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Introduction 

Let M be an n-dimensional compact connected C 2 submanifold in 
the N-dimensional Euclidean space RN. Let \JI be the inversion of RN, 
which is defined by \J!(x) = x//x/ 2 for x in RN U {oo}. If the origin 0 
is contained in M, \J!(M) becomes a noncompact, complete, connected 
C 2 submanifold properly immersed into RN. If we denote the second 
fundamental form of \J!(M) by B, /x/ 2 /B/ (x E \J!(M)) is bounded on 
\J!(M). In this paper we study the image by the inversion of a non
compact, complete, connected C 2 submanifold M of dimension n ?: 2 
which is properly immersed into RN. We are particularly interested in 
the smoothness of \J!(M) at the origin 0. We say that M satisfies the 
condition P(a) if /x/°'/B/ (x E M) is bounded on M. We prove that if 
M satisfies P(2+c:) for some positive constant c:, then the image of each 
end of M by \JI is C 2 at 0 (Theorem 2). Boundedness of /x/ 2 /B/ (i.e., 
P(2) ) is not sufficient to assure that \J!(M) is C 2 at 0, while \J!(M) is 
C 1 at 0 if P(l + c:) is satisfied for some c: > 0 (Theorem 1). 

Noncompact submanifolds satisfying P(l + c:) are studied by Kasue 
and Sugahara ([4], [5]). They show that those submanifolds become to
tally geodesic under certain additional conditions on the mean curvature 
or the sectional curvature. We will make use of some of their results in 
our proof. As a direct consequence of our theorems, we see that if M 
satisfies P(l + c:), the Gauss map is continuous at infinity, and if M 
satisfies P(2 + c:), then M is conformally equivalent to a compact C 2 

Riemannian manifold punctured at a finite number of points. We also 
show that the total integral of the Lipschitz-Killing curvature over the 
unit normal bundle is an integer if M satisfies P(2 + c:) (Theorem 3). 
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These properties have been studied for submanifolds with IM IBln < oo 
in [8] when dim M = 2, and in [1] when M is minimal. We note that 
if M satisfies P(l + c ), IM I Bin is finite (Proposition 4.1), and if M is 

minimal, dimM 2 3 and IM IBln is finite, then M satisfies P(n) ([1]). 
The author would like to thank Joel Weiner for helpful comments, 

especially for suggestions that made it possible to simplify the proof for 
Lemma 1.4. 

§1. Asymptotic behavior of submanifolds 

Let ( , ) denote the standard inner product of RN. We denote the 

covariant differentiation of RN by D. For x in RN let Ix I = ( x, x) 1 / 2 . 

Let B(R) = {x E RN: lxl < R} and S(R) = {x E RN: lxl = R}. 
Throughout this paper, M will denote a noncompact, complete, 

connected C 2 submanifold of dimension n 2 2 properly immersed into 
RN. For x in M let TxM and T;: M denote the tangent and the 
normal space of M at x respectively. The second fundamental form 
B : TxM x TxM -----, T;: M is defined by B(X, Y) = (D x Y)J., where 
(Dx Y)J. is the normal component of Dx Y. We also define the shape 
operator Ai;: TxM -----, TxM with respect to a unit normal vector~ by 

Ai;X = -(Dx~) T, where (Dx~) T is the tangential component of Dxf 
We denote by v' the covariant differentiation of M with respect to the 
induced metric. Let r(x) = lxl for x in M. 

Definition. We say that M satisfies the condition P(a) if there 
exists a constant K such that 

holds at every point of M. 

We set M(R) = M \ B(R). Since Mis properly immersed, M(R) 
is a union of a finite number of submanifolds M 1 (R), ... , Mq(R) and 
8M>-.(R) = M>-.(R) n S(R) is compact for each .A= 1, ... , q. The follow
ing lemma is due to Kasue ([4, Lemma 2]). 

Lemma 1. 1. Suppose M satisfies P( l + E) for some positive con
stant E. Then there exist positive constants C1 and R 1 such that 

(1) iv'rl 2 C11 for all x in M with r 2 R1 , 

(2) M>-. (R1) is diffeomorphic to 8M>-. (Ri) x [R1, oo) for each A = 
1, ... ) q. 



Compactification of Submanifolds 3 

M>JR) (R 2: R1) is called an end of M. In the following argument, 
we assume that the position vector of a point x in RN is denoted by the 
same letter x. For x in M, regarding the vector x as a tangent vector to 
RN at the point x, we denote by x T (resp. x-1.) the image of x by the 
orthogonal projection from RN onto the tangent space TxM (resp. the 
normal space Tf M) of M at x. 

Lemma 1.2. x T = r\lr. 

Proof. The gradient vector of (x, x) 112 as a function on RN is given 
by r- 1x. For x in M we take its tangential component to see that 
\Jr= r- 1x T_ 

We will use several results from [5] to prove our theorems. 

Lemma 1.3. Suppose M satisfies P(l + s) with E' > 0. Then: 

(1) For any constant 8 satisfying 8 < min{s, 1}, r-1+81x-1.I tends 
to zero as r-----+ oo. ([5, Lemma 5 (ii)]) 

(2) For every t 2: R1 any two points on &M>-.(t) can be joined by a 
curve on &M>-.(t) whose length is less than C2 t, where C2 is a constant 
which does not depend on t. ([5, Lemma 6]) 

( 3) The second fundamental form of r 18 M >-. ( t) as a submanif old 
of S(l) tends to zero as t-----+ oo. ([5, Lemma 7]) 

For a submanifold satisfying P(2 + s) (s > 0) we have the following 
lemma. 

Lemma 1.4. Suppose M satisfies P(2 + s) with E' > 0. Then x-1. 
is continuous at infinity on each end M>-.(R1)-

Proof. Let x be a point in M(Ri). We first observe that, for X, Y 

in TxM and Nin Tf M, 

(1.1) 

and 

(1.2) 

(Dxx-1., Y) = -(DxY,x-1.) 

= - (B(X, Y), x-1.) 

(Dxx.l., N) = (Dx(x - x T), N) 
=(X-DxxT,N) 

= -(B(X,xT),N). 
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Hence there exists a constant C3 such that 

(1.3) 
IDxx_j_l :s; C3IBI IXI lxl 

:s; KC3r-1- 0 IXI. 

Now we fix an end M>,.(R1 ). Let y be a point in 8M>,.(R1 ) and let 
"Yy be the integral curve of l'vrl-2 'vr on M>-.(R1 ) which starts at y. "'(y 
is parametrized by r. Set N(r) = ("Yy(r))_L. N(r) is the restriction of 
the vector field x_L to "Yy• By (1.3), we have 

(1.4) 
I~: I :s; KC3r_1_0 l'vrl-l 

:s; KC1 C3r-l-c. 

(1.4) implies that N(r) converges to a constant vector Ny as r---+ oo. 
To prove that Ny does not depend on y we will show that for any y1 

and y2 in EJM>-.(R1 ) and any positive number TJ we have INy1 -Ny2 I< TJ. 
We first take R 2 ::::0: R 1 such that 

(1.5) 

for j = 1, 2. By Lemma 1.3 (2), there exists a curve a on 8M>,.(R2 ) 

which joins "'(y 1 (R2 ) and "'(y2 (R2 ) and has length less than C2R 2 , where 
C2 is a constant independent of R 2 . We parametrize a by its arclength 
s. Let N(s) = (a(s))_L. By (1.3), we have 

Hence 

If we take R 2 sufficiently large, it is possible to have 

(1.6) 
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It follows from (1.5) and (1.6) that 

INY2 - Nyl I :S INY2 - (1'y2 (R2)ll + l(1'yjR2)l - (1'yl (R2))J_I 

+ 1(1'Yl (R2))J_ - Nyl I 

< 'T/. 

This completes the proof of Lemma 1.4. 

§2. C 1 compactification by the inversion 

5 

Let RN U { oo} be the union of RN and the point of infinity. The 
inversion \Ji is a map from RN U { oo} onto RN U { oo} which is defined by 

\Ji(x) = (x,x)- 1 x for all x in RN\ {O}, w(O) = oo and \Ji(oo) = 0. 
If X and Y are tangent vectors of RN at x, then 

d\Ji(X) = (x, x)-1 X - 2 (x, x)-2 (x, X) x 

and we have 
(d\Ji(X),d\Ji(Y)) = (x,x)-2 (X, Y). 

Let M = \Ji(M). We denote the second fundamental form of M 
by B. Let x = \Ji(x) and f = (x,x) 112 . We have f = r-1, where 

r = (x, x) 112 . For a unit tangent vector X and a unit normal vector ( 
of Mat x we set X = r2d\Ji(X) and { = r 2d\Ji((). X (resp.{) is a unit 
tangent (resp. normal) vector of Mat x. 

Lemma 2.1. For any tangent vectors X and Y of M at x, we 
have 

B(X,Y) = r4d\Ji(B(X, Y)) + 2r2 (X, Y) d\Ji(x1_). 

Proof We have 

(2.1) 

DgY = r 2 Dx(Y - 2r-2 (x, Y) x) 

= r 2 Dx Y + (4r-2 (x, X) (x, Y) - 2 (X, Y) 

- 2 (x, Dx Y)) x - 2 (x, Y) X 

= r 4 d\Ji(DxY) - 2r2 (x, Y) d\Ji(X) + 2r2 (X, Y) d\Ji(x). 

In the last equality, we note that d\Ji(x) = -r-2 x. Since d\Ji maps tan
gent spaces and normal spaces of M onto tangent spaces and normal 
spaces of M respectively, the lemma follows from (2.1). 
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Lemma 2.2. Suppose M satisfies P(l + c:) with E > 0. Then 
there exists a positive constant 8 such that r 1- 8 1.BI is bounded in a 
neighborhood of O in M. 

Proof. For any unit tangent vectors X and Y of M at x it follows 
from Lemma 2.1 that 

(2.2) 
I.B(X, Y)I = lr2 B(X, Y) + 2 (X, Y) xJ..I 

:::: r 2 IBI + 2lxJ..1-

Let 8 be any constant such that 0 < 8 < min{c:, l}. Then, by Lemma 
1.3 (1) and the condition P(l + c:), there exists a constant C4 such that 

(2.3) 

Now we have the lemma since r = r- 1 . 

We write M>. = M>.(R1 ) (>. = 1, ... , q) and M>. = w(M>.)

Lemma 2.3. SupposeM satisfiesP(l+c:) withe:> 0. LetR ~ R1 . 

Then any two points x1 , x2 in B(l/ R) n .M>, can be joined by a curve on 
M whose length is less than C5 / R, where C5 is a constant which does 
not depend on R. 

Proof. Let "ti be the integral curve of i"v'rl-2v'r on M>. which passes 
through xi (i = 1,2). "ti is parametrized by r. Let Yi= "fi(l/R). Since 
v'r ~ -r2d\J!(v'r), it follows from Lemma 1.1 that 

for all x in .M with r:::; 1/ R 1 . Hence the length of "ti between Xi and Yi 
is less than Ci/R. By Lemma 1.3 (2), there exists a curve O" on 8M>,(R) 
which joins \J!(yi) and 1J!(y2 ) and has length less than C2 R, where C2 is 
a constant which does not depend on R. Let if = W(O"). Then if joins 
Y1 and Y2 and has length less than C2 / R. Connecting 11, if and 12, we 
obtain a curve in .M>, which joins x 1 and x2 and has length less than 
(2C1 + C2)/ R. 

Theorem 1. Let M be a noncompact, complete, connected C 2 

submanifold of dimension n ~ 2 properly immersed into RN. Suppose 
M satisfies the condition P(l + E) for some positive constant E. Then 
the image of each end M>, by the inversion is C 1 at the origin 0. 

Proof. We will use the generalized Gauss map G which maps each 
point x of .M to the n-dimensional linear subspace parallel to the tangent 
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space of M at x. G defines a map from M into the Grassmannian 
manifold Gn(RN) which consists of n-dimensional (unoriented) linear 
subspaces of RN. Gn(RN) has the standard invariant metric g as a 
symmetric space. If Y and Z are tangent vectors of M at x , we have 

n 

(2.4) g ( dG(Y), dG(Z)) = L (B(Y, Xi), B(Z, Xi)) , 
i=i 

where {Xi, ... , Xn} is an orthonormal base of TxM ([6]). By Lemma 
2.3, any two points Xi, x2 in B(l/ R) n M>, (R 2". Ri) is joined by a 
curve f" in M>, whose length is less than C5/ R, where C5 is a constant 
which does not depend on R. Now we use (2.4) to see that the length 
of G(f-) is less than C5\10i"IBIR-i. Hence, by Lemma 2.2, the length 
of G(f-) is less than C6 R-8 for some positive constants 8 and C6 . This 
implies that, for an open subset [J of M>. containing 0, G(U) converges 
to a certain point in Gn(RN) when [J shrinks to the point 0. Hence 
the tangent space TxM>. converges to an n-dimensional linear subspace 
P as x in lvf>, approaches 0, which means that M>, is ci at 0. 

Corollary. Let M be as in Theorem l. Then the Gauss map 
G: M--+ Gn(RN) is continuous at infinity on each end. 

Remarks. (1) Theorem 1 does not hold if n = l. 

(2) The condition P(l) is not sufficient for M to be ci at 0. Such 
an example is given in [8]; If M is the graph of a smooth function z = 
u(x,y) which away from the origin is given by u(x,y) = xsin(log(logp)) 

(p = Jx 2 + y2), then M satisfies P(l) but the Gauss map is not con
tinuous at infinity. 

§3. C2 Co:i:npactification by the inversion 

In this section we study the image by the inversion of a submanifold 
which satisfies P(2 + E). As in §2, let M>, = M>,(Ri) and M>, = iI!(M>.) 
for ,\ = 1, ... , q. 

Lemma 3.1. Suppose M satisfies P(2 + E) with E > 0. Then for 
each,\= l, ... , q there exist a constant a>, and a constant unit vector A>, 
in RN such that B(·, •) converges to 2a>, (-,·)A>, as x in M>, approaches 
0. 

Proof. By Lemma 1.4, there exist a constant a>, and a constant 
unit vector A>, for each ,\ such that x_1_ converges to a>,A>, when x lies 



8 K. Enomoto 

in M>-. and !xi tends to oo. For any tangent vectors X and Y of M it 
follows from Lemma 2.1 that 

(3.1) 
B(X, Y) = r 4d\J!(B(X, Y)) + 2 (X, Y) x.1 

- 4r-2 (X, Y) (x, x.l) x. 

When x approaches O, we have r --+ oo and hence 

and 
lr-2 (x, x.l) xi = r- 1 lx.l 1

2 --+ 0. 

Thus B(X, Y) converges to 2 (X, Y) a>-,A>-. = 2 (X, Y) a>-,A>-. when x lies 
in Nf>-, approaches O. 

Theorem 2. Let M be a noncompact, complete, connected C 2 

submanifold of dimension n 2: 2 properly immersed into RN. Suppose 
M satisfies the condition P(2 + c) for some positive constant c. Then 
the image of each end M>-. by the inversion is C 2 at the origin 0. 

Proof Since J}f>-. is C 1 at O by Theorem 1, we may express a 
neighborhood [J of O in M>-. as a graph 

with fa(0, ... ,0) = 0 and 8
8 fa(O, ... ,O) = 0 for all i = l, ... ,n 

Xi 

and a = n + 1, ... , N. The normal space of M>-. at O is spanned by 
{Ea: a= n+ l, ... ,N}, where Ea= (6, ... ,fN) with fa= 1 and 
fs = 0 for s-=/- a. Then we have 

(3.2) . 82 fa \ . -( 0 0 ) ) Jim-0 0 = JimB-0 ,-0 ,Ea . 
x--->O Xi Xj x--->0 Xi Xj 

Since Bis continuous at Oby Lemma 3.1, (3.2) shows that all fa's have 
continuous second derivatives at 0. Hence M>-. is C 2 at 0. 

Corollary. Let M be as in Theorem 2. Then M is conformally 
equivalent to a compact C 2 Riemannian manifold M punctured at a finite 
number of points. 

Remarks. (1) The origin O is an umbilic point on each M>-,. (cf. 
Lemma 3.1) 

(2) If N is a compact C 2 submanifold of RN containing 0, w(N) 
satisfies P(2). But if we replace the condition P(2 + c) in Theorem 2 by 
P(2), w(M) is not necessarily C 2 at 0. 
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§4. Total curvatures 

We mean by atotal curvature the total integral of a geometric quan
tity defined through the second fundamental form of the submanifold. 
We will define two types of total curvatures. To do this let v(M) de
note the unit normal bundle of an n-dimensional submanifold M in RN. 
Let G(l) be the Lipshitz-Killing curvature of M with respect to a unit 
normal vector l, i.e., G(l) = det Ae- We denote the volume of the 
k-dimensional unit sphere by ck. We define u(M) and ,.,,(M) by 

u(M) = JM IBln 

,.,,(M) = _1_ f G. 
CN-1 lv 

Proposition 4.1. Let M be as in Theorem l. Then u(M) < oo. 

Proof. Let Kt and f3t denote the sectional curvature of and the sec
ond fundamental form of 8M>.(t) as a submanifold of S(t), respectively. 
Since, by Lemma 1.3 (3), there exists a positive continuous function TJ(t) 
which satisfies tlf3tl ~ TJ(t) and TJ(t) - 0 as t - oo., it follows from the 
Gauss equation that there exists a positive constant C7 independent of 
t such that Kt ~ C7r 2 . By the standard comparison argument, we see 
that Vol(8M(t)) ~ C8tn-l for some constant C8 independent oft. If 
R is sufficiently large, we have 

r IBln = r= ( r IBln) dt 
JM:,..(R) JR laM:,..(t) 

~ Loo (Kncn(He)vol(8M>,(t))) dt 

< 1= Knc cl-ne dt 
- 8 

R 

< 00. 

This yields u(M) < oo. 

Remarf If M is a complete, connected, minimal submanifold of 
dimension n ~ 3 in RN with u(M) < oo, then M satisfies P(n) (and 
hence P(2 + c:)). ([1]. See also [4].) 

In order to apply results in [7], we imbed RN into RN +1 as an 
N-dimensional linear subspace. Let p be a unit normal vector of RN in 
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RN+ 1 . Let sN be the unit sphere in RN+ 1 . The stereographic projection 
'lrp: sN \ {p}---+ RN is given by 

1 
np(z) = p+ 1- (z,p) (z- p) 

for z in SN \ {p }. The stereographic projections are related to the 
inversion by \[I = 1r -po 1r;1 . If M is a submanifold of RN as in Theorem 

2, there exists a compact C 2 manifold Min sN such that 1rp(M) = M 

and Lp(M) = M. 

Lemma 4.1 ( [7]). If n = dim M is even, then 

K(M) = x(M) - 2q, 

- -where x(M) is the Euler characteristic of M and q is the number of the 
ends of M. If n is odd, then K(M) = 0. 

Since x(M) = x(M) = x(M) + q, we obtain the following theorem. 

Theorem 3. Let M be as in Theorem 2. If n = dim M is even, 
then 

K(M) = x(M) - q, 

where x(M) is the Euler characteristic of M and q is the number of the 
ends of M. If n is odd, then K(M) = 0. 

Corollary. Let M be as in Theorem 2 and dim M = 2. Then 

JM K = 21r(x(M) - q), 

where K denotes the Gaussian curvature of M. 

Proof. Let v(M,x) be the unit normal space of Mat x. Then we 
have 

r G = CN-3 K(x). 
Jv(M,x) N - 2 

Hence 

l 1 (1 ) K(M)= -- . G 
CN-l M v(M,x) 

=- K l 1 21r M . 
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Remark. White ([8]) proved that if u(M) is finite for an oriented 
surface M in RN, then J M K = 21rm for some integer m. 

Remark. Another popular total curvature is the total mean curva
ture, which is defined by µ(M) = JM IHln. Here H denotes the mean 
curvature vector of M. When n = 2, it is known that the total mean 
curvature is invariant under the inversion if both Mand w(M) are com
pact ([3]). For a surface M satisfying the conditions in Theorem 2, one 
can show that µ(M) = µ(M)-41rq, where .M = w(M). If Mis minimal 
and q = l, one has µ(M) = 41r. Then a theorem by B.Y. Chen ([2]) 
implies that .M is a round sphere. Therefore M must be totally geodesic. 
This is a special case of a theorem in [4], which says that if a complete 
minimal submanifold M properly immersed into RN has one end and 
satisfies P(2) (or P(l + c:) if n 2: 3), then M must be totally geodesic. 
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