1}\rho_{1\bar{1}}Tf_{j} + \sum_{i=1}^{m}a_{i}L_{i}f_{j} \text{ by (2.1)}.$$

Now we introduce notations: for each pair of non-negative integers (p,q) with $p \geq q$, let C_p be the set of C^{ω} functions in the arguments

$$T^t L^{\alpha} f_i : t + |\alpha| \le p, \quad j = 1, \dots, n+1$$

and $C_{p,q}$ be the subset of C_p of C^{ω} functions in the arguments

$$T^t L^{\alpha} f_j : t + |\alpha| \le p, \quad t \le q, \quad j = 1, \dots, n+1,$$

and let $\bar{C}_p, \bar{C}_{p,q}$ be the complex conjugate of C_p and $C_{p,q}$, respectively. Then (2.5) implies that $L^{\beta}f_j \in \bar{C}_k$, for any multi-index $\beta = (\beta_1, \dots, \beta_m)$.

In particular, for each $i = 1, \dots, m$

$$(2.7) L_i f_i \in \bar{C}_k.$$

Apply \bar{L}_i to (2.7), then by the same calculation as in (2.6) we have

$$(2.8) Tf_i \in \bar{C}_{k+1,k}.$$

Similarly, for each $i, k = 1, \dots, m$, we have

$$(2.9) L_k L_i f_i \in \bar{C}_k.$$

Apply \bar{L}_k to (2.9), then by (2.7), (2.8) and (2.9) we have

$$(2.10) TL_i f_i \in \bar{C}_{k+1,k}.$$

Then by induction on $|\alpha|$, we have

$$(2.11) TL^{\alpha} f_j \in \bar{C}_{k+1,k}.$$

Now apply $\bar{L}_i\bar{L}_k$ to (2.9), then by (2.7) – (2.11) we have

$$(2.12) T^2 f_j \in \bar{C}_{k+2,k},$$

and by induction on $|\alpha|$, we have

$$(2.13) T^2 L^{\alpha} f_j \in \bar{C}_{k+2,k}.$$

Then by induction on t, we have

$$(2.14) T^t L^{\alpha} f_j \in \bar{C}_{k+t,k}, \text{for each} j = 1, \dots, n+1,$$

which shows that

(2.15)
$$C_{p,q} \subset \bar{C}_{k+q,k}$$
, for any pair (p,q) with $p \geq q$.

Taking the complex conjugate of (2.15), we have

(2.16)
$$\bar{C}_{p,q} \subset C_{k+q,k}$$
, for any pair (p,q) with $p \geq q$.

In paticular, if q = k

(2.17)
$$\bar{C}_{p,k} \subset C_{2k,k}$$
 for all $p \ge k$.

Substitute (2.17) in (2.15), to get

(2.18)
$$C_{p,q} \subset C_{2k,k}$$
, for any pair (p,q) with $p \geq q$.

In particular, we have

$$(2.19) C_{2k+1} \subset C_{2k}.$$

Now consider the derivatives $T^tL^{\alpha}\bar{L}^{\beta}f_j$, where $t+|\alpha|+|\beta|=2k+1$. If $|\beta|\neq 0$, this is zero by (2.1). If $|\beta|=0$, then (2.19) shows that $T^tL^{\alpha}f_j$, $t+|\alpha|=2k+1$, can be expressed as a C^{ω} function in the arguments $T^tL^{\beta}f_j:t+|\beta|\leq 2k$, thus, f satisfies a complete system of order 2k+1, which completes the proof.

References

[BCGGG] R. Bryant, S. S. Chern, R. B. Gardner, H. Goldschmidt, and P. Griffiths, "Exterior differential systems", Springer-Verlag, New-York, 1986.

[Burns] D. Burns, CR Geometry, U. of Michigan Lecturenote (1980).

[BS] D. Burns and S. Shnider, Real hypersurfaces in complex manifolds, Proc. Symp. Pure math., 30 (1976), 141-167.

[CHY] C. K. Cho, C. K. Han and J. N. Yoo, Complete differential systems for certain isometric immersions of Riemannian manifolds, Comm. Korean Math. Soc., 8 (1992), 315–328.

[Ch-M] S. S. Chern and J. Moser, Real hypersurfaces in complex manifolds, Acta Math., 133 (1974), 219–271.

[Forst] F. Forstnerič, Proper holomorphic mappings: a survey, in "Several Complex Variables: Proc. of the Mittag-Leffler Institute, 1987–1988 (ed. John Erik Fornaess)", Princeton Univ. Press, Princeton, 1993, pp. 297–363.

[H1] C. K. Han, Analyticity of CR equivalence between real hypersurfaces in \mathbb{C}^n with degenerate Levi form, Invent. Math., 73 (1983), 51-69.

[H2] Regularity and uniqueness of certain systems of functions annihilated by a formally integrable system of vector fields, Rocky Mt. J. of Math., 18, No. 4 (1988), 767–783.

[H3] Analyticity and rigidity of CR immersions, To appear.

Chong-Kyu Han
Department of Mathematics,
Seoul National University,
Seoul, 151-742,
Korea.
ckhan@math.snu.ac.kr

Jae-Nyun Yoo
Department of Mathematics
Pohang University of Science and Technology
Pohang, 790-600,
Korea.
jnyoo@posmath.postech.ac.kr