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of Three-Body Schrodinger Operators 

with Efimov Effect 
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Introduction 

The Efimov effect is one of the most interesting results in the spec­
tral analysis for three-body Schrodinger operators. Roughly speaking, 
it can be explained as follows: If all three two-body subsystems have 
no negative eigenvalues and if at least two of these subsystems have a 
resonance state at zero energy, then the three-body system under con~ 
sideration has an infinite number of negative eigenvalues accumulating at 
zero. This remarkable spectral property was first discovered by Efimov 
[1) and the mathematically rigorous proof has been given by the works 
[4, 8, 10). In the present note, we study the asymptotic distribution of 
these negative eigenvalues below the bottom zero of essential spectrum 
which is a three-cluster threshold energy. Let N(E), E > 0, be the 
number of negative eigenvalues less than - E with repetition accord­
ing to their multiplicities. Then the result obtained here is, somewhat 
loosely stating, that N(E) behaves like I log El as E -t 0. 

We first formulate precisely the main theorem and then make a 
brief comment on the recent related result obtained by Sobolev [7). We 
consider a system of three particles with masses mi > 0, 1 :=; j :=; 3, 
which move in the three-dimensional space R3 and interact with each 
other through a pair potential Vjk{rj - rk), 1 :=; j < k :=; 3, where 
r j E R3 denotes the position vector of the j-th particle. For such a 
system, the energy Hamiltonian H (three-body· Schrodinger operator) 
takes the form 

(0.1) H=Ho+V, V = L Vjk(rj - rk), 
1:'oj<k9 

in the center-of-mass frame, where Ho denotes the free Hamiltonian. 
Both the operators Ho and H act on the space L 2 (R6 ) and are repre-
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sented in various forms according to the choice of the Jacobi coordinates. 
The pair potential Vjk is assumed to satisfy the following condition: 

(V)p Vjk(x), x E Ra, is real-valued and has the decay property 

l½k(x)I SC (l + lxl)-P for some p > 2. 

By this assumption, the Hamiltonian H formally defined above admits 
a unique self-adjoint realization in L2 (R6 ). We denote by the same 
notation H this self-adjoint realization. 

We use the letters a, /3 and 'Y to denote one of three pairs (j, k) with 
1 S j < k S 3. For a pair a= (j, k), we define the reduced mass ma 

through the relation 1/ma = 1/mi + 1/mk and the two-body subsystem 
Hamiltonian Ha as 

Ha= -t::../2ma + Va, Va(x) = Vjk(x), on L2 (R;,). 

We further assume that these subsystem Hamiltonians Ha have the fol­
lowing spectral properties: 

(H.l) Ha has no negative bound state energies for all pairs a. 

(H.2) Ha has a resonance state at zero energy for all pairs a. 

Roughly speaking, the second assumption (H.2) means that the equa­
tion Hacp = 0 has a solution cp(x), x E Ra, behaving like cp(x) ~ lxl-1 

at infinity. Such a solution is called a resonance state at zero energy. It 
should be noted that cp is not an eigenstate of Ha at zero energy. By 
the HVZ theorem ([5]), it follows from (H.1) that H has essential spec­
trum beginning at zero and negative discrete spectrum. If, in addition, 
(H.2) is satisfied, then H has an infinite number of negative eigenvalues 
accumulating at zero. In assumption (H.1), we have assumed that any 
pair of two particles does not have bound states at negative energies. 
Nevertheless the three-body system has an infinite number of bound 
states at negative energies. As stated above, this spectral property is 
called the Efimov effect. 

With the above notations and assumptions, we are now in a position 
to formulate the first theorem. 

Theorem 1. Assume that (V)p, (H.l) and (H.2) are fulfilled. Let 
N(E), E > O, be the number of negative eigenvalues less than -E of H 
with repetition according to their multiplicities. Then N(E) obeys the 
following asymptotic formula: 

N(E) = Co I log El (1 + o(l)), E-+ O, 
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for some Co> 0. 

Remark 1. We should make some comments on the leading coeffi­
cient Co in the asymptotic formula. This constant Co does not depend 
on the pair potentials Vjk and is given as a positive function of only the 
ratios mi/mk between the masses. The constant is determined from an 
eigenvalue asymptotics for a certain compact integral operator and is in 
general difficult to write down in an explicit form. In the special case 
with identical masses, Co is determined as C0 = s /21r with the unique 
positive root s > 0 of the equation 

s = 23 . 3-1/ 2 (sinh s 1r /6) / ( cosh s 1r /2). 

Remark 2. (1) The following result can be also obtained in the 
course of proof: If at most one of two-body subsystem Hamiltonians 
H°' has a resonance state at zero energy, then H has only a finite num­
ber of negative eigenvalues; N(E) = 0(1), E ~ 0. This result asserts 
the finiteness of discrete spectrum below the bottom of essential spec­
trum, even if the bottom coincides with a three-cluster threshold energy. 
(2) As previously stated, H has in general an infinite number of nega­
tive eigenvalues accumulating at zero except for a certain special case, if 
only two subsystem Hamiltonians have a resonance state at zero energy. 
Even in such a case, a similar asymptotic formula with another leading 
coefficient C0 > 0 can be obtained. 

The asymptotic formula for N ( E) has been first established by 
Sobolev [7] under the main assumption that pair potentials are non­
positive V]k ~ 0 and have the decay property (V)p with p > 3. The 
above properties of the leading coefficient C0 has been also investigated 
in detail there. Theorem 1 is only a supplement of the interesting result 
obtained by Sobolev [7] and the proof is also based on the idea developed 
there. But the arguments undergo slight changes in many aspects, if the 
non-positivity assumption of pair potentials is not necessarily assumed. 

The method here applies also to the problem on the eigenvalue 
asymptotics in the coupling limit. We consider the three-body Hamil­
tonian 

(0.2) H(>.) = H - >. V = H0 + (1 - >.)V 

with a coupling constant>., 0 < >. « 1, small enough, where His defined 
by (0.1) and is assumed to satisfy all the assumptions in Theorem 1. Let 
N0 (>.) be the number of negative eigenvalues of H(>.). For >. > 0, H(>.) 
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has only a finite number of negative eigenvalues but No(>.) -+ oo as >. 
tends to the critical value 0. The theorem below gives the asymptotic 
formula as >. -+ 0 for No(>.). 

Theorem 2. Let the notations be as above. Suppose that the 
three-body Hamiltonian H = H(0) fulfills the assumptions (V)p, (H.I) 
and (H.2). Then N0 (>.) behaves like 

No(>.) = 2 Co I log>.! (I+ o(l)), >.-+ 0, 

with the same positive constant C0 as in Theorem I. 

§1. Low energy analysis for two-body resolvents 

The proof of the theorems above is based on the behavior at low 
energies of two-body resolvents with resonance at zero energy. We here 
make a brief review on this result. For details, see [2, 3]. 

Throughout the section, we work in the space L2 = L 2 (R;) and 
denote by ( , ) the L 2 scalar product. We begin by defining precisely 
the resonance state at zero energy. Let T = -a + Vo be the two-body 
Schrodinger operator acting on L2 • We assume that the potential Vo(x) 
has the decay property (V) P and that the operator T has the spectral 
properties (H.I) and (H.2). We now consider the equation Tep = 0. 
This equation can be put into the integral equation 

(I.I) cp(x) = -(1/471") j Ix - Yl- 1Vo(y)cp(y) dy, 

where the integration with no domain attached is taken over the whole 
space. Equation (I.I) is considered in the weighted L2 space L':.8 = 
L2 (R;; (x)-28 dx) with weight (x)-s = (1 + lxl 2)-s/2 , s > 1/2 being 
taken close enough to 1/2. If cp E L':_8 solves the equation (I.I), then it 
is easily seen that cp behaves like 

cp(x) = -(1/47r)(Vo, cp)lxl- 1 + O(lxl-p+l), 

(8/8lxl)cp(x) = (I/47r)(Vo, cp)lxl-2 + O(lxl-P) 

as !xi -+ oo. We say that cp is a resonance state of T at zero energy, 
if (Vo, cp) -/- 0 is satisfied. Thus the resonance state cp behaves like 
cp(x) ~ lxl-1 as !xi-+ oo and hence cp (/. L2 is not a bound state at zero 
energy. On the other hand, if (Vo, cp) = 0 is satisfied, then we obtain 
from (I.I) that cp(x) = O(lxl-2), so that cp belongs to L 2 and becomes a 
bound state of T at zero energy. Conversely, if cp is a bound state at zero 
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energy, then we can easily see that <p satisfies the relation (Vo, <p) = 0. 
This implies that a resonance state at zero energy is non-degenerate. 
Under assumptions (V)p, (H.1) and (H.2), it also follows from Theorem 
A.3.1 of [6] that T cannot have a bound state at zero energy (bottom of 
its spectrum) and hence T has only a resonance state. 

Assumption (V) P enables us to choose a non-negative potential 
U0 2'.: 0 satisfying (V) P so that 

(1.2) Wo(x) = Uo(x) - Vo(x) 2'.: Uo(x)/2 2'.: 0. 

We define the Schrodinger operator S with potential U0 by 

(1.3) S = -Ll+Uo 

and denote the resolvent of Sas R(cP; S) = (S + d2)-1 ford> 0. Since 
U0 is non-negative, R(0; S) can be also defined as a bounded operator 
from L~ into L:.8 for any s > 1 and the generalized eigenfunction 00 (x) 
of S at zero energy is obtained as a unique solution to the Lippmann­
Schwinger equation. Let A(d) : £ 2 -+ £ 2 be the operator defined by 

(1.4) 

Id being the identity operator. It should be noted that this operator can 
be defined even ford= 0. Let :E1 be the kernel of A(0). The kernel :E1 

can be shown to be a one-dimensional space. Denote by 'lj;1 E £ 2 the 
normalized function spanning :E1 . Then we can show that 'lj;1 ( x) falls off 

with order O(lxl-l-p/2 ) and satisfies (0o, wt121/J1) -1- 0. We decompose 
the space £ 2 = L2 (R;) into the orthogonal sum £ 2 = :E1 EB :E2 and we 
denote by Pj, 1:::; j:::; 2, the orthogonal projections onto :Ej. 

We study the behavior as d -+ 0 of A( d) defined above. To do this, 
we here introduce new notations. A bounded operator T(d), 0 < d « 1, 
acting on £ 2 is said to be of class Op(d"), if its operator norm obeys the 
bound IIT(d)II = O(d") as d-+ 0. When the difference T1(d) - T2 (d) is 
of class Op(d"), we denote this relation as T1(d) = T2 (d) + Op(d"). 

Lemma 1.1. Let the notations be as above. Suppose that T ful­
fills (V)p, (H.1) and (H.2). Then the operator A(d) has the following 

. properties. 

(i) Let€, 0 < € « 1, be fixed arbitrarily. Then there exist positive 
constants Ce and c~ such that 

d 2'.: €, 
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in the form sense. 

(ii) Define Ajk(d), 1 ::5 j, k ::5 2, as Ajk(d) = PjA(d)Pk. Then: 

(1) A22(d) E Op(d°) and A22(d) ~ c2P2 for some c2 > 0. 
(2) A12(d) E Op(dv) for some v > 1/2. 
(3) Au(d) = u1dPi + Op(dv) fbr some v > 1, where 

u1 = l(Bo, wJ121P1)12 /41r > o. 

Remark 1.2. A similar argument applies to the Schrodinger oper­
ator T = -!:J../2m + Vo with reduced mass m. For such an operator, the 
constant u1 in the lemma is given as 

0'1 = Tl/27r-lm3/2 l(0o, wJ/21P1)12, 

where 00 is the generalized eigenfunction at zero energy of S = -!:J../2m+ 
U0 , U0 being chosen to satisfy (1.2), and "Pl E £ 2 is the normalized 
function constructed for the operator S. 

§2. Sketch of proof of Theorem 1 

We here give a sketch for the proof of Theorem 1 only. See [9] for 
the detailed proof, including the proof of Theorem 2. 

(0) We begin by introducing several basic notations used in the 
spectral analysis for three-body Schrodinger operators. 

Let a= (j, k) be given pair and let l, l-/:- j, k, be the index by which 
the third particle is labelled. Then the Jacobi coordinates associated 
with a are defined as 

(2.1) Xo = rj - rk, Yo = r1 - (mjrj + mkrk)/(mj + mk)-

We denote by {po, q0 ) E R3 x 2 the coordinates dual to (x0 , y0 ). In 
this coordinate system, the symbol Ho(p0 , q0 ) of the three-body free 
Hamiltonian Ho is described as 

where m 0 again denotes the reduced mass associated with a and n 0 is 
defined through the relation 1 / n 0 = 1 / m1 + 1 / ( mj + mk). Let /3 -/:- a be 
another pair. Then a simple calculation yields 

(2.2) Po = ,,,ooqo + /'i,o/3 q13, P/3 = ,,,f3oqo + ,,,f3f3 q13, 



Efimov Effect 317 

where the coefficients ,,,au,,, ,,,f3a., ,,,a.f3 and 1,,13/3 are explicitly expresssed 
in terms of the masses mi, 1 ::; j ::; 3, and, in particular, ,,,f3a. and ,,,a./3 
satisfy l,,,130.I = IKo./31 = 1. We also denote by Ho(qa., q13) the symbol 
representation for Ho in the coordinate system ( qo., q13). We further 
define the cluster Hamiltonian Ha. as 

Ha. =Ho+ Va., Va. = "\,'Jk, on L2 (R6 ). 

The base space L2 (R6 ) is decomposed as the tensor product 

and hence the Hamiltonian Ha. is represented as 

where Ho. again denotes the two-body subsystem Hamiltonian associ­
ated with a and Ta. is given as 

(2.3) 

We now choose a non-negative potential Ua. = Ua.(xa.) :2::: 0 to satisfy 
the property {1.2) 

Wa.(xa.) = Ua.(xa.) - Va.(xa.) :2::: Ua.(xa.)/2 :2::: 0 

and define the Hamiltonians Ko. and Ka. as 

Ko. = -D../2ma. + Ua. on L2 (R3 ; dxa.), 

Ka. =Ko.© Id+ Id ©Ta. on L2 (R3 ; dxa.) © L2 (R3 ; dya.)• 
(2.4) 

We also define A{d; Ko.) : L2 (R3 ; dxa.) --+ L2 (R3 ; dxa.) as 

(2.5) A(d;Ko.)=Id-W~l2 (Ko.+d2 )-1W~l2 , d:2:::O, 

in a way similar to {1.4) and denote by Pt, 1 ::; j ::; 2, the orthogonal 
projections associated with A(O; Ko.), which are constructed in the same 
way as Pj in section 1. We further denote by 0{{ = 0{f(xa.) the general­
ized eigenfunction of Ko. at zero energy and by 'lj;f E L2 (R3 ; dxa.) the 
normalized function spanning the range of Pf, the r~ge being a one­
dimensional space. The operator A(d; Ko.) defined above preserves the 
same properties as in Lemma 1.1 (see also Remark 1.2) and, in particu­
lar, we have 

Pf A(d; Ko.)Pf = aa. dPf + Op(d"), d--+ 0, 
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for some v > 1, where O"o, > 0 is given as 

(2.6) a = 2-1/211'-1 m3/2 I (00/, w1/2.,,a) 12 
a a O, o, 'f'l • 

(1) We consider only E, 0 < E «: 1, small enough. For given 
self-adjoint operator A, we denote by n(µ; A) the number of eigenvalues 
greater thanµ of A. Let U = La Uo,, and W = Lo, Wo,,, where the 
summation Lo, is taken over all three pairs a. Define the Hamiltonian 
Kby K = Ho+U = H+W and the bounded operator M(E): L2 (R6 ) ----t 

L2(RB) by 

M(E) = (K + E)-1!2w(K + E)-1/ 2 = I:Ma(E)* Ma(E) 
a 

with Ma(E) = w~12(K + E)-112 • Then the quantity N(E) in question 
coincides with n(l; M(E)) by the Birman-Schwinger principle. The next 
lemma is due to Sobolev [7). 

Lemma 2.1. Let £ 2 = L €BL2 (R6 ), three summands. Define the 
operator M(E): £ 2 ----t £ 2 as 

where a, /3 and 'Y denote different three pairs. Then one has 

N(E) = n(l;M(E)). 

(2) We denote by Dia{Ba,B,13,B'Y} the 3 x 3 diagonal matrix with 
operators Bo,, B,13 and B'Y as diagonal entries. Let M(E) be as in Lemma 
2.1. The off-diagonal entries of M(E) are all compact operators on 
L2 (R6 ) but the diagonal ones are not necessarily compact operators. 
Thus we look more carefully at the operator 

Mo,,(E)Mo,,(E)* = w~l2 (K + E)-1W~l2 

in the diagonal entries of M ( E). 
Let Ko, be defined by (2.4). We decompose the above operator 

into the sum Ma(E)Ma(E)* = Moo,,(E) + Lo,,(E), where Moa(E) = 

w~12(Ko,, + E)- 1w~12 and 
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so that M(E) is represented as M(E) = Mo(E) +M1 (E) with 

Mo(E) = Dia{Moa(E), Mo13(E), Mo,,(E)}. 

We note that M 1 (E) : £ 2 -+ £ 2 is a compact operator. 
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We now introduce a positive smooth function w(s), s > 0, such that 

w(s) = s for O < s < 1, w(s) = 2 for s > 2. 

Let Ta be defined by (2.3) as an operator on L2 (R3 ; dya)- We define 

Wa(E) = w((Ta + E)112 ), 

which is considered as an operator acting on L2 (R6 ) as well as on 
L2 (R3 ; dya)- We further define Aa(E) : L2 (R6 )-+ L2 (R6 ) as 

Aa(E) = Id-Moa(E) = Id-W~l2 (Ka + E)- 1W~l2 . 

By Lemma 1.1 (see also Remark 1.2), we can find strictly positive smooth 
bounded functions J±(s), 0 < c :S J+(s) :S J-(s), behaving like 

s-+ 0, 

for some v > 0 such that 

(2.7) 

(2.8) 

Aa(E) ~ J";t(E)wa(E)Pf +c+Pf, 

Aa(E) :S J;; (E)wa(E)Pf + c_Pf 

for some positive constants C±, 0 < c+ < c_, where 

with Ua > 0 given by (2.6), and the inequality relations are understood 
in the form sense. Denote by F;t(E) and F;;(E) the operators on the 
right side of (2.7) and (2.8), respectively, and define 

Ff (E) = Dia{F,;(E), Ff (E), F;'(E)}. 

Then it follows from (2. 7) and (2.8) that 

Ft(E) :S Id-Mo(E) :S F0 (E) 

and hence we obtain from Lemma 2.1 that 

(2.9) 
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where 

(3) We study the behavior as E -+ 0 of Hilbert-Schmidt norm of 
the entry operators Q;13 (E) in Q±(E). To do this, we here introduce 

new notations. Let B(E), 0 < E « 1, be a compact operator on L2 (R6 ). 

We say that B(E) is of class (H 8)€, if for any 1; > 0 small enough, B(E) 
has a decomposition B(E) = B 1(E; 1;) + B2(E; 1;) such that: (i) the 
Hilbert-Schmidt norm of B1(E;1;) obeys the bound IIB1(E;1;)IIHs ~ C€ 
for some C€ independent of E; (ii) the operator norm of B2(E; 1;) obeys 
the bound IIB2 (E; 1;)11 ~ f. If the difference between two operators B1 (E) 
and B2(E) is of class (HS)€, we denote this relation as B1(E) ~ B2(E). 

Lemma 2.2. Q!a(E) ~ 0. 

We analyse the operators Q;13 (E), a =I- (3, in the off-diagonal entries 

of Q±(E). Recall that 1/Jf E L2 (R3 ; dxa) is the normalized function 
spanning the range of Pf (one-dimensional space). Let x:(x), x E R3, 
be the characteristic function of the unit ball B1 in R3 . We set 

and denote by IIa13(E) : L2 (R6 ; dx13 dq13) -+ L2 (R6 ; dxa dqa), a=/- (3, the 

integral operator with the kernel 1/Jf(xa)Ja13(qa, q13; E)'I/Jf (x13), where 
J a/3 ( qa, q13; E) is defined by 

with 
Taf3 = 2-5/271"-2 (mam/3)-3/4_ 

Let Wa L2(R3 ;dya) -+ L2 (R3 ;dqa) be the Fourier transformation 
in Ya• We further define Sa13(E) : L2 (R6 ) -+ L2 (R6 ) by Sa13(E) = 
\Jl~IIa13(E)\Jf 13, a =/- (3. 

Lemma 2.3. Q;13 (E) ~ Sa13(E), a=/- (3. 

Let S(E) : £ 2 -+ £ 2 , £ 2 being as in Lemma 2.1, be the self-adjoint 
compact operator defined by 
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Then Lemmas 2.2 and 2.3, together with (2.9), yield that 

n((l + E);S(E)) - C, S N(E) S n((l - E);S(E)) + C, 

for any E > 0 small enough, where C, > 0 is independent of E. This 
relation can be easily obtained by use of the Weyl inequality 

n(.X1 + .X2; A1 + A2) S n(.X1; A1) + n(.X2; A2) 

for the sum of compact operators A1 and A2 . 

(4) The proof of the theorem is completed in this step. Let 

£ 2 (Bi) = L ffiL2 (B1 ;dqa), three summands. 
a 

We denote by Ja13(E) : L 2(B1; dq13) - L 2(B1; dqa) the integral operator 
with the kernel Ja13(qa, q13; E) defined by (2.10), and define the operator 

.:lo(E) : £ 2(B1) - £ 2(B1) as 

.:lo(E) = ( J13ao(E) 
J,a(E) 

Then it is easily seen that n(µ;S(E)) = n(µ;.:l0 (E)) for S(E) defined 
above and hence we have 

(2.11) n((l + E); .:lo(E)) - C, S N(E) S n((l - E); .:lo(E)) + C,. 

The eigenvalue asymptotics for the integral operator .:lo(E) has been 
in detail studied in Sobolev [7] by employing an argument used in the 
calculation of the canonical distribution of Toeplitz operators. We here 
summarize the results obtained there. 

Lemma 2.4. Let n(µ; .:lo(E)) be as above. Then: 

( 1) There exists a limit 

80(µ) = limn(µ; .:lo(E))/1 logEI 
E->0 

as a continuous function ofµ > 0. 
(2) The constant C0 = 8 0 (1) depends only on the ratios between the 

masses of three particles under consideration and obeys the lower bound 

C0 > log 2/21r2 > 0. 

This lemma, together with relation (2.11), completes the proof of 
the theorem. 
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