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Hence ifwe write ij5(z,w) = (h(z,w),k(z,w)) EH x C, then h(z,w) is 
invariant under the action of f 0 in thew-coordinate. Since r 0 has rank 
2, h(z, w) depends only on z, i.e., h(z, w) = h(z) which gives a biholo­
morphism from H to itself and 0 descends to an isometry h: H -----, H. 
Since we have h("f(z)) = °if("f)h(z) for z EH, 'y Er we can see that B 
and B' are isometric. Thus by the fact that the action of Aut r on the 
Teichmiiller space of B is properly discontinuous we can see directly that 
the kernel of cl> induced from <I> above is zero. Thus cl> is an isomorphism 
( compare the dimensions of the spaces in ( 8)). Moreover <I> induces the 
map between the fibers of the projections in (8) of the form 

(9) 
- cf, <P1 X<P2 

H1(r,c) x T 0 ---+ c x E. 

If ¢ = ± id then E = C such that small s E C determines the complex 
structure of the general fiber whose period matrix is given by !l(s) = 
(1 + s, h0 + sh 0 ) where !l(O) corresponds to that for the original S0 

([8, Lemma 4.5] ). We have the representations p parametrized by s 

in the above family whose T 0-component h( s) satisfies h( s) = ( h0 + 
sh 0)/(1 + s) and <1>(8/8s) corresponds to 1 ([8, §4]). Thus <1>2 maps 
T 0 onto E whose kernel is the R+-component of T 0 represented by the 
parameter detecting the deformation of the area of the general fiber. On 
the other hand C = H 1 (r, H 0 (X, 0)¢) and <1>1 is the map H 1 (I', C¢)-----, 
H 1 (r, H 0 (X, O)c/>) induced by the natural inclusion C c H 0 (X, 0). 
Moreover by the naturality of the spectral sequences ( used in [8]) we 
have the following commutative diagram. 

H 1 (B, C(Q)) H 1 (B, O(Q)) 

Here Q is the flat C-bundle over B = Bpo determined by the mon­
odromy representation ¢ which can be considered as the representation 
of 1r1 (Bp0 ) (see §1). The coefficient C(Q) (resp. O(Q)) is the sheaf of 
the germs of locally constant (resp. holomorphic) sections of Q and cp1 

and cp2 are the isomorphisms ([8, §7]). The map <I>' is the part of the 
following exact sequence (in which the base B is omitted) 

O-----, H 0(C(Q))-----, H 0(O(Q))-----, H 0(!11(Q)) 
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which comes from the exact sequence 

a 
0-* C(Q)-* O(Q) -t 0 1 (Q)-* 0. 

Here 0 1 is the sheaf of the germs of holomorphic 1 forms on the non­
singular curve B. By the lliemann-Roch theorem (and since c1(Q) = 0) 
dime H 0 (n 1(Q)) = dime H 1 (0(Q)) equals g if ¢ = id and equals 
g - I otherwise (cf. [8, §7] ). Comparing this with dime H 1 (C(Q)) = 
dime H 1 (I', Ccf>) which equals 2g if ¢ = id and 2g - 2 otherwise we 
deduce the exact sequence 

Hence the kernel of <1>1 is isomorphic to H 0 (B, 0 1 (Q)). The same argu­

ment holds for the case with X = S L 2 x E except for the fact that the 
kernel of <1>2 is trivial since there is no R + -component in TO. Thus we 
have 

Theorem C-1. The Kodaira Spencer map <I> for the Teichmiiller 
space T for the Seifert 4-manifold S over the closed orientable hyper­
bolic 2-orbifold B with any given representation p E T is surjective 
and the kernel of <I>: T 0T-* H 1 (S, 0) at S = Sp is homeomorphic to 

H 0 (B, 0 1 (Q))xR+ (if X = H 2 xE 2 ) or H 0 (B, 0 1 (Q)) (if X = SL 2 xE) 
for the base curve B determined by p. The subspace T ofT defined above 
gives a locally complete complex analytic family of the complex structures 
on S. 

The last statement comes from [4]. We can see directly that any 

deformation in the subspace H 0 (B, 0 1 (Q)) of T 0T (which depends on 
the choice of p E T) does not change the complex structure as fol­
lows. Take any w E H 0 (B, 0 1 (Q)). Lift w to the I-form on H which 
is represented as d'ljJ for some holomorphic function 'ljJ on H satisfying 
d'ljJ(az) = </>(a)d'tjJ(z) for any a EI', z E H. Taking the integral we de­
duce that b(a) = 'tjJ(az) - cp(a)'tjJ(z) is a constant. Furthermore we have 
b(af3) = b(a) + ¢(a)b(f3). If a is a torsion then we can choose the fixed 
point of a as z and hence b(a) = 0. The image of b(a) in H 1 (I', Ccf>) 
maps to O in H 1 (r, H0 (H, O)'i>) since b(a) = 'tjJ(z) - ¢(a)'ljJ(a- 1z) and 
conversely any element in the kernel of <1>1 can be represented by the 
above way. Then the biholomorphic automorphism of H x C defined 
by ( z, w) -* ( z, w + s'ljJ( z)) for s E C descends to the biholomorphism 
between Sp and Sp' such that the difference mp' -mp of the parameters 
in H 1 (I', Ccf>) is sb and all the other parameters are the same. 
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Next consider the case when B is euclidean and S has a complex 
structure. If g = l, r = 0 (B is a torus) then we can assume that S 
is either T 4 ( a complex torus) or a primary Kodaira surface. In the 
first case X = E 4 , G = lsom 0 E 4 • However since the complex structure 
of X is not preserved by G but is preserved by G' = E 4 )q U(2) we 
consider T' = the identity component of T(r, G') in this case. Then 
T' = U(2)\GLtR and this is realized by the family of translations p 
defined by 

p(ai)(z, w) = (z + wil, w + Wi2) 

for the generators ai' ( i = 1, ... '4) in r = Z4 such that 

where (~wij, '2swij) is the matrix of rank 4 defined by ~Wij, '2swij for 
i,j = 1, ... ,4. Thus we have a differentiable family C over T' of the 
complex structures on S. T' contains the subfamily ( which is complex 
analytic) consisting of the representations with 

Wu= w22 = l,w12 = w21 = 0,det('2s(wij)i,j=3,4) > 0 

which is complete and effectively parametrized ([3]). It follows that the 
Kodaira Spencer map for T' at any point is surjective. In the second case 
X = Nil3 xE and Tis homeomorphic to R+ xHxR 2 xH. Here the R+­
factor, the first H-factor, the last H-factor and the R 2-factor correspond 
to the area of the base, the period of the base, the period of the fiber 
( the image of one of the lattices of the fiber is uniquely determined and 
not deformed) and the twisting parameters for the fibrations respectively 
(see §2). Hence we have a differentiable family C - T of the complex 
structures. On the other hand in the decomposition of H 1 (S, 0) we have 
E = F = C ([8]). Since the canonical divisor K of S is trivial there is 
an isomorphism e ~ 0 1 and hence dime H 1 (S, 0) = h 1,1 = 2 since the 
Hodge numbers satisfy h0 ,2 = h2,0 = 1 and b2 = h2,0 + h0 ,2 + h1,1 = 4. 
It follows that C = H = 0 and as in the cases when B is hyperbolic the 
Kodaira Spencer map is surjective with kernel= R+ x R2 . 

Finally consider the case when Bis euclidean of genus 0. In this case 
T =Tor x H x R+ if X = E 4 and T =Tor x H if X = Nil3 xE. Here , , 
To,r = R 2(r- 3) x R+ (with r = 3,4) denotes the Teichmiiller space of 
the base orbifold B where the first factor corresponds to the Teichmiiller 
space of an r-pointed Riemann surface of genus 0 (with fixed area) and 
the R + -factor corresponds to the area of the base B. The other factor 
in T corresponds to the deformations of the lattices of the fiber (in the 
case with X = Nil3 xE one of the lattices of the fiber has the fixed 
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image and hence there is no R + -factor). If r = 3 then the base B is 
parametrized by the area only and if r = 4 then the R 2 (r- 3)_factor is 
identified with the Teichmiiller space of the double covering torus of B 
which is isomorphic to H. In either case we have the differentiable family 
C ---+ T of the complex structures of S as in the arguments in §2. (In the 
case with X = E 4 , g = 0 we can choose the representatives p for T such 
that the image of plies in E 4 ><l U(l) and hence we do not need to restrict 
G to the subgroup E 4 ><l U(2).) On the other hand in the decomposition 
of H 1 (S0 , 8 0 ) we have C = H = 0, E = C, F = cr- 3 and we can argue 
as in the case when B is hyperbolic. Thus we obtain 

Theorem C-2. Let S be a Seifert 4-manifold over some orientable 
hyperbolic or euclidean 2-orbifold B which admits a complex structure. 
Then S has a geometric structure of type (X, G) with X = H 2 x E 2 , 

SL 2 x E, E 4 or Nil 3 xE and G = Isom 0 X. Let T be the identity compo­
nent of the Teichmi.iller space T(r, G) where r = 1r1X. (In the case when 
S = T 4 restrict G to E 4 ><1 U(2).) Then T gives a differentiable family 
of complex structures on S such that the infinitesimal deformation map 
at any point in T is surjective. 

Remark. The statements in Theorem C-2 do not hold in general for 
a Seifert 4-manifold S over a closed orientable spherical or bad 2-orbifold 
B. In this case Sis either a ruled surface of genus 1 (with X = S 2 x E 2 ) 

or a Hopf surface (with X = S 3 x E). In either case not every complex 
structure on S comes from the geometric one nor every differentiable 
family of the complex structures containing the geometric one comes 
from the Teichmiiller space of the geometric structures. In general the 
dimension of H 1 ( S, 8) ( which is not constant) can be greater than that 
of the Teichmiiller space (cf. [9], [14], [2], [12]). 

§4. A remark on the moduli spaces 

In this section we give a remark on the moduli space M(r, G) for 
a geometric Seifert 4-manifold S = r\X over a closed orientable hyper­

bolic base orbifold B = f\X with r c G = Isom 0 X. We adopt the 
representations of r given in § 1 and also assume that the monodromy 
matrices A 1 , ... , A 29 satisfy the conditions in Proposition 1. In this case 
the fibration of S is unique and then every element cp of Aut r induces 
the automorphism (f! of f and also induces the automorphism of Z2 

generated by£, h. Put 1r* = IJ[a2j-1, a2j] TI qj. 

Proposition 2. Any element cp E Aut r must be of the following 
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rp(ai) = cp(ai)£si hti 

rp(qj) = cp(qj)R,Uj hVj 

(rp(£), rp(h)) = (£, h)P. 

355 

Here PE GL 2 Z and cp(ai), cp(q1) are the words of 0:1, ... , 0:2 9 , q1, ... , qr 
satisfying 

cp(qj) = µjq~(j)µ-;1 

cp(n*) = µ1r~µ- 1 

where a- = ±1, µ, µ1 are some words of 0:1, ... , 0:2 9 , q1, ... , qr and 
v: (1, ... , r) --+ (v(l), ... , v(r)) is a permutation. We have further con­
ditions on the above parameters and the words as follows. Let Ei, T/j, T/ 

be the exponent sums of a 1 in cp( ai), µ1, µ respectively. 

(0) 

(1) 

(2) 

(3) 

Sketch of Proof. The proof is similar to that of [7, §5, Lemma 4, 

Theorem 5] . (1) and (2) are derived from the relations ai(£, h)a-; 1 = 
(£, h)A;, q'J11 ga; hb; = l. (3) comes from (1), (2) and the remaining rela­

tion Il[a2 1-1, a21J TI q1 = cahb. 

The map <p --+ <j5 induces the homomorphism q: Aut r --+ Aut r 
which descends to a homomorphism q: Out r --+ Out f. Let Aut (f, q) 
and Out (f, q) be the images of q and q respectively. Also put K = 
q- 1 (Inn f). Then since q maps Inn r onto Inn f the natural projection 

1r: Aut r --+ Out r maps K onto K = ker q and we have the following 
commutative diagram with exact rows and columns. 
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1 1 

l l 
7r 

1 ----+Innf----+ K - K -1 

II l l 
7r 

1 ----+Innf----+ Aut r - Out r -1 

l lq 

Out (r, q) = Out (r, q) 

l l 

1 1 

It is easy to see that the action of Aut r (resp. Out r) preserves 

the product fibration F ---+ R ---+ R for R = R(f, G), R = R(I', G) 
(resp. :F---+ T---+ T for T = T(r, G), T = T(I', G)) (given in §1) and 
induces the natural action of Aut (I', q) (resp. Out (r, q)) on R (resp. T). 

Now we will check the action of Kon :F (note that K acts trivially 
on T). First suppose that X = H 2 x E 2 • Define po = po (Ro, A) E R by 

where 

po(R)(z, w) = (z, w + Ro) 

Po(h)(z,w) = (z,w+R 0 .x-1) 

po(a1)(z, w) = (p0 (a1)z, </>(a1)w + w~) 

Po(ai)(z,w) = (p0 (ai)z,w+w?) (i ~ 2) 

Po(qj)(z,w) = (p0 (qj)z,w-(ajRo+biRo.X- 1)/mi) 

wJ = 0 for any j if A1 = I 

and if A1 =/-I 

wq = { Ro((a +Lai/mi)+ (b + L bi/mi).x- 1 )/(¢(a1) - 1) if j = 2 
3 0 if j =/-2. 
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(We can choose such wJ. See the proof of Theorem A in §1.) Further­
more by the assumption in Proposition 1 we have 

>.. = </>(ci1) = exp(±21ri/6) if A1 = ( _ ~ ~) 

>.. = </>(ci1) = exp(±2rri/4) if A1 = (-~ ~) 

>..=exp(±21ri/6),</>(ci1)=>.. 2 ifA 1 =(-~ -~)-

There is no further restriction on>.. if A1 = ±J. Then the image (p0 ] ET 
of p0 belongs to the fiber (~ :F = T 1 x H 1(f, C<I>)) of T over the image 
[p0] E T of p0. Its Ti-coordinates are detected by (fo, >..) and it corre­
sponds to O in the H 1(I', C<l>)-component. Now we take the subfamily 
Ro of R with a fixed image p0 in R whose elements p = p(fo, >.., m) are 
defined by 

p(f)(z,w) = (z,w+fo) 

p(h)(z,w) = (z,w+fo>..- 1) 

p(a1)(z, w) = (p0(ci1)z, </>(ci1)w + w1) 

p(ai)(z, w) = (p0(cii)z, w + wi) (i 2: 2) 

p(qj)(z, w) = (PoCiij)z,w - (ajfo + bjfo>..-1)/mj), 

Here (£0 , >..) satisfies the same conditions as before and 

Wi = w? + m(cii) 

where m is a crossed homomorphism from r to cc/> (with m(qj) = 0) 
satisfying 

m(a1) = m(a 2 ) = O if A1 -:/-I. 

(There are no restrictions on m(cij) if A1 = J.) Hence we have 

W1 = o, W2 = wg, Wj = m(cij) (j 2 3) if <p "¢=. id 

Wj = m(cij) for any j if </> = id. 

We note that if A1 -:/-I then w2 = wg is fixed once (£0 , >..) is fixed by 
the relations (7), (8) in the proof of Theorem A (§1) and any crossed 
homomorphism n: I' -. cc/> with n(cij) = 0 for j 2: 2 is contained in the 
image of 8: c 0 (r, cc/>) -. C 1(I', cc/>). Therefore the m's satisfying the 
above conditions descend isomorphically onto H 1(I', C<I>). Taking these 
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facts into account we can see that the family 'Ro generated by p(£0 , >., m) 
whose parameters satisfy the above conditions is the subfamily of the 

fiber over p0 E 'R whose F-components give the representatives of F. To 
check the action of K on F, it suffices to find the element µ E Inn G for 
given p E 'R0 , r.p E K (µ may depend on p and r.p) such that µ · p · r.p E 'Ro 
and examine the action of µ · p · r.p (which is independent of Po in the 
w-coordinate). Since the action of K commutes with that of Inn G, it 
suffices to consider the element r.p E K of the following form. 

(4) 

r.p(ai) = aifs;ht, 

r.p(qj) = q]f_UJ hVJ 

(r.p(£), r.p(h)) = (£, h)P 

where si,ti,ui,vi E Z,P E GL2Z satisfy 

(5) 

(6) 

(7) 

For such r.p E K and p E 'Ro denote the first and the second factors of 
p · r.p(a)(z, w) by p · r.p(a)(z, w)i (i = 1, 2) respectively for a E r. Then 
we have 

(8) 

and 

( )( ) { p0 (a)z ifa=aiorqj 
p · r.p a z,w 1 = . 

z 1f a=£ or h 

p · r.p(ai)(z, w)z = ¢(a1)(w + fo(s1 + t1>.- 1 )) + w1 

p · r.p(ai)(z, w)z = w + Wi + fo(si + ti>.- 1) (i 2: 2) 

(9) p · r.p(qj)(z, w)z = w - £0 (aj + bj>.-1 )/mj + £0 (uj + vj>.- 1 ) 

p · r.p(f)(z, w)z = w + £~ 

p · r.p(h)(z, w)z = w + h~ 

where (£~, h~) = (£0, £0>.-1 )P. Let K 1 be the subgroup of K consisting 
of the elements satisfying ( 4 )-(7) with P = I and let K 1 be its image in 

K. For any r.p E K 1 we deduce Uj = Vj = 0 and if A1 -/- I, s2 = t 2 = 0. 
Also let Ko be the subgroup of K 1 generated by the elements of the 
above forms with Sj = tj = 0 for j 2: 2 and Ko be its image in K. Note 
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that K1 ~ Ki/(K1 nlnn r), Ko~ Ko/(Ko nlnn r) and K 1 nlnn r = 
Kon Inn r = Inn Z2 where Z2 is the subgroup of r generated by R, and 
h. (This comes from the fact that f is centerless.) The element cp E Ko 

comes from Inn Z2 if GJ = (A11 - I) G) and hence 

Ko is finite if A1 -=I-I and moreover K 0 = 1 if A1 = (-~ ~). 

Given p E R 0 and cp E K 1 we take an inner automorphism µ by the 
element (z, w) _. (z, w + ¢(a 1) (s1 £0 + t 1 £0 >. -l) / ( ¢(ai) - 1)) if A1 -=I-I. 
Then we can see by the conditions on wi above for (8), (9) that the 
correspondence p _. p · r.p (if A1 = I) or p _. µ · p · r.p (if A1 -=I-I) gives a 
map from R 0 to itself such that the parameters are changed as follows. 

(Ro,>-)_. (Ro,>-) 

m( ai) _. m( ai) + silo + ti Ro>. -l 

for i ~ 1 if A1 = I and for i ~ 3 if A1 -=I-I. (We can see from (7) that 
the wz-parameter ofµ· p · r.p is the same as that for p if A1 -=I-I.) Since 
si, ti (i ~ 1 if A1 = I and i ~ 3 if A1 -=I-I) are arbitrary integers this 
gives the action of K 1 on F. Hence 

with 

{ 
(T1)2 9 

H 1 (I' C 1)/H 1 (I' Z21) ~ 
' ' (T1 )2 9 -2 

where T 1 ~ C/Z 2 is the complex torus of dimension 1 whose lattice is 
generated by £0 and £0 >. - l. Here we note that if A 1 -=I-I then K O is 
the subgroup of K 1 which acts trivially on F. Hence K 1 ( or Ki/ K 0 

if A1 -=I-I) acts effectively and properly discontinuously on F. Next 
consider the action of cp E K not decending to K 1. 

Case (1). A1 = ±I. Put P = ( ~ ; ) E GL 2 Z for r.p E K defined 

in ( 4). Here Uj, Vj, s2, t2 for r.p must be defined as elements in Z 
according to (6) and (7) (if A1 = I then (7) becomes obvious since the 
right hand side of (7) is O in case X = H 2 x E 2 ). Then considering (8), 
(9) for p E Ro and cp we can take an inner automorphismµ of the form 
(z,w) _. (z,a-w+c) for some c EC with a-= lp+r>.-1!/(p+r>.-1) such 
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that the the correspondence p ---; µ · p · 'P gives a map from Ro to itself 
of the form 

.A---; (p.A + r)/(q.A + s) 

fo ---t IP+ r A - 1 lfo 

m(o\) ---; er( m(a\) + sifo + tifoA - 1 ) 

for i 2: 1 if A1 = I and for i 2: 3 if A1 = -I. 

Case (2). A 1 -/- ±I. In this case we deduce from the conditions on 
.A above that 

otherwise. Furthermore for the presentation of 'P in ( 4) we must have 

P = A? (in case A 1 = (-~ -~)) or P = A} (otherwise) for some 

k E Z by the condition (5) and 

where these numbers are defined by (6) and (7) for the above P (we 
have assumed that P-/- I since 'P (/. Ki-) Then in the presentation (9) 
for p E Ro, 'P E K we have 

for P = A} or P = A? as above. Hence taking an inner automorphism 
µ by the element (z, w)---; (z, A-kw+ c) where 

we can see that the correspondence p ---; µ · p · 'P gives a map from Ro 
to itself of the form 

(£0, .A) ---; (£0, .A) 

m(ai)---; A-k(m(ai) + sifo + tifo.A-1 ) (i 2: 3). 
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In the cases when A1 = ±I the above correspondence shows that the 
action of Kon :F preserves the product fibration of the form H 1 (r, C¢) x 
R+ -----+ :F-----+ H x Z2 (where T 1 = R+ x H x Z2) which induces the 
properly discontinuous action on H x Z2 (which is identified with {.A E 

C I 's,\ -/- O}) of the form >. -----+ (p>. + r)/(q>. + s) for some matrix 

(: : ) E GL 2 Z. In the cases when A 1 -/- ±I we have at most finite 

number of possible choices for P in the presentation of cp above since A1 
( or A~) is periodic. Hence by the above correspondences and the action 

of K 1 ( and taking the fact that K O is finite if A 1 -/- I into account) we can 
easily see that K ( or K /K O if ¢ c/= id) acts properly discontinuously on 
:F in either case. Finally consider the action of Out r on T. The group 
Out r acts on T so that it preserves the product fibration :F -----+ T -----+ T 
and induces the action of Out (r, q) on T which is properly discontinuous 

since the action of Out (I') on T has, as is well known, the same property. 
Since K (which is the subgoup of Out r which induces the identity on 
T) acts properly discontinuously on the fiber of T as above we can see 
that Out r acts also properly discontinuously on T. The cases with 

X = SL 2 x E (in this case A 1 = I) can be treated similarly and we omit 
the details. Thus we have 

Proposition 3. Let S = I'\X be a geometric Seifert 4-manifold 
over a closed orientable hyperbolic orbifold B with r C G = Isom O X. 
Then Out r ( or Out r /K O in case the monodromy representation ¢ of 
S is not trivial where Ko is a finite subgroup of K defined above) acts 
on T(I', G) properly discontinuously and the muduli space M(I', G) is 
Hausdorff. 

On the other hand if K 1 -/- K then we must have cp E K of the form 
(4) satisfying (5)-(7) with P-/- I. In particular s2 , t 2 , Uj, Vj defined by 
(5) and (6) for some appropriate P-/- I satisfying (4) must be integers. 
From these conditions we can deduce some extra conditions on the Seifert 
invariants of S and derive the following proposition. Here we omit the 
details of the computations. 

Proposition 4. Let S = I'\X be a geometric Seifert 4-manifold 
as in Proposition 3. Then if the monodromies of S satisfy the con­
ditions in Proposition l and if the Seifert invariants of S do not sat­
isfy the conditions below then K = K 1 and M (I', G) is a Seifert fibra­
tion over T (I', G) / Out (I', q) ( which is defined above) with general fiber 

T1 x H 1 (I', C<P)/ H 1 (I', Z2 ¢). 
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(I) A1 = ( -~ ~)-
(1) 
(2) 
(3) 

There are no multiple fibers; 
(mi, ai, bi) = (3, Ei, Ei), Ei = ±1 for any i; 
mi = 2 for any i. 

(II) A1 = ( _ ~ _ ~ ) . 

(1) 
(2) 

There are no multiple fibers and a = b mod 3; 
(mi, ai, bi) = (3, Ei, Ei) with Ei = ±1 for any i and I: Ei 

mod 3; 
(3) mi= 2 for any i and I:ai - 2a = I:bi - 2b mod 3. 

(III) A1 = ( _ ~ ~) . 

(1) There are no multiple fibers; 
(2) mi = 2 for every i and I: ai = I: bi mod 2. 

(IV) A1 = ±I. 

References 

0 

[ 1] L. Bers, Fiber spaces over Teichmiiller spaces, Acta Math., 130 (1973), 
89-126. 

[ 2] K. Dabrowsky, Moduli spaces for Hopf surfaces, Math. Ann., 259 (1982), 
201-226. 

[ 3] K. Kodaira, D. C. Spencer, On deformations of complex analytic struc­
tures, I, II, Ann. Math., 67 (1958), 328-466. 

[ 4 ] --, A theorem of completeness for complex analytic fiber spaces, 
Acta. Math., 100 (1958), 281-294. 

[ 5] R. Kulkarni, K. B. Lee, F. Raymond, Deformation spaces for Seifert 
manifolds, in "Geometry and Topology, Leet. Notes in Math. vol. 
1167, Springer", 1985, pp. 180-216. 

[ 6] K. Ohshika, Teichmiiller spaces of Seifert fibered manifolds with infinite 
7r1, Topology and its appl., 27 (1987), 75-93. 

[ 7] P. Orlik, "Seifert Manifolds", Springer, Berlin-Heidelberg-New York, 
1972. 

[ 8] T. Suwa, Deformations of Holomorphic Seifert Fiber Spaces, Invent. 
math., 51 (1979), 77-102. 

[ 9] --, On ruled surfaces of genus 1, J. Math. Soc. Japan, 21 (1969), 
291-311. . 

[10] M. Ue, Geometric 4-manifolds in the sense of Thurston and Seifert 
4-manifold I, J. Math. Soc. Japan, 42 (1990), 511-540. 

[11] --, Geometric 4-manifolds in the sense of Thurston and Seifert 
4-manifolds II, J. Math. Soc. Japan, 43 (1991), 149-183. 



Geometric Structures on the Seifert 4-Manifolds 363 

[12] C. T. C. Wall, Geometric structures on compact complex surfaces, Top­
ology, 25 (1986), 119-153. 

[13] --, Geometries and geometric structures in real dimension 4 and 
complex dimension 2, in "Geometry and Topology. Leet. Notes in 
Math., 1167, Springer", 1985, pp. 268-292. 

[14] J. Wehler, Versa! deformations for Hopf surfaces, J. Reine Angew. Math., 
328 (1982), 22-32. 

[15] H. Zieschang, On toric fiberings over surfaces, Math. Notes, 5 (1967), 
341-345. 

Institute of mathematics 
Yoshida College 
Kyoto University 
Kyoto 606 
Japan 




