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A Uniqueness Result for Minimal Surfaces m S3 

Miyuki Koiso 

§1. Introduction 

In the study of minimal surfaces, the uniqueness for minimal surfaces 
bounded by a given contour is an important problem which is not yet 
solved completely. 

The first uniqueness result was proved by Rado [4] for minimal sur
faces in R 3 • He proved that if a Jordan curve r has a one-to-one parallel 
or central projection onto a convex plane Jordan curve, then r bounds a 
unique minimal disk. The second result is due to Nitsche [3] and states 
that if the total curvature of an analytic Jordan curve f does not exceed 
41r, then r bounds a unique minimal disk. The third result is due to 
Tromba [6] and states that if a C 2-Jordan curve r is sufficiently closed 
to a C 2-plane Jordan curve in the C 2-topology, then f bounds a unique 
minimal disk. 

For minimal surfaces in other Riemannian manifolds, uniqueness 
theorems in the three dimensional hemisphere of S3 were proved by 
Sakaki [5] and Koiso [2]. Sakaki's result is an analogy of Tromba's 
uniqueness theorem, and Koiso's is an analogy of Rad6's theorem. 

In this paper we restrict ourselves to minimal surfaces in S3 which 
are "graphs" in some sense (Definition 1.1). 

Set S3 = { x E R4; lxl = 1}. Let :E be a 2-plane in R4 containing 

the origin of R4 . We denote by B the two dimensional unit open disk 
in :E which is bounded by :E n S3 . 

Definition 1. 1. Let D be a subset of the closed disk B. A subset 
M of S3 is called a "graph" over D if M intersects with each 2-plane 
containing a point of D which is orthogonal to :E in R 4 at precisely one 
point. 

Definition 1.2. (1) A minimal surface M in S3 is a continuous 
mapping <I> of a two dimensional compact C 00-manifold R with boundary 
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BR into S 3 which is of class C 2 in the interior of Rand which is a critical 
point of the area functional for every variation preserving the boundary 
values <l?laR-

(2) We sometimes call the image <l?(R) of a minimal surface <l? : 
R---+ S 3 to be a minimal surface. On such an occasion we call <l?(BR) 
to be the boundary of the minimal surface <l?(R), and denote <l?(BR) by 
B<l?(R). 

(3) When we mention the uniqueness for minimal surfaces, we mean 
the uniqueness for the images of minimal surfaces. 

Now we can state our uniqueness result: 

Theorem 1.3. Let D be a simply-connected domain whose closure 
D is contained in B. If M is a minimal surface which is a "C2 -graph" 
over D, then M is the unique minimal surface bounded by BM which is 
a ''C2 -graph" over D. 

For the proof, we represent each "graph" over D in terms of a sin
gle real-valued function c.p defined on D. We prove that the considered 
"graph" is a minimal surface if and only if the function c.p satisfies a 
certain quasilinear elliptic partial differential equation (Lemma 2.4). A 
uniqueness theorem for the Dirichlet problem for quasilinear elliptic op
erators assures the uniqueness of our minimal surface. 

We conjecture that under the assumption of Theorem 1.3, the 
uniqueness of the area-minimizing surface bounded by BM is valid. 

§2. Proof of Theorem 1.3 

Throughout this section, we assume that D is a simply-connected 
domain whose closure is contained in B. 

We introduce the orthogonal coordinates (x,y, z,w) in R 4 . Without 
loss of generality, we set E the (x, y)-plane. For simplicity we denote a 
point (x,y,0,0) in Eby (x,y). If f is a differentiable function of x and 
Y, we denote Bf /Bx,Bf /By,B2 f /Bx2 by fx,fy,fxx, etc. 

A "graph" over D is represented as follows: 

(2-1) ( x, y, JI - x2 - y2 cos c.p(x, y), JI - x 2 - y2 sin c.p(x, y)) , 

(x,y) ED, 

where c.p(x, y) is a real-valued function defined on D. 
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Definition 2.1. A "graph" over D represented by (2-1) is called 
a "en-graph" over D if <p can be chosen to be of class en on D. 

Remark 2.2. If Mis a "en-graph" represented by (2-1), then 

fJM = { (x,y, J1 - x 2 -y2 cos<p, J1 - x 2 -y2 sin<p); (x,y) E fJD} 

is a Jordan curve of class en. 

Remark 2.3. Since Dis contained in B, x 2 + y 2 < 1 for any point 
(x, y) in D. 

Lemma 2.4. Let <p be of class e2 (D,R). 

M = { (x, y, J1 - x 2 - y2 cos 1.p(x, y), J1 - x 2 - y2 sin <p(x, y)) ; 

(x,y) ED} 

is a minimal surf ace if and only if 

L<p = 0 inD, 

where L is a quasilinear elliptic operator of the form 

(2-2) 
L<p = { 1 - x2 + (1 - x2 - y2)2'-Py 2} '-Pxx 

Proof. Set 

- 2 { xy + (1 - x 2 - y2)2'-Px'-Py} '-Pxy 

+ { 1 _ y2 + (l _ x2 _ y2)2'-Px 2} '-Pyy 

- 4x<px - 4y<py 

+ 2(1 - x2 - y2)(-x + x3)'-Px 3 

+ (1 - x2 - y2)(-2y + 6x2y)<px 2'-Py 

+ (1 - x 2 - y2 )(-2x + 6xy2)'-Px'-Py 2 

+ 2(1 - x2 - y2)(-y + y3)<py 3 , (x, y) ED. 

<I>(x,y) = (x,y, J1 - x 2 -y2cos<p(x,y), J1 -x2 -y2 sin<p(x,y)), 

(x,y) ED. 
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Then <I> E C 2 ( D, S3 ). The area A of M is represented as 

where (<I>x, <I>y) is the usual inner product in R 4 and l<I>xl 2 = (<I>x, <l>x), 
l<I>yl 2 = (<I>y, <I>y)- By easy calculations we get 

A= fl {(1-x2-y2)-1+(l-x2-y2) ('Px2+cp/) 

2 }1/2 + (xcpy -ycpx) dxdy. 

Let f = J(x, y) be a real-valued C 2-function on D which vanishes 
on the boundary 8D. Then we get 1-parameter family of surfaces Mt 
represented as follows. 

(x,y, J1 - x2 - y2 cos(cp + ti), J1 - x2 -y2sin(cp + t J)), 

(x,y) ED, t ER. 

Denote the area of Mt by A(t). Then M = M 0 is a minimal surface if 
and only if 

dd A(t)I = 0 
t t=O 

for any f. 
We observe that 

where 

By virtue of the Stokes' formula and the assumption flav = 0, we see 
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that 

:tA(t)lt=O 

_ J l f [ { (1-x') ~x - xy~, L + { (l -y') ~' -xy~x }J M-dy. 

By lengthy but easy calculations we get 

where Lcp is given by the equality (2-2) in the statement of Lemma 2.4. 

If (d/dt)A(t)lt=O = 0 for any f E C 2(D, R) with flav = 0, then Lcp 
must vanish in D, and vice versa. 

To see the ellipticity of L, we regard Lcp as a function of x, y, cp, 'Px, 
'Py, 'Pxx, 'Pxy, 'Pyy, and we set p = 'Px, q = 'Py, r = 'Pxx, s = 'Pxy, and 
t = 'Pyy· Then 

L'P =0, 

LrLt - (Ls/2) 2 

= 1- x2 -y2 

+ (l _ x2 _ y2)2 { (l _ x2 _ y2) (p2 + q2) + (yp _ xq)2} 

>0 

for any point (x, y) ED, which implies that Lis elliptic Q.E.D. 

Proof of Theorem l.3. If two functions cp E C2(D, R) and 1P E 
C 2 ( D, R) define minimal surfaces 

<I>(x, y) = ( x, y, Jl - x2 - y2 coscp(x, y), Jl - x2 - y2 sincp(x, y)), 

(x,y) ED, 

and 

IJ!(x, y) = ( x, y, Jl - x2 - y2 cos'!p(x, y), Jl - x2 - y2 sin 1P(x, y)), 

(x,y) ED, 

and if these two minimal surfaces have the same boundary, then we can 
assume that cp = 1P on 8D. Moreover, by Lemma 2.4, we see that Lcp = 0 
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and L'ljJ = 0 in D. Therefore by virtue of the uniqueness theorem for the 
Dirichlet problem for quasilinear elliptic operators ([1, p.208, Theorem 
9.3]), cp and'¢ must coincide in D. Q.E.D. 

§3. The final remark 

Remark 3.1. The assumption that D is contained in B is essential 
in the following sense. Set 

D = B = { (x, y, 0, 0) E R4; x2 + y2 < 1}. 

Then the uniqueness result does not hold. In fact, 

(a, b) E R 2 - (0, 0), (x,y) ED 

is a half of a geodesic 2-sphere bounded by the geodesic circle 8D, hence 
<I> is a minimal surface bounded by 8D. Therefore we obtain 2-parameter 
family of minimal surfaces bounded by the same contour 8D which are 
"C00 -graphs" over D and all of which are area-minimizing. 
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