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Combinatorial Cell Complexes

Michael Aschbacher

We define and discuss a category of combinatorial objects we call
combinatorial cell complezes and a functor T' from this category to the
category of topological spaces with cell structure, whose image is closely
related to the category of CW-complexes. This formalism was developed
to study finite group actions on topological spaces. In order to make
effective use of our detailed knowledge of the finite simple groups, it
seems necessary to make such a translation from a purely topological
setting to the language of geometric combinatorics.

Our functor T assigns to each combinatorial cell complex X its geo-
metric realization T'(X). We show the functor T defines an equivalence
of categories between the category of combinatorial cell complexes whose
cell boundaries are spheres, and a certain subcategory of CW-complexes
we call normal CW-complexes.

We often concentrate on a subcategory of combinatorial cell com-
plexes we call restricted combinatorial cell complexes; the restricted
CW-complexes are the CW-complexes corresponding to the restricted
combinatorial cell complexes under our equivalence of categories. Re-
stricted CW-complexes include regular CW-complexes but also many
other classical examples like the torus, the Klein bottle, and the Poincaré
dodecahedron, which are discussed here as illustrations.

We associate to each restricted combinatorial cell complex X, a sim-
plicial complex K (X) and a canonical triangulation of T(X) by K(X).
The geometric realization of a general combinatorial cell complex can
also be canonically triangulated, but by a more complicated simplicial
complex than K(X). However we do not supply a proof of this last fact
here.

We define cellular homology combinatorially, and show that if X is
restricted and the boundary of each cell is homologically spherical, then

Received November 3, 1994.

Revised February 22, 1995.

This work was partially supported by NSF DMS-9101237 and BSF 92-
00320



2 M. Aschbacher

the homology of T'(X) is the cellular homology of X. We define a duality
operator on restricted complexes which will be used in a later paper to
establish a version of Poincaré duality for homology manifolds with cell
structure which is more concrete than the usual version.

Now some specifics. Let P be the category whose objects are the
posets P such that each ¢ € P is of finite height, and whose mor-
phisms are the maps preserving order and height. Let P* consist of
those members of P with a greatest element. A combinatorial cell
complex consists of a poset X € P, a function f : X — P*, a map
V= Uyex () — X, and maps f, : f(z)(< v) — F(C(v)) for each
v € V, such that

(i) Foreachz € X, ¢ : f(z) — X(< z) is a map of posets preserving
height.

(ii) For each z € X and v € f(xz), f, : f(z)(€ v) — f({(v)) is an
isomorphism of posets.

(iii) If u,v € f(x) with u < v then f, = fy, () © fo-

(iv) For v € f(z), ¢ = Co f, on f(x)(< v).

(v) For each z € X, fo, : f(z) — f(z) is the identity map and
((00,) = z, where oo, is the greatest element of f(z).

The posets f(z), z € X, are the cells of X and the boundary of the
cell f(z) is f(x) = f(x) — {00z} The faces of the cell are its subposets
f@)(£v), v € f(z). A combinatorial cell complex is restricted if ¢ is
injective on f(z)(> v) for each v € f(z). Equivalently, for each z € X
and y < z, the faces f(z)(< v) with v € (7!(y) N f(x) are pairwise
disjoint.

Intuitively a combinatorial cell complex consists of a collection f(x),
x € X, of cells, with the poset structure on X corresponding to inclusions
among the cells. The maps ¢ and f,, v € V, keep track of identifica-
tions of cells with faces of larger cells, and glue cells together at their
boundaries. Extra structure in some category C can be adjoined to each
combinatorial cell to obtain C-cells and a C-cell complex.

The triangulating complex K(X) of a combinatorial cell complex is
defined in Section 5 and the geometric realization T(X) of X is defined
in Section 10. Our major results are Theorem 10.6, which provides the
canonical triangulation of T'(X) by K(X) when X is restricted, Theorem
12.16, which shows the cellular homology of X is isomorphic to the
homology of T(X) when X is restricted with homologically spherical
cell boundaries, and Theorem 15.15, which establishes the equivalence
of categories between combinatorial cell complexes whose cell boundaries
are spheres and normal CW- complexes. The definitions of normal and
restricted CW-complexes appear in Section 15. The reader may wish to



Combinatorial Cell Complezes 3

refer to Sections 13 and 16 for various examples such as the torus, the
Klein bottle, and the Poincaré dodecahedron.

81. Posets and typed simplicial complexes

Let X be a poset. For € X let h(z) be the height of z in X. That
is h(z) is the maximum length of a chain in X with greatest element z,
if the length of such chains is bounded, and co otherwise. Write X (< x)
for the set of elements y € X such that y < z and define X (< z),
X (> z), etc. similarly.

Denote by P the category of posets X such that each z € X is of
finite height. The morphisms in P are the maps of posets which preserve
height. Let P* be the subcategory of those X € P such that X has a
unique maximal member cox.

We regard X as a category whose objects are the members of X and
with Mor(z,y) = {(z,y)} if ¢ < y and Mor(z,y) = & otherwise.

Recall the order complez of a poset X is the simplicial complex O(X)
whose vertices are the members of X and whose simplices are the finite
chains. Often we write X for the order complex O(X) of X.

Example (1). If K is a simplicial complex its simplices form a
poset under the inclusion relation and the barycentric subdivision sd(K)
of K is the order complex of this poset. Thus the vertices of sd(K) are
the finite simplices of K and the simplices of sd(K) are the chains of
simplices of K.

A typed simplicial complex over an index set I is a simplicial complex
K = (V,X) together with a type function h : V — I such that h is
injective on simplices. The morphisms of typed complexes over I are
the simplicial maps which preserve type.

Example (2). The order complex of a poset is a typed complex
where h(z) is the height of z.

We will use the following notational conventions in discussing the
homology of a typed simplicial complex. Let K be a typed simplicial
complex with type function h : V — I and pick a total ordering of I.
Given a k-simplex s in K, write

SZHU:U0A"'Avk€/\k(V)

VES
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for the generator of Cr(K) < /\k(V) corresponding. to s, where s =
{vo, ..., v} with h(vg) < --- < h{vy). Then our boundary map becomes

where s = v A --- Av;_q AVipi A==+ A V.
If s =5, U---Us, is a partition of s we write s = H::1 s;. More
generally if J is some subset of I we can consider

S(J)y={seX:h(s)=J}

Then if J C L C I and ¢c = ZSGE(L) ass € Cu(K) with as € Z, then
s =s8581-J, where sy = {ve€s:h(v)eU} for U=Jor L—J, and
c= ZtEE(J) te;, where ¢, = Ztgs as8r,—y. Indeed

(1.1) Let K be a typed simplicial complex with type function h :
VI, JCLCI, and

c= Z as8 = Z tey € Cu(K)

sex(L) tex(J)

with as € Z. Then

(1) 8(c) = 32 (=1)MO(t)ee + (=1)Mt0(cy)

(2) If 8(c) = 0 then O(ct) =0 for each t € X(J) and }_,c5 () O(t)ct
=0.

(3) If L —J ={l} is of order 1 then

Ct = E at U

u€eVi(t)

where Vi(t) = {v € Linkg(t) : h(v) = I}, atu = awoquy, and 8(ce) =

ZuEVL(t) At u-

(4) If |IL| = k+1 and J = {j} with j the mazimal member of L then
d(c) =3, t0(ct) + (—1)*ct, so 8(c) = 0 if and only if d(c;) = O for each
teX(J) and ), ¢, =0.

Proof. Take L = {0,...,k}. We first prove (1). Sirice
VoA AV = sgn(w)(vﬁ(o) A~ A v,r(k))

for m € Sym(L), changing our ordering of I by a suitable permutation
m, we may assume J = {0,...,j} and the ordering of J and L — .J are
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induced from L. Subject to this choice of ordering, we prove

*) 8(c) =Y _(8(t)ee + (=1)"*1td(cy))-

t

As 9 is linear, it suffices to take ¢ = s. Let ¢t = s; then ¢; = s;,_;. Now
for i < j, s° = t'c;, while for i > j, s = tc, 7 ~'. Therefore

k j k—j—1
a(c) =8(s) =D (—1)'s" = (~1)’tce+ > (—1)"Hec]
=0 =0 i=0
= 9(t)ey + (—=1)771t(cy).

So (1) is established. Further under the hypotheses of (4), the sign
of a permutation 7 mapping & to the first member of L and preserving
the order on L — J, is (—1)* and of course d(t) = 1, so by (*), 8(c) =
> (=1)*¢c; + tO(c;), establishing the first statement in (4).

Suppose 9(c) = 0. Then by (1), 9(c) = A + (=1)M 3", t8(c;) with
A =3 ¢cs, b and (=1)Mtd(cy) = > res, brr, where Sy and St €
¥(J) are suitable subsets of %¥~1(K) and S; is the set of simplices
s € SaUl, S with t C s. In particular the sets Sa,S;, t € £(J), are
pairwise disjoint. As 8(c) =0, b, = 0 for all r, so as our index sets are
pairwise disjoint, (—1)™t8(c;) = 3,5, b7 = 0 and hence 8(c;) = 0.
As this holds for all ¢, also 0 =Y, 8(t)c;.

Thus (2) is established. Finally (2) completes the proof of (4), since
under the hypotheses of (4), 8(t)c; = ¢;. The proof of (3) is straightfor-
ward.

§2. Cells

Let C be a category. Define Cell(C) to be the category of covariant
functors F' : X — C, where X € P* is regarded as a category as in
Section 1. In addition we almost always impose extra conditions on the
cells.

Regard (X, F) € Cell(C) as a category whose objects are the pairs
(z, F(z)), z € X, with

Mor((z, F(z)), (v, F(y))) = {(z,y), F(z,9)} if <y

where F(z,y) : F(z) — F(y) is the C-morphism associated to (z,y) by
F and
Mor((z, F(z)), (y, F(y))) = @ otherwise.
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Notice that as F is a functor, F(z,z) = F(y,z) o F(z,y) whenever
z<y<z

The morphisms in Cell(C) are the covariant functors ¢ : (X, F) —
(Y, G) together with isomorphisms ¢, : F(z) — G(¢(z)) such that for
all z < z in X, the following diagram commutes:

F(z) —%— G(¢(2))
F(w,z)T TG(¢($)7¢(Z))
F(z) —2— G(¢(2))

Here for z € X, (z, F(x)) is an object of (X, F), so ¢(x, F(x)) is an
object of (Y, G) which must then be of the form (¢(z), G(¢(z))) for some
¢(z) € Y. Further as ¢ is a functor, if z; < z2 then Mor((z1, F(z1)), (
2, F(x2))) # @, so Mor((¢(z1), G(¢(x1))), (#(x2), G(d(x2)))) # @ and
hence ¢(z1) < ¢(z2), so ¢ : X — Y is a map of posets.

The category Cell(C) is the category of C-cells. Intuitively a C-cell
is an object F(ocox) in C together with a distinguished family (F(z) :
z € X) of subobjects, called the faces of F(cox), indexed by the poset
X, with the inclusion relation on these subobjects corresponding to the
partial order on X. In the case of combinatorial and topological cells
this intuition is made precise in the following two examples:

Example. (1) Let C = P*. Then Cell(P*) is the category of
combinatorial cells. We also require that a combinatorial cell (X, F)
satisfy F(z) = X(< z) and F(z,y) : F(z) — F(y) be inclusion for all
z,y € X with £ < y. So a combinatorial cell is nothing more than a
poset X in P* together with its faces X (< z), z € X.

(2) Let C = Top be the category of topological spaces with mor-
phisms closed injections. In this case Cell(Top) is the category of topo-
logical cells. We also demand that a topological cell (X, F) satisfy the
requirements that if z,y € X then

(i) Fz,00)(F(z)) N F(y,0)(F(y)) = U.<q,, F(2,00)(F(2)).

(i) If = # y then F(z,00)(F(x)) # F(y, %0)(F(y)).

(i) For each Y C X, U, ¢y F(y,00)(F(y)) is closed in T

Since for x € X, F(z,00) : F(z) — F(o0) is a closed injection,
we can identify F(z) with its image in F(oc). Condition (i) says that if
z < y then F(z) C F(y), and then condition (ii) says the map = — F(z)
is an isomorphism of the poset X with the poset {F(z) : € X} of
distinguished closed subspaces of F'(00).
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§3. Cell complexes

Again let C be a category. Let Complez(C) be the category whose
objects consist of

(1) Some X € P.

(2) A function f: X — Ce€ll(C).

(8) Amap ¢ : V = [[,cx f(x) = X such that for each z € X,
¢: f(x) = X (<L z) is a morphism in P.

(4) For each z € X and v € f(z), an isomorphism f, : f(z)(< v) —
f(¢(v)) of C-cells satisfying:

(5) If w,v € f(x) with u < v then fu = ff, () © fo

(6) For v € f(z), ( =(o f, on f(z)(< v).

(7) For each z € X, fo, : f(z) — f(x) is the identity map and
((c0,) = z, where oo, is the greatest element of f(z).

Formally f(z) is a pair (X, Fy;) where X is a poset and F, : X, —
C is a functor, but we usually write f(z) for the poset X, and F for F.
In particular this is the convention in axioms (3) and (7). However the
isomorphism f, of axiom (4) is an isomorphism of cells, so it consists of
a covariant functor f, : f(z)(< v) — f(¢(v)) and isomorphisms f, ., :
Fp(u) — Fe(y)(fo(u)) for each pair u,v € f(x) with u < v, and these
isomorphisms satisfy Fe () (fo(w), fo(w))© fo,w = fu,wo Fz(w,u) for each
w<u<lw

The morphisms % : (X, f) — (Y, g) are morphisms ¢ : X — Y in P
together with morphisms ¢, : f(z) — g(¢(x)) in Cell(C) for each z € X
such that

(a) For each z € X and v € f(x), the following diagram commutes:

F@)(0) —2— g(@(@))(< ¢a(v))
fol 19z
Few) E2 o)
(b) For each z € X the following diagram commutes:

fl@) —— X(<2)

Y| lv
g(¥(2)) —— Y(< ¥(2))

Further we define composition in our category so that if ¢ : (Y,g) —
(Z,h) is a morphism then (¢ 0 1), = dy(q) © ¥, for each z € X.
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The members X = (X, f) of Complex(C) are called C-cell complezes.
X is a combinatorial cell complex if the cells are combinatorial cells. X
is a topological cell complez if the cells of X are topological.

Intuitively a cell complex consists of cells indexed by the poset X
together with identifications of the faces of cells accomplished by the
maps ¢ and f,,ve V.

Example (1). Let X € P and for z € X and v € X(< z) let
f(z) = X(< z) and let ¢ and f, be the appropriate identity maps.
Then X is a combinatorial cell complex. We call this cell complex the
simplicial cell complex of the poset X.

Remarks. (1) Given any C-cell complex (X, f, F') we can suppress
the C-structure supplied by the functor F' and obtain the combinatorial
cell complex (X, f) of (X, f,F). This gives us a forgetful functor from
C-cell complexes to combinatorial cell complexes.

(2) The combinatorial cell complexes are the simplest cell complexes,
and we can give a somewhat simpler definition of this category equiv-
alent to the specialization of the general definition above to the case
of combinatorial cells: A combinatorial cell complex consists of a poset
X € P, afunction f : X — P*, amap (:V =]] .x f(z) —» X, and
maps f, : f(z)(< v) — f(¢(v)) for each v € V, such that

(i) For each z € X, ¢ : f(z) — X (< z) is a map of posets preserving
height.

(ii) For each z € X and v € f(z), f, : f(z)(< v) — f(¢(v)) is an
isomorphism of posets.

(iii) If u,v € f(x) with u < v then f, = ff, (u) © fo-

(iv) For v € f(z), { = (o f, on f(z)(< v).

(v) For each z € X, fw, : f(z) — f(z) is the identity map and
C(oog) = z.

Moreover a morphism ¢ : (X, f) — (Y, g) of combinatorial cell com-
plexes consists of a height preserving map ¢ : X — Y of posets together
with height preserving maps ¢, : f(z) — g(¢¥(z)) of posets for each
z € X such that ¢ and v, satisfy the commutative diagrams (a) and
(b) for morphisms of cell complexes given earlier in this section.

Define a cell complex (X, f) to be regular if ( : f(z) —» X (< z) is
an isomorphism for each z € X. For example the simplicial cell complex
of a poset (defined in Example (1)) is a regular cell complex. We will
see in a moment that, up to isomorphism, all regular combinatorial cell
complexes are simplicial cell complexes. Define (X, f) to be restricted
if ¢ is injective on f(x)(> v) for each v € f(z). For example regular
cell complexes are restricted, but the converse is certainly not true. The
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combinatorial cell complexes of the torus and Klein bottle, discussed
in Section 13, are examples of restricted cell complexes which are not
regular, as is the complex of the Poincaré dodecahedron, discussed in
Section 16.

The cells of the cell complex (X, f, F') are the C-cells f(z) = (X,
F.). The boundary of the combinatorial cell f(z) is f(z) = f(z) — {z}
and if f(z) is a C-cell with extra structure supplied by F(z) then f(x)
is the C-cell complex with extra structure F(z) = F (@), f(z)- We say

(X, f, F) is of height n if X is of height n.

Example (2). Let 0 < n € Z and let X(n) be the poset {0,1,...,
n} under the usual order. For k € X(n) define f(k) = {(k,i) : 0 <
i < k} and order f(k) so that the map ¢ : f(k) — X(n) defined by
¢(k,i) = i preserves order. Define f ) : f(k)(< (k,7)) — X(n)(L 9)
by f,i(k,3) = (i,5). Then (X(n), f) is a combinatorial cell complex
isomorphic to the simplicial cell complex of the poset X (n). As X (n) is
an n-simplex, we call X (n) the simplicial cell complex of the n-simplez.

(8.1)Let X = (X, f) be a regular combinatorial cell complex. Then
(X, f) is isomorphic to the simplicial cell complex of the poset X.

Proof. Let X = (X, f) be the simplicial cell complex of X. Thus
X =X, f(z) = X(< z) for each z € X, and  and f, are the appropriate
identity maps. Define

¥ (X, f) = (X, f)

and
o (X, )= (X, f)

to be the morphisms with ¥ : X — X and 9 : X — X the identity
maps, ¥, : f(x) — f(z) the restriction of ¢ to f(z), and ¥, = ¥ !
It is essentially immediate from the definition of 1 and +¢ and from
axiom 6 for cell complexes that each of these maps is a morphism of cell
complexes. Of course ¢ =1, so ¢ is an isomorphism.

(8.2) Let (X, f) be a combinatorial cell complex and x € X. Then
the poset f(x) is of height h(z) and oo, is the unique member of f(x)
of height h(x).

Proof. As f(z) € P*, oo, is the unique element of f(z) of max-
imal height. Then as ¢ : f(z) — X (< z) preserves height, h(f(z)) =
h(ocoz) = h({(o0g)) = h(z) by axiom 7 for cell complexes.
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§4. Topological cell complexes

Let X, f, F be a topological cell complex. That is X € P, forz € X,
f(z) is a topological cell with F(v) the topological space associated to
v € f(z) € P*, etc.

Write x for co,. As in Example (2) in Section 2, we regard each
cell f(z) as a topological space F(x) together with a distinguished class
{F(v) : v € f(z)} of closed subspaces. Namely, for v € f(z), we have
a closed injection F(v,z) : F(v) — F(z), and we identify F(v) with its
image under this injection and regard it as a closed subspace of F(z).
Because F' is a functor, these identifications are compatible with the
ordering on f(x); that is if v < v < z then F(u) C F(v) C F(z)
and the identification of F(u) with a subspace of F(z) factors through
the identification of F(u) with a subspace of F(v). Subject to these
conventions, F(z) is a topological space with a poset of distinguished
closed subspaces, and that poset is isomorphic to f(x).

Recall from Section 2 that topological cells are required to satisfy
the property that if u,v € f(x) then F(u,z)(F(u)) N F(v,z)(F(v)) =
Uw<u o F(w, 2)(F(w)), which under our new notational conventions
translates into the statement that F'(u) N F(v) = U, <, , F(w). Also if
u # v then F(u,z)(F(u)) # F(v,z)(F(v)), which in our new language
reads if u # v then F(u) # F(v). In particular it follows that

(4.1) For each x € X and a € F(z) there ezists a unique v € f(x)
of minimal height such that a € F(v).

Next let v € f(x). Then we have an isomorphism f, : f(z)(< v) —
f(¢(v)) of topological cells. The identifications above identify f(z)(< v)
with F(v) and the subspaces determined by the poset f(z)(< v), and
identify f({(v)) with the space F(¢(v)) and its family of subspaces. As
fv is an isomorphism of topological cells, it induces an isomorphism
F, : F(v) — F({(v)) such that if u < v then F,(F(u)) = F(f,(u)).
Further as F is a functor, F, = Fy, (4) 0 Fy.

Let Fr, = [gim(z)=n F'() be the disjoint union of the spaces asso-
ciated to the n-cells of X, and A, = IL,..<,, Fr- Thus for each a € An
there is a unique z(a) € X with a € F(z(a)) and by 4.1 there is/a unique
v(a) € f(z) of minimal height such that a € F(v(a)). Let y(a)y'= {(v(a))
and observe that Fy,,)(a) € F(y(a)) with z(Fy)(a)) = y(a).

For z € X of dimension n, a € F(z), and b € A,_1, define a N\ b if
F,(a) = b for some v € f(z) with a € F(v) and b € F(¢(v)).

We construct a topological space A, by factoring out a suitable
equivalence relation ~,, from An The definition is recursive. Namely the
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equivalence relation ~, on A, is defined to be the equivalence relation
on A, generated by \,, regarded as a relation on F,, U A,_1, and ~,_;
We first observe that:

(4.2) Fora € Ap_1, laln 0 A g = [a]n—1, where [a]y is the equiva-
lence class of a. with respect to ~.

Proof. Tt suffices to show that if € F,, and b,c € A,, with a \, b
and a \ ¢ then [b],_1 = [¢]p—1. Let z = z(a), r = z(b), and s = z(c).
Then a € F(u) N F(w) where v € (7(r) and w € (7!(s). By an earlier
remark, F(u) N F(w) = U,cy,, F(v), 50 a € F(v) for some v < u,w.
Now F¥, (v)(b) = (Ff,(v) o F)(a) = F,(a) = Fy, (v)(c), so by induction
on n, bln-1 = [¢ln-1-

Let A = U. A, and ~ = U,, ~n- By 4.2, ~ is an equivalence relation
on A. Write @ for the equivalence class of a € A and let A = A(X) =
A/ ~. We conclude from 4.2 that

(4.3) For each a € A and nonnegative integer n, aN A, = [a)y,.

For z € X, u € f(z), define I(u) = F(u) = Uyspe (s £ (v). Further
define

Ao Fz) — A

ar— a

and let F(z), I(z) be the image of F(z), I(x) in A under the map ).

(4.4) (1) The map A, : I(z) — A is an injection.

(2) For a € A there exists a unique y(@) € X such that anI(y(a)) #
.

(3) There exists a unique element £(a) € F(y(a)) with {(a) € a

(4) Ifz € X and b € aNF(x), then there exists v € f(z)N¢ ™ (y(a))

with b € F(v) and F,(b) = £(@). Further F(y(a)) = F(v) C F(x).

Proof. Let n = h(z) and a,b € I(z). If & = b then by 4.3, [a}, =
[6],. But by definition of ~,, [a], = {a} for @ € I(z) as h(z) = n. This
establishes (1) and (3).

Let z € X and suppose x is minimal subject to @ N F(z) # ©.
Let b € F(z) Na; claim b € I(z). For if not then b € F(v) for some
m;év € f(:c) and then b ~ F,(b) € F(y) with y = ((v). Now F(y) =

(v) F(z), and the minimality of z is contradicted. In particular
there exists some y € X with aN I(y) # <.
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On the other hand suppose a; € @ with a; € I(y;), for i = 1,2, and
let n = max{h(y1), h(y2)}. Then, as we saw in paragraph one, [aNA4,| =
1, so a1 = az and hence as a; is in F(y) for a unique y € X, y1 = 9.
This establishes (2).

We saw in paragraph two that if z € X and b € @ F(z), then
either b € I(z) or there is y < z and v € (~!(y) with b € F(v) and
F(y) = F(v) C F(z). In the former z = y(a) by (2), so that (4) holds,
and in the latter (4) holds by induction on h(x).

(4.52 (1) The sets I(z), x € X, partition A.

Proof. Part (1) follows from 4.4.2. Let @ € F(z) N F(y). Then by
4.4.4, 4 € F(y(a)) C F(z) N F(y) and y(a) < z,y. Thus (2) holds.

‘We topologize F'(z) by defining a subset C of F(z) to be closed if
and only if A;1(C) is closed in F(z). Then we topologize A by decreeing
that C' C A is closed in A if and only if C N F(z) is closed in F(z) for
each z € X.

(4.6) (1) F(z) is closed in A so a subset C of F(x) is closed in F(x)
if and only if C is closed in A.

(2) Az : F(z) — A is continuous.

(3) If ¢ : f(z) — X(< ) is injective then A\, : F(z) — F(z) is a
homeomorphism.

(4) For eachY C X, U, ey F(y) is closed in A.

Proof. Let C be closed in A. Then by definition of the topology
on A, C is closed in F(z). Conversely if F'(z) is closed in A and C is
closed in F'(z) then C is closed in A, so to prove (1) it remains to show
F(z) is closed in A. We must show F(z) N F(y) is closed in F(y) for all
y € X. By 4.5.2,

F(z)NF(y) = U F(z
zLz,y
Further _
A HF(2) = U Fe
ve¢~1(z)Nf(y)
SO

NIF@nFy)y=  |J  Fl)

ZSZ,’y
ve¢TH(=)Nf(y)
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is closed in F'(y) by axiom (iii) for topological cells in Example (2) of
Section 2. Now by definition of the topology on A4, F(z)N F(y) is closed
in F(y), completing the proof of (1). A similar argument establishes (4).

By definition of the topology on F(z), A, : F(z) — E(z) is contin-
uous, so (2) follows from (1). Assume ¢ : f(z) — X (< z) is injective.
Claim ), : F(x) — F(x) is bijective. For if a,b € F(z) with @ = b then
by 4.4.4, there is u,v € f(z) N (" (y(@)) with a € F(u), b € F(v), and
F,(a) = F,(b) = £(a). As ( is injective, u = v. Then as F, is injective,
a =b. So )\ is bijective. Now for D C F(z) closed, D = X\;1(\;(D)) is
closed, so A\, (D) is closed in F(z) by definition of the topology on F(x).
This proves (3).

(4.7) Let p: (X, f, F) — (Y, g9,G) be a morphism of topological cell
complexes. Then

(1) ¢ induces a continuous map A(p) : A(X) — A(Y) via A(p)(@) =
©(a).

(2) A is a covariant functor from the category of topological cell
complexes to the category of topological spaces.

Proof. Let @ = A(p). Observe first that ¢ is well defined, since
if a; € @, i = 1,2, then a; € F(v;) C F(z;) with v; € ("!(y), where
y = y(@) and Fy,(a;) = £(a) € F(y). Then Gy () (p(a:)) = (£(@)), so
p(a1) ~ ¢(£(a)) ~ p(az).

Next claim ¢ : F(z) — G(p(z)) is continuous for each z € X. For
if C is a closed subset of G(p(z)) then )\;(lw)(C) is closed in G(p(z))
and then as ¢ : F(z) — G(¢(x)) is continuous, cp‘l()\;(lw)(C)) is closed
in F(z). Soas Ay 09 = @ o, A (@71(C)) is closed in F(x).
Therefore 3 1(C) is closed in F(z), so indeed ¢ : F(z) — G(p(z)) is
continuous. Therefore by 4.6 and the definition of the topology on A(X)
and A(Y), ¢ : A(X) — A(Y) is continuous. Hence part (1) of the lemma
is established. Part (2) is straightforward.

85. The triangulating complex of a combinatorial cell complex

Let (X, f) be a combinatorial cell complex. Let V = V(X) =
[,cx f(z) be the disjoint union of the posets f(x), = € X. So for

each v € V there exists a unique ((v) € X with v € f({(v)).
For v € V define

L(w) = {u €V : fi,(v) > u for some w € F({(v))(> v)}.
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(5.1) Let z € X, v € f(z), u € L(v), and w € f(z)(> v) with
fuw(v) 2 u. Then

(1) ¢(u) = ¢(w).

(2) If (X, f) is restricted then w is the unique z € f(x) (> v) with
- ((2) = ((u) and we denote w by f,(v).

Proof. As fu(v) > u, u € f(¢(w)), so {(u) = ((w). If X is re-
stricted then for each y € X there is at most one z € f(z) (> v) with
¢(z) =y, so (2) holds.

Define the graph A = A(X) of the cell complex X to be the graph
with vertex set V and u adjacent to v if u € L(v) or v € L(u). The
clique complez of a graph I' is the simplicial complex with vertex set I"
and simplices the cliques of I'. Denote by K (X) the clique complex of
A(X). We call K(X) the triangulating complex of X.

(5.2) If u € L(v) then ((u) < ((v) < {(u) < {(v).

Proof. AsAu € L(v), there is w € f(z)(> v) with f,(v) > u. Then
{(w) = ((w) <{(v), ¢(v) = ((fu(v)) 2 ((u), and {(v) < ((w) = ((u).

(5.3) If u,v € V are adjacent with {(u) = {(v) and ((u) = ((v)
then u = v.

Proof. We may take u € L(v). Let z = {(v) and w € f(z)(> v)
with f,(v) > u. Then ¢(w) = {(u) = {(v) = z, so by 3.2, w = oo, = z.
Then v = f;(v) > u, so as {(v) = ((u) and ¢ preserves height, v = .

For s C A define X (s) = {{(v) : v € s} and ((s) = {¢(v) : v € s}.

(5.4) Let s be a simplez in K(X). Then
(1) There is a unique ordering vg, ...,V of the vertices of s such
that v; € L({v;) for 0 <i<j <k.

(2) C(vo) < -+ < (k) < {(v0) < -+ < (k).
(3) Assume (X, f) is restricted and let w; = f,, (vg). Then w; is the
unique w € f(C(vp))(> vg) with ((w) = C(v;). Moreover wy < --- <

wy = ((vk) and fo, (w;) > v; for j > .

Proof. Induct on the dimension k of s. The case k = 0 is trivial,
so take k > 0. By 5.2, X(s) and ((s) are chains, so pick vy € s with

((vg) maximal, and subject to this constraint, with {(v;) maximal. Let
t = s — {vx}. By induction on k, there is a unique ordering vy, ..., vg_1
of t satisfying the conditions of the lemma. Let ¢ < k. By 5.3 and
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the choice of v, either ((v;) < C(vg) or C(v;) < C(v). Then by 5.2,
v; € L(vg), and ¢(v;) < ¢(vg) < C(v;) < C(vy), establishing (1) and (2).

Thus it remains to prove (3), so we may assume X is restricted.
By 5.1.2, w; is the unique w € f(C(vx))(> i) with ¢(w) = ((v). By
induction, z; = f,,(vk_1) is the unique z € f(C(vk_1))(> ve_1) with
¢(z) = C(’Uz) for ¢ < k. Further zg < --- < zk 1 and f,(25) > v
Now fol (z) > fol  (vk—1) and w; > vr > fol (vk-1), so as X is
restricted, w; = whl_l(zz). So as z; > z for j > 4, w; > w;. Then
Jw; (wi) > fu,(vk) > v;, completing the proof of (3).

For s a simplex of K(X), Lemma 5.4 says that X (s) has a greatest
element ¢(s).

(5.5) If s is a simplex of K(X) then dim(s) < h(((s)) and dim(s) <
X+ IC(s)] — 2

Proof. Let s = {vo,...,vr} be ordered as in 5.4. By 5.3, for each
1 <i<k, C(Ui—l) < C('Ui) or C(vi—l) < C('Uz) Let ¢(Z) = C('Ui—l) or
¢(v;—1) in the respective case. Then the map ¢ : {i : 1 < i < k} —
X (s) — {C(s)} U ¢(s) — {y} is an injection, where y = ((v;). Therefore
the second remark in the lemma holds. Also by 5.4, {¢(4) : i} is a chain
of length k — 1 in X (< ((s)), so the first remark holds.

(5.6) Let (X, f) be of height n and V(n) = {(m,k) : 0 <k <m<
n}. Define 7:V — V(n) by 7(v) = (R(C)), h(C(v))). Then K(X) is a
typed simplicial complez over V(n) with type function T.

Proof. This follows from 5.3 and 5.4.

Remark 5.7. Observe we have a covariant functor K from the cat-
egory of combinatorial cell complexes to the category of typed simpli-
cial complexes. We have already associated a typed simplicial complex
K(X) to X. Suppose a : X — X is a morphism of combinatorial cell
complexes. Then for z € X, we have a map a, : f(z) — fla(z))
of posets which induces a map K(a) : V(X) — V(X) defined by
K(a)(v) = ag(,y(v). Ifu € L(v) there is w € f(z )(= v) with fy,(v) > u.
Then as

@) w) — f(al))(< aw(w))

ful VFagw)
FCw) =05 flaC(w))
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commutes,

K(a)(u) = ag,)(u) < ag,)(fulv))
= Fau(w)(@2(v) = fr(a)w)(K(2)()),

with K(a)(v) = az(v) < az(w) = K(a)(w), so K(o)(u) € L(K(a)(v)).
Thus K (o) : A(X) — A(X) is a map of graphs, and thus induces a
simplicial map from K(X) to K(X). As « preserves height, K (o) also
preserves the type function 7 of Lemma 5.6. It is easy to check that
K(aofB)=K(a)o K(f), so K is indeed a functor.

Example 5.8. Consider the simplicial cell complex (X (n), f) of the
n-simplex defined in Example (2) in Section 3. The set V(n) = {(k,1) :
0<i<k<n}is V(X(n)). Denote by K(n) the triangulating complex
K(X(n)) of X(n). Then for (a,b),(a,B) € V(n), (a,b) € L(e,B) if
and only if b < 8 < a < a. The complex X(n) is regular and hence
restricted. Observe that if (a,b) € L(a, 3) then f(a,b)((a, B8)) = (a,a).

In the remainder of this section we discuss the triangulating complex
K (n) of the simplicial cell complex X (n) of the n-simplex. Observe
first that we may regard V(n) as the lower diagonal elements in an
n + 1 by n + 1 square array. From this point of view, for (a,f3) €
V(n), L(e, B) is the set of entries in V(n) living in the rectangle with
corners (5,0), (8,0), (a,0), (a, B) sitting directly above and to the left
of (a, 8). Similarly those (a,b) with (o, 8) € L(a,b) form the rectangle
with corners (o, §), (o, @), (n,8), (n,a), sitting directly below and to
the right of (a, §).

Next 5.4 translates into the statement:

(5.9) A subset s of V(n) is in the set ¥(n) of simplices of K(n)
if and only if we can order s so that s = {(a;,03;) : 0 < i < k} with
Bo<  <Bp<ap < <oy

For (a, B) € V(n) define
l(a,B) ={(a,b):a=aandb=F—-1lorS=band a=a—1}

and a directed graph structure on V(n) by e — f if e € I(f). Notice if
e — f then e is adjacent to f in the graph A(n) of X(n). Also e — f if
e and f are adjacent lattice points in the array V(n).

For s € X(n), let a*(s) = max{a : (o, B) € s} and a.(s) = min{a :
(e, B) € s}. Define 5*(s) and B.(s) similarly.
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(5.10) The mazimal simplices ¥*(n) of K(n) are precisely the di-
rected paths p = pg - - - p,, of length n in the directed graph (V(n), —) such
that Pi = Pi—1, Po = (a*(p)70); Pn = (’I’l, /3*(17)); and a*(p) = ,8*(])) In
particular o*(p) = n and B.(p) = 0.

Proof. Let p be a maximal path and order p as in 5.9. Notice
Bo = Bu(p), ao = au(p), B = B*(p), and a = a*(p). Now p U
{(n, Br), (a0, 0)} € E(n), so by maximality of p, n = a = o*(p) and
0= o = Bu(p). If p; ¢ l(piy1) then aj11 —a; > 1or Bip1 —B; > 1, or
i1 — a; = Bip1 — B = 1, and we adjoint (a; + 1, 8;), (s, B; + 1), or
(s +1, 8;) to p in the respective case to contradict the maximality of p.
Thus p is a directed path in (V(n), —). Notice the length of the path p
is the number N of changes down and to the right as the path proceeds
from pg to pg, since at each step there is exactly one such change. Fi-
nally pU {(n,a0)} € Z(n), so (n,ay) = pr by maximality of p. Thus
B*(p) = ap = ax(p). This implies that n = N, so p is of length n,
completing the proof.

Remark 5.11. Lemma 5.10 says the maximal simplices p of X(n)
are all of dimension n and are the paths in the directed graph (V(n), —)
within rectangles R(k) with corners (k,0), (k, k), (n,0), (n, k) running
from the upper left hand corner (k,0) to the lower right hand corner
(n, k), where k = 8*(p) = a(p)-

§6. Affine space, convex sets, and triangulations

Let R™ be n-dimensional Eulidean space. An affine subspace of R"
is a coset U + = of a linear subspace U of R™. The dimension of the
affine subspace U + z is dim(U), with the empty set of dimension —1.

A subset C of R" is convez if for each z,y € C and each real number
t with 0 <t <1, tx+ (1 —t)y € C. The intersection of any family of
convex sets is convex, so for each subset S if R™ there is a smallest
convex subset [S] of R™ containing S. We call [S] the convex closure of
S.

Define the affine dimension of a subset S of R™ to be the smallest
dimension of an affine subspace containing S. Thus the affine dimension
of S is dim(U(S)), where U(S) = (z —y : z,y € S), since U(S) + s is
the smallest affine subspace containing S for any s € S. In particular
dim(S) < |S| — 1 and we say S is affine independent if dim(S) = |S|—1
achieves this bound.

The next lemma is well known and easy to prove:
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(6.1) (1) For S C R™,

[S]:{Zazm:OSawER, Zawzl, and

zeX z
X is a finite subset of S},

(2) Let S = {zo,...,zx} be an affine independent subset of R™.
Then each x € [S] can be written uniquely as ¢ = Y, a;x; with 0 < a;
and Y. a; = 1.

(6.2) Let X, Y C R™ be convez, X = [z, XNY], Y = [y, X NY],
and [z,y] CX UY. Then X UY is convez.

Proof. XUY C Z=[X,Y]=[XnNnY,z,y]. Let z € Z — [z,y].
Then z =ax+by+ (1 —a—b)v forsomev € XNY and 0 < a,b € R
with a+b < 1. Then w = (az +by)/(a+b) € [z,y] € X UY, so we may
take w € X. Hence z = (1 —a—b)v+ (a+b)w € X, so that Z C X UY
as desired.

(6.3) Let z,y,z,w € R", 0 < e <1, p=¢ez+(1—¢e)y, ¢ =
ex+ (1 —e)w, X =[p,e, f], and Y = [g, e, f], where either
(Ne=czx+(l—¢)y and f =ez+ (1 — g)w, or
(2)e=ez+(1—¢)z and f=cy+ (1 —e)w.
Then [p,g) C X UY and X UY is convez.

Proof. We assume (1) holds; the proof of when (2) holds is essen-
tially the same. Notice if [p,¢q] € X UY then X UY is convex by 6.4, so
it remains to show [p,¢g] C X UY.

Let 0 <t <1andwv=tp+ (1—t)g. Suppose first ¢ > 1/2 and let
a=b=1—t. Thenl—a—-b=2t—1and0<2t-1<1as1/2<t<1.
Then by 6.1, v =ae+bf+(1—a—b)p € X. Solet t < 1/2 and this time
takea=b=t,sothat 1 —a—b=1—-2t and 0 < 1 - 2t < 1 because
0<t<1/2. Nowv=ae+bf+(1—a—-b)geY.

In (2) takea=(1—1t)e/(1—¢)and b=1—¢if t > ¢, whileift <e
take a =t and b =t(1 — ¢)/e.

Let K = (V,X) be a finite dimensional simplicial complex with
vertex set V' and simplices X.. A triangulation of a topological space T
by K is a map ¢ of ¥ into the set of closed subspaces of T' together with
homeomorphisms

©s : p(s) — @(s) = [u(s,v) : v € 5] C RF

for each k-simplex s of K such that
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(T1) For s,t € X, ¢(s) N(t) = p(sNt), where p(F) = 2.

(T2) T = U,ex (s) and C C T is closed in T if and only if CNe(s)
is closed in ¢(s) for all s € 3.

(T3) For each k-simplex s of K and ¢t C s, ¢(s) = [u(s,v) : v € 5] is
of affine dimension k and ¢ s = @5 0 ;' acts on @(t) = [u(t,v) : v € t]
via Qe 1 D ey Guu(t,v) = Y, oy auul(s, v).

A morphism of topological spaces ¢ : K* — T% i = 1,2, with
triangulation is a pair (o, 3) where a : K! — K? is a simplicial map,
B :T! — T? is continuous, and for each s € ¥!,

(T1) B(#'(s)) € ¢*((s)), and

(Tp) asopl = cpi(s) o B, where a; : @'(s) — ¢?(a(s)) is defined by

Ot Zavu(s,v) — Zavu(a(s),a(v)).

VES vES

Example 6.4. Let I be an index set and for J C I let Ty = [u; :
j € J] be a convex subset of R* of affine dimension k = |J| — 1. Let
K = (Xo,X) be a typed simplicial complex with type function h : X —
I (cf. Section 1) and let X = sd(K) be the barycentric subdivision of
K.

We now construct a topological cell complex x(K). We begin by
defining X to be the poset of x(K). (Notice X € P.) Then for z € X we
form a topological cell f(z) = (f(x), F(x)) by letting f(z) = X (< ) and
for u < v < z, defining F(v) = Tj(yy, (Where h(v) = {h(2) : z € v} C I,
keeping in mind that v is a simplex of K') and defining F'(u,v) : F(u) —
F(v) to be the inclusion map. The map ( is defined to be the identity
map on each f(z), and for v € f(z), fo : f(z)(< v) — f({(v)) is
also the identity map. It is straightforward to check that x(K) is a
topological cell complex. Notice that the combinatorial cell complex of
the topological cell complex x (K) is the simplicial cell complex of sd(K).
In particular x(K) is a regular complex.

We next extend x to a covariant functor from the category of typed
simplicial complexes over I to the category of topological cell complexes.
Namely if o : K — K is a morphism of typed complexes over I, then
a extends to a map x(a) : sd(K) — sd(K) of posets. via x(a)(z) =
{a(v) : v € z}. Next for z € X, define x(a); : F(z) — F(x(a)(z)) to
be the identity map. This makes sense, since as « preserves the type
function h, h(z) = h(x(a)(z)), so F(z) = F(x(a)(z)). It is easy to
check that x(a) is a morphism of topological cell complexes and that
x(a o B) = x(a) o x(8), so that x is indeed a covariant functor.
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Form the topological space A = A(x(K)) as in Section 4. We next
construct a triangulation ¢ : K — A. Namely for z € X define p(z) =
F(z) C A. Then for v € z, define u(z,v) = Up(v) € Th(z) and define
@0z (@) = Thz) by @ : @+ a. The map @, is just the inverse of
As : F(z) — F(z) defined in Section 4 by \,(a) = @. As C is injective,
4.6.3 says the map A, is a homeomorphism, so ¢, is a well defined
homeomorphism.

By definition of the space A, p(z) = F(z) is a closed subspace of
A for each z € X and axiom (T2) for triangulation holds. By 4.5, for
z,y € X, p(x)Np(y) = F(2)NF(y) = U,<, , F(2) = F(zny) = p(zNy),
so axiom (T1) holds. Finally if y < x then

Py,z = Pz © (p?;l = )\E_l @) )‘y : Zaiui — )\z—l(z aiui) = Zaiui,
% % i

so axiom (T3) is satisfied.

Let T(K) = A(x(K)) and ¢¥ : K — T(K) the triangulation just
constructed. The space T(K) is the geometric realization of the simpli-
cial complex K.

To complete our discussion in this example, we extend T to a co-
variant functor from the category of typed simplicial complexes over [
to the category of topological spaces with triangulation by essentially
viewing T as the composition Ty = A o x. We have just seen that y is a
functor and by 4.7, A is a functor, so Tp = Aoy is a functor from typed
complexes to topological spaces. Suppose o : K1 — K? is a morphism
of typed simplicial complexes over I. Define T(a) = (o, To(@)). As Ty is
a covariant functor, T{(a o 8) = T'(a) o T(8), so it remains to check that
T(«) is a morphism of triangulated spaces. We leave that as an exercise
for the reader.

§7. Polyhedral cell complexes

A polyhedral cell complex is a C-cell complex (X, f) where C is the
category of triangulated topological spaces. Thus for x € X and v €
f(z), F(v) is a topological space together with a triangulation BY :
f(z)(£ v) = F(v), where f(z)(< v) is regarded as an order complex.
Moreover for each simplex s of f(z)(< v), B%(s) = B¢®(f,(s)) and if
u < v and s C f(z)(< u) then B%(s) = B¥(s) and F(u,v) : F(u) —
F(v) satisfies F(u,v)(B%(s)) = B%(s) and B? o F(u,v) = B¥ on B%(s).
Finally f, : f(z){(< v) — f(¢(v)) as an isomorphism of polyhedral cells

satisfies F,(B®(s)) = BS™)(£,(s)) and Bﬁfq()g) o F, = BY on B"(s).
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A morphism of polyhedral cell complezes o : (X, f,F,B) — (X, f, F,
B) is amorphism « : (X, f,F) — (X, f, F) of topological cell complexes
such that for each « € X and each simplex s of f(z), a,(B%(s)) C
B*(®)(a(s)) and a, 0 B* = Bg((:)) o a, on B*(s).

Example 7.1. We proceed as in Example 6.4. In particular let
I={0,1,2,...} and for J C I let Ty = [u; : j € J] be a convex subset
of RF of affine dimension k = |J| — 1.

Let X = (X, f) be a combinatorial cell complex. We associate a
polyhedral cell complex P(X) = (X, f,F,B) to X. For z € X the
polyhedral cell associated to z is obtained using the construction of
Example 6.4. Namely if h(z) = n then f(z) is a typed complex over
I with respect to the height function h : f(z) — I, so we can apply
the geometric realization functor T' of Example 6.4 to f(z) and obtain
a topological space F(z) = T(f(z)) (the geometric realization of the
order complex of f(z)) and a triangulation B® : f(z) — F(z). Then
for v € f(z), F(v) is the subspace |J,, B*(uv) = T(f(z)(< v)) and
B? : f(z)(< v) — F(v) is the restriction of B* to f(z)(< v). For u < v,
F(u,v) : F(u) — F(v) is the inclusion map. Notice as B” and B are
restrictions of B*, BY = B¥ on B“(s) for each simplex s of f(z)(< v).

Axioms (i) and (iii) for topological cells (given in Example (2) of
Section 2) are satisfied by 4.5.2 and 4.6.4.

Next as T is a functor, the isomorphism f, of posets induces an
isomorphism T'(f,) = (fv, Fyv) of spaces with triangulation from BY :
f(x)(< v) — F(v) to BS™: f(¢(v)) — F(¢(v)). In particular F},(B*(s))
= B¢®)(£,(s)) for each simplex s of f(z)(< v) and Bﬁfz) oF, = B! on
B¥(s).

We next extend P to a functor from combinatorial cell complexes to
polyhedra] cell complexes. Let @ : X — X be a morphism of com-
binatorial cell complexes. Our morphism P{a) : P(X) — P(X) is
defined so that its image under the forgetful functor is «. Further
for x € X, a, : f(x) — f(a(z)) as a map of posets is a morphism
of typed complexes, so applying our functor T we get a morphism
T(az) = (ag,T;) of spaces with triangulation from T'(f(x)) = F(z) to
T(f(a(z))) = F(a(z)), where T, = A(x(a,)). We let P(a), = T'(ay).

Check that P({«) is a morphism of polyhedral cell complexes. More-
over as T(a o 3) = T(a) o T(B) we have P(ao () = P(a) o P(8).

In the remainder of this section assume (X, f, F, B) is a polyhedral
cell complex. We adopt the notational conventions of Section 4. In
particular for z € X and v € f(z) we regard F(v) as a subspace of
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F(z), so that F(u,v) becomes inclusion for each u < v. Similarly for
s a simplex of f(z)(< v) we can regard B¥(s) = B*(s) and write both
as B(s). Already by the definition of polyhedral cell complex we have
B?(s) = B¥(s), and as F (v, z) is inclusion, BY = B¥o F(v,z) = B%, and
we denote both by Bs. That is B : f(z) — F(z) is a triangulation and
for each v € f(z), B restricts to a triangulation B : f(z)(< v) — F(v).
Let S be a simplex in f(x). We have a homeomorphism Bg : B(S) —
B(S) = [uj : j € J], where J is the set of heights of vertices in S
and by axiom (T3), Bs(v) = up(y). Now if U C S and a, > 0 with
Yoveru @ = 1, 3, ayupy is a well defined element of E(S') and we
define 3, .y auB(v) = B3'(3, avtn(w)). Notice by axiom (T3) that
this definition is independent of the choice of S containing U. Further

(7.2) If w € f(z) and U is a simplez in f(x)(< w) then Z = f,(U)
is a simplea in f(C(0), Fu(BO)) = B(Z), Soyey auB() € BU) €

F(w), and
Fu( Z a,B(v)) = Z a,B(z).

velU 2€Z

Proof. Let ¢ =3} yaB(v). AsU C f(z)(< w), § = U U {w}
is a simplex in f(x) and by the discussion above ), a,up() € B(w) so
q € B(w) C F(w). As fy is a map of posets, Z = f,,(U) is a simplex in
f(¢(w)). Finally by definition of polyhedral cell complex, BzoF,, = By,

S0 Fw(q) =Fy (BL_II(ZU avuh('v))) = BEI(Zv avuh(u)) = Zz Az Un(z)-

Next we associate to each z € X a graph I = I'(z) called the residual
graph of X at x. Let '

V(z) ={(w,v) :w € f(z) and v € f(¢(w))}.
For (w,v) € V(z) define
L(w,v) = {(w',v') e V(z) : v’ <w, fu(w')>v, and fy,w)(v) > '}
Finally let I'(x) be the graph with vertex set V(z) and (w, v) adjacent
to (w',v') if (w',v") € L(w,v) or (w,v) € L(w',v").
Let K(z) be the clique complex of I'(z). We call K(z) the residual

complex of X at x. Observe

(7.3) Let z € X, (f(x),g) the simplicial cell complex of the poset
f(z), and for w € f(z) and u < w, write (w,u) for u regarded as an
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element of f(z)(< w) in V(f(z),g). Then the map (w,v) — (w, f,1(v))
is an isomorphism of K(z) with K(f(z),g).

Next pick a real number 0 < e < 1. For v € f(z) define
P(v) =eB(z)+ (1 — €)B(v) € F(x).

As z is the greatest element of f(z), {z,v} is a simplex of f(z) and so
the notation is well defined.
Next for (w,v) € V(z) define P(w,v) € F(z) by

P(w,v) = F;' (P(v)) = eB(w) + (1 — &) B(f; (v))-

w

Thus P(w,v) € F(w). Indeed

1 )(7.4) For w € f(z), P(w) € I{z) and for (w,v) € V(z), P(w,v) €

Proof.  Recall from Section 4 that I(w) = F(w)~Ue y(z)(<w) F ()-

Now B is a triangulation of F'(z) with F'(w) the union of the topological
simplices B(S), S C f(z)(< w), so

F(z)=F(z) - I(z) = U F(w):UB(S).

c#wE f(x) z¢S

So as P(w) = eB(z)+(1—£)B(w) with 0 < ¢ < 1, P(w) is contained only
in B(S) for simplices S containing z, and hence P(w) € I(x). Similarly
P(v) € I({(w)), so P(w,v) = F'(P(v)) € F,; (I({(w))) = I(w).

(7.58) If s = {(wo,v0); - - - , (Wg,vk)} is a simplex in K{x) = K(T'(z))
then

(1) We can order s so that 5o < 07 < --- < U < wp < -+ < wy,
where T; = fol(vs).

(2) (wj,v;) € L{w;,v;) for j <.

(3) S(s) = {vs,w; : 0 < i < k} is a simplex of f(x) with P(w;,v;) €

B(S(s)) for each i.

(4) ( v) € B(S) for some simplezx S of f(z) if and only if w and

W' (v) €

Proof. Parts (1) and (2) follow from 7.3 and 5.4. Notice (1) implies
S(s) is a simplex of f(z). Then (4) completes the proof of (3), so it re-
mains to prove (4). But (4) holds as P(w,v) = eB{w)+(1— E)B(f L(v))
and B: f(z) — F(z) is a triangulation.

Let s be a simplex in K(xz). By 7.5, there is a smallest simplex S(s)
of F(z) such that P(e) € B(S(s)) for each vertex e € s. For § a simplex
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of f(z) containing S(s), identifying B(S) with B(S) we can consider the
convex closure ¢(s) = [P(e) : e € s] of the points P(e) in B(S). Because
B is a triangulation, these identifications are independent of S. We let
u(s,e) = P(e), ¢(s) = ¢(s), and ¢s : ¢(s) — H(s) be the identity map.
The remainder of this section and all of the next section are devoted to
showing:

Theorem 7.6. ¢ : K(z) — F(z) is a triangulation of F(x).

As @(s) is a convex subset of B(S(s)), ¢(s) is closed in B(S(s)), and
then as B(S(s)) is closed in F(z), we conclude ¢(s) is closed in F(x).
If ¢t C s then by 7.5, S(t) C S(s), so »(t) C ¢(s) and then as ¢, and ¢,
are identity maps, ¢y s = @5 © ;' @(t) — ¢(s) is the inclusion map.
Therefore axiom (T3) in the definition of triangulation is satisfied by ¢
if {P(e) : e € s} is affine independent for each s. Hence

(7.7) To establish Theorem 7.6 is suffices to verify:

(1) For s,t € X(z) the set of simplices of K (), p(s)Np(t) = p(snt).

(2) F(z) = UsEZ(z) @(s).

(3) {P(e) : e € s} is affine independent of order dim(s) + 1 for each
s € X(s).

(4) C C F(z) is closed in F(z) if and only if C Np(s) is closed in
©(s) for each s € X(x).

For 7.7.1 is axiom (T1), while 7.7.2 and 7.7.4 are axiom (T2). Finally
we have seen that 7.7.3 implies axiom (T3).
So it remains to verify 7.7.1 through 7.7.4.

(7.8) (1) We may assume X = {xo < --- < &, = x} is a chain and
¢: f(z) = X(< =) is an isomorphism for each i.
(2) Under this assumption on X, 7.7.2 implies 7.7.4.

Proof. Consider the polyhedral cell complex X = (X, f, F,B),
where X = f(z), f(v) = f(v), F(v) = F(v), ¢ : f(v) — f(z) is inclu-
sion, f, is the identity map, and B(v) = B(v) for each v € f(z). Notice
that the combinatorial cell complex (X, f) of this polyhedral complex
is just the simplicial cell complex of O(f(z)); in particular by 7.3, there
is a natural isomorphism of K(z) with K (X, f). Then if Theorem 7.6
holds for X it also holds for X, so replacing X by X, it suffices to take
X = f(z) and ¢ : f(z) — X an isomorphism.

Let S be a simplex of X, ¥g = {s € X(z) : B(s) C S}, s € (=),
and sg = {(w,v) € s:w, fy1(v) € S}. Then ¢(s) N B(S) C B(S(s)) N
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B(S) = B(S(s)NS) as B is a triangulation. Also ¢(s) N B(S(s)NS) =
©(sg) as the elements of ¢(s) are of the form

Zai(sB(wi) + (1 =€) B(fy; (v3)))

while the elements B(w;), B(f;!(v;)), are affine independent in B(S(s)).
Therefore ¢(s) N B(S) = ¢(ss). In particular for s,t € X(z), p(s) Ne(t)
— 6(s)N B(S() Np(t) 1 B(S(5)) = (ss() N (tsey) = 0(57) Aoltr),
where T' = S(s) N S(t), since s C S(s) so Sy = sr and similarly
ts(s) = tr. Therefore if for each simplex T' and each e, f € X7, we have
p(e)Np(f) = ¢(enf), then 7.7.1 holds. Similarly if B(T) = U, ¢, ¢(e),
for each T, then 7.7.2 holds as does 7.7.4. The latter holds because B
is a triangulation so C is closed in F(x) if and only if C N B(T) is
closed in B(T) for each T, and because 7.7.4 holds when T = X and
B(T) = Ugex, ¥(e), since in that case ¥(z) is finite. So it suffices to
show for each simplex S of X that ¢ : g — B(S9) satisfies 7.7.1 through
7.7.3. Hence replacing X by S, we may assume X is a chain. That is
(1) holds, and we have already observed that (2) holds.

In the remainder of the proof we assume X is as described in Lemma
7.8. Therefore X is an n-simplex with greatest element z and ( is
injective, so by 3.1, (X, f) is the simplicial cell complex of the n- simplex.
That is (X, f) is isomorphic to the complex (X (n), f) of Example (2) in
Section 3, so K = K(X) is isomorphic to the complex K(n) = K(X(n))
discussed in Example 5.8 and subsequent lemmas in Section 5. Further
by 7.3, the residual complex K(z) is isomorphic to K. Thus without
loss we may take X = X(n), V(z) = V(X) = V(n), etc. We adopt the
notational conventions of Section 5 used to discuss X (n).

Next F(z) = [B; : 0 < i < n] is the convex affine subspace of R™
generated by the affine independent set of vectors B; = B(z;), 0 < i < n.
Further for (o, 3) € V(n), P(a,8) = eBy + (1 — €)Bg.

(7.9) For each s € X(z), {P(e) : e € s} is affine independent of
order dim(s) + 1.

Proof. Without loss s is a maximal simplex, so s = {sg,...,sn}
is described in 5.10. Translating, we may take By = 0, so it remains
to show Y = {P(s;) : 0 < i < n} contains a basis for R™ as a linear
space. As {Bo,...,Byp} is affine independent and generates F(z) of
affine dimension n, { By, ..., B} contains a basis for R™ so it suffices to
show B; € (Y) = U. Assume not; then as ¢ = a or 3 for some (a, 3) € s,
we can pick k minimal subject to B, or Bg, ¢ U, where s = (o, Bx).
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As s is a path in (V(n), =), si € l(sg—1) so without loss ay = a;_; and
Bk = Br—1 + 1. Now P(s;) =eBq, + (1 —€)Bg, € U. By minimality of
k, Ba,_, €U, so as ap = ax-1, Bg, € U, contrary to the choice of £.

Remark 7.10. Observe that if (a, 8) and (v, 6) € V(n) with a > ~v
then one of the. following holds:

(0)y>pB>6andyezt.

() 3>yand y ¢ z*.

(I) B< éand y ¢ z+.

Define a subset 6 of V(n) to be convez if whenever u = (o, §) and
v = (v,6) are in @ with o > v and u ¢ v* then

(i) (e, v) and (B, 6) are in 0 if B > ~, and

(ii) (v, ) and («,6) are in 6 if 8 < 6.

Theorem 7.11. If0 C V(n) is convezx then D(0) = C(0) is con-
vez, where D(0) = U,cg oex ¢ and C(0) = [P(z) : z € 6].

Proof. First if 6 is a clique then D(6) = ¢(0) = C(0) by definition
of p(6). So we may assume 6 is not a clique. In particular as we prove
Theorem 7.11 by induction on |#], the induction is anchored.

Let N = min{a: (a,3) € 6} and M = max{8 : (o, 3) € 6}. Assume
first that N > M. Then whenever (a, 3), (7,6) € 6 with o > v, we have
B < M < N <+, so by Remark 7.10, either (v, ) € (o, 8)* or 8 < 6,
v < a, and as 6 is convex, (v, 8) and («, 6) are in 6.

Let 0* = {(a,8) € 6: 0 € (o, 8)*}. As 0 is not a clique, 6* # @.

Define
fo = min{8 : (a, §) € 67},
ap = max{a : (a, () € 0*},
o = min{e : (e, 8) € 6%},
B = max{B: (a1, 8)0"},

v = (a,-,ﬁi), and 0@' =6 - {’Ui}.

By definition of vy, there exists (v, 68) € 8 — v, so by definition of
Bo, we have § > (3. Thus by an earlier remark, Gy < é and v < ap.
Then by definition of vy, a; < v < ag. By symmetry, 8o < S1.

Claim 6y is convex. For if (a, 8), (v,6) € 8 with a > v and (v, 6) ¢
(@, B)*, then by an earlier remark, 3 < 6, v < o, and (v, 3), (a,8) € 6.
As By < B < 6, (a,6) # vy, while if 8 = By then ap > a > v, so
(v, B) # vo. Hence (v, 8), (o, 8) € 6 and 6 is indeed convex. Similarly
01 is convex.

Next let X = C(6p), Y = C(61), ¢ = P(w), and p = P(v;1). Then
X =[p,C(6oNnby)] and C(6pNb;) CXNY,s0X = [p,XNY] and
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similarly ¥ = [¢,X NY]. By induction on the order of 6, X = D(f,)
and Y = D(6,).

Also p = P(v;) =€Ba, + (1 —€)Bg, and g = P(vg) = €Bg, + (1 —
€)Bg,. Further ap > ;1 and 31 > fo, so vg ¢ vi- and hence by an earlier
remark, (oo, 81), (a1, 00) € 0, and indeed as neither is vy nor vy, each is
even in 6o N 0;. Therefore

e=P(ag,01) =€Bo, +{(1—€)Bg, € XNY

and

f=€Ba, +(1—¢€)Bg, € XNY.
Thus X UY is convex by 6.3.1 and 6.2. Finally observe that X UY =
D(6), so that Theorem 7.11 holds in this case. For as vy ¢ vi, each
s € ¥ with s C 0 is contained in 6y or 6.

This leaves the case N < M. This time let ag = N, By = max{g :
(ao,B) €0}, B =M, oy =min{e: (a, 1) € 0}, v; = (o, 5i), and 6; =
0 — {v;}. This time By < ap =N < M = f; < ay, s0 vy ¢ vi. Again 6,
is convex. For if (o, 3), (7,6) € 6 with a > v and (v,6) ¢ (o, 8)* then
by Remark 7.10, either (i) 8 > v and (a,7), (8,6) € 0, or (ii) 8 < § and
(7,8),(,8) €6. Incase (i), a > 3 >v> N = oy, so vg # (a,7y) or
(8,8). Similarly 81 =M > 3 > v > 6, so v1 # (a,7y) or (8,6). Thus
(a,7), (B,8) € 6Ny in case (i). On the other hand in case (ii), 5 < 6,
s0 a >y > ag and if v = ap then By > 6§ > B, so vg # (v, 0) or (&, §).
Also 31 > 6 > B and if B; = 6§ then oy < v < a, s0 v1 # (v, 3) or (o, 6).
So again («,7),(5,6) € 6o N 6.

So 6y and 6; are convex. Again let X = C(6p), Y = C(61), ¢ =
P(v), and p = P(v1). As before, X = [p,XNY]and Y = [¢, X NY],
and by induction, X = D(6y) and Y = D(6;). As vy ¢ vi, as oy > ap,
and as 1 = M < N = ay, it follows from Remark 7.10 and the convexity
of 6 that (a1,a0), (81,00) € 6, and then even are in 6y N ;. So

e = P(ay,0p) =€Bgy, + (1 —¢€)Bg,
and
f= P(ﬂ],ﬁo) =¢eBg, + (1 - E)Bﬁo
are in D(6p N 6;) C X NY. Hence by 6.3.2 and 6.2, X UY is convex.
Finally as above, X UY = D(0), completing the proof.
Corollary 7.12. A=,y ¥(s)-
Proof. Notice V(n) is convex with ¥ = {s € ¥ : s C V(n)}, so
D(V(n)) = U,ex 0(s) is convex by Thoerem 7.11. But B, = P(a,a) €

C(V(n)) = D(V(n)) for each a, 0 < o < n. Therefore A = [B, : 0 <
a < n] C D(V(n)), completing the proof.
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§8. The proof of Theorem 7.6 is completed

In this section we complete the proof of Theorem 7.6. By 7.8 and
the discussion following the proof of that lemma, we have reduced to
the case where X = X (n) is an n-simplex with maximal member z = n,
A=F(z),X=%(z),and K = K(X) = K(z) = K(n). By 7.7, 7.8, 7.9,
and 7.12, it suffices to prove:

(8.1) For s,t € X, p(s) N(t) = p(sNt).
Recall we have
V(n)={(a,8):0<B<a<n}

with (o/,3') € L(a,B) ifand only if 3’ < 8 < o < .

Let y € A. Recall from Section 7 that A = [B; : 0 < ¢ < n] is
the polytope in R™ generated by the affine independent set of vectors
B; and for («,8) € V(n), P(a,8) = €By + (1 — €)Bg. In particular
y = }::;0 a;B; with a; > 0 and ), a; = 1, and that this expression is
unique as the B; are affine independent. Define

sup(y) = {i € X : a; # 0}

and for s € X let
sup(s) = {a, 8 : (a, B) € s}

(8.2) If s,t € T with sup(s)Usup(t) # X then o{(s)Np(t) = p(sNt).

Proof. Let m ¢ sup(s) Usup(t). Replace X by X = X — {m} =
X(n—-1), V(n) by

V(n)={(ae,B) €V(n):a,e X} =V(n-1),

and A by A = [B; : i € X]. Then by induction on n, @ : K(V(n))
A is a triangulation, where @ is the restriction of ¢ to K (
sup(s) Usup(t) C X, s and t are simplices of K(V(n)), so ¢(s
5(5) N (1) = (s 1) = p(s N1D).

From now on pick s,t € X such that ¢(s) Np(t) # (p(sﬁt) IfrCs
then o(r) = [P(v) : v € 7] C [P(v) : v € s] = ¢(s), so p(sNt) C
©{(s) Ne(t). Thus we can pick y € p(s) Np(t) —p(sNt). By a remark
above there is a unique expression, y = ., a;B; with 0 < a; € R and
>, ai=1. Also by 7.9, {P(v) : v € s} is affine independent, so there is
a unique expression y =y b, P(v) and similarly a unique expression
Y= et wP(v). Forr € ¥ and v € X, let

I(y) ={a:(a,7) €r} and Jr(7) = {8: (v,5) €}

/—\A
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(8.3) sup(y) = sup(s) = sup(t) = X.

Proof. If sup(y) = X then as sup(y) C sup(s) Nsup(t), the lemma
holds. So it remains to prove sup(y) = X. So assume not. Let X; =
{a,B :ba,p) # 0} and 5o = {v € 5: b, # 0}. Define X, and ¢o similarly.
Then X # sup(y) = X, = Xy, X, = sup(so), and X; = sup(tp). By 8.2,
y € ©(sp) Np(te) = w(so Nto) C p(sNt), a contradiction.

(8.4) (1) For a > B*(s), aa/e =} g¢ 7, (a) ba,6-
(2) For B < ax(s), ag/(1—¢) = ZaeIs(ﬂ) ba 8-
(3) If k = a(s) = B*(s) then

ar =¢( Z beg) +(1—¢) Z ba, k-

BeJ (k) a€ls(k)

Proof. 'This follows as P(a,8) = B + (1 — €)Bg and §*(s) <
0 (8).

Recall from Section 5 that we can think of the members of V(n) as
the lower diagonal elements in an n 4+ 1 by n + 1 square array. Notice
we have a duality on statements concerning V(n) and K corresponding
to the involution on X interchanging ¢ and n — ¢ for each ¢ € X, and
this corresponds to reflecting V(n) about the “diagonal” {(n,0), (n —
1,1),...,(0,n)}. In applying this duality, one must also interchange the
roles of € and 1 — . We use this duality frequently from now on. In
particular for k € X define

R*(k) = {z = ZziBi € A: ZZ’ > 6}
i i>k
and define R, (k) dually. That is
R.(k) = {zz ZziBi : Zzz >1 —5}
i i<k

Define a. (s, y) to be the minimum « such that b, g # 0 for some (¢, §) €
s and define 8*(s,y) dually.

(8.5) Let k € X. Then
(1) y € R*(k) if and only if k < au(s,y),
(2) y € Ru(k) if and only if k > B*(s,y).

Proof. We prove (1); then (2) follows by duality. Suppose first that
k < a.(s,y). Thenby 83,3 5, a5 =e(3 0, b0) +(1—€) X oer, iy Dok



30 M. Aschbacher
= e+ (1 — ¢€)b, where b > 0, since ) =1 and b, > 0. Thus if
k < a.(sy), y € R*(k).

On the other hand if k > 8*(s, y) then by 8.4, > .51 a; = (X, 0) >k
b,) < e with equality if and only if k¥ < o (s,y), where v = (a(v), B(v)).
So as a.(s,y) > B*(s,y), we conclude that if y € R*(k) then k£ >

Qi (S’y)'

(8.6) (1) 0(s) N R (k) = {2 € 9(s) : an(s,2) > k} = p(s"(K)),
where s*(k) = {(a, ) € s: a > k}.

(2) 0(3) N Ru(k) = {2 € 9(5) : B(5,2) < K} = plsu(k)), where
se(k) ={(a,8) € s: B <k}

Proof. As usual (2) is the dual of (1) so it suffices to prove (1).
But (1) follows from 8.5.1.

(8.7) cu(s) < B(t) + 1

Proof. Let a,(s) = k. By 8.6, ©(s) C R*(k) and ¢(t) N R*(k) =
@(t*(k)). Similarly setting j = 8*(¢), we have () C R.(j) and ¢(s) N
R.(j) = ¢(3+(4)). Therefore

p(s) N@(t) = ¢(s) N R.(5) N p(t) N R (k) = ¢(s.(5)) N (¢ ()

)
Assume j < k— 1. Then k — 1 ¢ sup(t*(k)) as a.(t*(k)) > k> k—1
and 3*(¢*(k)) < j < k — 1. Therefore by 8.3, ¢o(s) N () = p(s«(3)) N
w(t* (k) = p(s.(j) Nt*(k)) C p(sNt), a contradiction.

vEs

(8.8) Suppose v € sNt. Then

(1) If sup(s — {v}) # X then b, # c,.
(2) If Js(@) = {B} then Ji(a) # {5}.
(3) If I,(8) = {a} then I;(B) # {a}.

Proof. Assume sup(s — {v}) # X but b, = ¢, = b and let ¢y =
(y—bP(v))/(1—b). As P(v) € p(snt), v’ € o(s)Ne(t)—p(sNt). Then
as sup(y’) C sup(s — {v}) # X, 8.3 supplies a contradiction.

Thus (1) is established. Notice (3) is the dual of (2) so it remains
to prove (2). Assume Js(a) = {8}. Then by 8.4, a,/e = b, and a ¢
sup(s — {v}). Thus by (1), b, # ¢y, so by symmetry, J(a) # {3}

We next observe that we can choose s,t to be maximal simplices
of dimension n. For s C 59 and ¢ C ty where sy and ty are maximal
simplices and hence of dimension n by Remark 5.11. Notice if r C sq
then by definition of ¢, ¢(r) Ny(s) = ¢(rNs). Hence if ¢(s0) Np(to) =
©(soNto) then ©(s) N(t) = ¢(s) Ne(t) Np(soNto) = ¢(s) Np(soNt) =
@(sNt). Therefore replacing s,t by so, to if necessary, we may assume s
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and ¢ are of dimension n. Hence s and ¢ are described in 5.10 and 5.11.
In particular a,(s) = 5*(s) and a.(t) = B8*(t). Let & = a.(s).

(8.9) .. (t) = au(s) = k.

Proof. Without loss £ > a.(t). Then as a.(t) = 5*(t), g*(t) =
k—1 by 8.7.

Now a.(s,y) > a«(s) = k, so by 8.5, y € R*(k) and then by another
application of 8.5, a,(t,y) > &. Then as X = sup(y), v = (0,x) and
u = (n,x — 1) are in t. By duality, 3*(s,y) < k — 1 and u,v € s.

Next by 8.4, either I;(0) = {«} and b, = ao/(1 —¢) or Jo(k) = {0}
and b, = a,/e. Similarly either I;(0) = {x —1,x} and ¢, = ap/(1—¢) or
Ji(k) = {0} and ¢, = a,/e. Then by 8.6, we may asssume I;(0) = {«},
by, = ao/(1 — ¢), Ji(k) = {0} and ¢, = ax/e. Now by 8.4, ao/(1 —
€) = ¢, + C and a,/e = b, + B, where C = Eaelt(O) Ca0 — Cy and
B =3 5c.(x) br,g — by. But then

by=a/(l—¢)=c,+C=a,/e+C=b,+B+C.

We conclude B = C = 0 and hence b, = ¢,. Now 8.6 supplies a
contradiction.

Let S be the set of maximal simplices m of K with a.(m) = k.
Thus s,t € S. We partition S into four classes S;, 1 < i < 4, where

Sy ={meS: Jn(k) ={0} and I,,,(k) = {n}},
Sy ={m € S : J(k) = {0} and J,(n) = {k}},
S3={me S :I,(0)={x}and I,(x) = {n}},
Sy={m e S:I,(0)={xk} and Jn(n) = {k}}.

Notice that the duality map interchanges S» and Ss and fixes S; and
S4. So anything we prove about Sy establishes the dual statement for
S5 at the same time.

(8.10) IfS € S3U 8, then t € S1US,.
Proof. This follows from 8.8.3.
(8.11) Let s € S3U Sy and define

b= Z ba,rm» c= Z [

a€ls (k) acli(k)

b= Z beg, ¢ = Z Ca\0

0<BeJs (k) r<a€I(0)
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Then
(1) b<candb+c* #0,
(2) s € Ss.

Proof. By 8.10,t € S; U S2. Thus Ji(x) = {0}, so cko = ax/ec —
(1 — €)c/e by 8.4.3. Similarly as s € S3 U Sy, I,(0) = {k}, so b* =
En<a€Is(0) ba,0 = 0. Now by 8.4.2,

@) ap/(1 —¢) =bgo+b" =cuo+c”

S0 beo = Cko + ¢* = ax/e — (L —€)c/e + ¢*. Next by 8.4.3, ax/e =
beo +b+ (1 —e€)b/e, so

beo=as/e— (1—¢e)c/e+c* =beo+b+(L—e)(b—c)/e+c*
so that
(**) O0=b+c*+(1—¢)b—c)/e.

Therefore to prove (1) it suffices to show b < c¢. Assume otherwise.
Then b,c*,(b—c) > 0, so by (**), b = ¢* = b—c = 0. But then
b* = c¢* =0, so by (*¥), be,0 = ¢k, and applying 8.8.1 to v = (k,0), we
have a contradiction.

Therefore (1) is established and it remains to prove (2), so we may
take s € Sy. Therefore Jy(n) = {k}, so by 8.4.1, a,/e = by, . Hence
b=bn +b= an/e + b, where b = Zn>a€[s(n) ba,x. Again by 8.4.1,
¢+ Cpx = an/e, where é = Zn>5€]t(n) ¢n,3. Therefore

b:an/s+l~)=cn,,¢+l~)+é.

Finally as s € Sy, t ¢ Sz by the dual of8.10,s0¢ € S;. Thus I;(k) = {n},
SO ¢ = cp . Therefore b =cy, . +5+é:c+5+62 c, as 5,62 0. This
contradicts (1).

(8.12) Up to a permutation of {s,t} and duality, (s,t) € S1 x i,
S3 X Sl, or 53 X 52.

Proof. This follows from 8.10 and 8.11.

Define v = (e, 8) € s to be an inflection point of s if v = (k,0) or
(n, k), or |Jg(a)] > 1 < |I5(B)|. By 5.10, s = {vg,...,v,} is a directed
path in (V(n),—) with vg = (k,0) and v, = (n,k). Let v;y,...,v;
be the inflection points with i; < i;41. Then v;; = (ag,fo) = (,,0)
and v; = (n,k). If s € S1 U Sy then Js(k) = {0}, so v;;, = (a1, 050)
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with K = a9 < a3. Then proceeding recursively, v, = (o, 5,) and
Vigry, = (ry1,Br) with a; < o441 and B; < Bi41. Further if s € S;
then I, (k) = {n}, so Il = 2N is even and (n,x) = (an,On), while if
s € Sy then Jy(n) = {k} sol =2N + 1is odd and (n,x) = (ani1,0n)-
Then dualizing the case s € Sy to get the answer when s € S3, we
conclude:

(8.13) The inflection points for s are:

(1) (o, Bi), (@it1,08:), 0 <i < N, and (an,Bn) = (n,k), if s € 51.
(2) (ai,ﬁi), (ai+1,ﬂi), 0<i< N, ifS €5,.

(3) (@i; Bi), (s Biv1), 0<i < N, if s € Ss.

(8.14) For s € 1 U Sy we have:

(1) ba,g, = aa/e for a; < a < aiy1.

(2) ba,;,p =ag/(1—¢), for Bi1 < B < Bi.

(3) bai,p, = boo+1/e Zn<a§ai ao —1/(1—¢) 20§ﬁ<,8¢ ag

=1- 1/52n<a§n a, —1/(1—¢) ZO§ﬂ<,8i ag
(4) bai,,@i—l = 1/(1 - E) Zogﬁgﬁi_l ag — 1/E Zn<a<ai Go — bn,O
=1/(1—¢€) X o<p<pir @8 +1/€3 0, <acn 8o — 1

unless s € Sy and 1= N + 1.
(5) bn,O =1- 1/Ezm<asnaa.
(6) If s € Sy then b, . = an/c.

Proof. If a; < a < ajyq then J,(a) = {B;} because (o, 3;) is not
an inflection point since v;,,,, = (j41,0;) is the next inflection point
after vy,; = (o, B;). Therefore (1) holds by 8.4.1. Similarly (2) holds.
We prove the first equality in (3) and (4) by induction on ¢. To anchor
the induction, recall (o, By) = (%,0), so (3) holds when ¢ = 0. Then for
i >0, 8.4.1 says

boi B = Ga; /€ — Z bai,p = o, /€ — Z b,

BiF#BeTs (i) Bi—1<B<B;

which by (2) and induction on i is equal to

o, /e— > ag/(l—e)—1/(1—¢) Y as+1/e I aGatbeo

Bi—1<B<Bi 0<B<LBi-1 rlo<ag

=beo+1/c > aa—1/(1-2) Y ag

r<a<ay 0<B<B:
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as claimed. A similar argument establishes (4), except when s € Sy and
1= N +1, when 8;_1 = k so that 8.4.3 must be used rather than 8.4.2,
which is appropriate for smaller. In this case as s € Sa, Js(n) = {k} so
b = a,/e by 8.4.1. But also by 8.4.3, a, is equal to

ebeo + (1 —¢) Z ba,x =€beo + (1 —€)/e Z Qo

any-—1<aln an-_1<a<ln

+ (1 - 8)(bazv—1,ﬂ + bn,ﬁ)

by (1), and then by induction on i, b, . is equal to

ae/(1—¢)—ebuo/(1—€)=1/e > aa-— bro/(1 =€)

any-1<a<n

—1/e Z ao +1/(1—¢) Z ag

K<alan-1 0<B8<K
=1/(1—¢) > ag—1/c > aa—bxo/(1—¢).
0<pB<LkK r<a<n

Then as b, . = a, /e, we have
beo = Z ag—(1—¢)/e Z a,=1-1/¢ Z Go,
0<B<kK r<aln r<a<ln
as .o a; = 1. This gives (5) and (6) when s € S,.
Similarly when s € S; we conclude from the first equality in (3) that
b =beo+1/e Z e —1/(1 —¢) Z ag
r<aln 0<B<k
But also by 8.4.3,
a, =€bgo+ (1 —€)by s

=ebeo+ (1 —€)beo+ (1—¢)/e Z Ao — Z ag

r<aln 0<B<K
=beo+1/e Z aa—Zaz':bmo-{-l/s Z aq — (1 —ag)
r<a<ln I#K r<aln ]

as ), a; = 1. Therefore byo=1—1/¢ Zn<a§n @, 5o that (5) holds in
this case too. Finally substituting (5) into the first inequality in (3) and
(4) gives the second inequality.

The dual of 8.14 in the case s € S5 is:
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(8.15) For s € S3 we have:
(1) ba,g, = aa/e for a1 < a < ;.
(2) ba;,p = ap/(1—¢), for B; < B < Biy1.
(3) baiaﬁi+1 =1- 1/(1 - 6) ZO<,B<,8H_1 ag — 1/5 Eai<a§n Qg -
(4) ba; g, = 1/e Zaisasn aa+1/(1—¢) ZOSBS& ag—1 unlessi=0.
(5) b =1-1/(1—¢)3 <5<, 8-
(6) bn,O = ao/(]. - E).
(8.16) (s,t) ¢ 51 x Sy.
Proof. Assume s,t € S;. Let v = (,0) and v = (n,). Then by
8.14.5, b, = ¢y, while by 8.14.3, b, =¢, =1-1/(1—¢) EO§B<n ag. Let

Y = (y—b,Pv) — b, Pu))/(1—b, —b,).
Then y' € ¢(s) N(t) — (sNt), while x ¢ sup(y’), contradicting 8.3.
(8.17) (s,;t) ¢ S3x S; forj=1 or2.

Proof. Assume otherwise. Recall the definition of b and ¢* from
8.11. Then as s € S3, 8.15 says

*
c = § Ca,0 = E Ca,0

k<a€l:(0) k<a<ai
=1/e Z ao +ag/(1—¢g)+1/e Z a,—1
r<a<ay a1 <aln
=1/e Y aa—1+a/(1-¢).
r<a<ln

Similarly as t € S1 U Sg, 8.14 says

b= Y bep= > beg

0<Bed (k) 0<B<hH
=1/(1-¢) Y ap+1-1/(1-¢) Y ag—1/c Y aa
0<8<pB1 0<8< 51 k<a<ln
=l-a/(l1—¢)—1/c Y aa
rK<asn

That is b = —c*, contradicting 8.11.1.

Notice 8.12, 8.16, and 8.17 constitute a contradiction. Therefore the
proof of Theorem 8.1, and hence also of Theorem 7.6, is at last complete.
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§9. Triangulating the space of a restricted polyhedral cell
complex

In this section we continue to assume (X, f, F, B) is a polyhedral
cell complex and also continue the notational conventions of Section 7.
Let K = K(X) be the triangulating complex of X and let ¥ be the set
of simplices of K.

Recall for z € X we have the residual complex K(z) of X at z with
vertex set

V(z) ={(w,v) : w € f(x) and v € f({(w))}
with simplex set 3(z). Define n: V(z) — V by n{w,v) = v.

(9.1) (1) n(L(w,v)) C L(v) for each (w,v) € V(z).

(2) n:V(z) — V induces a morphism n : T'(z) — A of graphs and
a morphism n : K(z) — K of simplicial complezes.

(3) If (X, f) is resticted then each S € ¥ with ((S) = z is the image
under n of a unique s € ¥(z). Indeed if S = {vo,...,vi} with v; € L(v;)
fori <7, and w; = fvi (vg) then s = s(S) = {(wy,v;) : 0 < i < k}.

Proof. Let (y,u) € L(w,v). Then y < w, z = f,,(y) > v, and
f(v) 2 u. As f,(v) > u, n(y,u) = v € L(v). Thus (1) holds. As
v = n(w,v), (1) implies (2).

Under the hypotheses and notation of (3), 5.4 says wg < -+ < wy,
with fo,, (w;) > v; for j > 4. Also as v; € L(v;), fu:(v) is the unique
w € f(x;) with {(w) = z; and w > v;. Thus foi(vj) = fuw; (w;), so
ffwj(wi)(vj) = v;. Therefore (w;,v;) € L{wj,v;), so s € X(z). By
construction, n(s) = S. Finally if &' = {(w},v]) : 0 <7 < k} € X(z)
with n(s’) = S then v, = n(w},v}) = v;. Next z = é(S) = f(vk), S0
v € f(z), while as (w,vi) € V(x), v € f({(w})), s0 wj, = = = wg.
As (w],v;) € L(z,v), w, = fo(w;) > v and fwg(vk) > vy, SO W, =

fu,(vk) = w;. That is s = s’ is unique, completing the proof of (3).

Recall from Theorem 7.6, we have a triangulation ¢, : K{z) —
F(z). Recall by construction that if s € T(x) then ¢, (s) = ¢,(s) =
[P(e) : e € s], where P(w;,v;) = eBp(w,) + (1 — €)By(w,), and @, is the
identity map.

In the remainder of this section we assume (X, f) is restricted and
use the triangulations ., € X, to construct a triangulation ¢ : K —
A, where A = A(X) is the topological space of X constructed in Sec-
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tion 4. Recall from Section 4 that we have a map

A ]_[ F(z)— A
zeX

at—a

For S € ¥ define
o(S) = A(‘Pf(S)(S(S)))

define
¢(S) = Pés) (s(S))

with u(S,v;) = u(S(s), (ws,v;)) = P(w;,v;) and define pg : ¢(S) —
$(S) by ps = Ag', where \g : ©¢(5)(8(5)) — ¢(5) is the restriction of

A to ¢ g)(8(S5))-

(9.2) For S € %, z = {(S), and s = 5(S), As : pa(s) — ©(S) is a
homeomorphism and ¢(S) is closed in A.

Proof. Let s = {(w;,v;) : 0 <@ <k}, W ={w; :i}, D = p,(s),
and D, = I(w) N D for w € W. Then D = [P{w;,v;) : ], so by 6.3
each d € D can be written uniquely in the form d = ), d; P(w;, v;) with
0<d;and ) d;=1. By 74, P(w;,v;) € I(w;) N F(w;) for j > i, so

D, ={de D:d;=0 for j >i(w) and d; # 0 for some i € Z(w)}

where Z(w) = {i : w; = w} and i(w) = max{s : 1 € Z(w)}. In particular
the D,, partition D. Next F,, : D, — F({(w)) is a homeomorphism
and by 4.4, A : I(¢(w)) — A is an injection, so as A o Fy, = A on F(w),
A: D, — Ais an injection. Further by 4.5, the sets I(y), y € X,
partition A, so as w — ((w) is an injection on W, f(w) n f(u) =g
for distinct u,w € W, and hence A : D — A is an injection. Thus
As : D — ¢(S) is bijective and continuous.

Finally D is closed in F(z) and C C F(z) is closed in A if and only
if A71(C) is closed in F(z). Now as A : D — ¢(S) is a bijection, if
E C D is closed then E = A™}(A\(E)) is closed in F(x), so A(E) is closed
in A. Thus Ag is a homeomorphism and (S} = A(S) is closed in A.

(9.3)Let T € ¥ and S C T. Then ¢(S) C ¢(T) and g1 :
Yoy (S, v) = 3 ayu(T,v).

Proof. Let ¢ = ((T), t = s(T) = {vo,..., v}, s = s(S), r =
n7YS) Ct, |l =max{i:v; € 7}, w; = ﬁ,i(vk), w = wy, and y = ((w).
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Then u(T,v;) = P(w;,v;) = eB(w;) + (1 — €)B(f5} (v:)), so for i <1,
Fy(P(wi, vi)) = eB(fuw(wi)) + (1 =€) B(v;) = P(fw(wi), vi)
by 7.2. Then

Zaz (T, v:)) = Fy Zaz (Wi, v:)) = Y i P(furwi), vi)
= Zaiu S, v;)

by another application of 7.2. In particular Fy,(p.(r)) = ¢y(s). Also
As o Fy, = Ar on ¢,(r) as Fy(a) ~ a for each a € F(w). So ¢(S) =
As(py(s)) = As(Fulpa(r))) = Ar(ps(r)) € o(T). Also

ws,T Zaz sz QOTOQOS ZGUS’UZ))
Zaz u(T,v;))
(A7 ( Zaiu T,v;))) = Zaiu(T, U4)s

completing the proof.
(9.4) (S)N(T) =(SNT) for all 5,T € X.

Proof. By 9.3, o(SNT) C ¢(S)Ne(T), so it remains to show that
ife € p(S)N(T) then e € o(SNT). Then e = ég = ér for some ep €
gpi(R)(s(R)). Then z = y(er) = y(ér) = y(e) = y(es) in the notation
of Section 4; that is e € I(z) and e € I(wg) with wg € f(C(R)) and
((wg) = @. For R=8,T, let R = {v € R: {(v) < x}. Then as we
saw during the proof of the previous lemma, FwR(e R) € vz(s(R)), so
replacing S,T by S, T, we may assume ¢ = Q(S) = ((T)

Now ¢,(s(R)) C F(z) and eg € I{z). Then as A : I{(z) — A is
injective, eg = er € g (s(T)) N, (s(S)) = v (s(S)Ns(T)) by Theorem
7.6. Also er € I(z), so s(S) N s(T) = s(SNT) with ((SNT) =z, so
e =Xes) € Mez(s(SNT))) =p(SNT), completing the proof.

Theorem 9.5. If (X, f, F,B) is a restricted polyhedral cell com-
plex then ¢ : K — A is a triangulation.

Proof. By 9.2, for each S € &, ¢(S) is a closed subspace of A and

As @é(s)(s(S)) — ¢(S)
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is a homeomorphism. Thus
es=A5" 1 9(8) = ¢(5) = vy g)(s(5))

is a homeomorphism. Axiom (T3) for triangulations holds by 9.3 and
axiom (T1) holds by 9.4.

As ¢, : K(x) — F(z) is a triangulation, F(z) = Uses(z) ©=(5)
and C C F(z) is closed if and only C N ¢,(s) is closed in ¢, (s) for
all s € B(z). Also by 4.5, A = |, F(x), so as ¢(S) = Pes)(s(9)),
A = Uges #(S). Further by definition of the topology on A, D C A is
closed in A if and only if D, = AN F(x) is closed in F(z) for all z € X.
Then as F(z) = Usess) (n(s)), if Dz Np(n(s)) is closed in ¢(n(s)) for
all s € X(z) then A\;* (D, N p(n(s))) is closed in p,(s), so as @, is a
triangulation, A\; (D) = U, A7 }(DzNe(n(s))) is closed in F(z), so D,
is closed in F(x). Thus D is closed in A if and only if DNp(S) is closed
in ¢(9) for all S € X. That is axiom (T2) is satisfied.

Corollary 9.6. The homology and fundamental group of the space
A(X) of a restricted polyhedral cell complex X are isomorphic to the
simplicial homology and fundamental group of K(X).

Remark 9.7. We can also triangulate the space A of a polyhedral
cell complex (X, f, F, B) which is not restricted, but not by the triangu-
lating complex K(X). Instead consider the set V(X) of all pairs (S, w),
where S = {vo, ..., v;} is a simplex of K (X) with the standard ordering,
and w : S — f(C(vx)) with w(S) a simplex in f({(vg)) and w; = w(v;)
satisfying C(wi) = C(vi), fu, (w) > vj, and fr, ) (0;) > v; for j > .
Partially order V(X) by (S,w) > (T,6) if T C S and 0(v) = fu,(w(v))
for each v € T and w = max(w(T)). Finally let K(X) be the order
complex of the poset V(X).

Observe we have a map of posets from V(X) into sd(K (X)) defined
by (S,w) — S, and this map is an isomorphism of K (X) with sd(K (X))
when X is restricted.

For z € X, Theorem 7.6 supplies a triangulation ¢, : K(z) — F(z).
For s a simplex of K(z), let P(s) be the barycenter of ¢(s). A simplex
o of sd(K(z)) is a chain {sg C --- C sg} of simplices of K(z) and
we have the barycentric subdivision ¥, : X(sd(K(z))) — F(z) of the
triangulation ¢, which is also a triangulation of F(z), and is defined
by 9g(0) = [P(s;) : 0 <1 < k].

We can use the triangulation 1, in place of ¢, and argue as in this
section to construct a triangulation ¢ : K — A. Namely suppose o =
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{so C -+ C s,} is a simplex in sd(K(z)) with s; = {(w},v§),..., (v},
v, )} € X(z) ordered as in 7.5 and with w; = z. Define n(o) =
{(Si,w;) : 0 < i <7} asimplex of K(X) by

Si={fus (vj) : 0<j < i},

The map 7 plays the role that the map n defined at the start of this
section played for restricted complexes.

Conversely given o = {(S;,w;) : 0 < i < r} a simplex in K(X)
with S; = {v,..., v} } in the standard ordering and = = (v, )= ( ),
define v(0) = {so,...,sr} by s; = {(w}, ), ..., (w},,0},)}, where w} =
wi (v ) and ¥ v = f;i'l (vj) The simplex v(o) plays the role of the s1mplex

J

8(S). Thus we define
$(0) = AW (),
$(0) = beo) (),

for o a simplex of K (X). We can now repeat the proofs of Lemmas 9.1
through 9.5 with some small variation, to establish the analogous state-
ments for general combinatorial cell complexes and the triangulation

w:IA((X)——nA.

§10. The triangulation functor

By Theorem 9.5, if X = (X, f, F, B) is a restricted polyhedral cell
complex then there exists a triangulation ¢X : K(X) — A(X). We
seek to extend £ to a functor from the category of restricted polyhedral
cell complexes to the category of triangulated topological spaces. Our
triangulation £ depends on a choice of real €, 0 < ¢ < 1. Fix some
choice of € and use it to define £X for all choices of X. Further given a
morphism o : X — Y of poyhedral cell complexes, define £ : ¢X — ¢V
by £* = (K (a), A(a)), where A is the functor of 4.7 and K is the functor
of 5.7. We prove the following two results at the same time:

(10.1) ¢ is a covariant functor from the category of restricted poly-
hedral cell complexes to the category of triangulated topological spaces.

(10.2) Let o : X — X be a morphism of restricted polyhedral cell
complexes. Then
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(1) For z € X and o a simplez in f(z),

{Zav 0<av€RandZav—l}

vEOT

and

o ( Z ayB(v)) = Z ay B(az(v))

vEo veo
(2) For S = {vo,...,vx} asimplex in K(X) ordered as in Lemma 9.1
and z = (9),

= {Zaiﬁ(wi,vi) :0<a; € R and Zai — 1}
: i

where w; = f,,(vx) € f(z), and

A(a)(z wzvvz Zaz wzavz
with K(a)(S) = {0 : 0 < i <k}, 0 = o,y (vi), and @; = ag(w;) =
fii (’U’C)‘

By Theorem 9.5, £X : K(X) — A(X) and ¢X : K(X) — A(X) are
triangulations. By Remark 5.7, K(a) : K(X) — K(X) is a simplicial
map, while by 4.7, A(a) : A(X) — A(X) is a continuous map. So to
prove 10.1, we must show £%°° = £%0¢P and for each simplex S of K(X)

(T1) A()(£¥(9)) € €% (K (a)(S5)), and

(T) aso & = {I)g(a)(s) o A(a), where

as Zavu(s v) = > agu(K K(a)(v))

vES vES

The first remark follows from the fact that A and K are functors. The
first statements in (1) and (2) of 10.2 follow from the definition of F(z)
and £%(9), respectively. Moreover if S is as in 10.2, by definition of £Z,
u(S,v;) = P(w;, v;) and

gé( . Zaiﬁ(wi,vi) = ZaiP(wi,vi)

Therefore 10.2.2 implies (77) and (T3), so it remains to prove 10.2.
As o is a morphism of polyhedral complexes, o, (B*(0)) € B®) (o

o)) and a,0BE = a(( goaz on B*(c) for each z € X and each simplex o
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of f(z). In particular in the notation of Section 7, a; (B(v)) = B(0(v))
for each v € f(z). Also for ¢ = {yo,...,Ym}, by definition

Z azB(yz) = B;l ( Z aiuh(yi))

so as a, o BX = Bg((ﬁg o ay on B*(o), we have

Og Zai yi = w z:azuh(y1 z((:g (ad( Zaiu(aa yl)))
—Bz((;) Zal Oé) yl Z az am(yz

so that 10.2.1 is established.
Recall the definition of V(z) and P(w,v) from Section 7, and ob-
serve that as « is a morphism of cell complexes, for (w,v) € V(z),

(az(w), agw) (v)) € V(a(z)) and ax(B(f5'(v))) = Blaa(fa'(v)) =
B( f;:(w) (az(v))). Therefore
@ (P(w,v)) = az(eB(w) + (1 - &) B(f' (v)))
=eB(ag(w)) + (1 — &) B(f 1) (@2 (v))) = P(aw(w), cw) (v))
by an earlier remark. Therefore
A(@)(P(w,v)) = G5 (P(w,v)) = P(az(w), ag(w) (v)).

Let S = {vo,...,vx} be a simplex of K(X) ordered as in 9.1, and
z = ((S). Then from the definition of ¢X in Section 9 and 9.1,

€5(8) = M&a(5(8))) = [P(wi,v:) : 0 < i < k]
where s(5) = {(w;,v;) : 0 <4 <k} and w; = fvi (vg). Therefore
ag(s(8)) = {(w;,v:) : 0 < i <k} = s(K(a)(S))
where 7; = Qz(v,)(vi) and W; = ag(w;) = ﬁ—,z (ty). Finally
)(Zai}?’(wi,vi)) = &Z(ZaiP(wi,vl Za,ozm (wi,v;))
by 10.2.1, and then by an earlier observation this is equal to ), a; P(w;,
v;), completing our proof.

We can now use the functor £ to construct the triangulation func-
tor from the category of restricted combinatorial cell complexes to the
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category of triangulated topological spaces. Namely we define the tri-
angulation functor to be the covariant functor T' = £ o P, where P is
the functor from the category of combinatorial cell complexes to the
category of polyhedral cell complexes constructed in Example 7.1. As
the composition of covariant functors, T is a covariant functor. Given
a combinatorial cell complex X = (X, f), we write T(X) for the topo-
logical space A(P(X)) and when X is restricted we write ¢X for the
triangulation ¢P(X) : K(X) — T(X). If a : X — X is a morphism of
combinatorial cell complexes, we write T'(a) for the morphism £P(@) =
(K(a), A(P(@)))-

We define T'(X) to be the geometric realization of the combinatorial
cell complex X.

(10.3) Let v : K' — K? be a morphism of typed simplicial com-
plexes over I and @' : K* — T* be triangulations. Then

(1) v extends to a morphism (v, 87 (¢, %)) : ! — @? of triangu-
lated topological spaces.

(2) If 6 : K? — K3 is a morphism of typed simplicial complezes over
I and ©® : K® — T is a triangulation then 3%°7(p!, %) = B5(0?, %) o
B (p*, ¢?).

(3) Bt (9!, ") = idp.

(4) If v is an isomorphism then so is (v, 87 (v, ¢?%)).

Proof. For s € X! define

s 1 ' (s) = @*(2(s))
Y aul(s,0) = Y au?(v(s), y(v)).

veEs vESs

Observe that v, is continuous. Now define 3; : p(s) — ©?(v(s)) by

Bs = (Sa?y(s))—l °%s© QO;

B = Uﬂ&

sex?!
That is for a € ¢'(s), B(a) = Bs(a).
We first check that § is well deﬁngd. To begin, if ¢ Cs then by
axiom (T3) for triangulations, ¢} , = @}, as maps from @*(t) to ¢*(s),
where ¢} , = ¢} o (¢})~" and

@i,s : Z%Ul (t,v) — z:a,vu1 (s,v).

vet vEet

and then define
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Also by definition of v; and ~s,,
A2 _ 1
Py(t)y(s) OVt = Vs 0 Prs

as maps from ¢!(¢) to ?(y(s)). Therefore the diagram

: . . (©2 1)
Plt) —— PL(t) —— GP(y(t)) —— ¥?(v(t))
A @i.sl Pyl 12

Pl(s) =2 Bi(s) —T G(y(s) 2 2 (y(a))

commutes, so that 3s = (; on p!(¢).

Further by axiom (T1), if 7,s € Z! then p!(r) N (s) = @ (rNs).
So setting t = 7 N's, we have (3, = 8; = 3, on ¢'(r) N p!(s), completing
the proof that g is well defined.

As s, o}, and ((pfy( S))_l are continuous, so is 3s. Then by axiom

(T2), B is continuous. That is if C is closed in 72 then C N ¢?(y(s))
is closed in p?(y(s)) for each s € B'. Therefore B;71(C N p2(7(s))) =
BHC) Nl(s) is closed in 4,0 (s). Hence B~ !(C) is closed in T".

By definition of 3, 8(¢*(s)) = Bs(¢'(s)) C ¢*(v(s)) and @l oys =
4,07 (s) © Bs = gpw(s) o 3. Therefore (v,8) : ¢! — ¢? is a morphism of

triangulated topological spaces, establishing (1).
Assume the hypotheses of (2). Then

e=Ue #=Um =15

sex? tex? seX?
Further (60 v)s = 6y(s) © Vs, 80
/660’7 (90(607) s)) (6 ° ’Y)s °© (P;

= ((‘pg(’y(s))) 08,(s) © 907 5)) ((%(s)) 050 p;) = /i?(s) o]

and therefore 3°°7 = 3% o 37, establishing (2).
Part (3) follows as if ¢! = ¢? and v = idk then v, = idgi(y), so

Bs = (90;)_1 O7Ys© (p.lg = idq:l(s)-
Finally (2) and (3) imply that

B (0%, ") 0 B7(01, 0?) = BiK (o1 p1) = idp
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so 87 (92, 01) = B (e}, ©?)71, and hence (v, 87(¢?, ¢?)) is an isomor-
phism.

(10.4) Let K be a typed simplicial complex. Then each triangulation
of K is isomorphic in the category of triagulated topological spaces to the
geometric realization ¢¥ : K — T(K) of K.

Proof. Apply 10.3.4 to K! = K? = K, v = idg, ¢! = ¢¥, and
any triangulation ¢? : K — T2 of K.

Remark 10.5. It is well known that if T is the geometric real-
ization of a simplicial complex K, then the singular homology H.(T)
is isomorphic to the simplicial homology H,.(K) and the fundamental
group 71 (T') is isomorphic to the fundamental group m; (K) of K.

As recalled in Remark 10.5, the homology and fundamental group
of the geometric realization of a simplicial complex can be defined in a
purely combinatorially manner in terms of the simplicial complex. We
seek to do the same for combinatorial cell complexes. We know that if
X is a restricted combinatorial cell complex, then ¢X : K(X) — T(X)
is a triangulation of the geometric realization T'(X) of X, so by Remark
10.5, H.(T(X)) = H,(K(X)) and m(T(X)) = m(K(X)). Thus we
define H,(X) = H,(K(X)) and 7m1(X) = 71 (K(X)). Thus we have our
combinatorial definition of the homology and fundamental group of a
restricted combinatorial cell complex, and from the discussion above we
have:

Theorem 10.6. The triangulation functor T is a covariant func-
tor from the category of restricted combinatorial cell compleres to the
category of triangulated topological spaces, which assigns to a restricted
combinatorial cell complex (X, f) its geometric realization T(X) and
the triangulation X : K(X) — T(X) of the geometric realization by
the triangulating complex of X. Moreover H (T(X)) = H.(X) and
T (T(X)) =2 m(X).

(10.7) Let (X, f) be the simplicial cell complex of the poset X. Then
the geometric realization of the cell complex (X, f) is homeomorphic to
the geometric realization of the order complex O(X) of the poset X .

Proof. Let P(X,f) = (X, f,F,B) and A = T(X, f) the topolog-
ical space of this polyhedral cell complex. Thus A is the geometric
realization of the simplicial cell complex (X, f). We show there exists a
triangulation ¢ : O(X) — A. Then by 10.4, A is homeomorphic to the
geometric realization of O(X).
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The triangulation is defined by ¢(s) = B*(s), ¢(x) = BZ(S), and
ws = B? o A1, where z is the greatest element of s. As (X, f) is
the simplicial cell complex for the poset X, ¢ is injective, so by 4.6.3,
Ay : F(z) — F(z) is a homeomorphism and hence ¢, makes sense.
Check that if z > z then B, (s) = B.(s), B*(s) = B*(s), and BZo\;! =
BZ oMt Then use this fact to prove ¢ is a triangulation. We leave the
details to the reader.

(10.8) Assume X = (X, f) is a regular combinatorial cell complez.
Let O(X) be the order complex of the poset X. Then H,(O(X)) =
H.(X) and m(0O(X)) = m(X).

Proof. By 3.1, X is isomorphic to the simpicial cell complex Y of
the poset X. Thus H.(X) =2 H,(Y) and m(X) = m1(Y). But by 10.7,
the geometric realizations A of Y and T of O(X) are homeomorhic, so
H.(Y) = HJ(A) = H(T) =2 H.,(O(X)). Similarly the fundamental
groups are isomorphic.

§11. Homology in K(X)

Let (X, f) be a combinatorial cell complex, A = A(X) the graph of
X, and K = K(X) the triangulating complex of X. Define

V' ={veV:h(@) <n}, Vp={veV:h(()=nh((®)=n}

and V,, = V™® — V. Denote by A™ and A,, the graphs on V™ and V,,
induced by A, respectively. Let K™ = K(A") and K, = K(A,) be
the clique complexes of A™ and A,,, respectively. Define the n-skeleton
of X to be the combinatorial cell complex X™ = (X", fix~»), where
X" ={z € X : h(z) € n}. Thus K™ = K(X") is the triangulating
complex of the n-skelton of X.

By 5.6, K is a typed simplicial complex over I x I, I = {0,1,...},
with type function 7(v) = (R(C(v)), h(¢(v))). Order I x I lexiographi-
cally; that is (a,b) < (4,j) if a < i or a = ¢ and b < j. We use this
ordering to define our boundary operator on the simplicial chain com-
plex C.(K) of K as in Section 1. We also adopt the notional conventions
established in that section.

By 5.4, if s is a k-simplex of K then there is a unique ordering
v, ..., 0% of s such that v; € L(v;41) for each 3. By 5.2, 7(v) < -+ <
7(vg) also, so this is the ordering of s used to define the oriented simplex
§=1wg- Vg = vg A --- AVg via the conventions of Section 1.
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Example. Consider the simplicial cell complex X(n) of the n-
simplex, defined in Example (2) in Section 3. Recall from Section 5
that

V(X(n)) =V(n) = {(a, ) € X(n) x X(n) : a 2 B},
and for (o, 8) € V(n),
L(e,B) ={(a,b) e V(n):b<B<a<a}

Recall we write K(n) for the triangulating complex K(X(n)) of the
cell complex X(n). Then K(n) is a typed complex over V(n) with
type function the identity map. As V(n) is ordered lexiographically, we
have (a,b) < (o,8) if a < @ or @ = o and b < B. Notice K(n)™ =
{(a,b) € V(n) : a < m} =2 K(m), V(n) = {(m,m)}, and K(n),, =
K(n)™ —{(m,m)}. By 5.9:

(11.1) Let s = {(as,8:) : 0 < i < k} be a subset of V(n) with

(o, 3:) < (g1, Biy1) for each i. Then s is in L(n) = S(K(n)) if and
only if fo <+ < Br < < <oy

Observe next that

(11.2) For z € V., Linkgn(2) = O(f({(2))).

n

Indeed Linkgn(z) = {u € V,, : {(u) = {(2)} and the identity map
Linkgn(z) — O(f(((2))) is an isomorphism. Observe also that under
the notational conventions of Section 1, and by 1.1:

(11.3) If z €V, and

o= Z ass € Ci_1(Linkgn (2))
SEEkil(LinkKn (Z))

then
oz = Z assz € Cp(K™)
s€Tk—1(Linkgn (2))

where if s = vg - - - Ug—1 then sz = vy - - vp_1z. Further 8(az) = 8(a)z+
(—D)Fa.

(11.4) Let X be restricted of height at least n+1 and ¢ : K™ — Kp 41
the inclusion map. Then

(1) ¢ is a homotopy equivalence.

(2) tu : Hi(K™) — Hy (K1) ts an isomorphism.

Proof. 'We show for all simplices s of Kn41, t7*(stk,,,, (s)) is con-
tractible. Then by Theorem 1 in [3], ¢ is a homotopy equivalence.
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Let s = {vg,...,vx} be a simplex in K,y ordered as in Lemma
54. If vg € K™ then vy € ¢ !(stk,,,(s)) € stxn(vo) and hence
v Y(stk,,, (s)) is contractible.

So assume = = ((vp) is of height n + 1. Let W = {w € f(z) :
vy < w < z} and for w € W let S(w) = fF({(w))(£ fuw(vo)), T(w) =
Uuew(<w) S(u), and for U € W let TWU) =Uyper T(u).

Observe that = *(stk,,,(s)) = T(W). For if a € " (stx,,,(s))
then fo,(v;) > i, where w; = fa(vi). Then w; > v; > vg and ((w;) =
é(a), so as X is restricted, w = w; is independent of i. Thusw =w, € W
and a € S(w) CT(W).

Claim for each nonempty subset U of W, T'(U) is contractible. Ob-
serve fu(vo) € T(w) C L{fw(vg)), so T(w) is contractible. Further if
7 is the set of maximal members of U then C = {T'(z) : z € Z} is a
cover of T(U), so if Z = {z} then T(U) = T(z) is contractible. Next
if I C Z, Ty = (Ne; T(G) = T(J), where J = ,c; W(< 4). So if
I = {3} is of order 1 then Ty = T'(¢) is contractible, while if |I| > 1 then
M(J) < M(U) = max{h(u) : u € U}, so by induction on M(U), Ty is
contractible. Here we use the fact that J # & since v is the unique
minimal element of J. It follows that T'(U) has the homotopy type of the
nerve N(C) of the cover C, and N(C) has the homotopy type of the set
of all nonempty subsets of C, so N(C) is contractible. Thus the Claim is
established. In particular T(W) = +"!(stk, ,(s)) is contractible, com-
pleting the proof of (1). By (1), the inclusion ¢ : K™ — K,4; is a
homotopy equivalence, so ¢y : H.(K™) — H,(Kpn41) is an isomorphism.

Next some notation. If C, and D, are chain complexes, then write
Hom(C4, D,) for the group of all maps f = |, fi, where f; € Hom(C,
D;) is a group homomorphism. Further if G is a group, denote by
Hom(G, C,) the chain complex whose ith term is Hom(G, C;) and whose
boundary map 8 is defined by 8(z)(g) = 8(((g)) for g € G and = €
Hom(G, C;). Note that 9 is a boundary map, since 8*(z)(g) = (8(8(x)))
(9) = 8(8(x)(v)) = BB (v)) = &2 ({(v)) = 0, s0 & = 0. Finally define
K™ to be the full subcomplex of K™ consisting of those v € V with
h({(v)) = n.

Using these notions and the simplicial complex K(n) discussed in
the example earlier in this section, we now define

¢ € Hom(C, (K (n)), Hom(C,(K™), C,(K™)))
For ¢ € Cy(K(n)) we write ¢. for the image of ¢ under ¢. Thus

¢e € Hom(Cp(K™), C.(K™))x = Hom(Cyp (K™), Cr(K™))
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and as ¢ is a group homomorphism, it suffices to define ¢ on the genera-
tors o € X*(n) of Cyx(K(n)). Similarly as ¢, € Hom(C,(K™), Cr(K™))
is a group homomorphism, it suffices to define ¢, on the generators
s ={vo,...,vn} € Z*(K™), ordered so that vy < --- < v,. We do so by
decreeing that

bo(s) = H foi (v5).
(i,4) €

Observe

(11.5) For o = {(c0,0),-- -, (ak, Bx)} € Z*(n) and s = {vy,...,
Un} € E"(f{"), with vg < -+ < v, and (ao,Fo) < -+ < (g, Br), we
have ¢,(s) € ZF(K™) with

f'Ua,i (v,Bi) € L(fvaj (v,@j)) fO’l"i < J

and for (a,b) € 0, {(fo, (vs)) = ((va), and ¢(fu. (v5)) = ((vs).

Proof. 'The last two remarks in the lemma follow from the definition
of fu(v). As s € E*(K™), v, = oo, where z = (v,), and v, € f(z) for
each 7. As 3, < oy, vg, < Vq,, 50 fy,, (vs,) is defined.

Let i < j. Then by 11.1, 8; < 8; < a; < ;. For r < oy let
Up = fvaj (vT)' Then U, < To, with fﬁo‘i (ﬁﬁj) = f'Dai (ﬁﬂi) = fvai (vﬁi))
80 fu,, (vg;) € L(fo,, (vp,)) In particular this shows ¢o(s) € TF(K™).

By 11.5, ¢, (s) € *(K™), so ¢ is well defined. Thus we have proved:

(11.6) The map ¢ defined above is in Hom(C, (K (n)), Hom(C,, (K™),
C.(K™)))-

Next we have boundary maps 8 on C.(K(n)) and on the chain
complex H(n, K) = Hom(C,,(K™), C,(K™)). We observe next that the
map ¢ preserves these boundary maps:

(11.7) 8(¢c) = da(c) for each c € Cu(K(n)). Thus ¢ : Cu(K(n)) —
H(n, K) preserves the boundary maps.

Proof. Let o = {(aog,bo), .-, (ar,br)} € *¥(K(n)) and
s ={vg,...,v,} € ZV(K™))

Then .
Bs(5) = [ fon, (05,) = 96 (5)'
J#i
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Therefore if ¢ = >, a,0 € Cix(K(n)) then ¢.i(s) = > asdsi(s) =
o o (8) = (3, aobs)’ = ¢c(s)’. Then

@wM®=NMm=Z}4W$Y%ZPW%@=%M@

Let z € V* and L = Linkgn(z). We can also regard
¢ € Hom(C« (K (n)), Hom(Cp,—_1(L), C«(K™)))
by composing ¢ with the map
Crn-1(L) = Cn(K")

cCH cz

using 11.3. That is ¢, = ¢, for c € C,_1(L).

§12. Cellular homology

We begin by recalling a few standard facts from homological algebra
and elementary algebraic topology.

(12.1) If
0-Cc5DEES

is a short exact sequence of chain complezes, then there exists a map
) = H.(C)

(? 1o 8o B 1)(2)]. That is if

[
z = e+ Bn(E) with e € Z,(E) then 0,(2) = a~1(0(d)) + Bp—1(C) for

H.(E
such that for z € H,(E), 0i(z) =
each choice of d € D,, with 5(d) Z
Proof.  See for example Lemma 4.5.3 in [5].
(12.2) If
0-c5DLES0

is a short exact sequence of chain complexes, then

- 2% HL(C) 25 Hoy(D) 25 Hy(B) 25 H, 5 (C) — -

is an exact sequence of groups.

Proof.  See for example Theorem 4.5.4 in [5].
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Recall if ¢ : L — K is an inclusion of simplicial complexes then ¢
extends to a linear map ¢ : C\(L) — C\(K) of simplicial chain groups,
which induces a short exact sequence

(%) 0— Cu(L) 5 Cu(K) L C.(K)/Cu(L) — 0
of chain complexes. Let H(K,L) = H.(Cy«(K)/C.(L)). Then by 12.1,
we get a map
0. : H(K,L) — H,(L)
2 [T 0007 (2)]
Cn(K)/Cr(L), Zn(K,L) = Z,(C.(K, L)), and define
(C«(K,L)). Then Z,(K,L) = 071(Cp-1(L))/Cn(L)
= (Bn(K) + Cn(L))/Cpn(L). Now for u € Z,(K,L) and
= u if and only if u = d + C,(L), in which case as
u € Z,(K,L), 9(d) € Cp—1(L). Then by definition of d,, 9«([d]) =
8(d) + Bp-1(L). Then composing 8. with ¢, : Ho(L) — H.(K) and
js : HJ(K) — H,(K, L), we can regard
O.: Ho(K,L) — H,_1(K,L)
[d] — [0(d)]

Notice 82([d]) = [6%(d)] = 0, so 82 = 0. Therefore

(12.3) If L is a subcomplez of the simplicial complex K then we have
a chain complex H,(K, L) with boundary map 8, such that Z,(K,L) =

?—[18((2,)1]_1@)) /Cn(L), Bn(K, L) = (Bn(K)+Cn(L))/Cn(L), and 0,([d])

(12.4) If L is a subcomplex of the simplicial complex K containing
no (n — 1)-simplices of K then H,(K) = H,(K, L).

(12.5) If L is a subcomplex of the simplicial complex K then
(1) We have an ezact sequence of groups:

Ho(L) 5 Ho(K) 25 Hu(K, L) 25 Hy 1 (L) — - -

(2) If v : Ho(L) — ( ) is an isomorphism then H,(K,L) = 0.
(3) If Hyy1(K,L) = H,(K,L) =0 then j, : Hy(K) — H,(L) is an
isomorphism.

Proof. Applying 12.2 to the short exact sequence (*) above, we get
(1). Then (1) implies (2) and (3).

(12.6) Let J C L C K be a chain of simplicial complezes. Then
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(1) We have a short exact sequence of groups:

o 2 HA (L, ) 4 Ho (K, J) 25 Ho(K, L) 25 Hy (L, J) — -
(2) If Hy_1(L,J) = Hn(L,J) = 0 then j, : Ho(K,J) — Ho(K, L)

is an isomorphism.

(3) If Ho(L,J) = Ho(K, L) = 0 then Hy(K,J) = 0.

(4) Let k : J — L be inclusion and assume s, : H.(J) — H.(L) is
an isomorphism and H,(K,L) =0. Then H,(K,J) = 0.

Proof. We have the exact sequence
**) 0 — C.(L)/Cu(J) = Cu(K)/C\(J) ER Cy(K)/C(L) — 0

of chain complexes. Applying 12.2 to (**), we conclude that (1) holds.
Of course (1) implies (2) and (3). Assume the hypotheses of (4). As
K« : Ho(J) — H,(L) is an isomorphism, 12.5.2 says H,(L,J) =0, so as
H,(K,L)=0, (3) says H,(K,J) = 0.

Now let (X, f) be a restricted combinatorial cell complex, A = A(X)
the graph of X, and K = K(X) the triangulating complex of X. Define
the subcomplexes K™ and K, of K as in Section 11, and adopt the nota-
tional conventions of that section. An n-dimensional simplicial complex
L is homology spherical if ﬁi(L) =0 for i #£ n.

(12.7) Let (X)) > n and V,* = {21,...,2+}. Then
(1) Zi(K™, Kp) = @;:1 Zij and B;(K™, K,) = @;:1 B;;, where
Zij = {az; + Ci(Ky,) : a € Z;(Linkgn (2;))} and
Bij = {ﬂZ] + CZ(K,,L) : B e Bi(LinkKn (ZJ))}

(2) Hi(K™, Kn) = @]_, Hi(Linkgn(z;)).
(3) 0. : Hi(K™, K,) — H;_1(K,) acts via

Oy [Z a;zj] = (=1)° Zaj + Bi_1(Kp).
=1 =1

(4) If O(f(x)) is homology spherical for all x € X of height n then
H,(K",K,)=0 fori#n.

Proof. Without loss, X is of height n, so K = K". Let
Vij = {Osz + Cz(Kn) T € Ci(LinkK(zj))}.
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Then Ci(K, K,) = €, Vi; and by 11.3, 9(az;) = 8(a)z; + (—1)'a €
Oa)z; + Ci—1(Ky), so

O(az; + Ci(Kp)) = 0(a)zj + Ci—1(Ky)

Therefore 3, a;z; € 71(C;_1(Ky)) if and only if o € Z;(Linkg (2;))
for all . That is

Zi(K, Ky) = 071 (Ci_1(Kq))/Ci(K. @Zw

Similarly the second statement of (1) holds. Of course (1) implies (2) and
(2) and 11.2 imply (4). Also a typical element of H;(K, K,) is of the form
[>2; ezl = u+ Bi(K, Ky), where u =3 a;z; + Ci(Ky) € Z;(K, Kp).
Then O(a;) =00 0(3_; ajz;) = (—1)iZj a; by 11.3, and hence

8([20‘3’%‘]): ZaJZJ + Bi_1(Kn) Za] + B;i—1(Kn-1)

i
establishing (3).

(12.8) Assume for all z € X of height n that O(f(z)) is homology
spherical. Then H,(K™) = H,(K,) fori <n—2.

Proof. By 12.7.4, H;(K™, K,) = 0 for ¢ # n. Then by 12.5.3,
H(K,) > H;(K") for i # n,n — 1.

(12.9) H, (K11, K™) = 0.

Proof. By 11.4.2, 1, : H.(K™) — H.(K,1) is an isomorphism, so
the lemma follows from 12.5.2.

(12.10) Assume for allm > n+2 and for all z € X of height m that
O(f(x)) is homology sphericial. Then H;(K) = H;(K™t1) for i < n.

Proof. It suffices to show H;(K™) = H;(K™™!) for each m > n+2
and i < n. Asm > n+2, O(f(2)) is homology sphericial for each z € X
of height m. So by 12.8, H;(K™) = H,(K,,) for i < m — 2, and hence
for i < n. Therefore by 11.4.2, H;(K™) & H;(K,,) & H;(K™ 1), as
desired.

Recall the simplicial cell complex X (n) of the n-simplex and its
triangulating complex K (n) discussed in earlier sections.
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(12.11) (1) K(n) has the homotopy type of the n-simplex so it is
contractible with trivial reduced homology and fundamental group.

(2) K(n)™ = K(m) form <n.

(3) Hy(K(n)m) =0 for all m,n.

(4) H (K (n)™, K(n)m) =0 for m > 0.

(5) Ho(K (n)m, (M)m-1) =0 for m # 1.

Proof. By Theorem 7.6, the n-simplex is triangulated by K(n),
o (1) holds. We observed in Section 11 that (2) holds. By 11.4.2,
Hy(K(n)m) & Ho(K(n)™ 1) = H,(K(m—1)) by (2), so (1) implies (3).

To prove (4), we apply 12.5.1 with K = K(m) and L = K(m),,. By
(3), H;(L) =0 for ¢ # 0 and ¢, : Ho(L) — Ho(K) is an isomorphism.
As H;(L) =0 for i #£ 0, 12.5.1 says H;(K,L) =0 for i # 0,1. Also

Ho(L) = Ho(K) 25 Ho(K,L) 25 H_1(L) =0

is exact with ¢, an isomorphism, so Hy(K, L) = 0. Similarly

0=Hy (K)o Hy(K,L) 2 Hy(L) > Ho(K

)
is exact with ¢, and isomorphism, so H;(K, L) = 0. Thus (4) holds.
Finally we prove (5) by applying 12.6.3 with J = K(n)mym—1, L =
K(n)™ 1, and K = K(n),,. H.(L,J) = 0 by (4) while H.(K,L) =0
by 12.9, so H.(K,J) = 0 by 12.6.3.

(12.12) Let n > 1, B(n) = Bp_1(K(n)pn) + Cp—1(K(n)p-1), and
let n and 0 be the (n — 1)-simplices of K(n) defined by
n=1{(ni):0<i<n},
0={(n—1,%):0< i< n}
Then n =60 mod B(n).

Proof. We prove the result by induction on n. Let K = K(n).
When n = 1, n = {(1,0)}, § = {(0,0)}, and o = {(0,0),(1,0)} is a
simplex in K with 8(c) = — 6. Then d(c) € Bo(K1) < B(1), so the
lemma holds when n = 1 and our induction is anchored.

Let 0<i<n—1and

L(i) = {(a,b) e K : a # i # b}

If we define 7 : X(n) — {i} - X(n—1) by n(a) =a—1for a > ¢ and
m(a) = a for a < i, then 7 induces an isomorphism 7 : L{i) » K(n — 1)
via m(a,b) = (w(a),n(b)). Moreover under this isomorphism, 7(n¢) =
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n(n—1) and 7(6°) = §(n — 1) are the simplices playing the role of  and
0 in K(n—1). Thus by induction on n, n(n —1) —0(n -1) = d(e) + f
for some e € Cp_1(K(n —1),_1) and f € Cp_2(K(n — 1),—2). Then
d; = 77 1(e) € C,(K,,) and ¢; = 77 1(f) € Cr,1(Ky—1) with ¢ — 8% =

Next claim 7™~ ! — 0"~! = 9(dp—1) + cn—1 for some dn—1 € Cn(Ky)
and c,—1 € Cp1(Kp—1). When n = 2 take d,,—y = {(0,1),(0,2)}. Then
observe that for n > 2 and i < n — 1, 7(n" %) and 7(6""1¢) play the
role in K(n — 1) of n®~! and 8", so by induction on n there is

gE€C1(Kn—1),—1)and h € Cppa(K(n —1),_3)

with w(n"~1¢ — "=1%) = 9(g9) + h. Then & = 77 i(g9) € Cn(Kp)
and v; = 7 Y(h) € Cp_1(Kp—y) with bt — gn=Li = §(8;) + ;.
Let § = Y ,(=1)%; and v = >_,(—1)*y;. Then 8(6) +v = d(n"~* —
"1), so gt — 0" —§ € Z, 1(Kp,Kn_1). However by 12.11.5,
H, 1(Kpn,Kn—1) = 0, so there is d,—1 € Cp(Ky,) and cp—1 € Cphqf
K, 1) with 8(d,—,) = 0" — 6"~ — ¢, _1, completing the proof of the
claim.

We now complete the proof of the lemma using the argument of
the previous paragraph. Namely let d = Z?:_Ol(—l)idi and ¢ = 22:01
(=1)’¢c;. Then 8(d) + ¢ =98(n—0), so as Hyp_1(Kp, Kn_1) = 0, there is
a € Cn(Ky,) and 8 € C\,_1(Kp—1) with 8(a) =n—0 — 3.

In the next lemma we use the map

¢ € Hom(C\ (K (n)), Hom(Cy_1(Linkg=(2)), C+(K™)))
defined in Section 11 for each z € V.
(12.13) Let 0 be the (n — 1)-simplex of K(n) defined by
6={(n—1,4):0<i<n}

and let B = By,_1(K,) + Cn—1(K,—1). Then for each z € V. and each
f (S Cn-l(LinkK(Z)),
&= ¢p(£) mod B.

Moreover for s = {vg,...,vn—1} € Z*(Linkgn(2)), de(s) = fo,_,(s).

Proof. The last statement of the lemma is just the definition of ¢g.
By 11.7,

DB, _1(K(n)n) = PO(Cr(K(n)n)) = HPC, (K (n)n))s
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while ¢¢,, (k(n),)(Cn-1(L)) € Cn(Ky). Therefore

BBy (K(n)n)(Cn-1(L)) < Bn-1(Ky).

Similarly ¢¢,_, (K (n)n_1)(Cn-1(L)) < Cn—1(Kn-1). Therefore the
lemma follows from 12.12 and the fact that ¢, (§) = £ for each £ € Cp,_;
(Linkgn(2)), where 7 is the simplex of K (n) defined in 12.12.

We now define the cellular homology of X. Let D, (X) = H,(K™,
K,). Equivalently for z € V7 let

D(z) = { Z d,szs: Zdz,ss € Zn-—l(f(z))} < Cu(f(2))

se=n—1(f(2))

1%

with d, . € Z, so that D(z) = H,_1(f(z)). Then by 12.7,
D(z

E@}1’711

z€EV

Dp(X) =

z€

3

and this definition of D, (X) is usually easier to work with. Define the
boundary map on the chain complex D.(X) = (D,(X):0<n € Z) by

8yt Dp(X) = D1 (X)

37 zd o (1) de(d

zEVR

where d, € Z,,_;(Linkgn (2)) and 8 = {(n—1,7) : 0 < i <n} € T,_1(n).
Recall from 12.13 that if d, = ZSGE"—l(LinkKn(z)) d,ss with d, s € Z
then ¢g(d.) = >, d. s fu(s)(s), where w(s) is the greatest element of s.

Therefore
O : Zdz,szs — (=1)" Zdz,sfw(s)(s)

which is usually an easier definition to work with. We see in a moment
that 8,-1 09, = 0, so 9 is indeed a boundary map. We call D,(X)
the cellular chain complex of X and 8 the cellular boundary map. The
cellular homology of X is HE(X) = H,.(D.(X)).

Now we verify that d,_1 0 8, = 0 by showing 8,,—1(8n(2d;)) = 0
for each z € V™ and d, € Z,_;(Linkg~(z)). First d, = >, ud. . and
dew = Zt d u,tt, where

dout €2, dyu € Zn_o(Linkgn({z,u})),
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and the sums are over all u € Linkg~ (2) of height n — 2 and all (n — 2)-
simplices ¢ in Linkgn({z,u}). As d(d;) =0, 1.1.4 says 0 = 5 d, ..
That is

O = Zdz,u,tt = Z ( Z dz7u’t)t, SO Z dz,u,t = 0
u,t t

t<u<z t<u<z

u

for each t. Now

(Bn-108n)(2dz) = (=1)"0n Zdzutfu () fu(t))
:—Zdzutfw(fu(t) (fu( = Z Z dzut fw(t) )
u,t t t<u<z

So the cellular boundary map & is indeed a boundary map on the cellular
chain complex.

(12.14) Let
fm: Hn(K™ K™Y - H, (K™, K,,) and
ni10y t Hoy 1 (K™ K™) — H, (K™, K™™1)
be the maps induced via 12.6 by the inclusions
K™ !'CK,, CK™ and
K" ' C K" C K"
respectively. Let
Ont1 : Huy1 (K™ Kpy1) — Ho (K™, Ky

be the cellular boundary map. Then the diagram

Hosa (K™ K™ 220 F (K, K1)
Frt1l 1fn
Hn+1(Kn+1;Kn+1) _— Hn(Kn,Kn)

n+1
commutes and fy is an isomorphism for all n.

Proof. By 12.9, H.(Kp, K™ 1) = 0 for all m, so applying 12.6.2
to the chain K™~ C K,, C K™, we conclude f,, : H,, (K™, K™ 1) —
H,, (K™, K,,) is an isomorphism for each m.
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To complete the proof it remains to show the following diagram
commutes:

Hn+1(Kn+1,Kn) _i_) Hn(Kn,Kn42) _J_*_) Hn(Kannfl)
fn+1l ‘L*J, ,Lfn

Hn+1(Kn+l7Kn+1) "a—" Hn(KnJrvinﬁz) — Hn(KnaKn)
4 P

*

that n410x = jx © Oy, and that po 8, = dpy1. Here 8, and 1, are the
maps induced via 12.6 by the inclusions

K"2C K, C K™
K2 CK"C Knyq
respectively, p = f, 0 j, o1, and
Oy : Hpyp1 (K™ K™) — H, (K™, K™ %) and
Gt Ho(K™, K™ %) — H, (K™, K™™1)
are the maps induced via 12.6 by the inclusions
K" 2 C K" C K™ and
K" 2C K" ' CK"

respectively.

By 12.9, H. (K", K,41) = 0, so applying 12.6 to K™% C K™ C
K41 we conclude ¢, : H, (K", K" 2) — H,(K,4+1, K" ?) is an isomor-
phism, so p is well defined. By definition of p, the right hand square
in the diagram commutes, so to show the full diagram commutes, it
remains to show the left hand square commutes.

From the discussion at the beginning of this section,

Hop 1 (K™ K™) = Zin 1 (K™ K™) [ B (K™, K™)

with
Zms1 (K™ K™) = 07 HCn(K™))/Cr 1 (K™)

and
B (K™ K™) = (B i (K™Y 4 Crg 1 (K™)) /Cra (K™).
S0 as Cpp1(K™) = Bpy1(K™1) = 0, we have
Hpi (K™ K™) = 07H(C(K™)).
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That is a typical element of H,, 41 (K™%!, K™) issome d € C,,, 11 (K™1)
with 8(d) € Cp,p, (K™). Similarly

Hm (K™ K™) = 07 (Con (K1) /Conpt (K met1)

and fm+1 td—d —+ Cm+l(lgm+1)-
Also H, (K™ K" 2) = Z,(K™),

Hn(Kn+17 Kn—2) = Hn(Kn+1) = Zn(Kn+1)/Bn(Kn+l)7

By :d— 8(d), 8, : d+ Cpy1(Kny1) — 0(d) + Bn(Kny1), and ¢, ¢ 2 —
2+ Bp(Kyny1). Therefore

(tx 0 8,)(d) = 0(d) + By (Knt1) = (8, © far1)(d)

completing the proof that the diagram commutes.
Finally the proof that 8,41 = po 8, and ;1104 = jx © d,. As

bt Hy(K™ K™ 2) — Hpy(Kny1, K*2)

is an isomorphism, Zn(KnH) = Zn(K") @ Bn(Kpt1). Thus if 7 :
Zn(Kn+1) — Zn(K ™) is the projection with respect to this direct sum
decomposition, we have p = fro0j.0t;! = froj,0m. Further we have seen
H, (K", K" 1) = 07Y(Cp_1(K™Y), Ho(K™, K,,) = 07 HCro1(Ky)/
Cn(Ky)), and fy, : d' — d' + Cr(K,). Finally j. is the identity map on
H, (K™ K" 1), 50 p:er 7m(e) + Cn(Ky). Therefore

P08, 1 d+ Crgr(Kn) = 1(0(d) + Cul(Ko).

Also (j, 0 8,)(d) = 8(d) = n419,(d), with the last equality following
from the discussion at the beginning of this section.

Recall from 12.7 that we can choose are coset representative d so
that d = 3, cynss 2ds, with d. € Zy(Link gn1(2)), and that by 11.3,
9(zd,) = (=1)"*'d,. Thus it remains to show that if d = zd, then
7(d,) = ¢o(2zd,) mod C,(K,). Let e = ¢g(zd,). By 12.13, d, = e+b+c
for some b € B, (K 1) and ¢ € C,(K,,). Then

d,—b=e+c€ Zn(Knp1) NCr(K™) < Z,(K™),

so e + ¢ = w(d,) and therefore w(d,) = e + ¢ = e mod C,(K,), com-
pleting the proof.

(12.15) Assume for each x € X of height n that O(f(z)) is homol-
ogy sphericial. Then H;(K™, K™ 1) =0 for all i # n.
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Proof. By 12.9, H,(K,, K™ ) = 0, so applying 12.6.2 to the se-
quence K"~! C K, C K", we conclude H,(K", K" ') 2 H, (K", K,,).

Then as O(f(z)) is homology spherical for each z € X of height n, 12.7.4
completes the proof.

Theorem 12.16. Let X be a restricted combinatorial cell com-

plex such that O(f(x)) is spherical for each x € X. Then the ordinary
homology H.(X) of X is isomorphic to the cellular homology HE(X).

Proof. In Lemma 12.14 we defined maps
1% © n410, = 0418, + Hopy (K™ K™) — H, (K™, K™71)
and proved these maps are isomorphic to the cellular maps
On+1 : Dng1(X) — Dyp(X).

Thus the chain complex (H, (K™, K™'),,8, : 0 < n € Z) is isomorphic
to the cellular chain complex D,(X). Therefore it suffices to show

H,(X) = ker(,0.)/Im(n110,)

To do so we use the standard proof for CW- complexes.
First the inclusions

Kn—2 g Kn—l C K"
Kn—2 g K" g Kn+1

induce via 12.6 the maps

Hp (K1, K"2) Hp (K™ K™™1) — Hp (K™, K™)
N s
Hp (K™, K"2)
o/ N\ i
Hpy1 (K™, K™) Ha(K™ K™1) 224 B,y (K™=, K"=2)

By 12.15, H,, (K™ 1, K" 2) = 0, so as the sequences of 12.6 are exact,
Jx = n+1], is injective with Im(j.) = ker(,0,). As O(f(x)) is homology
spherical for each z € X, H,(K"** K™) = 0 by 12.15. Therefore ¢, is
a surjection, so

te o jit ker(p,8,) — Hy (K™ K™72)
is a surjection with kernel

j*(keT(L*)) = j*(lm(n+18*)) = Im(n+18*)
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That is
H, (K™ K" %) = ker(,0,)/Im(,410,)

Finally by 12.4, H,(K"t') = H, (K", K"~2), while as O(f(z))
is homology spherical for each z € X, H,(K™*!) =~ H,(K) by 12.10.
Thus the Theorem is established.

(12.17) Assume f(x) is simply connected for each & € X with h(x)
> 3. Then '

(1) m(K(X™1) & m (K (X)) 02 2,

(2) m(K(X)) 2 m(K(X™)) forn> 2.

Proof. Evidently (1) implies (2), so we prove (1). Recall the defini-
tions of X™, K™, and K, from Section 11. In particular K™ = K(X™),
so it suffices to show m (K™*1) 2 71 (K™).

Let ¢ : K™ — Kp41 be the inclusion map. By 11.4.2, ¢ is a ho-
motopy equivalence, so w1 (K"™) & 71(K,41). Thus it remains to show
1 (Kpy1) = m (K™, .

Let 7 : K, 41 — K™ be the inclusion map and s = {vp,..., v}
be a simplex in K™™' ordered as in Lemma 5.4. If vy € K, 1 then -
vo € P = 7} (stgn+1(s)) C stk,,,(vo) and hence P is contractible.
Thus we may take s = {x} with h(z) = n+ 1. In this case P = f(z) is
simply connected by hypothesis. Thus by Theorem 1 in [3], 71 (Kp41) =
71 (K™*1), as desired.

813. The torus and the Klein bottle

In this section we consider the torus and the Klein bottle as exam-
ples.

Let X be the poset of dimension 2 with a unique maximal element
¢, and unique minimal element d, and two elements a; and a2 of height
1.

We associate a combinatorial cell f(z) to each z € X. Let f(c) have
4 elements b; of height 1 and 4 elements v; of height 0, with v;, v;—; < b,
where the indices are read modulo 4. Further we let {(b;) = af;;, where
[i] = ¢ mod 2. This forces f(a;) to have 2 elements u;;, j = 1,2, of
height 0.

It remains to describe f; = fi, : f(c)(< b)) — f(ap). We may
choose notation so that fa(v;) = uz; and f3(vit1) = uq,;. We say that
by and by have the same orientation if fi(vs) = fa(vs); here the pair
va,vs is distinguished by b3 > wvg,v3, whereas no member of f(c) of
height 1 is greater than v, and v4. Up to change of notation, we are left
with 3 cases:
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(i) by and by and by and bz both have the same orientation.
(ii) Exactly one pair (say bz and b4) has the same orientation.
(iii) Neither pair has the same orientation.

We will see that the geometric realization of (X, f) in case (i) cor-
responds to the torus, in case (ii) to the Klein bottle, and in case (iii)
the realization is not a manifold.

We have defined our combinatorial cell (X, f). We next consider the
polyhedral cell complex P(X) = (X, f, F, B) of (X, f) and the geometric
realization T'(X) of (X, f). We can regard F(c) as the unit square with
vertices F'(v;) arranged in order as in the diagram below. Then F'(b;) is
the edge [v;—1, v;]. Thus we have the picture

Vg < U3

F(ba)
F(b1)] TF(b3)
F(b2)
20 vy

Similarly F'(a;) is the unit interval [F(u;1), F(u;2)] with initial point
F(u;) and endpoint F(u;3). Finally we have

Fy, : F(b;) — F(ap)

tF(vi—1) + (1 = )F (vs) = tF(fi(vie1)) + (1 = ) F(fi(vi))

In cases (i) and (ii), b2 and by have the same orientation, so in the
geometric realization T'(X) the edges F'(bz) and F'(bs) are identified with
the same orientation, resulting in a tube with ends F'(b;) and F(b3). In
case (i), these ends are identified with the same orientation, resulting
in a torus, while in case (ii) they are identified with a twist, resulting
in a Klein bottle. Finally in case (iit), F'(b2) and F(b,) are identified
with a twist, resulting in a Mébius strip, and then F(by) and F(b3) are
identified with a twist, yielding a space T(X) which is not a manifold,
since at a neighborhood of F'(d) we get two copies of the 2-ball glued at
F(d).

We next discuss the the homology of our cell complexes. First f (e)
has the homotopy type of the 1-sphere and f(a;) the type of the O-sphere,
so by Theorem 12.15, H¢(X). = H,(X). Further Hy(f(c)) = Z:1(f(c))
has a unique generator

4
Y= Zvibi = v;—1b;
i=1
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where the indices are read modulo 4, so by the definition of D, (X),
Dy(X) = D(c) has a unique generator ¢y. Similarly D1(X) = D(a;) ®
D(az) has two generators a;c;, where

Q = Ug2 — Ug 1

)

and Dg(X) = D(d) is 1-dimensional with generator d.
Next by definition of the cellular boundary map 9,

0(a;a;) = fu o (wi2) = fu,(uin) =d—d=0
so that Dy(X) = Zy(X) and Ho(X) & Do(X) & Z. Similarly

4 4
8(ey) = fo,(bi(vi — vic1)) = > agg fi(vi — vi1)
i=1 i=1

= ay(f1(vi—v4)+f3(vs—v1))+az(f2(va—v1)+ fa(va—v3)) = a1 A1 +az Ay

Now if by and by have the same orientation then fo(ve) = f4(vs),
and hence also fy(vs) = f2(v1), so that A3 = 0. On the other hand if the
orientation is opposite then ug o = fo(ve) = fa(vs), s0 uz1 = fa(vy) =
fa(vs) and hence Ay = 2. A similar remark holds for A;.

Now if X is the torus then both pairs have the same orientation, so
8(cy) = 0 and By(X) = 0. Thus H3(X) = Do(X) 2 Z and H1(X) =
D1(X) 2 Z@® Z. On the other hand if X is the Klein bottle then
As =0 and A; = 204, so 9(cy) = 2a;. Therefore for the Klein bottle,
Hy(X) = 0 and By(X) = 2Zay, so Hi(X) & Z & Z,. Finally in case
(iif), d(cy) = 2(a1 + a2), so again Ho(X) =0 and H (X)) = Z & Z,.

§14. The dual cell complex of a restricted cell complex

In this section (X, f) is a restricted combinatorial cell complex of
finite height whose map ( is surjective; that is ¢ : f(z) — X (< z) is
surjective for each x € X. The dual complex (X,f) of (X, f) is the
combinatorial cell complex defined below. But first an example.

Example. Let (X, f) be a regular cell complex. Then (X, f) is
isomorphic to the simplicial cell complex of the poset X, so without
loss it is that complex. That is f(z) = X(< z) and the maps ¢ and
fu, v € f(z), are the appropriate identity maps. It will turn out that
the dual complex for this complex is the simplicial cell complex of the
dual poset X whose ordering < is obtained by reversing the ordering on
X. So the duality operation on cell complexes is a generalization of the
duality on posets.
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In general the poset of the dual complex is the dual poset X. In
addition to defining the poset of the dual complex we must define the
cells f (z) for each z € X, the zeta map for X, and the f-v maps for
each v € V. Ini our example, f(z) = X (> x). It will turn out in general
that the zeta map for the dual complex X is the hat-zeta map ( for the
complex X. So in our case ¢ (vy=virveVs= V. Slmllarly it will
turn out that the f-v map f, : f(z)(S v) — f(C(v)) for X is the hat-f-v
map for X, so in our case that map is f, (u) =u for u < v € f(z).

Now the definition of the dual complex. First the poset X of the
complex is the dual poset of X. That is X and X are the same as sets
with the ordering < on X defined byz Syifandonly if y <z. As X

has finite height, X has the same finite height, so all elements of X are
of finite height.

Second for z € X, define

f@)={veV () =g}

partially ordered by v < v if and only if v € L{u). We check that this is a
partial order: By definition the relation is reflexive and antisymmetric.
Suppose © < v < w in f(z). Then v € L(u) so fo(u) > v where
a = fv(u) Indeed as u,v € f(x), Clu) = z = ((v), so ((fu(u)) =
¢(u) = ¢(v) and hence f,(u) = v. Similarly as v < w, f,(v) = w, where
b= fu(v). But now ¢ = f7'(b) = fu(u) so u < w. For by axiom (ii) for
combinatorial cell complexes,

fe(w) = Fru(o(fa(w)) = fo(v) =w

Observe that by definition V = V and f(z) is the set of elements
v € V such that zo, € L{v).

Recall the hat-zeta-function ¢ for X is defined by ¢ (v) is the unique
x € X with v € f(z). Notice that the hat-zeta-function for X is the
zeta-function for X. Conversely we define the zeta-function for X to
be the hat-zeta-function for X. We verify X satisfies axiom (i) for
combinatorial cell complexes; that is we check that ¢ : f (z) — Xisa
map of posets preserving height. Namely if u,v € f(z) with u < v then
fa(u) = v where a = f,(u), and {(u) > ¢(a) = ((v), so ¢ preserves the
order. Next as X is of finite height, there is a chain yg > - -+ > ym = ((u)
of maximal length m and as ¢ : f(y;) — X (< y;) is surjective for each 1,
we can lift this chain to a chain wg > - -+ > wy, in f(yo) with ((w;) = y;.
Let a = f;! (u) and a; = fu,(a). Then ap < -+ < ay = u is a chain of
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length m in f (z), so (A preserves height. This completes the verification
of axiom (i).
Next for z € X and v € f(a:),

f(@)(Sv) ={u eV :((u) =¢(v) and v € L(u)}
={u eV :ve L(u) and Fi (W) = v}

As X is restricted, for each v € V we have the hat-f-v-function f,, defined
on the set of u € V with v € L(u) by f,(u) the unique w € f({(u)) with
w > u and ¢(w) = ((v). We define the f-v-function for X to be the
restriction to f(z)(< v) of the hat-f-v-function f, for X. We next verify
that X satisfies axiom (ii) for combinatorial cell complexes. By definition

¢(fo(w) = {(v) =, s0
fo: f@) (S ) = FCW) = f(2).

We check that f, is an isomorphism of posets. First if f,, (u1) = fo (ug) =
w then f,(u1) = v = fy,(uz2), so as f, is injective, u; = ug. That is
fo is injective. Next if w € f(z) then f;'(v) = u € f(z)(< v) with
fo(u) = w, so f, is a bijection.

Suppose a,b € f(x)(< v) with @ < b. Then b € L(a) so f,(a) = b
for w = fy(a). Also f,(f,(a)) = f,(b) so f,(b) € L(f,(a)) and therefore
fola) < fu(b). Similarly if f,(a) < f,(b) then a < b. This completes the
verification of axiom (ii).

We next verify axiom (iii); that is we prove that if a,b € f(z) with
a < bthen f, = ffb(a) o fo. For let ¢ € f(x)(< a). Then fy(c) < fola)
as f, preserves order, so w = ffb(a)(fb(c)) > fo(c) > ¢ with ¢(w) =
{(fo(a)) = {(a). Hence as X is restricted, w = fo(c). So axiom (iii) is
established. . A

Next axiom (iv). Let v € f(z) and a € f(z)(S v). Then v € L(a)
with C(f, (a)) = ¢(a) by definition of the hat-zeta map and the hat-f-a-
map, so indeed { = { o f,, as required in axiom (iv).

Finally we check axiom (v). First o, = oo, and for v € f(z),
foo,(a) = a as ((a) = & = ((00z). Thus fm, is the identity map. Also
¢ (00z) = z again by definition of the hat-zeta-map.

We have shown

(14.1) Let (X, f) be a combinatorial cell complex of finite height
with ¢ surjective. Then the dual complex (X , f) is a combinatorial cell
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complex.
(14.2) (X, f) is restricted.

Proof. Let uq,us,v € f(z) with v < ug,up and Clug) = C(ug) =y
say. Then ((u1) = ((u2) = ((v) = = and wu1,us € L(v), so there exists
w; > v with fu, (v) = u;. But ¢(w;) = C(u;) = y, so as X is restricted,
wy = wo and hence u; = fy,, (V) = fu, (V) = us.

(14.3) u € L(v) if and only if v € L(u), in which case the image of
v under the hat-f-u-map for X is

Fipy @ (@) = FulF7 1 @)

Proof. Letv € L(u). Then fy,(u) > v forw = fu(u) and u S fo,(u)
in f(C(u)). Let z = fto@(v). Then z € L(v) with f2(v) = fuw(u) and
((z) = C(v) 50 v S 2 in F(C(v)). Then as f.(v) = fulu) 2 u in F(C(w),
we conclude u € I:(v) and z is the image of v under the hat-f-u-map for

X.
Conversely suppose u € i(’u) and let z be the image of v under the

hat-f-u-map for X. That is u < f.(v) = y say. Thus y > v and as
u<yin f(((u)), fuw(u) =y for w = fy(u) Therefore fy,(u) =y > v, so
v € L(u).

(14.4) Let (X, f) be a restricted combinatorial cell complex with ¢
surjective. Then the dual complex (X' , f) also satisfies these properties
and (X, f) is the dual of (X, f).

Proof. We have already observed that X is of finite height. Next
ifye X(< ) thenz € X(= y) so as ¢ : f(y) — X(<L y) is surjective
there is v € f(y) with ((v) = #. Thus v € f(z) and ((v) = ¥, so
¢: f(z) » X(< z) is a surjection.

Let (Y, g) be the dual of (X, f). Then X = X soY = X = X and
as < is the dual of the ordering on X, the order on Y is the ordering
< dual to <. That is Y = X as a partially ordered set. Similarly for
ze X,

g9(z) = {v €V : {(v) = &} = f(x)
and as we observed during the proof of 14.1, the hat-zeta-function for
X is ¢. The ordering on g(z) is given by u < v if and only if v € L(w) if
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and only if v € L(v) (by 14.3) if and only if u < v as u,v € f(z). That
is g(z) = f(z) as a partially ordered set.

Next the zeta-function for Y is the hat-zeta function for X which is
the zeta-function for X. That is X and Y have the same zeta-function.
Finally for v € V, the f-u-function g, for Y is the hat-f-u-function for

X, so by 14.3, gu(v) = Jfo(u)(v), where w = fo(u). But as v < u in
f(z), w=z and f,,(u) =u, so g, = f., completing the proof.

(14.5) K(X) = K(X), so X and X have the same homology and
fundamental group.

Proof. As observed during the construction of X, V =V, so K (X)

N

and K (X) have the same vertex set. Further K(X) is the clique complex
of the symmetric relation * on V' define by w * v if and only if w € L(v)

or v € L(u). Similarly K (X) is the clique complex of the relation % But
by 14.3, these two relations are the same.

§15. CW-complexes
Denote by B™ the unit n-ball
B"={zeR":|z| <1}

in R™ and let
Sl ={zeR":|z| =1}

be the (n — 1)-sphere. We also write B™ for the boundary S™~1 of B™
and I(B™) for the interior B — B™ of B™. In particular when n = 0,
I(B% = B® and B° = @.

(15.1) Let X,Y be copies of B™ and f: I(X) — I(Y) be a homeo-
morphism. Then f extends to at most one homeomorphismg: X — Y.

Proof. Suppose g,h : X — Y are homeomorphisms extending f.
Then h~! o g is a homeomorphism of X extending the identity map on
I(X), and it suffices to show h™! o g is the identity map on X. Thus
it suffices to show that if £ : X — X is a homeomorphism which is
the identity on I(X) then k is the identity. Let z € X, y € I(X) and
consider the line segment [z,y]. Then [z,y] is the closure of (z,y] so
k([z,y]) is the closure of k({z,y]) = (z,y]. That is k(z) = z, as desired.

Recall that a CW-complez is a triple (T, A, ), where T is a topo-
logical space, A is a collection of subspaces of T', and
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(CW1) T is Hausdorff.

(CW2) For each A € A, ¢, : F()\) — X is a continuous surjection
such that F(\) = B and @) : I(F()\)) — X is a homeomorphism.

(CW3) A= pa(F(N) C Uaea) @ for some finite subset A(A) of A.

(CW4) T is the disjoint union of the subspaces A € A.

(CW5) A subset C of T is closed in T if and only if C'N A is closed in
A for all A € A, and if C C A then C is closed in X if and only if ¢ 1(C)
is closed in F(a) for all & € A(M) U {A}.

Define the CW-complex (T, A, ©) to be normal if

(R1) A= Uaea(n) @ for each A € A.

(R2) For each A € A and o € A()), the set Cx(a) of connected
components of @3 '(a) is finite and for each C' € Cy(a), the restriction
@c of vy to C is a homeomorphism of C' with « such that ¢! o po
extends to a homeomorphism of C with F(a).

Define the CW-complex (T, A, ) to be restricted if C; NCy = & for
distinet C1,Cs € Cy() and all A € A and a € A(N).

Example. Recall a CW-complex (T, A, ¢) is regular if Axiom (R1)
holds and ¢, : F(A\) — X is a homeomorphism for each A € A. Notice
that if A € A and a € A(\) then as ¢, and ¢, are homeomorphisms,
also ¢3! oy : py'(@) — F(a) is a homeomorphism, so Axiom (R2)
is satisfied and (T, A, ¢) is restricted. Therefore regular CW-complexes
are restricted.

In the next few lemmas, assume (7T, A, ) is a normal CW-complex.
(15.2) For each A € A and o € A(X), A(a) T A(N).

Proof. Asa C A aC X so 8 C X for each 8 € A(e). Now by
axiom (CW4), BN\ =&, so # C . Then by Axioms (R1) and (CW4),
B e A(N).

(15.3) For o, 3 € A, the following are equivalent:

(1) Be Aa).

(2) BCa.

(3) B Ca

(4) anpB # @ and B # a.

Proof. Clearly (1) = (3) = (2) = (4). Assume (4). By Axiom
(CW4), anfB =,s0 &N # &. Hence by axiom (R1), yN G # & for
some v € A(a). Then by axiom (CW4), 8 = 1.
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Remark 15.4. Let (T, A, ¢) be a normal CW- complex. Partially
order A by o < B if @ C 3. Then by 15.3, A(< A) = A()) for each
A € A. In particular A(< M) is finite, so A € P.

Next for A € A, define
=1 a@

a<A

and partially order f(A) by C < D if C C D. As A(< )) is finite and
Cx(a) is finite for each a < A, f(A) is finite, so f(\) € P*.

Next let V' be the disjoint union of the sets f(A), A € A, and define
¢:V = Aby ((C) =oafor C €Cy(a). Then ¢ : f(A) = A< N\) is a
morphism in P.

Let o € A(X) and C € Cy(a). By axiom (R2), oo : C — ais a
homeomorphism and ¢! o p¢ extends to a homeomorphism of C with
F(a). By 15.1, this homeomorphism is unique; denote it by Fc.

Finally I(F (X)) is the unique member of f()\) mapping to A under
(; we define Fr(yy : f(A) — f(A) to be the identity map.

(15.5) For A € A, ¢, is the unique extension of py : [(F(\)) — A
to a continuous map of F()\) to .

Proof. Let oo € A(X), C € Cy(a), z € C, and y € I(F(X)). Let
A = ¢a([z,y]) and U = px((z,y)). Then 3 (A) = (z,y]U{z1,..., 2/},
where {z;} = C; N ¢y '(A4) and Cx(a) = {C1,...,C:}. Further [z,y]
and each of the points z; is closed in F()), so 5 '(A) is closed in F(}).
Further if 3 € A(\) then either @El(A) =@ ora < [ and (pgl(A) =
gogl(ga)\(x)) is finite and hence closed in F(8). So by axiom (CW5), A
is closed in T'.

Thus A is the closure in T' of U. Therefore if ¥ : C* = C U
I(F(X) — X is a continuous extension of ¢y then as [z,y] is the clo-
sure of (z,y] in C*, ¥(z) is contained in the closure A of U. Hence
¥(x) € Nyerroy) ex([7,9]) = {@a(z)}, so ¥(z) = pa(z). As this holds
for each C € f(z) and « € C, the lemma follows.

(15.6) Let A€ A and C, D € f(A) with C < D. Then

(1) Y\ = @C(C) o} FC on é

(2) FD = FFC(D) o} Fc.

(3) ( =(oFg on f(A)(LC).

(4) If T is restricted then ( is injective on f(A)(= C).

Proof. Let C € Cy(a) and D € C\(8). By 15.5, @, is the unique
extension to F(a) of ¢4 restricted to I(F(a)), so ¢q © F¢ is the unique
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extension to C of ¢, o Fg restricted to C. But by construction of Fg,
this restriction is equal to the restriction of ¢y, so (1) holds.

Now by (1), ¢5'(8) = Fo(ey'(B) N C, so if Dy,...,D, are the
connected components of 3 ' (3) N C then Fo(D1),...,Fo(D,) are the
connected components of () and hence the members of (~1(8).
This establishes (3).

Next Fp.(p) is the unique extension of (pgl 0 o from Fe(D) to
Fc(D) so Fr,(pyoFc is the unique extension of ¢ = (pgl 0 0 Fo from
D to D. But by (1), 9 = wgl o, and by definition Fp is the extension
of the latter map, so (2) is established.

Finally if G, H € Cy(v) are distinct for some v € A()\) then GNH =
@ if T is restricted. This proves (4).

(15.7) Let A € A. Then

(1) If S C A then N,e50 = Uacg @-

(2) F()) is partitioned by Ay = {C : C € f(A)}.

(8) For S C f(A), Noes € =Up<s D-

(4) (F(N\),Ax,v) is a regular CW-complez, where ¢ = (¢ : C €
fN) and Yo = F5' : F(((C)) — C.

Proof. Part (1) follows from axiom CW4 and 15.3. Next F(A) is
the disjoint union of I(F()\)) and F()), so to prove (2) we must show
F()) is partition by {C : C € f(A) — {I(F(\)}}. Let = € F()). Then
pa(x) € a for a unique a € A(A), so z € C for some C € Cy(c). Further
as the members of Cy(a) are disjoint, z ¢ C’ for C # C’ € Cx(c), while
ifx € D for D € f(z) then px(z) € pa(D)Na = ¢p(D)Na = ((D)Na,
so (D) = c. This establishes (2). Then (1) and (2) imply (3).

It remains to prove (4). As F()\) = B F()) is a Hausdorff
space. For C € f()\), by definition C = F(C) = F(¢(C)) = B"¢(©)
and ¢ : F(C) — C is a homeomorphism. By (2) and (3),C =C—C =
Upce D, and Ay is a partition of F'(X). Visibly axiom CWS5 is satisfied.
Thus (4) is established.

Remark 15.8. We can now associate a topological cell complex
7 (T) with the normal CW-complex T' = (T, A,¢). Namely let A be
the poset of 7(T'); by Remark 15.4, A € P. For A € A the cell f(\) as-
sociated to A has as its poset the poset f()); by Remark 15.4, f(\) € P*.
The topological space associated to A is of course F'(A\). For C € f(A),
F(C) = C is a closed subspace of F()\) and as usual with topological
cells we take the maps F(D,C), D,C € f(zx), D < C, to be inclusions.
Lemma 15.7 then says f(A) is a topological cell.
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Our maps ¢ and fc : f(A)(< C) — f(¢(C)) were defined in Remark
15.4. That is fo(D) = Fo(D) for D € F(A\)(L C) and Fe : C —
F(¢(C)) is our topological isomorphism. By 15.6, axioms 5 and 6 for cell
complexes are satisfled. Axiom 7 for cell complexes holds by definition of
Fy, = Fp(y as the identity map in Remark 15.4. Thus we have checked
that 7 (T) is a topological cell complex. By 15.6.4, T(T) is restricted if
T is restricted.

We can extent the map 7 to a functor from the category of normal
CW- complexes to the category of topological cell complexes. A mor-
phism of CW-complezes from (T4, A1, 1) to (T2, Az, ¢2) is a continuous
map ¢ : Ty — T3 such that ¢(A1) C ¢(Az), together with homeomor-
phisms ¢y : F(A) — F(¢(A)), A € Ay, such that gy 0 ¢ = @5 ° @a.

Given such a morphism ¢, we define 7(¢) : T(T1) — T(I2) by
T(d)(A) = ¢(N) and T(P)x = ¢x. Check that T(¢) is a morphism of

topological cell complexes.

(15.9) For A € A and X C A, X is closed in T if and only if p5 ' (X)
is closed in F()).

Proof. By axiom CW5, X is closed in 7" if and only if ¢;1(X) is
closed in F(a) for all @ < A. Next

e'(X)= ][] #a'(x)ncC
CEC)\((I)

and as @) = @q o Fo on C, ¢ 1(X) is closed in F(a) if and only if
03 (X)NC is closed in C for all C € Cy(c). Therefore X is closed in T
if and only if 5 (X) N C is closed in C for all C € f() if and only if
©5 1 (X) is closed in F(X).

(15.10) Let A = A(T(T)), where T(T) is the topological cell com-
plex supplied by Remark 15.8. Then the map

¢p:A—T
& ga(z)
for x € a € A, is a homeomorphism.

Proof. By 4.5, the sets f(a), a € A, partition A. Further by
4.4 and 4.6, \, : F(a) — A is continuous with A\, : I(a) — I(a) a
homeomorphism. Then as ¢, : I(a) — « is a homeomorphism, so is
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9o 07! I(@) — a. But
¢=|J a0’

acA

so ¢ : A — T is a bijection and for each o € A, ¢ 0 Ay, = @q.-

Next by 15.9, X C & is closed if and only if ¢;1(X) is closed in
F(a). But ;1(X) = A\;1(¢71(X)), so by definition of the topology on
F(a), 7(X) is closed in F(a) if and only if ¢=1(X) is closed in F(a).
That is X is closed in T if and only if $~(X) is closed in F(e) if and
only if ¢~1(X) is closed in A by 4.6. That is ¢ is a homeomorphism.

(15.11) If (T, A, ¢) s a regular CW-complex then

(1) T(T) s isomorphic to P(X(T)), where X(T) = (A, f) is the
combinatorial cell complex of T(T).

(2) T is homeomorphic to the geometric realization of O(A).

Proof. Let X = sd(A) and for A € A pick P(A) € A Let z
{Xo,.--, A} € X with A\; < Aj4q1 for each . Given 0 < a; €
with Y. a; = 1, we define ), a;P();) recursively. Namely let u
Y ick @iP(A)/(1 = ag), v = P(A\;), and define

[==N

Y aiP(N) = 95} (arex, (v) + (1= ar)or, (1))
I

This makes sense as F(A) C R**%) and w € X;—1 C A has been
defined already via our recursive procedure.
Now define

-—{Zal :0<a; € Rand Zaz—l}

Notice G(z)NG(y) = G(zNy). Thus if we take (X, g) to be the simplicial
cell complex of X, we can regard G(z) as defining a topological cell on
g9(z) = X(£ z). Then we extend (X, g) to a topological cell complex by
letting G/, be the identity map for y C x.

We next consider the topological cell complex x = x(O(A)) and
define an isomorphism ¢ : x — (X,g,G). Recall from Example 6.4
that the combinatorial cell complex of x is just (X, g); thus as a map
of combinatorial cell complexes we take ¢ to be the identity. Also the
topological cell associated to z by x is the standard simplex T,y =
[Uun(v) : v € z], S0 it remains to define ¢, : Tp(z) — G(z) by

x - Zaiuho\i) — ZalP A
% %
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which is of course a homeomorphism. Check that ¢ is a morphism, and
then observe that as each ¢, is a homeomorphism, ¢ is an isomorphism.
Therefore by 4.7, A(x) = A(X,g,G). Recall also from Example 6.4
that A(x) is the geometric realization of O(A). Further as (X, g) is the
simplicial cell complex of X and G(x) C T with the maps G, identities,
G(z) — G(z) for each z and A(X,g,G) = U, G(z) = T. Thus (2) is
established.

Next from Example 7.1, P(X(T)) is a topological cell complex with
combinatorial cell complex X (T') = (A, f) and for A € A, the topological
cell H(}) is just T'(f(X)) together with the subspaces T'(f()) for o < A.
Applying our conclusions of the previous paragraph to (A, A(A\)U{\}, »)
in place of (T, A, @), we see that H(\) & X = F()) via a homeomorphism
¢» preserving the cell structure. Then the identity morphism on the
combinatorial cell complex (A, f) together with the homeomorphisms
®x, A € A, define an isomorphism of 7(T") with P(X(T)), establishing

D).

(15.12) (1) 7(T) is isomorphic to P(X(T)), where X(T) = (A, f)
is the combinatorial cell complex of T(T).

(2) T is homeomorphic to the geometric realization T(X(T)) of
x(T).

Proof. As T(X(T)) = A(P(X(T))), (1) and 15.10 imply (2), so it
remains to prove (1). The last paragraph of the proof of 15.11 can be
repeated virtually verbatim to prove (1).

Define a poset P to be a n-sphere if P is of height n and the geometric
realization of O(P) is homeomorphic to the n-sphere S™.

(15.13) Let A € A and n = n()). Then n = h(\) and O(f())) is
an (n — 1)-sphere.

Proof. Let m be the height of f(\). By 15.7.4, F(X) = (F()\), Ax,
) is a regular CW-complex, so its (n — 1)-skeleton F'(X) = (F'(X), A(N),
1) is also a regular CW-complex. Then by 15.11, S*~! & F()) is
homeomorphic to the geometric realization of O(A()\)). But A(X) =
F(N), so the geometric realization of O(f(\)) is an (n — 1)-sphere. In
particular H,_1(O(f(n))) # 0, so h(f(\) = dim(O(f(\))) > n — 1.
Therefore m = h(f(\)) = h(f(\)) +1 > n.

So to complete the proof it remains to show m < n. We proceed by

induction on m. If m = 0 the inequality is trivial. Now m = h(f()))+1
and h(f()\)) = max{h(c) : « € A(\)}. By induction on m, h(a) < n(a),
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so if n(a) < n, we are done. On the other hand BM®) = F(C) is a

closed subspace of F(A\) 2 §™!, and therefore n(a) < n, (cf. Exercise
H in Chapter 3 of [5]) completing the proof.

Example 15.14. Let Q be the category of combinatorial cell com-
plexes (X, f) such that for each 2 € X of height n, f(z) is an (n — 1)-
sphere. Notice that as T'(f(z)) is compact, f(z) is finite, a fact we use
below without comment several times. We associate to X = (X, f) € Q
a normal CW-complex Q(X).

The topological space of Q(X) is the geometric realization A =
T(X) of (X, f). The set A of open cells of A is the set of subspaces
I (z), z € X, where we use the notation of Section 4. By definition of
T(X), F(z) is the geometric realization of f(z), and as (X, f) € Q,
f(z) is an (n — 1)-sphere, so F(z) is homeomorphic to B™ and F(z) is
homeomorphic to S?~!. Thus we define

¢s i F(z) — F(a)

a—a

Our normal CW-complex is Q(X) = (T'(X), A, ).

By definition of A = T'(X), F(z) is closed in A and ¢, is a contin-
uous surjection. By 4.6, C C F(z) is closed in A if and only if (o))
is closed in F(x), so as F(z) is the closure of I(z), F(x) is the closure
of I(z). By 4.4, ¢, : I(z) — I(z) is a homeomorphism.

By definition of the topology on A and by remarks in the previous
paragraph, axiom CWS5 is satisfied. We have also seen that CW2 is
satisfied. By 4.5, CW4 is satisfied. Also F(z) — I(z) = Uy<z I(y), so
axiom (R1) holds. For y < z,

et dw)= U 1o

vef(z)N¢~1(y)

Also for distinct w,v € f(z) N ¢ (y), I(u) N I(v) = @, so {I(v) :
v € f(x)N ¢ (y)} is the set of connected components of p; 1 (I(y)). As
F, : F(v) — F(y) is a homeomorphism with ¢, = ¢,0F, on F(v), axiom
(R2) holds. Also F'(u) N F'(v) = U, <y, F(w) and if X is restricted, no
such w exists, so Q(X) is restricted. Therefore to complete our proof
that Q(X) is a normal CW-complex, it remains to show that A = T'(X)
is a Hausdorff space, which we leave as an exercise.

So Q(X) is a normal CW-complex. Now we extend @ to a covariant
functor from @ into the category of normal CW-complexes. Namely
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if ¢ : X; — X, is a morphism of cell complexes in Q, define Q(¢) :
Q(X1) — Q(X2) to be the morphism of CW-complexes whose map of
topological spaces is T(¢) : T(X1) — T'(X2) and with Q(¢), : F(x) —
F(é(z)) defined to be @,. Check that Q(¢) is indeed a morphism. Thus

we have our functor.

Theorem 15.15. Let N be the category of normal CW-complezes.
Then we have a covariant functor X from N into Q, where X(T') is the
combinatorial cell complex of T(T'). Further the functors X : N' — Q
and Q : Q@ — N are equivalences of categories. Under these equivalences,
restricted cell complezxes correspond to restricted CW-complezes.

Proof. First by Remark 15.8, X(T) is a combinatorial cell complex,
and then by 15.13, X(T') € Q. So X(T) is indeed a functor from N to
Q.

By definition of Q(X(T)), the topological space of the CW-complex
Q(X(T)) is T(X(T)), the set of open cells is A’ = {I(\) : A € X(T) =
A}, and the characteristic maps are ¢ : F(\) — F()\) taking a to a
By 15.12 and its proof, we have an isomorphism ¢’ : P(X(T)) — T(T )
which is the identity map on the combinatorial cell complex X(T) and
with homeomorphisms ¢, : F(z)’ — F(z), A\ € A. Then ¢’ induces the
homeomorphism

A(¢') : T(X(T)) = A(P(X(T))) — A(T(T)).

We compose A(¢') with the homeomorphism ¢ : A(T(T)) — T of 15.10
to obtain a homeomorphism ¢y = ¢ o A(¢') : T(X(T)) — T. Then we
define vr x = ¢. Then vr : Q(X(T)) — T = (T, A, ¢) is an isomorphism
of CW-complexes.

In the other direction, X(Q(X)) is the combinatorial cell complex
of T(Q(X)), which is by definition (A’, f'), where the poset A’ is the set
of open cells of Q(X) and f’()\') is the set of connected components of
@3/ (@), where o/ < X' are open cells in Q(X). Further by definition of
Q(X) in Example 15.14, A’ = {I(z) : z € X} and f'(I(z)) = {I(v) :
V € f(z)}. Thus we define our isomorphism tx : X — X(Q(X)) by
defining vx 1@ — I (z) as a map of posets and defining

txe : f(2) = fI(2)) = {I(v) : v € f(x)}

by tx,5 : v+ I(v). Check that ¢x is indeed an isomorphism of combi-

natorial cell complexes.
Finally check that if ¢ : X7 — X5 is a morphism in Q then X' (Q(¢))o
Lx, = tx, o ¢ and similarly if ¢ : T} — T3 is a morphism in R then
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Youp = tp, 0 Q(X(¢¥)). Therefore the functors & and @ are inverses
of each other on equivalence classes of objects and maps in the two
categories and hence equivalences of categories. To illustrate these last
checks, observe that as a map of posets, (X(Q(¢))oux,)(z) = I(¢(z)) =
(¢ 0 1x,)(z) while (X(Q(¢)) 0 tx,)a(v) = I(¢e(v)) = (¢ © tx,)a(v)-

§16. Group actions on posets and cell complexes

Let G be a group and F = (G, : ¢ € I) a family of subgroups of G.

Let
x =]Ja/aG;
il
be the disjoint union of the coset spaces G/G;, i € I. We consider
relations defined on X which are preserved by the action of G via right
multiplication. Let
= |J &y

(i,3)€IxI

with &; ; € G;\G/Gj, where G;\G/G} is the set of double cosets G;zG;,
z € G. Define I'(G, F,£) to be the relational structure on the set X
with relation Gz related to G,y if and only if Gixy_lGj € &; ;. Check
that this relation is well defined and preserved by the representation of
G on X via right multiplication. Observe that there is a type function
from X to I defined by G;x +— i for each ¢ € I and z € G. Further this
type function is preserved by the action of G; that is if A is our type
function then h(xg) = h(x) for each z € X and g € G.

(16.1) LetT(G, F,E) be a relational structure with relation R. Then

(1) R is reflezive if and only if G; € € ; for each i € I.

(2) R is symmetric if and only if GuG; € &; ; implies Gju™'G; €
E;i for alli,j.

(3) R is antisymmetric if and only if whenever G;uG; € &;; and
Gu G, €&, theni=j and u € Gy, for all i, 7.

(4) R is transitive if and only if whenever i,j,k € I, GuG; € &; 5,
and G;vGy, € &, then GiugvGy € &y for all g € G

Proof.  First if G;xRG,y and G;yRGyz, then G,zy~'G; € &; ; and
G;yz~'Gj, € ;. Then if € satisfies the hypotheses of (4), then

GiIZ“IGj = Gi(xy‘l)(yz_l)Gk € gi,ka

so G;xRGyz and the relation R is transitive.



Combinatorial Cell Complezes 77

Conversely suppose R is transitive and let G,uG; € &; ; and G;vGy
€ & k. Then G,ugRG; for each g € G; and G;RGyv™!, so G;ugRG}
v~!, and therefore G;ugvGy € &; .

Remark. Lemma 16.1 says that the relation defined by a relational
structure I'(G, F, €) is a partial order if and only if £ satisfies the con-
ditions of 16.1.1, 16.1.3, and 16.1.4. Define a coset poset over the index
set I to be a relational structure I'(G, F, £) over I such that

(CSPO) I comes equipped with a partial order <.

(CSP1) &; ; = @ unless ¢ < j.

(CSP2) &;; = {G;} for each i.

(CSP3) Ifi<j<kinl, Giqu (S 51‘,_7', and ijGk c gj,k, then
GiugvGy, € &; i, for each g € Gj.

Thus by Lemma 16.1, the relation defined by a coset poset is a
partial order on X. Write < for this partial order. Observe that our
type function from X to I is a map of posets by axiom CSP1. Moreover
the next lemma gives us a characterization of those posets which are
coset posets. Notice that condition (*) of the lemma is always satisfied
if the poset P is in P, since morphisms in P preserve height.

(16.2) Let G be represented as a group of automorphisms of the

poset P and let I = P/G be the orbit poset of this representation. That
18 aG < bG if and only if ag < b for some g € G. Assume
(*) For eacha€ P, aGNP(<a)=0.
Let (z; : i € I) be a set of representatives for the orbits of G on P with
i=z;G and let G; = Gy, F = (G;:i€1), and & ; = {GuG; : zju <
zj}. ThenT =T(G,F,€E) is a coset poset and the map z;9 — G,g is a
G-equivariant isomorphism of posets.

Proof. By construction, I satisfies axioms CSP0 and CSP1. Axiom
CSP2 follows from hypothesis (*). Finally if G;uG; € &; ; and G;vGy, €
&k then zjug < z; for each g € G; and z; < zxv~?, so as P is a poset,
ziug < zxv~ !, and hence z;ugv < z. Therefore GiugvGy € &k, so
axiom CSP3 is satisfied and I is a coset poset. As G; = G,, our map is a
G-equivariant bijection. Finally z;g < z;hif and only if G;gh™'G; € &; ;
if and only if G;9 < G;h, so the map and its inverse preserve order.

(16.3) Let T = T'(G, F,&) and T = [(G, F, &) be coset posets over
I and I, respectively, let 3 : I — I be a map of posets, and let oo : G — G
a group homomorphism such that a(G;) C Gg(y and a(E;) € Egay,p¢)
for each i,j € I. Then the map Giz — Ggguya(x) is a map of posets
from T into T.
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Proof. As a(G;) C Gg(i), the map is well defined. As a(&; ;) C
gﬂ(i)ﬁ(j), the map preserves order.

Let o : P — P be a map of posets. We say o is a lower covering if for
all @ € P, the restriction &; : P(< @) — P(< a(@)) is an isomorphism.
The lower covering is restricted if o is injective on 13(2 a).

The cone of P is the poset CP = P U {z,} obtained by adjoining
an element x, > a for all a € P.

(16.4) Assume o : P — P is a lower covering of posets with P € P
of height n, and let (P, f) be the simplicial cell complex of P. Let X =
Pu{xz.} be the cone of P. Then (X, f) is a combinatorial cell complez,
where (X, f) has n-skeleton (P, f), f(x*) =P, qf'(m*) =a, and f; = oz

for each @ € f(z.). If a is restricted, so is (X, f).
Proof.  Straightforward.

(16.5) Assume (X, f) is a restricted combinatorial cell complex of
height n+1, f(z) is homology spherical for each z € X, and Ho(X™) =
0. Then dim(H,1(X)) = > o x dim(H, ~(f(x))), the (n + 1)st cellular
boundary map 8p4+1 of X is 0, and H,(X) = 0.

Proof. As f (x) is homology spherical for each z € X, HS(X) =
H,(X) by Theorem 12.16.
Suppose O,41 = 0. Then HS, |(X) = Z5,(X) = Dpi1(X) has

rank
> dim(H, (f()))
zeX
BVCL(X) n+1

by 12.7. Also HS(X) = ZS(X)/BS(X) = Z5(X
(Dp+1(X)) = 0. Therefore H,(X) = HS(X) =
HE(X™) = Ho(X™) = 0.

So it remains to show 8,41 = 0. Assume not. Then 0 # BS(X) <
Z8(X)=Z(X™) = HS(X™) = H,(X™) = 0, a contradiction.

) a
25(X) = Z5(x) =

Corollary 16.6. Assume (X, f) is a restricted combinatorial cell

complex of height n+1 such that f( ) is homology spherical for each x €
X and X™ is acyclzc Then X is homology spherical with dim(H,,41(X))

= Y oex dim(Hu(f(2)))-

Example. We consider the classical example of the Poincaré do-
decahedron and the Poincaré dodecahedron disk. We regard the dodec-
ahedron as the poset X of faces partially ordered by inclusion. Then X
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has one element z, of height 3, 12 2-dimensional faces of height 2, 30
1-dimensional faces of height 1, and 20 vertices of height 0.

The Coxeter group W of type Hs is isomorphic to Zs X As, where
Ay is the alternating group of degree 5, and we will see that the Coxeter
complex of W is the order complex of the boundary X (< ) of the
dodecahedron. Namely W is regular on 3-chains in X and if ¢ = (zo <

- < z3) is a 3-chain and ¢; = ¢ — {z;} for 0 <4 < 2, then W, = (r;)
is of order 2 and R = {rg,r1,72} is the set of fundamental reflections
making (W, R) a Coxeter system of type Hs. Further the stabilizer of
the chain ¢y = ¢—{x; : j € J} is the parabolic Wy = (R;), where R; =
{r;:j € J}. Let I = {0,1,2} ordered as usual and M; = W;_y;; be the
stabilizer of z;. The Coxeter complex of W is the order complex of the
coset poset I'(W, F*,£*), where F* = (M; : i € I) and &; = {M,;M,}.
By 16.2, X (< z4) is isomorphic to this coset poset and hence its order
complex is isomorphic to the Coxeter complex.

Next the commutator group of W is the alternating group G = Aj
on {1,2,3,4,5} and as Wy £ G for J C I, W = WG for all such J so
G is transitive on pairs (z,y) in X with y < z, h(z) =4, and h(y) = 7,
for all 0 < 7 < ¢ < 3. On the other hand G has two orbits on 3-chains of
X. Let Gi=GNM; = Gm,and]-" (G 0<z<3) Then G5 = G,
Gy 2 Zs, Gy = Zy, and Gy = Z3. By 16.2, X = I'(G, F,£), where
5;,1‘ = {é]éz} fOI‘j S 7.

Let G; = (g;) for 0 < i < 2. As the pair (go), (g2) is determined
up to conjugation in Aut(G) = S5, we may take go = (1,2,3,4,5) and
go = (2,3,5). As rp inverts go and g2, so does its projection p; on
G, so py = (1,4)(2,3). Then we may take the projection ps of 5 to
be ps = p1ga = (1,5)(2,4). Next the projection po centralizes ps and
inverts go, so po = (1,4)(2,5). Finally g; = pop2 = (1,2)(4, 5).

Next let Gy be the stabilizer on G of the point 1, G; the global
stabilizer of {1,2}, and G, = Ng(é2). Let F = (G; : 0 <i<2)and
consider the coset poset P = I'(G,F, &), where &, ; = {G;G,}. Now
G1 = Gy,1G1 2, so G is transitive on 2-chains of the poset P. The poset
P is the Poincaré dodecahedron disk. It is well known that

(16.7) Let P be the Poincaré dodecahedron disk. Then P is aspher-
ical with w1 (P) = SLs(5).

Proof.  See for example [4].

Let F = (G;:0<i<2)and P=T(G, F,E&) the coset poset with
E=1{&::0<j<i<2}. Thatis P is the 2-skeleton or boundary of
the dodecahedron. Thus the geometric realization of P is the 2-sphere.
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Define o : P — P to be the map induced via the identity homomor-
phism on G and the identity map on {0, 1,2} as in Lemma 16.3. Observe
that G; < G; and E C G;G;forall j <iandall E € gi,j, SO @ is a map
of posets by 16.2. Indeed « is a restricted lower covering. Therefore
if we form the cone X = {z,} U P of P and make the construction of
Lemma 16.4, we obtain a restricted combinatorial cell complex (X, f)
whose 2-skeleton X? is the simplicial cell complex (P, f) of the Poincaré
dodecahedron disc. We call X the Poincaré dodecahedron, since the
geometric realization of X is the Poincaré dodecahedron.

By Lemma 16.7, X2 = P is acyclic. Also f(z.) = P has the ho-
motopy type of the 2-sphere, so f(z.) is spherical with Ha(f(z4)) = Z.
Finally f (z) is isomorphic to the 5-gon, and the 0-sphere for z of height
2,1, respectively, so f (z) is homology spherical for all z € X. Therefore
by Corollary 16.6, X is homology spherical with H3(X) % Z; that is
X is a homology 3-sphere. Also as f (z.) has the homotopy type of the
2-sphere, it is simply connected, so by 12.17, 71 (X) = 71 (X?) = SL»(5)
by 16.7. We summarize this as:

(16.8)Let X be the Poincaré dodecahedron. Then X is a homology
3-sphere with m;(X) = SLy(5).

Notice that G is a group of automorphisms of P transitive on 2-
chains and hence also on 3-chains of X.
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