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On Hermitian Forms attached to Zeta Functions

Hiroyuki Yoshida

§0. Introduction

In this paper, we shall deal with some problems of analysis which
arise naturally from explicit formulas. For F' € C(R), set

= / F(z)e®VD%de seC, F(t)= @(% +it), teR.
Then the explicit formula for {(s) reads as

> o(p) = [ - F(z)(e*? + e*/?)dz — (log 7)F(0)

lo
~ZZ "gl/l; (mlog p) + F(—mlog p))

pml

1 zt

+—/ F()Re (y(3 + 5)) dt,

where ¥(s) = I'(s)/I'(s) and p extends over all non-trivial zeros of
¢(s). The functional T(F) = 3 ®(p) defines a distribution on R.
A well known observation of Weil states that 1" is positive definite i.e.
T{(axé&) > 0 for every a € C2°(R) if and only if the Riemann hypothesis
holds for {(s). We can define a hermitian form ( , ) on C°(R) by

(p1,02) =T(p1 % @2), 1,92 € C°(R).
For a > 0, we set
Cla) ={ ¢ € C°(R) | supp(¢) € [~a,q] }.

Then R.H. is equivalent to the positive definiteness of { , }|C(a) for
every a > 0 (cf. Proposition 2). It can easily be verified that { , )|C(a)
is positive definite if @ is sufficiently small. Now we can naturally ask:

Received September 3, 1990.



282 H. Yoshida

(I) When a is given, can one determine whether { , )|C(a) is positive
definite or not?

(I) Study the deformation of { , )|C{(a) when a changes. What shall
happen at the point a = a¢ beyond which { , )|C(a) is not positive
definite?

The problem (II) arises from the author’s study of unitarizability
problem of group representations [9] and from the hope that the posi-
tive definiteness may become more tractable by cutting the support of
functions, since the sum - for T'(¢1 * @2), 91, w2 € C(a) becomes
a finite sum. The result obtained is a reduction of R.H. to the non-
degeneracy of the hermitian form { , ) extended to a certain space. To
explain this in more detail, let us introduce a space K(a):

K(a) ={ ¢ | o(z) = f(z) for |z| < a,p(z) =0 for |z| > a
with f € C*°(R) which has period 2a }.

We can extend ( , ) to K(a). For a non-negative integer N, set

TINT

Kn@=1{vecK@| [ p@en™)dr=0

for all n € Z,|n| < N }.

a

For a given a, { , )|Kn(a) is positive definite if N is sufficiently large.
More precisely, we can find ¢ > 0 and N such that

{0,0) > ullpllzz  for every ¢ € Kn(a).
Now decompose K(a) = W@ Ky(a) with W C K(a), dim W = 2N +1.

e

Let Kn(a) be the completion of the pre-Hilbert space Ky (a) with re-

—— e—

spect to ( , ) and set K{(a) = W@® Ky(a). Then K (a) can be canonically
embedded as a subspace of L?([—a, a]) and does not depend on the choice

—

of W and N. Furthermore, { , ) extends to a hermitian form on K(a)

and K n(a) has the orthogonal complement W(a) in K(a):

— —

K(a) = W(a) ® Kn(a) (orthogonal direct sum).

We shall prove in §7 that the hermitian matrix obtained by ( , ) on
W (a) varies continuously with respect to a when a basis of W(a) is
suitably chosen. This permits us to reduce the Riemann hypothesis to

——

the non degeneracy of { , ) on K(a) (Theorem 2). We can prove the
non-degeneracy of ( , ) on C(a) and on K(a) (Propositions 2 and 7),

——

but to prove it on K(a) certainly requires more ideas.
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Concerning the problem (I), the existence of an algorithm to solve
it is guaranteed by the estimate given by Lemma 9, §7. For an explicitly
given a, the actual computation is not easy however. In §6, we shall give
a detailed sample computation, though it does not follow the algorithm
faithfully, when a = log 2/2: We find ( , )|K(a) is positive definite for
a <log 2/2 (Theorem 1). The idea is to calculate the hermitian matrix
on W (a) with sufficient approximation for a suitably chosen N.

§1. Remarks on distributions arising from zeta functions
For a function a on R, we set
az) = a(—x), &(z) =a(-z), zeR.

If @ is an integrable function with compact support, we define its Mellin
transform M («a) by

M(a)(s) :/ a(z)e* VD2 4y seC.

We see that M(a) is an entire funcion. We set

aft) = M(a)(l +it) = l O:o a(z)e™ dz, teR,
which is the Fourier transform of . It can be verified immediately that
(1.1) M(a)(s) = M(a)(1 - s),
(1.2) M(@)(s) = M(a)(1 - 3),
(1.3) M(a x B)(s) = M(c)(s)M(B)(s),

where 3 is also an integrable function with compact support. Let 3 (s) =
I(s)/T'(s) be the logarithmic derivative of the Gamma function. Let F
be a continuous function with compact support which is continuously
differentiable except for a finite number of points. For discontinuous
points of F', we assume the existence of right and left limits of F’. In
this paper, we call such F' admissible . We set

Vi(F)= lim / F (t)Re (¢ ))dt,

T—+oo 27

Va(F) = lim _/ Ft)Re(¢( +it)) dt

Pf( )(F) = lim (/’ Fla )d + 2F(0)log €).

|z] =40 Jigze |
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1
Pf (W) is a distribution (a pseudo function) defined in Schwartz [5]. We
T

have

1 V= —1pp(l log 2)80 — eol/2 !
(1.4) 1=-3 (|x|) (v +log 2) (m 2|17f)

1 1 1 1 1
(1.5) Vz——§Pf(m)“75o—§(m—m)’
where &y denotes the Dirac distribution supported on 0 and ~ is Euler’s
constant.

Let k be an algebraic number field of finite degree. Let r; and r2 be
the numbers of real and complex archimedean places of k respectively.
Let Dy, be the discriminant of k& and put Ay = 7" (2w)~272|D;|. Let
Ck(s) be the Dedekind zeta function of k. Then the explicit formula
for (x(s) can be written as follows (cf. Weil [7], Poitou [4]). Let F be
admissible and set ® = M (F).

hril Z B(p)

[Tm(p)| <T

= /00 F(z)(e*/? + e7*/?)da + (log Ag)F(0)

Ty ﬁg@Nm 7% (F(mlog N(p)) + F(~mlog N(p))
p m=1

+rVi(F) + 2rVa(F),

where p extends over all non-trivial zeros of (x(s) and p extends over all
prime ideals of k.

Hereafter in this section, p denotes a non-trivial zero of (x(s). For
an admissible function F', set

Te(F)=lim > ®(p), ®=M(F).
[Im(p)|<T
It is well known and can easily be verified using the Riemann-von

Mangoldt formula that 3 |—p1|§ converges. It follows that if F € C*(R),
>_, @(p) converges absolutely and the functional T} is continuous on
CP(R), i.e. Ty defines a distribution in the sense of Schwartz.

Let T be a distribution on R. Recall that T is called positive definite
if T(a* &) > 0 for every @ € CX(R). We call T evenly (resp. oddly)
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positive definite if T(a * &) > 0 for every even (resp. odd) function

a € C(R). Evenly positive definite distributions are studied in detail

in Gel’fand-Vilenkin [2]. It is a well known observation of Weil that T},

is positive definite if and only if the Riemann hypothesis holds for (x(s).

We shall present a slight sharpening of Weil’s result, since the part (1) of

the next proposition, though easily proved, seems to be of some interest.
Proposition 1.

(1) Ty is oddly positive definite if and only if R.H. holds for (i (s).

(2) Ty is evenly positive definite if and only if R.H. holds for (x(s)
with possible exceptions of real zeros, i.e. every non-trivial zero
of Cr(s) lies on the critical line if it is not real.

First we shall prove a Lemma.

Lemma 1. Suppose that a non-trivial zero py of (x(s) and any
positive number € are given. Then there exists an o € C°(R) such that

M(@)(po) =1,  IM(@)(p)| <e/lp—pol* for every p# po.

Proof. We may assume € < 1. First we take ap € C°(R) so that
M(ao)(po) = 1. Since M (af’)(s) = —(s — 1/2)>* M (a0)(s), we have
M(ap) = O(]s —1/2|7®) for 0< Re(s) <1, |Im(s)| — +oo.
Hence we can find R > 1 such that
(1.7) |M(ao)(p)| < €/lp—po|> for every p such that |p—po| > R.

Let p1, pa, - -+, par be all the non-trivial zeros which satisfy |p—po| < R.
For each i, 1 <i < M, we can find o; € C°(R) such that M(«a;)(po) =
1, M(a;)(p;) = 0. Put

=) xog k- kap kg k- kag  (op is convoluted N-times),
® = M(a), S, =M(a;), 0<i< M.
By (1.3), we have

M
B(s) = Bo(s)V H ®,(s).

Hence we get ®(po) = 1, ®(p) = 0if p # po, |p — po| < R. Since ®;(s) is
bounded in the strip 0 < Re(s) < 1, we can find a constant C such that

M
IH‘I%(S)I <C, 0<Re(s)<1.
i=1
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If p is a non-trivial zero such that |p — pg| > R, then we have, by (1.7),
Nt €
)| <Co—5—5.
I (P)|_ R2N-2 |p—po|2

Taking N sufficiently large, a satisfies the required condition.

Proof of Proposition 1. Take a € C'°°(R) and put & = M(a),
® = M{a*a&). By (1.2) we have ®(s) = ®q(s)Po(1 — 5). Hence we get
Ti(axa) =3, ®(p) = olp )®o(1 — p). If R.H. holds for {1 (s), we have
1—p=p. Hence Ty(a*a) =3, |Po(p)|* > 0. If R.H. holds for (i(s)
except for real zeros and if a is even, then we have

Ti(axa) =Y [@o(p)]*+ D Po(0)@o(1—p) =Y [®o(p)|?
P¢R PER p

by & = a and (1.1). This proves if parts of (1) and (2).

Now assume R.H. does not hold for {x(s) and let po be a non-trivial
zero such that Re(pp) # 1/2. For any € > 0, we can choose, by Lemma
1, o, az € CX(R) so that

M(@)(po) =1, IM(@)(p)| < e/lo—pol’s 5% po,
M(az)(po) =1,  |[M(a2)(p)| < €¢/lp—pol*, p# o
Put
a=a1+og—0& —ag, Po=M(a;+a), ®=M(ax*a).
Then o is an odd function and we have
D (s) = (Po(s) — To(1 — )) (To(1 = 5) = To(3)).
Hence we obtain

B(1—s)=d(s), B(3)=d(s), O(1—35)=0d(s).

By our choice of a1, a2, we see easily that ®(po), ®(50), ®(1 — po),
®(1 — po) converges to —1 (resp. —4) if po ¢ R (resp. po € R) for
€ — +0. On the other hand, if p is a non-trivial zero different from py,
Po, L — po, 1 — po, then we have

L S 1 N 1 2
lo—=pol®> lp=Pol* |L=p—pof>  [1—p—pol?

(p)] < €X(

Since 37 ., 1/|p —n|? converges for every 1) € C, we see that Ty (a * &)
becomes negative when ¢ is sufficiently small. This proves only if part
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of (1). The only if part of (2) can be proved similarly. This completes
the proof.

Let T be a distribution on R. We define distributions 7', T and T
by

T(a)=T(a), T(x)=T(@), T=T, acC R),

as in [5]. From the functional equation of (x(s) and (x(3) = (k(s), we
easily obtain

(1.8) Tw =Tp =Ty = Th.

§2. Local positive definiteness

For a > 0, we set

C(a) ={ ¢ € C°(R) | supp(y) € [-a,a] },
K(a) = { ¢| there exists f € C*°(R) whose period is 2a such that
w(z) = f(z) for |z| < a, p(z) =0 for |z| >a }.

For ¢1, w2 € K(a), we set
(1, 02) = Ti(p1 * P2)-

By T = T, we see easily that { , ) defines a hermitian form on K(a).
Let Koaq{a) (resp. Keyen(a)) denote the space of all odd (resp. even)
functions in K (a). We have K (a) = Kodq(a) ® Keyen(a). Since Ty, = Tk,
we see easily that Tx(a) = 0 if a is odd and admissible. Hence Kyq4q(a)
and K, (a) are orthogonal with respect to ( , ).

Let ¢ € K(a) and put F' = ¢ * ¢. We have

F(z) = / e(y)ely—z)dy, xR
Hence we get F(0) = ||¢||2; and |F(z)| < ||¢|l2., z € R by the Schwarz
inequality. By (1.2) and (1.3), we have F'(t) = |@(t)|*. Put

2a

Ci(a) = ] (e*/2 + e7%/2) dz,
—2a

Cs(a) = [{(p,m) | mlog N(p) < 2a}|.
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Since supp(F) C [—2a, 2a], we have

<(107 §0> = Tk‘(F)
> (log Ar — Ci(a) — 202(G))||¢||%2
(21) o / (P Re ({5 + 5)) de
+ 27«2—-/ (1)[2 Re (¢( } it)) dt.
Let C > 0. Since
Re(y(o + it)) ~ log |t], |t| — +o0
for a fixed o, we can find 5 > 0 so that
(2.2) Re (¢( Zt)) >C and Re (1/;(% L) >C i Y >t
Put
(23) Co=max [Re(b(3+ 50| Ch= max [Re(d(G +it))].

Then we have

[ e0rRe @ + S

—00

2o poPa-c [ jsoPd
[t]>to ft|<to
e / OP - (Co+0) [ o

[t]<to
—20Cg|2s — (Co +C) / p(1)[2 dt

by the Plancherel formula. Similarly we have

[ 160P Re (@i + i) de = 2xClolze — @+ 0) [ lo(0 .

— o0 |t|5t0
Therefore, by (2.1), we obtain
{p,0) 2 {(r1 +2r2)C +log Ax — Ci(a) — 2C2(a)}| Z-

—{r1(Cy + C) + 2r5(Ch + C)}— / |p(t)|? dt.

|t]|<to

(2.4)
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Lemma 2. There exists ag > 0 such that

(g, ) >0 for every o€ K(a), o0 if a<ag.

Proof. Let ag > 0, a < ag and ¢ € K(a). Then, by the Schwarz
inequality, we have

(2.5) 6()] < VZalel:  teR.

Choose C > 0 so that (ry + 2r3)C > Ci(ag) + 2C3(ag) — log Aj. Define
to by (2.2) and Cy, CJ by (2.3). Then, by (2.4) and (2.5), we obtain

(@) = {(r1+ 2r2)C + (log Ax — C1(ap) — 2C3(ao))

2a, 4a,
- —}27“1(00 + C)to — —W—OM(Cc/) + O)to}llellz-

If ag is sufficiently small, we can find g > 0 such that

(o, 0) > pllellz2 for every ¢ € K(a), a < ayp.

This completes the proof.

83. Positive definiteness for highly oscillating functions
For a > 0 and n € Z, we define x,, € K(a) by

1 TINT
—— exp(

Xn(z) = V2a

) if x| <a,
0 if [z] > a.

Then ,, makes an orthonormal basis of L?([—a, a]). Take any ¢ € K(a).
Then we have the Fourier expansion

(p(fl;) = Z Can(:E)’ l1‘| < aq,
nez

—TINT

en= = [ e@en(TT) da.

By partial integration, we see that

3.1) cn=0(n|™"),  In| — o0
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for any natural number k. For a non-negative integer N, we set

a

Kn(a)={peK(a)| [ ¢(z)exp(

—a

foralln € Z,|n| < N },
Cn(a) = C(a) N Kn(a).

TINT

Ydz =0

Lemma 3. Suppose that ag > 0 and p > 0 are given. Then there
exists a non-negative integer N such that

(p,0) > u||<p||%2 for every ¢ € Kn(a), 0 < a < ao.

Proof. Choose C > 0 so that
(r1 4 2r2)C + log A, — Cy(ap) — 2C3(ao) > p.
Define ty, Cp and C{ by (2.2) and (2.3). Then, by (2.4}, we get
(p,0) = {(r1 + 2r3)C + log A — C1(ag) — 2C3(ao) Hlell3

—{r1(Co + C) + 2r3(Cy + C)};; / |p(t) |2 dt

[t|<to

for every ¢ € Kn(a), a < ao.
Now assume ¢ € Ky(a) and let p = Z|n|>N CnXn be its Fourier

expansion. Then we have [j¢]|2; = Z|n|>N |e, | and

P(t) = 2a/_ Z cnexp

|n|>N

)exp (itx) dx

Jexp(itz)]”,

1 a TINT
= E[ Z cn%exp(

lIN

- exp e )it exp(itz) dx

m > o

% n|>N

by termwise partial integration which is legitimate by (3.1). Hence we
obtain

6] < V2a( +alt)(Spsn D), teR.

By the Schwarz inequality, we get

6(0)] < V21 +alt)( Sy ()9 lelle,  tER.
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Therefore we obtain

(0, 0)
1o s
> {(r1 + 2r2)C + log Ay, — C1(ao) — 2C2(a0) — Cs ) (—)"Hiellz2
|n|>N n
where
Co+ C) + 2r,(C}
0y = TG T T2raGo+ OB} [ 51 4 aglel)2at.

271' ltlStO

Choosing N sufficiently large, we get (o, ) > pl|¢||22. This completes
the proof.

Proposition 2. For any a > 0, the restriction of the hermitian
form { | ) to C(a) is non-degenerate.

Proof. Put Vj ={ ¢ € C(a) | {p,¥) =0 forall ¢ € C(a) }.
It suffices to show Vp = {0}. By Lemma 3, we can take N so that
(', )|Cn(a) is positive definite. Then it is obvious that VpNCx(a) = {0}.
Hence V; can be mapped injectively into C(a)/Cn(a). We see easily
that the codimension of Cn(a) in C(a) is 2N + 1. Hence we obtain
dim V5 < 2N + 1. Now take any ¢ € V. Then we have ¢ x ¢ = o x ¢’
for every ¢ € C(a). Hence ¢’ € V. Therefore ¢, ¢, ---, @2Vt
are linearly dependent over C. In other words, ¢ satisfies a differential
equation

d ., d s d B
32) (e tal )" et teni(g)etenp =0

with n < 2N +1, ¢; € C. We see easily that a non-zero solution of (3.2)
cannot belong to C2°(R). This completes the proof.

Corollary. The hermitian form ( , ) considered on CX(R) is
non-degenerate.
§4. Existence of orthogonal complements

For a bounded function F' on R, we put |F| p~ = sup,cr |F ()|

Lemma 4. Let a, n > 0. Then there ezists a positive constant c
which depends only on a and n such that

| Ti(F)| < el Fllpee +2(r1 + 2ra)nl| F' |7
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for every admissible function F such that supp(F) C [—a,a] and that
F'(z) is continuous on [—7n,n] ezcept at x = 0. Here |[F'||le =

Sup0<|z|§n (F/(CL')I .

Proof. Obviously it suffices to show the existence of positive con-
stants ¢; and cs which depends only on a and 7 such that

(4.1) VA(F)| < exllFllze + 20]lF' [,
(4.2) Va(F)| < eallFll oo + 2012
‘We have
V() = =5 PE()F = (7 +1og 2)F(0)
G R e
oo € —e€77] 2] '

The sum of the second and the third terms can be estimated by cs|| F'|| .
with ¢z > 0 which depends only on a. We have

! )(F) = ( lim Flz) dz 4 2F(0)log €)

|.’E| €40 J|z|>e |:L‘|

_ F(z) . Fe) - F(O0)
_/z|21 |z| 4 +/|z|§1 || -

We may assume 77 < 1. Clearly we have

Pt (

| st IET) dz| < 2max(0,log a)||F|| L,
Fz) - F(0) o L
|/”§|-rlsl o el = dlog L Fllre.

Since F'(x) is continuous for 0 < |z| < 7 and lim._, 4o F’(€) exists, we
have

F(z) - F(0)

|z)<n ||

| dz| < 2| F'[|}e.

Hence (4.1) follows; (4.2) can be proved similarly.

Lemma 5. Let a > 0. There exists a positive constant ¢ which
depends only on a such that

({1, p2)] < elllonlize + [l llz2)llpzl 22
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for every p1 € C(a), ¢2 € K(a).

Proof. Put F' = p1*@2. Then F' € C(2a) and we have F/ = ¢} *@s.
Hence we obtain [|F|lre < fl@1llrzllpallrz, 1F Iz < |l@7lizz (@2l zz-
Now the assertion follows from Lemma 4.

Let a > 0. By Lemma 3, we can choose NV and p > 0 so that

(4.3) (0,90) > pllpllFa forevery ¢ € Kn(a).

We can choose a 2N + 1-dimensional subspace V (resp. W) of C(a)
(resp. K(a)) so that

C(a) =V @& Cn(a), K(a) =W & Ky(a).

With the positive definite hermitian inner product ( , ), Cy(a) and

e

K (a) are pre-Hilbert spaces. Let Cn(a) and K/N(\a) be the completions

of Cn(a) and K (a) respectively. It is clear that ( , ) extends on K/N-(\a),
and we denote this extended hermitian form by the same symbol { , ).

Put ||v]| = v/{v,v) for v & I?le(\a) We set

—— —

C@)=VaCn(a), K@) =WoKn).

Lemma 6. The hermitian form { , ) extends to a hermitian form

—_——

on K(a) and on C(a).

Proof. Let w € W and u € Ky(a). We can write w = wy + ws
with w; € V, wy € Kn{(a). By Lemma 5 and (4.3), we have

(4.4) |(wr, 0)| < ep™ 2 ([wrllzz + llwyllze)llul-

Since ||[{wz, u)|| < fJws|| ||u||, we obtain

(4.5) [(w, u)| < {en 2 (lwrllzz + [lwillz2) + (w2 }Hull

Let v € m) and {v;} be a Cauchy sequence in Ky(a) which repre-
sents v. By (4.5), we see that lim;_, o (w, v;) exists and does not depend
on the choice of {v;}. We set (w,v) = lim; oo {w,v;). Similarly we

set (v,w) = lim;_,00(vs, w). Then we have (w,v) = (v,w), w € W,

v € Kn(a). For w; +v; € K(a), w; € W, v; € Kn(a), i = 1,2, we set

(4.6) (w1 + v, wz + v2) = (w1, w2) + (w1, v2) + (v, w2) + (v1,v2).
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——

Now it is immediate to see that a hermitian form on K (a) is defined by
(4.6). The latter assertion can be proved similarly. This completes the
proof.

We can show the existence of the orthogonal complement of K/N(\a)

——

in K(a).
Proposition 3. Let a > 0 and take N which satisfies (4.3). Put

W) ={weK@)]|(wv)=0 foral veKy(a)},

V(ie)={weClC(a) | (w,v) =0 forall veCy(a)}

Then we have

— — — —

K@)=W() @ EKn@), C)=V(a)®Cxla)

Proof. 'Take any w € W and consider a linear functional

—

Kn(a) > v — (v,w) € C.

We write w = wy + we with wy € V, wy € Kn(a). By (4.5), we easily
obtain

[, )] < {en™ 2 (lwillz2 + 1wyl z2) + llwa I} o]

This shows that the above functional is bounded. Hence by Riesz’ rep-

resentation theorem, there exists vg € K N(a) such that

——

(v, w) = (v, vp) for every v € Ky(a).
We have w—vp € W(a), w € W(a)—i—ﬂ). Since w is arbitrary, we get
W C W(a) + Kn(a). By definition, it is obvious that W(a) N Kn(a) =

{0}. Therefore we obtain K(a) = W(a) ® Kn(a). The latter assertion
can be proved similarly. This completes the proof.

Let {¢,} be a Cauchy sequence in Ky(a) with respect to || [|. By
(4.3), we see that {¢,} is also a Cauchy sequence with respect to || ||z2-

Hence we obtain a linear map m) — L?([—a,a]). Since I?@:) =

W @ Kn(a), W C K(a), this map extends to a canonical linear map

——

K(a) — L?([~a,a]).
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Proposition 4. The canonical map I?(;) — L*([~a,d]) is in-
Jective.

Proof. Suppose that n+4 ¢ € I?@:), new, pe m) has zero
image in L?([—a, a]). Then we have

[+ p@en™)do = [ aaen("2T) dz =0

for all n € Z, |n| < N. By the choice of W, this clearly implies n = 0.

Therefore it suffices to prove the injectivity of I?J\;(\a) — L*([~a,a]).
For this purpose, let {¢,} be a Cauchy sequence in Ky (a) with re-

spect to || || such that limp.co [[onl[z2 = 0. It is enough to prove
lim,, o0 [|@n|| = 0. Since
Hﬁanllz = Tic(¢n * @n), |[(@n * @n)(@)] < ”QDTL”%?’ z € R,

it is sufficient to show

(47) Jim [ g OP Re@(; + S di=0,
(4.8) hm/ |&n (t) |2Re(( + it)) dt = 0.
1 4t

Choose to > 0 so that Re (w(z + 5 =)) = 1if |t| > t¢ and put

1

C=max[Re(¥(y +3),  2={teR[|t>1t}
We have
], Prl) Re (9 + 5))dl < © / I e < Ol

= 27rCH¢’n”L2'
Therefore (4.7) is equivalent to

(4.9) hm/m(t )12 Re ( ))dt=0.

Since {¢, } is a Cauchy sequence with respect to || ||, we see easily that
for any € > 0, there exists M such that

) 1 it
(4.10) lim |<pn( ) — &m(t)|“ Re (w(z + —2~))dt <e

n—00



296 H. Yoshida

if n, m > M. Hence {$,(t)/Re(¢(5 + £)) |} is a Cauchy sequence
in L2(Q). Let a(t)y/Re (¥(% + %)) be its limit in L(2). Then (4.9) is

equivalent to

zt

(4.11) / |o(t)]* Re (1p( +5 =))dt = 0.
We see a € L?(2) and

[ 1a) = @u®F de < [ o) = o0 Re (05 + ) et

Hence a(t) is the limit of ¢y, |Q in L?(Q2). Therefore we have [, |a(t)|? dt
= 0. From this, we can easily deduce (4.11). Thus we have proved (4.7);
(4.8) can be proved similarly. This completes the proof.

Remark. Suppose that we have chosen (possibly) another N’ and
W' C K(a) such that K(a) = W& K+ (a). We assume that (4.3) holds

with u/, N’ in the places of p, N. Assume N’ < N. Obviously m)

can be regarded canonically as a subspace of K/N/(\a) Combined with
the linear map W — W’ @ Kn-(a) obtained by the inclusion, we get a
canonical linear map

LW e Ky(a) — W @ Ky (a).

The composition of ¢ with W’ & m) — L?([~a,a]) is the canonical
map W & Kn(a) — L?([—a,a]), which is injective by Proposition 4.
Hence ¢ is injective.

Let us show that ¢ is surjective. It is obvious that Image(s) D W'.

Let ¢ € Kn/(a) and let {¢;} be a Cauchy sequence in K- (a) which
represents . Let ¢; = Z]n|> N’ CinXn be its Fourier expansion. Since

{pi} converges to ¢ in L%([—a,a]), we have

1 @ —TinT
Cp 1= —— T)ex dr = lim c;y,.
] p(z)exp( ) dim
We can take a basis {n, | |n| < N} of W so that
—mimz
z)e dz = b, , < N.
= [ m@en(T ) ds ] <
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J———

Put ¢f = ¢; — ZN'<|n;§N CinMin- Then we have ¢f € Ky(a) and

lef =il < lles —@sll+ D lein = cinlllmall-
N’'<|n|<N
Hence {7} is a Cauchy sequence in Ky(a). Let ¢* € I?—(\a) be its
limit. Then we see easily that «(¢*) = ¢ — - n/ < <nv Cnfln- Therefore

———

we have p € (W’ + Ky(a)). This proves that . is surjective.

—

We have verified that K(a) does not depend on the choice of N and

——

W. We could have taken W =V C C(a). This shows that C(a) can be

regarded canonically as a subspace of I?U:).

§5. Some matrix coefficients

The positive definiteness of { , }|K(a) is, roughly speaking, equiv-
alent to the positive definiteness of the infinite dimensional hermitian
matrix ({Xn,Xm))- Thus we are interested in calculating (xn,xm) ex-
plicitly.

Fix n, m € Z and put F = x, * Xm- By direct computation, we
have

/ F(2)(e*/2 + e=*/%) da

_ (_l)n—{—m_(ea/Z _ e—a/2)2 5 a? 5 ,
a {1+ ()2 H1+ (52)%)
1 .
2—(2(1 - x)exp(mnw), 0 <z < 2q,
a
= 1 )
2a a
0, |z| > 2a,
(=pn—m Timx TINnT
it —m) g ) TR Th 0SS
5.3) F(z) = (=™ TInT TImT
N B R R
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if n # m. The calculations of Vi (F') and V2(F) is not so trivial. Set
(5-4) O(s) = M(F),  Pn(s) = M(xn).

Then we have

(5.5) D(s) =D,(5)P,(1—3),
L1 1
Dn(s) = (- Vas—1ymm {exp(a(s — 3))

(5.6)

Vi( 27r/ F(t)Re ((} + 5)) dt

1/241i00

(B(s) + ®(1 — 5))9(s/2) ds

2 27” 1/2—ic0

Of course, ®,(s) is an entire function of s. Set
1 1/24i00
(5.7) Inm=-— D,(8)Pm (1 —3)¢(s/2)ds
2mi 1/2—ioco
Since ®(1 — s) = M(X—n * X—m), We have
(5.8) Vi(F) = (Inm + Lon,—m)/2.

By (5.6), we get

: Tm = (=)™ 210, 271”
(5.9) 1/2+ico fexp(a(s — 1)) — exp(—a(s — 1))}?
x/l/z_ioo (s — 14 miny(g 1 mim) P(s/2) ds.
We have
(5:10) Y(s+1) = (s) + .

S

By a well known integration formula

P(s) =log s — — / e udu —y Re(s) >0

+ 32 (627ru
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we get

(5.11)  [6(s)— (log s — o) < =, ¢ =Tm(s), Re(s) >0
. s og s~ o)l < o = Im(s), Re(s) > 0,

since

I/OO udu l<i/°° udu 1
o (u2+32)(€27ru_1) 2 Jy  (e?rv—1) T 9442’

where log s takes the principal value. By (5.10) and (5.11), we get

|(o +it)| ~log |[t] for [t| — oo

(5.12) .
uniformly when — oo < 0y <0 <00y < 400.

Take any o > 1/2. By (5.12), the line of integration in (5.9) may be
shifted to [7F%°. Set

(s) = !

R RO e
7= 1 o+100 ) 1 a
1= o ). xP(2a(s = 5))g(s)p(s/2) ds,

1 o+100
Iy = v e g{8)¥(s/2) ds,
I = 1 o+ioco ) 1 o
3= 5 ), oxP(=2a(s = ))g(s)(s/2) ds.

Then we have

Lym = (=)™ (I — 21, + I5)/2a.

T4+1i00

For I;, i = 1, 2, 3, we may shift the line of integration to [ for

T—100

any 7 > 0. For I, and I3, controlling the order of ¥(s/2) by (5.10) and
(5.11), we see easily that

T+i00
i o()0(5/2)ds =0,
T+100 1
liIll exp( — 2a(s — 5))g(s)¢(s/2) ds =0.

T—100
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Thus we get Io = I3 = 0. Let 7 < 0, 7 ¢ 2Z. By (5.12), we may shift

the line of integration for I; to f:jl;o picking up residues. We obtain

1 T41200

h=s [ exp(2als — 3))g(s)u(s/2) ds

2m1 T—100
1
+ ZResidues of exp(2a(s — 5))9(5)1&(3/2) for T < Re(s) <o

By (5.10) and (5.11), we find

T+i00

Jim exp(2a(s — %))g(s)¢(s/z) ds = 0.

T—— .
o0 T—100

Therefore we get
. 1
L= ZRemdueS of exp(2a(s — 5))g(s)¢(s/2) for Re(s) <o

These residues can be easily calculated, and since I, ,, = (—1)"+™I; /2a,
we obtain

(5.13) k=0 o
+ 2a¢(— - 7;—77“) _¢ (_ _ @)}’
_ (=yrm > exp(—2a(2k + 3))
B (e
(5.14) =
a 1 mim Tin
i VG T g )T 95— SN}

By (5.8), we obtain a formula for V;(F); Va(F') can be calculated simi-
larly. The final formula for {xy, Xm) is as follows.
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(5.15)

4
(XnXn) = E(ea/z - 64a/2)

2,2

o 1—VF-
{1+ (%2)2)2

_1 > %@a — elog N(p))cos(

+ log Ay

mnelog N(p) )
a

a
p,e,elog N(p)<2a

> 2k+ —(%2)? 1
Z{ 2t (%)2}2exp(~—2a(2k+ 3))
+2aRe(w<f1 “")) + SR/ (; + 5}
T2 (k+ - () 1
+—{ ﬂ'(rlz 2 X (_2a(k+ ))
a Z;{ T (mmyeyE P
+ 2aRe(w(% + ”—:l)) + %Re(w’(—;— + Zrgf))}-
(5.16)
_1\n+m _ é e®/2 _ g—a/2)2 1- 4721#
(A O om) = ST e =
1
~ w(n—m) X
log N . mmelog N . mnelog N
Z ]V‘g(p)e(/’;) {sm( f (p)) _ sm( S (p))}

p,e,elog N(p)<2a

- {(2h + 1) — (727 )exp(—2a(2k + 1))
T 5q(2 Z{2k+2)2 PPk 1P PP

b s (G + 5 ~ I + )

m(n 2a

rz (k1) <“"m>}exp( 2a(2k + 1))
* {Z{<k+ ()2} ((k + D2+ (2m92)]
min 1 mim

+ m(lm(¢( T)) = Im(y (5 + —

M}

if n #m.
From (5.15) and (5.16), we can easily deduce the following. There
exists k > 0 which depends only on a such that

(5.17) [{Xn, Xm)| < &/|n—m)| if n#m,
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(5.18) (Xn, Xn) ~ (r1 + 2r2)log |n| for |n| — oo.

The above formulas (5.15) and (5.16) are suitable for numerical compu-
tations, since the sums Z?’:O in them converge rapidly. If R.H. holds,
the finite dimensional matrix ({xn,Xm) | |7|, |m| < N) must be positive
definite for every N and a. We have verified this for several instances of
a and N when k£ = Q.

§6. A numerical example
Let k= Q and a = log 2/2. In this section, we shall prove
(6.1) {p,0) >0 for every ¢ € K(a).

For this purpose, it is necessary to determine the constant u in Lemma
3 more precisely. We note that we may assume ¢ is odd or even function
n (6.1) (cf. §2). By a direct computation, we have

(6.2) [w (0 * @) (x) z/2+e m/2)d.’13—26,/ z/2dl,'

where € = 1 (resp. —1) if ¢ is even (resp. odd). Assume |||z = 1. If
© is odd, we have

[ e(@)er daf? = | / (2)(e/? = e=/2) daf’ < (&2 — = — 2a) /2,
by the Schwarz inequality. Hence we obtain
1
,) > —log m — (— — log 2
(0, 0) g (\/5 g2)
(6.3) L% e 1 it
— t)|* R -4+ —=))dt
o [ 1eOPRe((G + S

p € K(a), a=log 2/2, |lpllre =1, ¢ = L.
We have

o0
1
s) = Z s, Re(s) > 0.
n=0 (’fl + 8)
(cf. Whittaker-Watson [8], p. 250.) Let o > 0. We get

SRe(D(or -+ ) = ~Tm( (5l amo )

dt
i 2(c +n)t 50
B 0{0+n +12}2
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for t > 0. Therefore Re(y (o + it)) is monotone increasing for ¢ > 0.
Choose C > 0. Define 0 < tg < t; so that

1 it
Re (w(— + E—)) >0 if |[t| >ty, equality for [t| = to,

it
Re (¢( + 2 )) >C if [t| >t1, equality for [¢|=1;.

We have tq = 2.0320 - --. Similarly as in §2, we get

~/ PO Re (p(5 + ) d

>C—— 2dt+
2 Itlstll o0 27 Jit<to

a2 1 it
GO Re (o(E + D)) ar
By (6.3), we have

1 C
,p) > C —log m— ——log2——/ G(t)|? dt
(0r) (51525, [, 1ot

to [ IROPRe((G + 3t

21 Jjti<to

(6.4)

Now let ¢ € Kn(a) and ¢ = EIHDN € Xn be its Fourier expansion. We

have
(t) Cn€ex Jexp(itx) dz
0= = [ e explita)
In|>N
By termwise integration, we obtain
(6.5) ¢(%) Z (=n~ i sm at if |at] <7w(N+1).

|n|>N

Since ¢ is odd or even, ¢ is also odd or even. Assume at; < w(N + 1).
Then we have

(/t|<t 1B(6)12 dt)? = V([ g (t)|? dt)'/?

Via 1 b T 2. 9 1/2
< — — .
< E len |(/0 (at+7m) sin“at dt)
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For 0 < t < t1, we have

Since ¢, = *c_,,, we obtain

™ m m|n|

|<1 ifn>0, | if n < 0.

at 4+ mn at+mn' T w|n| —aty

A21/2@001 m
(f, ., ora” <23 Ty

t1
X (/ sinzatdt)l/z.
0

By Yoo niilenl® = llell32/2 = 1/2 and the Schwarz inequality, we
obtain

o . aC sin 2at
= ()2 dt < 5 (t — )
( ) 2 |t|<t1 27 2a
6.6 o
1 ™m 3 . w(N +1)
-1+ —-— f t L
X Z nz( +7rn—at1) s a
n=N+1

Assume atg < 7(N + 1). By (6.5), we immediately obtain

|<ﬁ(t)|§@ > el 14—y, 0<t<to

T n ™ — atg -
n=N+1
Hence we have
1 ) 1 it
— P(t)|*Re (¥(= + =)) dt
0 JPOP R+ 5)
1 [t 2 1 it
= — ; R ~+ =))dt
= [ eorRe (g +5)
2a > 1 ™ 5 [t 1t
> =14 — 4=
220 Y laly i+ o)) [T Re(g + G
n=N+1
e = 1 ™ 5 [P 1t
> il - Z 4+ 2y dt
73 Z n2(1+7m——at0)/0 Re(¢(4+2))dt
n=N+1
We have
to 1 it
R — 4+ =))dt
| Retuig + 504
to/2 .
:2/ Re(w(1+z’t))dt=21m(log I‘(l—i—@)),
A 4 472
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d
since Re(y(o+it)) = Elm(log I'(c +4t)). By Stirling’s formula, we can
1 it
compute Im(log F(Z + 2—22)) easily and obtain

to :
/ Re (111(l + Z)) dt = —2.7626 - - - .
A 1773
Hence by (6.4) and (6.6), we get

(@, ) ZC—logW—(i—lozﬂ)

V2
aC sin 2at;, = 1 ™M o
— —(t; — — (1 4+ —
(6.7) 273 (tr 2a )ngv;_l n2( n — aty )
a > 1 ™
—2.77— — 1+ —")?
3 Z n2( +7m—at0) ’
n=N-+1

¢ is odd or even, |l¢|lz2 =1, aty < w(N +1).
Take t; =50 and N = 10 in (6.7). Then C = 3.2188 - - and we have

(6.8) (0, 9) > 1.52||]|22, ¢ € Kip(a), ¢ is odd or even.

Take ¢; = 700 and N =199 in (6.7). Then C = 5.9914--- and we have
(6.9) (@, ) > 4.08]|¢]22, @ € Kigg(a), ¢ is odd or even.

Now we shall proceed to prove (6.1). For a non-negative integer N, we
set

KN,odd(a) = KN(CL) N Kodd(a)7 KN,even(a) = KN(a) N Keven(a)'

If N satisfies (4.3), let ija) and K ]\:Ve\n (a) denote the completions
of the respective spaces with respect to { , ). First we shall prove (6.1)
for ¢ € Kyaq(a). For a positive integer n, we set

1 . (m'n:v
——sin
Wn(w) - \/E

0 if || > a.

) if [z[<a,

Then we have w,, € Koqa(a), w, = 2£,2(Xn — X=n); lwnllz =1,

(610) (UJn,wm> = <Xn’ X'm> - (Xnyx—"TI)'
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For 1 <4 < 10, we consider a linear functional

Ki0,0ad(a) 2 v — (v,w;) € C.
This functional is bounded as can be seen from the proof of Proposition
3. We can estimate its bound as follows. For n > 1, set 1, = wpy10-
Let v € Kipead(a), ||v|| = 1. By Proposition 4, we may write v =
> e aknk; then we have ||v]|2. = Y7o, |ax|®. By (6.8), which may be
applied to ¢ € Kio(a), we get > po, |ax|* < 1/1.52. We have

oo
(v, wi) |—|Zak (e, wi)| < ( ZIakl Y2 s wid )2
= k=1

We note that (ng,w;) = O(k™!) by (5.17) and (6.10). Therefore we
obtain

(6.11)  [(,w)® < (D (mk,wi)[*)/1.52, v € Kig0aa(a), lIv] = 1.
k=1

By Riesz’ representation theorem, there exists a v; € Kig0dd(a) such
that

e

(6.12) (v,w;) = (v, v;) for every v € Kig0dd(a).
Furthermore, by (6.11), we have
(6.13) lvall> < (D e, wi)[?)/1.52.

k=1

Put w] = w; —v;, 1 < i < 10. Then it is clear that w}, 1 < i <
10 span the orthogonal complement of K 1@(1) in Km), where
K@) =(w;1<i<10)c® Klo/p_(;(a). Therefore, to prove (6.1) for
¢ € Koaala), it suffices to prove the positive definiteness of the 10 x 10
hermitian matrix ((w;,w;);1 <4,5 < 10). By (6.12), we have

(6.14) (Wi, wh) = (Wi, wj) — (vi, v5), 1<4,5<10.

Suppose that we have proved

(6.15) osll* <, 1<i<10.
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Then, by (6.14), we have
[(wg,w;-) - <wi7wj>‘ <e, 1< i»j < 10.

For (zy,-+,710) € C1Y, we have

Z (wi, wi)eiZ; >Z wiyw;) — €) |z

1<4,5<10
= D (Hwswpl + )lmal.
1<4,j<10,i#j
Put
Ui = (wi,wi) —€,  1<i<10,
uij; = —[wi,w;)| —¢,  1<4,5 <10, i # .

Then the positive definiteness of ((w},w)) follows from the positive defi-
niteness of the symmetric matrix U = (u;;;1 < 4,7 < 10). We find that
U is positive definite if we can take € = 1/40 in (6.15). In fact, (w;,w;)
can be easily calculated by (5.15), (5.16) and (6.10), and it suffices to
show det (u;5;1 < 4,5 < k) >0 for 1 < k < 10. The verification can be
done by a simple triangulation process applied to U. Thus, by (6.13),
(6.1) for odd ¢ reduces to

- 1.52 ,
(6.16) OO Hwi, wig10)f?) < —o =008 for 1<i<10.
By (5.16) and (6.10), we have
(D)™™ wn,y wm)
4 8x2nm
— _(ea/2 _ eva/2)2 a?
a {1+ () PHL+ (32)?)

10 2y minm exp(—2a(2k + 1))
T IR ek D T
1
e

+

(yn _ym) )(yn+ym)7 n #m,

- 2m(n+m
for a = log 2/2, where

1 min Tim

> <¢<—

7))
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We have
f(ea/z —emo/2)2 %Lm < 2_a(ea/2 _ e#a/z)z__l_
a {14 (2Z2)232H{1 + (25m)2} ~ 72 nm

z "mexp( 2a(2k + 3))
(2k + 3)2 + (%) 2H(2k + 3)2 + (%)}

a

1 2¢ exp(—a) 1
E+2))=""F5——"—- "1~
exp —2a(2k+ 2)) 72 1 — exp(—4a) nm

X
<L

) (yn +Ym) = m@n?}n — MY )-

1
)(yn—ym)—m

2r(n—m
By (5.11), we easily get

IIm(i/f(i‘*‘it))*E“%l < Tg—tg for t> 3.
Assume m > n. Then we obtain
_ 1 ™ a 1 i(@_)zmz—mn—}—nz
m+n2 2rmn  10° 7’ (m—n)m?n?
z ;lz—;l—ma(myn — m)
1 = a1 1 ,2a ,m? —mn+ n?

> et 1

m+n2 2rmn 107’ (m—n)m?n2’
Then we see easily that

| 1

2w (n —m)

a .1

)| < (G + 5

=) = St m)

Thus we obtain

(6.18) {(wWn,wm)| < Cym™1 if n<m,

2a

(6.19) Cl — ﬁ(ea/2 — e—a/2)2 + a

2a exp(—a
272

) 1
21— exp(—4a) (2 T 2r2)

We have C7 = 0.3508 - - -. Hence we get

> Hws, wi10)]? < CF Z m~2 < C?/10 = 0.03508 -
k=1 m=11
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for 1 <4 < 10. This proves (6.16) and we complete the proof of (6.1)
for odd .

Now we shall prove (6.1) for even ¢. We can argue similarly as for
the odd case, but the actual computation becomes more cumbersome.
Set,

1 1 TN
WO(CE) _ \/2—&’ l.’L‘| S a, wn(m) _ \/E COS(

0o , |z] > a, 0 , |z] > a,

)zl <a,

for n > 1. Then we have

1
Wo = X0, Wnp = E(Xn +X-n) n2>1, |wnllzz=1, n>0.

For 0 < 1 < 199, there exists a v; € Klo/ﬁz,;(a) such that

(v,w;) = (v, v;) for every v € Kig,even(@).

Set w; = w; — v;. Then it suffices to prove the positive definiteness of
the 200 x 200 hermitian matrix ({w},w});0 <d,j < 199). We have

(6.20) (wi,w)) = (ws,w;) — (vi,v5), 0<14,5<199.

For n > 1, set 1, = wy4199. By (6.9), we get

(6.21) loill® < (D [, wi)|?)/4.08.

k=1
as in the odd case. Suppose for a moment that
(6.22) l:]|> <1/2000,  0<i<199.
is proved. Then, by (6.20), we have

(6.23) [{wi, W) — (wi, w;)| < 1/2000, 0<i,j<199.
Set u;; = (w;j_q,wi_q), 1 < 4,5 <200, U = (ui;). The first step of
the reduction of U to a diagonal form is done by adding —u;yu1;/u11 to
uij, 2 <4 <200, 1 < j <200. Repeated applications of this procedure
succeed provided the diagonal entries are kept non-zero at every step.
Using (6.23) and numerical values of (w;, w;), we can explicitly determine
the lower and upper bounds which the matrix entries may take at every
step. For our purpose, it suffices to observe that the lower bounds of
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every diagonal entries are positive at the final step. This fact can be
verified rather easily on a computer.
Thus our task is to prove (6.22). By (6.21), it suffices to show

s 4.08
.24 i 2< 22— =0.00204 for 0<i<199.
(6.24) kz=:1 wi, wk+199)]° < 2000 or 0<i<

By (5.16), we have

( 1) <"-’mwm>
il( a/2 _ a/2)2 2

{1+ (Z2)2H1+ (322)%)

aperit 2k+ (a) }{(2k+—§-)2+(%m)2}
+m(yn—ym)+m(yn+ym), n #m,

for a = log 2/2, where

(This formula has to be multiplied by 1/v/2 if nm = 0.) By (6.25),
similar calculations as in the odd case yield

(6.26) Hwn,wm)| < Com™  if 0<n<m,

2

— 2
(627)  Cy= g(e/?— /224 20 __exp(—a) 1 (20)

w2 1 — exp(—4a)

We have C2 = 0.3321 - - -. Hence we get
o0 (e )
> Hwnwirieo)? = Y Jwi,wi)|? < C3/199 = 0.001668 - - -
k=1 k=200

for 0 < ¢ < 199. This proves (6.24) and we have proved (6.1) also for
the even space. Summing up, we obtain

Theorem 1. Let a =log 2/2. We have

(o) =Tqlp*@) 20  for every ¢ € K(a),

where equality holds if and only if ¢ = 0.



On Hermitian Forms attached to Zeta Functions 311

87. Continuity

For a function o on R and t > 0, we define a function oy on R by
a(z) =t ra(t ™ ), z €R.

Then we have

(7.1) (@) = (o), (@t)u = Opu, u>0.
If o and 3 are integrable functions with compact support, we have

(7.2) o By = (a % B)s.

Let a > 0. By Lemma 3, we can find a positive integer N and p > 0 so
that

(73) (o) 2 ullella  forevery @€ Kn(b), 0<b< 2.

Let K(a) =W & Ky(a) with W C K(a) and let a;,az,---,asn41 be
a basis of W. For t > 0, set Wy = ((a1)s, (@2)s, -, (@an+1)¢)c- Then
we have K(ta) = W, @ Kn(ta). Assume ¢ < 2. Then, by (7.3), we can

—

consider the space I?(?ﬂ = W; ® Kn(ta). Let W(ta) be the orthogo-

nal complement of Ky (ta) in K (ta) whose existence is guaranteed by

——

Proposition 3. For 1 <i < 2N + 1, we can find v;(t) € Kn(ta) so that

(7.4) (v, (ai)e) = (v,v(t))  for every v € Kn(ta).
Then (1)t — v1(t), (2)t —v2(t), - -+, (@an+1)t — von+1(f) make a basis

of W(ta). The purpose of this section is to prove the following result
which shows the continuity of the hermitian form on W (¢a) induced by
( , ) with respect to t.

Proposition 5. Let the notation and the assumption be the same
as above. Then the matriz coefficients ((a;): — vi(t), (a;): — v;(t)) are
continuous functions of t for0 <t <2,1<1¢,j <2N +1.

It suffices to prove the continuity at t = 1. By (7.4), we obtain
()t — vi(t), () — v (@) = ((@i)e; (a)e) — {i(t), v;(2))-

By (7.2), we have ((a;)t, (@;)¢) = Ti((o; * @&;)¢). The continuity of this
inner product follows from the next Lemma.
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Lemma 7. Let o be an admissible function. Then Ti(ot) is a
continuous function of t.

Proof. Tt suffices to prove the continuity at ¢ = 1. Take b > 0 so
that supp(a;) C [—2b,2b]. Take n > 0 so that a'(z) is continuous for
|z| < 21 except at z = 0. By Lemma 4, it is enough to prove

(13 lmle-edpe =0, lim |’ ~ (@}~ =0,
We have
lo/ — (@)1 = sup |o/(x) — t"2/ (" 2)|
0<]z|<n

< sup |o(z)—o/(tTrx)| + |1 -t sup |o/(t7'z)|.
0<|z|<n 0<|z|<n

The second term obviously converges to 0 for t — 1. By setting o/(0) =
lime,40a’(e) , & is uniformly continuous on [0,2n|. Hence we ob-
tain lim; 1 Supy <, |o/(z) — o/(t7'z)| = 0. Similarly we get lim;
SUP_, <. <o @ () — o/(t7'x)| = 0. This proves the latter part of (7.5).
The first part of (7.5) can be proved similarly. This completes the proof.

By Lemma 7, Proposition 5 reduces to the continuity of (v;(t),v;(t))
at t = 1. For n € Z, define x,(t) € K(ta) by

1 TIinT
(@) = | Vaa Pt

0 if |z|] > ta.

) if x| < ta,

We put

m(t) = xn41(t), n2(t) = X—(v41) (), - -
’r]2n—1(t) = XN+n(t)7772n(t) = X—(N+n) (t)a te

——

Let {x(t)} be the orthonormal basis of Ky (ta) obtained from {m(¢)}
by the Schmidt orthogonalization process. We have

Pr(t) = m @)/ lm @), --
(7.6) e (t) = O = ZuTr (e(8), ¥ (8)) ¥ 1)
70 (8) = S 22 (e (), ¥ (8)) 0 (2) ]

yo o

By (7.4), we have

vilt) = Y Fae®¥r(t),  fn(t) = (wilt), vu(t)) = (), k(1))
k=1
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Lemma 8. Fort <2, fit(t) is a continuous function of t.

Proof. Put a = ;. We have xn(t) = (xn(1)): x Vt. Hence we get

(0, X (8)) = VETi((@ % Xa(1))2)-

By Lemma 7, we see that {c, x,(t)) is a continuous function for every
n € Z. In particular, {ay,n(t)) is continuous for every k € N. By (7.6),
we have (1) = Ele di ()m (t) with di(t) € C. Tt suffices to show
the continuity of dg;(t). By Lemma 7 or by (5.15), (5.16), we see that
(m(t), nm(t)) is continuous for every I, m € N. Now the continuity of
dri(t) can be shown by induction on k.

We have

(i), v; (1)) =Y fir(t) F5x(8)
k=1

S 1T i @203 P2

k=M k=M

Therefore Proposition 5 reduces to the uniformity of convergence in a
neighbourhood of ¢ of Y 7o, | fik(t)|? for every i, 1 <4 < 2N + 1. This
fact is by no means trivial but follows from the next Lemma.

Lemma 9. Let H be an infinite dimensional vector space over C.
Let (, )1 and (, )2 be two positive definite hermitian forms on H. We

set
Ivll; = /(v,v);,  veH, i=1,2.

We assume that H is a separable Hilbert space with respect to || |1 and
that H is embedded in the completion H* of H with respect to || ||2. Let
{¥n} be an orthonormal basis of H with respect to || |1 and let {n,},
1, € H be an orthonormal basis of H*. We assume that {1, } is obtained
from {n,} by the Schmidt orthogonalization process. Let T be a linear
functional on H. We assume the following:

(I) There exists k1 > 0 such that

lvll1 > &1llv]l2 for every v € H.

(I') There ezists a sequence of positive numbers u(M), M € N such that
limar—yoo (M) = 400 and that

lvlly = w(M)||v]l2  if v € H satisfies (v,m:)2 =0 for every i < M.
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(II) There exists k2 > 0 such that [(nj,m)1| < k2/lj — 1| if §#£L
(IIT) There exists kg > 0 such that |T(n,)| < kan™!, n>1
Then we have

(3 Tw))? < m3(1+ 57 20)(u(M) = 57 'v) 71 y/72/6

i>M
for (M) > k7 'v, where v = /$2( 2 +5m) .

Let us prove Proposition 5 taking Lemma 9 for granted. We set
H:KN(ta)v (v)1:<7>a

(@, B)2 = / " a(@)B@) dz, o8¢ Ky(ta) C L2(|—ta, ta]).

—ta

Take n = Mk (t), ¥ = Y (t), k € N. Now the assumption (I) is included
in the assumption of Proposition 5 (cf. (7.3)) and (I') follows from
Lemma 3; (IT) follows from (5.17). We take («;); € K(ta) as before and
set

T(v) = (v, (a)s), v € Kn(ta).

Let a; = Y, 7 ckxk(1) be the Fourier expansion of a;. Then we have

(@) =VE ' Srez cuxi(®),
On(®), (@) = V2 Lez clxn(t), xu(t)).
By (3.1) and (5.17), we easily obtain

Y lerbn(®,xk (@) = O(n™Y),  for |n| — oo,

|k—n|<[nl/2
Yo ek, xe®) < (D lexl)2mln| 7.
lk=nl>[nl/2 hez

Hence we obtain (III). We note that the constants k1, kg, k3 and p(M)
can be taken independently of ¢ when 1/2 < ¢t < 2. Then the conclusion
of Lemma 9 implies the uniform convergence of > _p- , | fir(t)|%.

Proof of Lemma 9. Since {¢;} is obtained from {7} by the Schmi-
dt orthogonalization process, we can write

(7.7 Y = Zdiﬂlj, = Zciﬂl’j-
j=1 Jj=1
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Set C = (¢ij), D = (d;;). Then C and D are infinite dimensional lower
triangular matrices (cf. (7.6)). For a positive integer M, we set

(X 0 (v o0
=% x) ()

where X; and Y; denote the first M x M-blocks. Similarly dividing into

blocks, we set
Z1 Z2
= (7 7).

Since
i i min(%,7)
(i) = () ety D ciuthy) = Z CikCjk;
k=1 =1
we have
71 Z
t 1 2
- co- (2 7).

Note that C*C can be defined since C is lower triangular. For an infinite
dimensional matrix A which maps ¢2 into 2, let || A|| denote the operator
norm of A: || Al = supjz) .1 [#Allez . We shall show

(7.9) 125l < v,

where v is the constant given in Lemma 9. Since Z3 is a 0o X M-matrix,
Z3'Z3 is meaningful. Set Zs = (u;;), Z3'Z3 = (vij). By the assumption
(II), we have

(7.10) luij| < ko/|M +i—3l, 1<i<oo,1<j<M.
Hence xZ3 is meaningful if z € ¢2. To prove (7.9), it is enough to show
(7.11) (2Z3)"(xZ3) < va'z for every x € £2.

From (7.10), we have

1 1
(7.12) |v1k|<n22M+2M]M+k_]

In particular, we have

=1 2
|vii| < K3 2‘23—6“ 2
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1 T 1
(7.13) o] < k3—( Y. = - Z) ifi#k
k—1 = 7 —~ j
g J
Set
Ug:{o if i = 4,
! vij ifi# 7,

and V = (v;). Then, for z = (z1,3,-) € £2, we have

(xZ3)(xZ3) = V"% + Zv¢i|mi|2 < |zViz| + %n%l]m“fz
=1

(This computation is justified if 3_; (3" wiktjk)z:Z; is absolutely con-
vergent which shall be shown below through the proof of (7.14).) Thus
(7.11) reduces to

(7.14) leViz| < k2(n% + 57)||z|% for every z € %
We have

L1 I 1
7.15 = —log -| < - f i, leZ, 1 >12>1.
(19 IS g-leglsy ez izi

Hence we get

M+i—-1 M+k—-1

1 1 1
il ' 2 7
j=t i=k
1 M+i-1 M+k-1 1 1 1
< 1 —1 -4+ =).
S poilles = o8 — )t =GR
‘We have
1 M4+i-1 M+Ek—-1 1
0 It — -
<k—i(0 1 5 ) k—ilOg ,
1 (1+1)< 5
k—i'i k"~ i+k
Hence, by (7.13), we obtain
1 k 5
7.16 ik < 2 -4 — ) .
( ) ’vk|——-n2(k_zlogz+z+k)7 Z#k
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Set

i 0 if i =k, (o fi=k,
YT logk, ifiAk, R | i ifiAk

Vi = (vl}), Vo = (v}}). Then (7.14) follows from

(7.17) leVitz| < 72)|z||% for x € ¢?

(7.18) lzVolz| < Brr||z||%  for x € £2.
(7.17) (resp. (7.18)) is given in Hardy-Littlewood-Pdélya [3], p. 255(resp.

p. 226). We have proved (7.9).
Now let

M
v = E x;m; € H, z=(x1,Z2, ", TM).
i=1

Then we have
M M M
2
o2 = 21> wie P = leXalZ, Iol3 = leil.
j:l =1 =1

Hence, by (1), we get ||zX1|l;z > #1|z||,2. Inserting z X" into z, we get
llzllez > 1]z X, ||¢2- Thus we obtain

(7.19) IX7H < mp

From (7.8), we get X3 = Z3!X;'. Hence we have
(7.20) 1 Xall < w7t

by (7.9) and (7.20). Let

v = Z%‘"RGHCH*, T = (Tamt1,Tar2, ) € £
i>M

Then we have

v=">3" Y micyy, ol = l2(XaXd)lle,  Jollz = 2l

i>M j=1
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From (I'), we obtain
(7.21) (X3 Xa)llee = p(M)| |2

We note that (7.21) holds for every = € £2 which satisfies z(X3X,) € £2.
By (7.20), we easily get

leXaller > (u(M) — 7 0)llallen i 2, aXs € £
Inserting z in z.X,, we get
laller > (u(M) = 5T X7 i @, 2X;1 € 2.
Assume M is sufficiently large so that u(M) — k7 v > 0. Then we have
(122)  [oX; e < (WOD) =T 0) Yalle i @, 0X50 €2,

Let z = (y1,Y2, " ,Yn, ) € £2 and set z; = (y1, Y2, *, %, 0,--+,0,--+).
Since X! is lower triangular, we have z; X; ' € £2 and {z;X; '} is a
Cauchy sequence in £2 by (7.22). Therefore z;X; ' converges to some
z € £2. We see easily that ||z]l;z < (u(M) — 7 )" |z]lz. Thus we
have X, ! € £2 if z € £ and obtain

(7.23) X< (w(M) = w7 tw) 7

Now we are going to estimate ),/ |T(1;)|?. Since YoM T ()|
=2ism | Z;’:l dii T (n;)1?, we get
ty:
(7.29 S i =l () 1

where & = (T'(m), T(n2),---,T(n;),---). By (II), we have

(7.25) lEllez < msy/776.

From CD =1, we get Y, = XZI, Ys = —X4_1X3X1_1. The products of
these matrices are meaningful since C and D are lower triangular. We
obtain

_ty—1¢
a2 Srwol =l (T ) e,
i>M
From (7.19) and (7.20), we have

_ty-—1t
Il <t (T ) 1< 0
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From (7.23), we have [|*X; || < (u(M) — 7 'v)~!, since the norm does
not change when passing to the dual operator. Therefore we obtain

_ty—1lt
() X < (4 00) = ) e

Taking account of (7.25) and (7.26), we complete the proof of Lemma, 9.

§8. Reduction to non-degeneracy

Lemma 10. Let a be an admissible function. For € > 0, let p. be
a mollifier, that is p. € CZ(R), supp(pe) C [—¢, €], p(x) >0 for every
zeR, [T p.(z)dz =1. Then we have limc_, 1o Tp(o* pe) = Ty ().

Proof. Let supp(e) C [—a,a] and take —a =ag < a1 < -+ < @, =
a so that o/(z) is continuous except for z = a;, 0 < i < n. We have

d a n—1 Q41
)@ = [ aWile-ndy=Y [ awei-y)dy
—a i=—0 Jai
— (@' % p)() + o(-a)pe(z + a) — ala)pe( — a),
by partial integration. Take 0 < 1 < a/2. Then we have

B1) L anp)@) = (@ p)@) i e<m fol <

Since
{(@ *pe) —a'}(z) = /_oo (& (y) — o/ (z))pe(x — y) dy,

there exists A > 0 which depends only on « such that
(8.2) H(@ *xp) —a'}z)]<A forall e>0, z€R.

By (81) and (82), we have
”—‘{(Of*O)—O{}”] < A if €<'T]
l € oo = — .

By Lemma 4, we obtain

|Te((a * pe) — @) < c||(a* pe) = allpe + 2(r1 +2r2)An if e<n.
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It is easy to see that the first term converges to 0 for ¢ — +0. Hence we

have
limsup | 7% ((a * pe) — )| < 2(r1 + 2r3)An
e—+0
Since i < a/2 is arbitrary, we obtain lim._,o T ((a * pc) — @) = 0. This.
completes the proof.

Proposition 6. Assume that the Riemann hypothesis does not
hold for (x(s). Then there ezists ag > 0 which has the following proper-
ties.

(1) Ifa<ag, {, )| K(a) is positive semi-definite and { , )|C(a) is

positive definite.

(2) If a > ag, both of { , }K(a) and { , )|C(a) are not positive

semi-definite.

Proof. Set
I={aeR,;|{, )K(a)is positive semi-definite }, J=R; —1I.

If a € J, there exists o € K(a) such that (o, @) < 0. For t > 0, we have
a; € K(ta),
(at, at> = Tk((at * dt)) = Tk((a * d)t)

Since a x & is an admissible function, we obtain (o, ;) < 0 if ¢ is
sufficiently close to 1 by Lemma 7. Hence J is open and I is a closed
subset of R,. Assume that the Riemann hypothesis does not hold for
Ck(s). Then I is bounded. In fact, if I is not bounded, I contains an
increasing sequence of numbers {a;} such that lim;_,o, a; = +00. From
CE(R) = UR,C(a;) and C(a;) C K(a;), we see that { , )JCP(R) is
positive semi-definite, which is a contradiction. Let a; be the maximum
of I. Set

I'={aeRy|{, )|C(a) is positive semi-definite }.

By the same argument as above, we see that there exists a maximum qg
of I. Since C(u) C C(v) if v < v and by Proposition 2, the assertions
(1) and (2) for C(a) is clear. From C(a;) C K(a1), we have a; € I'.
Hence a1 < ag. Assume a1 < ag. Then we can find a and a € K(a) so
that a1 < a < ag, (@, ) < 0. For ¢ > 0, we have a * p. € C(a + ¢),

<a*p€7a*pe> :Tk(a*&*pe*ﬁe)'

Since p¢ * p. also satisfies the condition of a mollifier of Lemma 10 (with
2e in the place of €), we have (a*p., axp.) < 0 when € is sufficiently small.
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This is a contradiction. Hence we obtain ag = a;. Now the assertion
(2) for K(a) is obvious and (1) for K(a) can be proved similarly using
a mollifier. This completes the proof.

Theorem 2. The Riemann hypothesis for (x(s) holds if and only

——

if the hermitian form { , ) on K(a) is non-degenerate for every a > 0.

Proof. First we assume that the Riemann hypothesis for (i (s) does
not hold. Take ag > 0 as in Proposition 6. Choose any a; > ag, u > 0
and N so that

(p,0) > pllell2e forevery ¢ € Ky(a), 0 <a<a;.

As in §4, we can decompose
I?@zW(a)@Igv-(\a), a<a

as the orthogonal direct sum. Obviously ( , ) on I?Z;) is positive semi-
definite if and only if { , }|W (a) is positive semi-definite. By Proposition
6, we see easily that ( , )|W(a) is positive semi-definite for a < a¢ and
is not positive semi-definite for ag < a < a;. Proposition 5 states that
(, )|W(a) is represented by a hermitian matrix whose matrix coefficients
are continuous functions of a when we choose a basis of W (a) suitably.
These facts immediately imply that { , )|W(a) degenerates at a = ao.

Conversely we assume the Riemann hypothesis for {x(s). Then the

—

hermitian form { , ) on K(a) is positive semi-definite for every a > 0.

—

Fix a > 0 and assume ¢ € K (a) satisfies (¢, ¢) = 0. It suffices to show
¢ = 0. For this purpose, let

e

K(a)=W & Ky(a), W C K(a)

asin §4 and let ¢ = a+ 9, aa € W, v € Ky(a). Let {¢,} be a
Cauchy sequence in K (a) which represents ¢ and put ¢, = a+1,. By
Proposition 4, we may assume ¢ € L%(|—a, a]) and ¢, € K(a) converges
to ¢ in L?([—a,a]). Set ® = M(p), ®, = M(p,). Then for any fixed
s € C, ®,(s) converges to ®(s). We have (pn,pn) = 3, |®n(p)[* where
p extends over all non-trivial zeros, and (pn,p,) converges to (¢, ).
Hence we immediately obtain ®(p) = 0 for every non-trivial zero p of
Ck(8). On the other hand, we have

29 < [ " lo(@)][e2| de

—a

= / lo(z)| dz el? /210 < \/2a)|p| L2 elo71/2le, o = Re(s).

—a
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This shows that ®(s) is an entire function of order < 1, exponential type
a (cf. Boas [1], p. 8). Let n(r) be the number of zeros of ®(s) in the
disk |s| < r counted with multiplicity. Then we have n(r) = O(r) if
® #£ 0 (cf. [1], p- 16). Let N(r) be the number of distinct zeros of (x(s)
in |s|] < r. It is known that N(r) # O(r) (cf. Siegel [6], Satz 2). This
is a contradiction if ® # 0. Hence we have ® = 0 which implies ¢ = 0.
This completes the proof.

‘We shall prove the following result supplementing Proposition 2.

Proposition 7. If k = Q, the hermitian form { , ) on K(a) is
non-degenerate for every a > 0.

Proof. By Theorem 1, we may assume a > log 2/2. Set
Vo={peK(a)|(py)=0 forall eC(a)}.

We shall show V = {0}. Take ¢ € V;. We have (¢,%) = Tq(@ *¥) =
(Tq * ¢)(¥). Note that Tq * ¢ is well defined as a distribution since ¢
is compactly supported. From the assumption, we have supp(Tq * ¢) C
R — (—a,a). For u € R, let 6, denote the Dirac distribution supported
on {u}. We have

Tq = /2 + e7*/2 _ (log m)ép
(8.3) © 1
og p
- Z Z e_ﬂ‘(éelog p + 6—elog p) + Vi
p e=1 p
It is immediate to see
(e + €7/ x ) () = DO + B(1)e ™2, & = M(p),

(bu*@)(y) =y —u) forevery ue€R.

We shall show that V; * ¢ is a continuous function except at x = =+a.

1
For this purpose, it suffices to prove the same assertion for Pf (m) * .
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If o € C(a—€) for some 0 < € < a, we have

(Pf(l—i—l

= Pf(i) /(H a(y)ply — =) dy

+/ /" < ay)e(y — =) — aly)e(y) dyd
lzj<1

Y A oy —z) e
= /_W‘/mzl o elv)dy
ae oy —x) — o(y)
+ [a+e(/|z|<1 le dx)a(y) dy

This shows that

1. _ ely—z) .
Prprom = [ d

)*¢)(a) = Pf(l I)(@*a)

||

+/ f(_y___%‘_);f@_ dm for |y| < a.
Jz|<1 ||

(8.4)

We see easily that the right hand side of (8.4) is a continuous function
of y for |y| < a. Similarly (8.4) holds for |y| > a and we see that V1 x ¢
is a continuous function on R — {—a,a}. By (8.3), we have

(Tq * ¢)(z) = ®(0)e™/? + @(1)e~*/2 — (log m)p(x) + (Vi *¢)(2)

1
—22055 (z+elog p) + p(x — elog p)),

p e=1

which vanishes identically for || < a. Thus we obtain
®(0)e™? + ®(1)e*/2 — (log ) (x) + (V1 * ¢)(z)

log p
= ) 7z (p(x + elog p) + ¢(z —elog p)), |z| <a.
p,e,elog p<2a

(8.5)

Now assume @(a) # 0. Since a > log 2/2, there exists a prime p; and
e1 € N such that ejlog p; < 2a. The left hand side of (8.5) is continuous
for |z] < a as shown above, but ¢(z + e;log p1) is discontinuous at
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T = a—e; log p1. Hence there must exist a prime ps and ex € Z such that
ez # 0, |ez|log pa < 2a, (p1,e1) # (p2,e2), a—e1log p1 = +a—ezlog ps.
If a — ey log py = a — ez log p2, we get p1 = p2, €1 = ez, contradiction.
Therefore we have

(8.6) ey log p1 — ez log pe = 2a.

Assume a > (log 5)/2. Then we can find a prime p3 which is different
from p1, p2, and eg € N such that eslog ps < 2a. Applying the same
argument as above, we see that there exist a prime py and e4 € Z such

that eq # 0, |es|log ps < 2a, (ps,e3) # (pa,eq),
(8.7) eslog ps — eqlog py = 2a.

From (8.6) and (8.7), we get pS'p; “? = p3®p; “*. Since ps # p1,p2, this
implies p3 = p4, €3 = e4, contradiction. Assume a < (log 5)/2. Take
p1 =2, e =1in (8.6). Clearly we have e < 0. If po > 2 or |eg| > 2,
we get log 5 > 2a > log 2 + log 3, contradiction. Hence we have py = 2,
es = —1. This shows a = log 2. Since 2a = log 4 > log 3, we may take
p1 =3, e; = 1in (8.6). Then we must have 3p, “> = 4 with some prime
p2 and ez € Z, contradiction.

Thus we have proved p(a) = 0. Applying this result to (T Qv* ) =
Tq * ¢ whose support is contained in R — (—a, a), we obtain ¢(—a) = 0.
From ¢(a) = ¢(—a) = 0, we have ¢ x ¢’ = ()" * 1 for every ¢ € C(a).
Hence (¢)’ € Vo. Then we have ¢'(a) = ¢'(—a) = 0 from the above
result. Since this process can be repeated indefinitely, we obtain ¢ €
C(a). Now Vy = {0} follows from Proposition 2. This completes the
proof.
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