Advanced Studies in Pure Mathematics 19, 1989
Integrable Systems in Quantum Field Theory and Statistical Mechanics
pp. 149-191

Paths, Maya Diagrams and representations of $\widehat{\mathfrak{s l}(r, C)}$

Etsuro Date, Michio Jimbo, Atsuo Kuniba, Tetsuji Miwa and Masato Okado

Dedicated to Professor Tosihusa Kimura on his 60th birthday

§1. Introduction

 weight, and let $L(\Lambda)$ be the irreducible \mathfrak{g}-module with highest weight Λ. In this article we construct an explicit basis of each weight space $L(\Lambda)_{\mu}$. As a corollary we prove a new combinatorial formula for the dimensionality of $L(\Lambda)_{\mu}$, which was conjectured in [1] through the study of corner transfer matrices of solvable lattice models (see Theorem 1.2 below).

The problem of constructing explicit bases goes back to the work of Gelfand and Tsetlin [2] who gave a canonical basis of $L(\Lambda)$ for the classical Lie algebras $\mathfrak{g}=\mathfrak{g l}(r, \mathbf{C}), \mathfrak{o}(r, \mathbf{C})$. Analogous results are available in the setting of affine Lie algebras. When Λ is of level $1, L(\Lambda)$ can be identified with a space of polynomials in infinitely many variables [3,4] or a simple modification thereof [5]. For higher levels, the Z-algebra approach initiated by Lepowsky and Wilson [6] provides a basis in various cases $(\mathfrak{g}=\widehat{\mathfrak{s l}}(2, \mathbf{C})$, arbitrary levels [3], [7], or $\mathfrak{g}=\widehat{\mathfrak{g l}}(r, \mathbf{C}), \widehat{\mathfrak{s p}}(r, \mathbf{C})$, level 2 [8]). Lakshmibai and Seshadri [9] gave a 'standard monomial basis' for $\widehat{\mathfrak{s l}}(2, \mathrm{C})$ using geometric ideas.

A new feature of our approach is the use of an object-path, which we now explain. Let $\epsilon_{\mu}=(0, \cdots, \stackrel{\mu-\text { th }}{1}, \cdots, 0)(0 \leq \mu<r)$ denote the standard base vectors of \mathbf{Z}^{r}. We extend the suffixes to \mathbf{Z} by $\epsilon_{\mu+r}=\epsilon_{\mu}$. Fix a positive integer l.

Definition 1.1. A path is a sequence $\eta=(\eta(k))_{k \geq 0}$ consisting of elements $\eta(k) \in \mathbf{Z}^{r}$ of the form $\epsilon_{\mu_{1}(k)}+\cdots+\epsilon_{\mu_{l}(k)}\left(\mu_{1}(k), \cdots, \mu_{l}(k) \in \mathbf{Z}\right)$.

With a level l dominant integral weight $\Lambda=\Lambda_{\gamma_{1}}+\cdots+\Lambda_{\gamma_{l}}$ we associate a path

$$
\eta_{\Lambda}=\left(\eta_{\Lambda}(k)\right)_{k \geq 0}, \quad \eta_{\Lambda}(k)=\epsilon_{\gamma_{1}+k}+\cdots+\epsilon_{\gamma_{l}+k}
$$

We call η a Λ-path if $\eta(k)=\eta_{\Lambda}(k)$ for $k \gg 0$. Let $\mathcal{P}(\Lambda)$ denote the set of Λ-paths. We define the weight λ_{η} of η by

$$
\begin{align*}
\lambda_{\eta} & =\Lambda-\sum_{k \geq 0} \pi\left(\eta(k)-\eta_{\Lambda}(k)\right)-\omega(\eta) \delta, \quad \delta: \text { the null root } \tag{1.1}\\
\omega(\eta) & =\sum_{k \geq 1} k\left(H(\eta(k-1), \eta(k))-H\left(\eta_{\Lambda}(k-1), \eta_{\Lambda}(k)\right)\right) \tag{1.2}
\end{align*}
$$

Here π is the \mathbf{Z}-linear map from \mathbf{Z}^{r} to the weight lattice of $\widehat{\mathfrak{s l}}(r, \mathbf{C})$ such that $\pi\left(\epsilon_{\mu}\right)=\Lambda_{\mu+1}-\Lambda_{\mu}$ (we set $\Lambda_{r}=\Lambda_{0}$). The H function is given as follows: if $\alpha=\epsilon_{\mu_{1}}+\cdots+\epsilon_{\mu_{l}}$ and $\beta=\epsilon_{\nu_{1}}+\cdots+\epsilon_{\nu_{l}}\left(0 \leq \mu_{i}, \nu_{i}<r\right)$, then

$$
\begin{equation*}
H(\alpha, \beta)=\min _{\sigma} \sum_{i=1}^{l} \theta\left(\mu_{i}-\nu_{\sigma(i)}\right) \tag{1.3}
\end{equation*}
$$

where σ runs over the permutation group on l letters, and

$$
\begin{array}{rlr}
\theta(\mu)=1 & & \text { if } \mu \geq 0 \tag{1.4}\\
& =0 & \\
\text { otherwise }
\end{array}
$$

We construct a basis of each weight space $L(\Lambda)_{\mu}$ indexed by the paths of weight μ :

$$
\mathcal{P}(\Lambda)_{\mu}=\left\{\eta \in \mathcal{P}(\Lambda) \mid \lambda_{\eta}=\mu\right\}
$$

(See Theorem 5.4 for a more precise statement.) In particular we have

Theorem 1.2.

$$
\begin{equation*}
\operatorname{dim} L(\Lambda)_{\mu}=\sharp \mathcal{P}(\Lambda)_{\mu} \tag{1.5}
\end{equation*}
$$

This appears as a conjecture in [1].
The paths introduced above arise naturally in the study of solvable lattice models in statistical mechanics, notably the computation of the one point functions. Let us consider a regular square lattice on the plane. To each site i we attach a random variable σ_{i} that takes its values (called local states) in a set \mathcal{S}. With each configuration of four local states a, b, c, d round a face we associate a Boltzmann weight $W(a, b, c, d)$. The
probability of the occurrence of a global configuration is then defined to be (up to a normalization factor) the product of $W(a, b, c, d)$ over all faces. The one point function P_{a} is the probability that a particular site, say site 0 , assumes the local state a :

$$
P_{a}=\frac{\sum_{\text {config }} \delta_{\sigma_{0} a} \prod_{\text {face }} W\left(\sigma_{i}, \sigma_{j}, \sigma_{k}, \sigma_{h}\right)}{\sum_{\text {config }} \Pi_{\text {face }} W\left(\sigma_{i}, \sigma_{j}, \sigma_{k}, \sigma_{h}\right)} .
$$

In [1] we computed P_{a} in a particular model such that \mathcal{S} is the set of integral weights of $\widehat{\mathfrak{s l}}(r, \mathbf{C})$ of level 1 , and a and b can be successive local states only for $b-a=\pi\left(\epsilon_{\mu}\right)$ for some μ. The essential part of the computation was to evaluate a 1 dimensional configuration sum of the form (Λ : level 1)

$$
\begin{equation*}
\sum_{\eta \in \mathcal{P}(\Lambda), \lambda_{\eta} \equiv a \bmod \mathbf{C} \delta} q^{\omega(\eta)} \tag{1.6}
\end{equation*}
$$

In this paper we treat the general case- Λ has arbitrary level l, as it is formulated in (1.1)~(1.4). The formula (1.5) states that the sum (1.6) is given by the string function of $L(\Lambda)$

$$
\sum_{n} \operatorname{dim} L(\Lambda)_{\mu-n \delta} q^{n}
$$

In fact, such a connection between P_{a} and the Lie algebra character has been encountered repeatedly in our earlier works. When the level l is 1 , results of type (1.6) are valid for models based on other types of Lie algebras as well [1]. There are also a family of 'restricted face models' having dominant integral weights as local states, where the 1 dimensional configuration sums are equal to the branching coefficients for an affine Lie algebra pair [10]. Previous proofs of these results rely on manipulation of q-series identities, and the connection with characters is understood only at the level of such identities. It is our hope that the treatment in this paper will lead to more structural understanding of this phenomenon.

The text is organized as follows. In Section 2 the basic ideas of the construction is illustrated on the examples $\Lambda=\Lambda_{0}, 2 \Lambda_{0}, \mathfrak{g}=\widehat{\mathfrak{s l}}(2, \mathrm{C})$. This is meant to be an introduction to the more formal construction given in the subsequent Sections. In Section 3 we recall briefly the Fock representation of $\mathfrak{g l}(\infty, \mathbf{C})$ and its subalgebras $\widehat{\mathfrak{g l}}(r, \mathbf{C}), \widehat{\mathfrak{s l}}(r, \mathbf{C})$. Consider the highest weight vector in the tensor product of the Fock spaces $\mathcal{F}\left[\gamma_{1}\right] \otimes \cdots \otimes \mathcal{F}\left[\gamma_{l}\right]$ where $\gamma_{1}, \cdots, \gamma_{l}$ denote the charge. We denote its orbit by the action of $\mathfrak{g l}(\infty, \mathbf{C})$ (resp. $\widehat{\mathfrak{g l}}(r, \mathbf{C}), \widehat{\mathfrak{s l}}(r, \mathbf{C}))$ by $F(\Lambda)$
(resp. $G(\Lambda), L(\Lambda)$). Our goal is to find a basis of $L(\Lambda)$ (or its dual $\left.L(\Lambda)^{*}\right)$ in this realization. In Section 4 we give spanning sets of vectors for $F(\Lambda)^{*}$ and $G(\Lambda)^{*}$ in terms of the Maya diagrams. They are selected by the Plücker relations. This section has been taken from the lecture notes by Sato [11] and adapted (and slightly generalized) to the present setting. The paths are introduced in Section 5 . We show that the spanning vectors for $G(\Lambda)^{*}$ can be re-labeled by a pair (η, Y) consisting of a path η and a Young diagram Y. In the final Section 6 we prove that among them the vectors ξ_{η} corresponding to the pairs (η, ϕ), with ϕ being the empty Young diagram, provide a basis of the $\widehat{\mathfrak{s} l}(r, \mathbf{C})$-module $L(\Lambda)^{*}$. This is done by constructing certain vectors v_{η} of $L(\Lambda)$ and showing the non-degeneracy of the pairing between $\left\{\xi_{\eta}\right\}$ and $\left\{v_{\eta}\right\}$.

While preparing the manuscript we have received a note from Primc [12] in which he constructs another basis of $L(\Lambda)$ by using the vertex operators. The relation between his construction and the present work is yet to be clarified.

§2. Examples

The aim of the present section is to describe on simple examples the base vectors $\xi_{\eta} \in L(\Lambda)^{*}, v_{\eta} \in L(\Lambda)$ mentioned in Section 1. We shall consider the case $r=2, \mathfrak{g}=\widehat{\mathfrak{s l}}(2, \mathbf{C})$ throughout.

2.1. The case $\Lambda=\Lambda_{0}$

Let $l=1, \Lambda=\Lambda_{0}$.
A Λ_{0}-path is a binary sequence $\eta=(\eta(j))_{j \geq 0}, \eta(j)=0$ or 1 , whose 'tail' is of the form $\cdots, 0,1,0,1, \cdots$ (0 for j even, 1 for j odd). For example,

$$
\begin{align*}
& \eta^{(1)}=0,1,0,1,0,1, \cdots \equiv \eta_{\Lambda_{0}} \\
& \eta^{(2)}=0,0,0,1,0,1, \cdots \tag{2.1}\\
& \eta^{(3)}=0,1,1,1,0,1, \cdots, \quad \text { etc.. }
\end{align*}
$$

Let $\mathcal{S}_{1}=\left\{(1-k) \Lambda_{0}+k \Lambda_{1} \mid k \in \mathbf{Z}\right\}$ be the set of level 1 integral weights of $\widehat{\mathfrak{s l}}(2, \mathbf{C})$. One can also represent η as a sequence $\mu=(\mu(j))_{j \geq 0}$ with $\mu(j) \in \mathcal{S}_{1}$, such that

$$
\begin{aligned}
& \mu(j+1)-\mu(j)=\Lambda_{1}-\Lambda_{0} \text { if } \quad \eta(j)=0 \\
&=\Lambda_{0}-\Lambda_{1} \\
& \text { if } \quad \eta(j)=1,
\end{aligned}
$$

and that $\mu(j)=\Lambda_{0}(j$ even $\gg 0)$ or $=\Lambda_{1}(j$ odd $\gg 0)$. Thus we have (see Fig.2.1)
$\eta^{(1)} \leftrightarrow \mu^{(1)}=\Lambda_{0}, \Lambda_{1}, \Lambda_{0}, \Lambda_{1}, \Lambda_{0}, \Lambda_{1}, \cdots$,
$\eta^{(2)} \leftrightarrow \mu^{(2)}=3 \Lambda_{0}-2 \Lambda_{1}, 2 \Lambda_{0}-\Lambda_{1}, \Lambda_{0}, \Lambda_{1}, \Lambda_{0}, \Lambda_{1}, \cdots$,
$\eta^{(3)} \leftrightarrow \mu^{(3)}=-\Lambda_{0}+2 \Lambda_{1},-2 \Lambda_{0}+3 \Lambda_{1},-\Lambda_{0}+2 \Lambda_{1}, \Lambda_{1}, \Lambda_{0}, \Lambda_{1}, \cdots$,
etc..

Fig. 2.1 Λ_{0}-paths as sequences in the weight lattice.

Consider now the vector space $\mathcal{F}[0]$ having all the Young diagrams as base vectors. We equip $\mathcal{F}[0]$ with an inner product (,) with respect to which the Young diagrams are orthonormal. For convenience we color the nodes of each Young diagram Y by white and black alternatingly, the node at the left-top corner being white (Fig.2.2).

We define the action of $\widehat{\mathfrak{s l}}(2, \mathbf{C})$ on $\mathcal{F}[0]$ as follows. We require that the Young diagrams be weight vectors; if Y has n_{0} white nodes and n_{1} black nodes, we assign

$$
\begin{equation*}
\text { the weight of } Y=\Lambda_{0}-n_{0} \alpha_{0}-n_{1} \alpha_{1} \tag{2.3}
\end{equation*}
$$

Fig. 2.2 Coloring of nodes.
where α_{0}, α_{1} are the simple roots of $\widehat{\mathfrak{s l}}(2, \mathbf{C})$. Next we define the action of the Chevalley generators e_{i}, f_{i}. Put $e_{0} Y$ (resp. $f_{0} Y$) $=\sum_{Y^{\prime}} Y^{\prime}$, where Y^{\prime} runs over the Young diagrams obtained by removing (resp. adjoining) one white node from Y. For instance,

Likewise define e_{1}, f_{1} replacing 'white' by 'black'. We have then

$$
\begin{equation*}
\left(f_{i} Y, Y^{\prime}\right)=\left(Y, e_{i} Y^{\prime}\right) . \tag{2.4}
\end{equation*}
$$

With these definitions the irreducible $\widehat{\mathfrak{s l}(2, \mathbf{C}) \text {-module } L\left(\Lambda_{0}\right) \text { is realized }}$ as a subspace of $\mathcal{F}[0]$ spanned by vectors of the form $f_{i_{1}} \cdots f_{i_{k}} \phi, \phi$ being the empty Young diagram.

There is a natural map $p_{\Lambda_{0}}: Y \mapsto \eta$ sending the set of Young diagrams onto that of Λ_{0}-paths. Let Y be a Young diagram, and let g_{j} denote the length of its $(j+1)$-th column ($j=0,1, \cdots, g_{j}=0$ for $j \gg 0)$. Then $\eta=p_{\Lambda_{0}}(Y)$ is defined by

$$
\eta(j) \in\{0,1\}, \quad \eta(j) \equiv j-g_{j} \bmod 2(j \geq 0) .
$$

For instance,

$$
Y=\square \quad \text { gives } \quad \eta=1,0,1,1,0,1, \cdots
$$

Conversely, for each η there exists a unique Young diagram $Y=Y_{\eta}$
which satisfies the conditions
(2.5a) $\quad p_{\Lambda_{0}}(Y)=\eta$,
(2.5b) $\quad Y$ has the signature $\left[y_{1}, y_{2}, \cdots, y_{s}\right]$ with $y_{1}>y_{2}>\cdots>y_{s}$.

Thus by (2.5b)

but

The Young diagram Y_{η} is called the highest lift of η. It has the property that, for any Y^{\prime} such that $p_{\Lambda_{0}}\left(Y^{\prime}\right)=\eta$, one has $Y_{\eta} \subset Y^{\prime}$.

Our base vectors $\xi_{\eta} \in L\left(\Lambda_{0}\right)^{*}$ are defined to be

$$
\xi_{\eta}(v)=\left(Y_{\eta}, v\right), \quad v \in L\left(\Lambda_{0}\right)
$$

Each ξ_{η} is a weight vector. In the Young diagram picture Y_{η}, its weight λ_{η} is simply given by counting the numbers of white and black nodes (2.3). In the path picture η we have

$$
\begin{equation*}
\lambda_{\eta}=\mu(0)-\sum_{k \geq 1} k\left(H(\eta(k-1), \eta(k))-H\left(\eta_{\Lambda}(k-1), \eta_{\Lambda}(k)\right)\right) \delta \tag{2.6}
\end{equation*}
$$

where $\mu(0)$ is the 'initial point' of the sequence μ (2.2) corresponding to $\eta, \delta=\alpha_{0}+\alpha_{1}$, and

$$
\begin{align*}
H\left(\eta, \eta^{\prime}\right) & =0 & & \text { if } \eta=0, \eta^{\prime}=1 \tag{2.7}\\
& =1 & & \text { otherwise. }
\end{align*}
$$

For example, $\eta=\eta^{(3)}$ in (2.1) has the weight $\lambda_{\eta}=-\Lambda_{0}+2 \Lambda_{1}-3 \delta$.
One can also construct a basis $\left\{v_{\eta}\right\}$ of $L\left(\Lambda_{0}\right)$ as follows. Consider the process of removing the nodes from Y_{η} one by one. At each step we require:
(i) removal of the node produces a Young diagram satisfying (2.5b),
(ii) among the nodes satisfying (i) the rightmost one is removed.

For example:

This process gives rise to a sequence $A=\left(a_{0}, a_{1}, \cdots, a_{d-1}\right)$, where $a_{i}=0$ or 1 according to whether the removed node at the $(i+1)$-th step is white or black, and $d=\sharp\{$ nodes of $Y\}$. We now define

$$
v_{\eta}=f_{a_{0}} f_{a_{1}} \cdots f_{a_{d-1}} \phi \quad \in L\left(\Lambda_{0}\right)
$$

In the example above, $v_{\eta}=f_{0}^{2} f_{1}^{2} f_{0} \phi$. By construction it is clear that v_{η} has the same weight λ_{η} as ξ_{η} does. In the present case, the v_{η} coincides with the monomial basis of Lakshmibai-Seshadri [9].

The action of e_{i}, f_{i} on ξ_{η} can in principle be determined from the definition. As an example let us try $f_{0} \xi_{\eta}$ for $\eta=\eta^{(2)}$. From the table below (Fig. 2.5a) one knows that

$$
\left(\mathrm{f}_{0} \square, \mathrm{v}\right)=(\mathrm{a} \square \square+\mathrm{Q} \square \mathrm{\square}, \mathrm{r})
$$

for $v=f_{1} f_{0} f_{1} f_{0} \phi, f_{0} f_{1}^{2} f_{0} \phi$, where $a, b \in \mathbf{C}$ are to be determined. Using (2.4) we have

$$
\left(\mathrm{f}_{0} \square, \mathrm{f}_{1} \mathrm{f}_{0} \mathrm{f}_{1} \mathrm{f}_{0} \phi\right)=\left(\mathrm{e}_{0} \mathrm{e}_{1} \mathrm{e}_{0} \mathrm{e}_{1} \mathrm{f}_{0} \square, \phi\right)
$$

On the other hand, we have in $\mathcal{F}[0]$

$$
\begin{aligned}
\mathrm{e}_{0} \mathrm{e}_{1} \mathrm{e}_{0} \mathrm{e}_{1} \mathrm{f}_{0} \square & =\mathrm{e}_{0} \mathrm{e}_{1} \mathrm{e}_{0} \mathrm{e}_{1}(\square+\square+\square+\square) \\
& =\mathrm{e}_{0} \mathrm{e}_{1} \mathrm{e}_{0}(\square \square+\square) \\
& =\mathrm{e}_{0} \mathrm{e}_{1}(\square+\square) \\
& =2 \phi
\end{aligned}
$$

Similar calculations yield the relations

$$
2=a+b, \quad 6=0 \cdot a+2 \cdot b
$$

giving the result $a=-1, b=3$.

2.2. The case of $\Lambda=2 \Lambda_{0}$

Next we consider the case $l=2, \Lambda=2 \Lambda_{0}$.
A $2 \Lambda_{0}$-path is a sequence $\eta=(\eta(j))_{j \geq 0}$ where $\eta(j)$ takes one of the three possibilities $00,01=10$ or 11 . We require that for $j \gg 0$ $\eta(j)=00$ (j even) or $=11$ (j odd $)$. Thus

$$
\begin{align*}
& \eta^{(1)}=00,11,00,11,00, \cdots \equiv \eta_{2 \Lambda_{0}} \\
& \eta^{(2)}=01,01,00,11,00, \cdots, \tag{2.8}\\
& \eta^{(3)}=11,11,01,11,00, \cdots, \quad \text { etc.. }
\end{align*}
$$

As before we identify η with a sequence of integral weights $\mu=$ $(\mu(j))_{j \geq 0}$, where

$$
\begin{aligned}
& \mu(j) \in \mathcal{S}_{2}=\left\{(2-k) \Lambda_{0}+k \Lambda_{1} \mid k \in \mathbf{Z}\right\}, \\
& \mu(j+1)-\mu(j)=2 \Lambda_{1}-2 \Lambda_{0} \quad \text { if } \quad \eta(j)=00, \\
& =0 \quad \text { if } \quad \eta(j)=01, \\
& =2 \Lambda_{0}-2 \Lambda_{1} \quad \text { if } \quad \eta(j)=11, \\
& \mu(j)=2 \Lambda_{0}(j \text { even } \gg 0),=2 \Lambda_{1}(j \text { odd } \gg 0) \text {. }
\end{aligned}
$$

The μ 's for the paths (2.8) are depicted in Fig.2.3.

Fig. $2.3 \quad 2 \Lambda_{0}$-paths.

We consider the tensor space $\mathcal{F}[0] \otimes \mathcal{F}[0]$ whose basis is given by an ordered pair $\mathbf{Y}=\left(Y_{1}, Y_{2}\right)$ of Young diagrams representing $Y_{1} \otimes Y_{2}$. The irreducible module $L\left(2 \Lambda_{0}\right)$ is realized as the subspace of $\mathcal{F}[0] \otimes \mathcal{F}[0]$ consisting of elements $f_{i_{1}} \cdots f_{i_{k}}(\phi \otimes \phi)$.

A pair $\mathbf{Y}=\left(Y_{1}, Y_{2}\right)$ gives rise to a $2 \Lambda_{0}$-path $\eta=p_{2 \Lambda_{0}}(\mathbf{Y})$; if $p_{\Lambda_{0}}\left(Y_{i}\right)=\left(\eta_{i}(j)\right)_{j \geq 0}(i=1,2)$ are the Λ_{0}-paths corresponding to the components, then we set $\eta=\left(\eta_{1}(j) \eta_{2}(j)\right)_{j \geq 0}$. For instance,

$$
\begin{aligned}
& \mathrm{p}_{\Lambda_{0}}(\square)=0,0,0,1,0,1, \ldots, \\
& \mathrm{p}_{\Lambda_{0}}(\square)=1,1,0,1,0,1, \ldots
\end{aligned}
$$

give

$$
\mathrm{p}_{2 \Lambda_{0}}((\square, \square))=01,01,00,11,00,11, \ldots
$$

For each $2 \Lambda_{0}$-path η there exists a unique $\mathbf{Y}=\mathbf{Y}_{\eta}=\left(Y_{1}, Y_{2}\right)$ (called the highest lift of η) with the following properties:
(i) $p_{2 \Lambda_{0}}(\mathbf{Y})=\eta$,
(ii) $Y_{1} \supset Y_{2} \supset Y_{1}[2]$,
(iii) for any $\mathbf{Y}^{\prime}=\left(Y_{1}^{\prime}, Y_{2}^{\prime}\right)$ satisfying (i),(ii) we have $Y_{1} \subset Y_{1}^{\prime}, Y_{2} \subset Y_{2}^{\prime}$.

Here for a Young diagram $Y=\left[y_{1}, \cdots, y_{s}\right], Y[2]$ signifies the one obtained by removing the first two rows: $Y[2]=\left[y_{3}, y_{4}, \cdots, y_{s}\right]$. As an example let $\eta=01,01,00,11, \cdots$. Then

$$
\mathbf{Y}=(\square, \phi), \quad \mathbf{Y}^{\prime}=(\square, \square)
$$

are both lifts of η satisfying (i),(ii), and \mathbf{Y} is the highest lift.
We define $\xi_{\eta} \in L\left(2 \Lambda_{0}\right)^{*}$ by

$$
\xi_{\eta}(v)=\left(Y_{1} \otimes Y_{2}, v\right), \quad v \in L\left(2 \Lambda_{0}\right) \subset \mathcal{F}[0] \otimes \mathcal{F}[0]
$$

where $\mathbf{Y}_{\eta}=\left(Y_{1}, Y_{2}\right)$.
The weight λ_{η} of ξ_{η} takes the same form (2.6). The H function is given by

$$
H\left(\eta_{1} \eta_{2}, \eta_{1}^{\prime} \eta_{2}^{\prime}\right)=\min \left(H\left(\eta_{1}, \eta_{1}^{\prime}\right)+H\left(\eta_{2}, \eta_{2}^{\prime}\right), H\left(\eta_{1}, \eta_{2}^{\prime}\right)+H\left(\eta_{2}, \eta_{1}^{\prime}\right)\right)
$$

where in the right hand side the H signifies the one for $\Lambda_{0}(2.7)$.

$\eta \backslash \eta^{\prime}$	00	01	11
00	2	1	0
01	2	1	1
11	2	2	2

Table of $H\left(\eta, \eta^{\prime}\right)$ for $\Lambda=2 \Lambda_{0}$.
To construct the base vectors $\left\{v_{\eta}\right\}$ of $L\left(2 \Lambda_{0}\right)$, we must define the sequence $A=\left(a_{0}, a_{1}, \cdots\right)$ from η. Let $\mathbf{Y}_{\eta}=\left(Y_{1}, Y_{2}\right)$ be the highest lift. Consider the set of rows of Y_{1}, Y_{2} (taking the coloring into account). Combining and rearranging them in the decreasing order of the length, we get a single Young diagram Y. For the highest lifts it can be shown that rows of the same length have the same coloring (Proposition 6.10). Hence Y is uniquely defined. Example:

$$
\mathbf{Y}=(\square, \square) \longleftrightarrow \mathbf{Y}=\square
$$

Now we remove the nodes of Y one by one. The rule is:
(i) removal of a node does not produce rows of same length and different coloring (Fig.2.4),
(ii) among the nodes satisfying (i) the removed node is the rightmost one.

Fig. 2.4 Construction of (a_{0}, a_{1}, \cdots) from η. The shaded node cannot be removed because of the condition (i).

For example,

As before we set $v_{\eta}=f_{a_{0}} f_{a_{1}} \cdots(\phi \otimes \phi)$, where $a_{i}=0$ or 1 according to whether the removed node is white or black.

Below we give a list of the base vectors $\left\{\xi_{\eta}\right\},\left\{v_{\eta}\right\}$ for the first few of the weight spaces in the cases $\Lambda=\Lambda_{0}, 2 \Lambda_{0}$ (Fig. 2.5a,b).
§3. The Fock representation of $\mathfrak{g l}(\infty, C), \widehat{\mathfrak{g l}}(r, C)$ and $\widehat{\mathfrak{s l}}(r, C)$
Here we recall basic facts about the Fock representation of the Lie algebras $\mathfrak{g l}(\infty, \mathbf{C}), \widehat{\mathfrak{g} l}(r, \mathbf{C})$ and $\widehat{\mathfrak{s l}}(r, \mathbf{C})$. We shall mainly follow the notations of [13].

3.1. The Fock space

Let \mathcal{W} be a complex vector space with a distinguished basis indexed by integers $\left\{\psi_{i}, \psi_{i}^{*}\right\}_{i \in \mathbf{Z}}$. Let $\mathcal{A}=T(\mathcal{W}) / \mathcal{J}$ be the Clifford algebra over \mathcal{W}, where $T(\mathcal{W})$ signifies the free associative algebra over \mathcal{W} and \mathcal{J} is the two-sided ideal generated by

$$
\left[\psi_{i}, \psi_{j}\right]_{+}, \quad\left[\psi_{i}, \psi_{j}^{*}\right]_{+}-\delta_{i j}, \quad\left[\psi_{i}^{*}, \psi_{j}^{*}\right]_{+} \quad(i, j \in \mathbf{Z})
$$

Here $[X, Y]_{+}$signifies the anti-commutator $X Y+Y X$. Let $\mathcal{W}=\mathcal{W}_{\text {cre }} \oplus$ $\mathcal{W}_{\text {ann }}$ be a splitting into two subspaces given by $\mathcal{W}_{\text {cre }}=\left(\oplus_{i \geq 0} \mathbf{C} \psi_{i}\right) \oplus$ $\left(\oplus_{i<0} \mathbf{C} \psi_{i}^{*}\right)$ and $\mathcal{W}_{a n n}=\left(\oplus_{i<0} \mathbf{C} \psi_{i}\right) \oplus\left(\oplus_{i \geq 0} \mathbf{C} \psi_{i}^{*}\right)$. To this decomposition we associate the right and the left \mathcal{A}-modules

$$
\mathcal{F}^{*}=\mathcal{W}_{\text {cre }} \mathcal{A} \backslash \mathcal{A}=\langle 0| \mathcal{A}, \quad \mathcal{F}=\mathcal{A} / \mathcal{A} \mathcal{W}_{\text {ann }}=\mathcal{A}|0\rangle
$$

Here the 'vacuum vectors' $\left\langle\left. 0\right|_{\text {def }} ^{=} 1 \bmod \mathcal{W}_{\text {cre }} \mathcal{A}, \mid 0\right\rangle_{\text {def }}^{=} 1 \bmod \mathcal{A} \mathcal{W}_{a n n}$ enjoy the properties

$$
\begin{array}{llll}
\langle 0| \psi_{i}=0 & (i \geq 0), & \langle 0| \psi_{i}^{*}=0 & (i<0) \tag{3.1}\\
\psi_{i}|0\rangle=0 & (i<0), & \psi_{i}^{*}|0\rangle=0 & (i \geq 0)
\end{array}
$$

We call \mathcal{F} the Fock space and \mathcal{F}^{*} the dual Fock space. Denote by τ the involutive anti-automorphism of \mathcal{A} such that $\tau\left(\psi_{i}\right)=\psi_{i}^{*}$. Then $\tau\left(\mathcal{W}_{\text {cre }}\right)=\mathcal{W}_{\text {ann }}$, and we have an isomorphism of vector spaces $\mathcal{F}^{*} \xrightarrow{\sim}$ \mathcal{F} given by $\langle 0| a \mapsto \tau(a)|0\rangle$.

There exists on \mathcal{A} a unique linear form $\rangle: \mathcal{A} \longrightarrow \mathbf{C}$ such that

$$
\mathrm{A}_{1}^{(1)} \text { level } 1 \Lambda_{0}
$$

Fig. 2.5a The base vectors of level 1.

Fig. 2.5b The base vectors of level 2.
(i) $\langle 1\rangle=1$,
(ii) $\left\langle\psi_{i} \psi_{j}\right\rangle=0, \quad\left\langle\psi_{i}^{*} \psi_{j}^{*}\right\rangle=0, \quad\left\langle\psi_{i} \psi_{j}^{*}\right\rangle=\theta(-i-1) \delta_{i j}$,
where θ is defined in (1.4),
(iii) for any $w_{1}, \cdots, w_{s} \in \mathcal{W}$

$$
\begin{array}{rlrl}
\left\langle w_{1} \cdots w_{s}\right\rangle & =0 & & \text { if } s \text { is odd } \\
& =\sum_{\sigma} \operatorname{sgn} \sigma\left\langle w_{\sigma(1)} w_{\sigma(2)}\right\rangle \cdots\left\langle w_{\sigma(s-1)} w_{\sigma(s)}\right\rangle & \text { if } s \text { is even. }
\end{array}
$$

In (iii) the sum is over permutations σ satisfying $\sigma(1)<\sigma(2), \cdots, \sigma(s-$ 1) $<\sigma(s)$ and $\sigma(1)<\sigma(3)<\cdots<\sigma(s-1)$. The form \rangle gives rise to a non-degenerate \mathcal{A}-invariant bilinear pairing betweeen \mathcal{F}^{*} and \mathcal{F}

$$
\mathcal{F}^{*} \otimes_{\mathcal{A}} \mathcal{F} \longrightarrow \mathbf{C}, \quad\langle 0| a \otimes b|0\rangle \mapsto\langle a b\rangle .
$$

By identifying \mathcal{F}^{*} with \mathcal{F} this pairing translates to a bilinear form (,) on \mathcal{F} satisfying

$$
\begin{equation*}
(a v, w)=(v, \tau(a) w) \quad \text { for } v, w \in \mathcal{F}, a \in \mathcal{A} \tag{3.2}
\end{equation*}
$$

The algebra \mathcal{A} carries a gradation by integers $\mathcal{A}=\oplus_{\gamma \in \mathbf{Z}} \mathcal{A}[\gamma]$, $\mathcal{A}[\gamma]=\{a \in \mathcal{A} \mid \operatorname{deg} a=\gamma\}$, through the assignment

$$
\operatorname{deg} \psi_{i}=1, \quad \operatorname{deg} \psi_{i}^{*}=-1
$$

Setting $\operatorname{deg}(\langle 0| a)=-\operatorname{deg} a$ and $\operatorname{deg}(a|0\rangle)=\operatorname{deg} a$ for $a \in \mathcal{A}$, one has the induced grading $\mathcal{F}^{*}=\oplus_{\gamma \in \mathbf{Z}} \mathcal{F}^{*}[\gamma], \mathcal{F}=\oplus_{\gamma \in \mathbf{Z}} \mathcal{F}[\gamma]$, where $\mathcal{F}^{*}[\gamma]=$ $\left\{v^{*} \in \mathcal{F}^{*} \mid \operatorname{deg} v^{*}=\gamma\right\}, \mathcal{F}[\gamma]=\{v \in \mathcal{F} \mid \operatorname{deg} v=\gamma\}$. We shall refer to the degree as charge. Each charge γ sector $\mathcal{F}^{*}[\gamma]$ or $\mathcal{F}[\gamma]$ has a canonical vector $\langle\gamma|$ or $|\gamma\rangle$ such that

$$
\begin{aligned}
& \langle\gamma|=\left\langle\gamma^{\prime}\right| \psi_{\gamma^{\prime}}^{*} \psi_{\gamma^{\prime}+1}^{*} \cdots \psi_{\gamma-1}^{*} \\
& |\gamma\rangle=\psi_{\gamma-1} \cdots \psi_{\gamma^{\prime}+1} \psi_{\gamma^{\prime}}\left|\gamma^{\prime}\right\rangle
\end{aligned}
$$

for all $\gamma^{\prime}<\gamma$. We have $\left\langle\gamma \mid \gamma^{\prime}\right\rangle=\delta_{\gamma \gamma^{\prime}}, \mathcal{F}^{*}[\gamma]=\langle\gamma| \mathcal{A}[0]$ and $\mathcal{F}[\gamma]=$ $\mathcal{A}[0]|\gamma\rangle$. The annihilation condition (3.1) generalizes to

$$
\begin{array}{llll}
\langle\gamma| \psi_{i}=0 & (i \geq \gamma), & \langle\gamma| \psi_{i}^{*}=0 & (i<\gamma) \\
\psi_{i}|\gamma\rangle=0 & (i<\gamma), & \psi_{i}^{*}|\gamma\rangle=0 & (i \geq \gamma) \tag{3.3}
\end{array}
$$

3.2. $\mathfrak{g l}(\infty, \mathbf{C}), \widehat{\mathfrak{g} l}(r, \mathbf{C})$ and $\widehat{\mathfrak{s l}}(r, \mathbf{C})$

Let $A=\left(a_{i j}\right)_{i j \in \mathbf{Z}}$ be an infinite matrix with $a_{i j} \in \mathbf{C}$, satisfying the condition
(3.4) there exists an integer $N>0$ such that $a_{i j}=0$ for $|i-j|>N$.

Put

$$
X_{A}=\sum_{i, j \in \mathbf{Z}} a_{i j}: \psi_{i} \psi_{j}^{*}:
$$

Here the symbol : : signifies the normal ordering defined by

$$
: w w^{\prime}:=w w^{\prime}-\left\langle w w^{\prime}\right\rangle \quad \text { for } w, w^{\prime} \in \mathcal{W}
$$

By definition, $\mathfrak{g l}(\infty, \mathbf{C})$ is the following Lie algebra:

$$
\mathfrak{g l}(\infty, \mathbf{C})=\left\{X_{A} \mid A \text { satisfies }(3.4)\right\} \oplus \mathbf{C} c
$$

where c belongs to the center and the bracket is defined to be

$$
\begin{aligned}
{\left[X_{A}, X_{A^{\prime}}\right] } & =X_{\left[A, A^{\prime}\right]}+c\left(A, A^{\prime}\right) c \\
c\left(A, A^{\prime}\right) & =\sum_{j \geq 0>i}\left(a_{i j} a_{j i}^{\prime}-a_{i j}^{\prime} a_{j i}\right)
\end{aligned}
$$

The Lie subalgebra of $\mathcal{A}[0]$ consisting of quadratic elements

$$
\mathfrak{g l}_{\mathrm{fin}}(\infty, \mathbf{C})=\left\{X_{A} \mid a_{i j}=0 \text { for all but a finite number of } i, j\right\} \oplus \mathbf{C} 1
$$

can be regarded as a subalgebra of $\mathfrak{g l}(\infty, \mathbf{C})$, where we identify $1 \in$ $\mathfrak{g l}_{\text {fin }}(\infty, \mathbf{C}) \quad$ with $\quad c \in \mathfrak{g l}(\infty, \mathbf{C})$. There is a well-defined action of $\mathfrak{g l}(\infty, \mathbf{C})$ on \mathcal{F}^{*} or \mathcal{F} extending that of $\mathfrak{g l}_{\text {fin }}(\infty, \mathbf{C})$. Set

$$
H_{j}=\sum_{i \in \mathbf{Z}}: \psi_{i} \psi_{i+j}^{*}:, \quad j \in \mathbf{Z}
$$

Then one has $\left[H_{j}, H_{k}\right]=j \delta_{j+k, 0} c$, so that the subalgebra $\mathcal{H}=$ $\left(\oplus_{j \neq 0} \mathbf{C} H_{j}\right) \oplus \mathbf{C} c$ of $\mathfrak{g l}(\infty, \mathbf{C})$ becomes a Heisenberg subalgebra. The element H_{0} is central in $\mathfrak{g l}(\infty, \mathbf{C})$, and acts as $\gamma \cdot$ id on $\mathcal{F}^{*}[\gamma], \mathcal{F}[\gamma]$. It is known that \mathcal{H} acts irreducibly on each $\mathcal{F}^{*}[\gamma], \mathcal{F}[\gamma]$, and hence so does $\mathfrak{g l}(\infty, \mathbf{C})$.

Let \mathcal{A}_{N} be the finite dimensional subalgebra of \mathcal{A} generated by $\psi_{i}, \psi_{i}^{*}(|i| \leq N)$, and let $\overline{\mathbf{G}_{N}}\left(\subset \mathcal{A}_{N}\right)$ be the closure (in the linear topology) of the elements of the form $a e^{X}$ where $a \in \mathbf{C} \backslash\{0\}$ and $X=\sum_{|i|,|j| \leq N} a_{i j} \psi_{i} \psi_{j}^{*}$. We set

$$
\overline{\mathbf{G}}=\underset{\mathbf{N}}{\lim } \overline{\mathbf{G}_{N}}
$$

The following is a version of Wick's theorem [14].

Lemma 3.1. Let $g \in \overline{\mathbf{G}}$, and let γ be a negative integer such that $\langle\gamma| g|\gamma\rangle \neq 0$. Then we have

$$
\frac{\langle\gamma| \psi_{i_{1}}^{*} \cdots \psi_{i_{m}}^{*} g \psi_{j_{m}} \cdots \psi_{j_{1}}|\gamma\rangle}{\langle\gamma| g|\gamma\rangle}=\operatorname{det}\left(\frac{\langle\gamma| \psi_{i_{\mu}}^{*} g \psi_{j_{\nu}}|\gamma\rangle}{\langle\gamma| g|\gamma\rangle}\right)_{1 \leq \mu, \nu \leq m}
$$

Now let ι denote the automorphism of \mathcal{A} (resp. $\mathcal{F}^{*}, \mathcal{F}$) given by

$$
\begin{array}{lrl}
\iota\left(\psi_{i}\right) & =\psi_{i-1}, & \iota\left(\psi_{i}^{*}\right)=\psi_{i-1}^{*} \\
\iota(\langle\gamma|)=\langle\gamma-1|, & \iota(|\gamma\rangle)=|\gamma-1\rangle \tag{3.5}
\end{array}
$$

Fix a positive integer r. Denoting by the same letter ι the induced automorphism of $\mathfrak{g l}(\infty, \mathbf{C})$ we define a Lie subalgebra of $\mathfrak{g l}(\infty, \mathbf{C})$

$$
\begin{aligned}
& \tilde{\mathfrak{g} l}(r, \mathbf{C})=\left\{X \in \mathfrak{g l}(\infty, \mathbf{C}) \mid \iota^{r}(X)=X\right\} \\
&=\left\{X_{A} \in \mathfrak{g l}(\infty, \mathbf{C}) \mid a_{i+r} j+r\right. \\
&\left.=a_{i j} \text { for all } i, j\right\} \oplus \mathbf{C} c
\end{aligned}
$$

It can be split into the sum of two commuting subalgebras

$$
\begin{equation*}
\tilde{\mathfrak{g l}}(r, \mathbf{C})=\tilde{\mathfrak{s l}}(r, \mathbf{C})+\mathcal{H}_{r}, \quad \tilde{\mathfrak{s l}}(r, \mathbf{C}) \cap \mathcal{H}_{r}=\mathbf{C} c \tag{3.6a}
\end{equation*}
$$

where

$$
\begin{align*}
\tilde{\mathfrak{s l}}(r, \mathbf{C}) & =\left\{X_{A} \in \tilde{\mathfrak{g l}}(r, \mathbf{C}) \mid \sum_{i=0}^{r-1} a_{i i+k r}=0 \text { for all } k \in \mathbf{Z}\right\} \oplus \mathbf{C} c \tag{3.6~b}\\
\mathcal{H}_{r} & =\left(\oplus_{j \equiv 0 \bmod r} H_{j}\right) \oplus \mathbf{C} c
\end{align*}
$$

Let further $d \in \mathfrak{g l}(\infty, \mathbf{C})$ be defined by

$$
d=-\sum_{i \in \mathbf{Z}}\left[\frac{i}{r}\right]: \psi_{i} \psi_{i}^{*}:
$$

with $[x]$ denoting the largest integer not exceeding x. Set

$$
\widehat{\mathfrak{g} l}(r, \mathbf{C})=\tilde{\mathfrak{g} l}(r, \mathbf{C}) \oplus \mathbf{C} d, \quad \widehat{\mathfrak{s} l}(r, \mathbf{C})=\widetilde{\mathfrak{s} l}(r, \mathbf{C}) \oplus \mathbf{C} d .
$$

The subalgebra $\widehat{\mathfrak{s l}}(r, \mathbf{C})$ is isomorphic to the affine Lie algebra $A_{r-1}^{(1)}$. Along with d its Chevalley generators are given by

$$
\begin{array}{ll}
e_{i}=\sum_{j \equiv i \bmod r} e_{j}^{\infty}, \quad f_{i}=\sum_{j \equiv i \bmod r} f_{j}^{\infty}, \\
h_{i}=\sum_{j \equiv i \bmod r} h_{j}^{\infty} \quad(0 \leq i<r) \tag{3.7a}
\end{array}
$$

where

$$
\begin{equation*}
e_{i}^{\infty}=\psi_{i-1} \psi_{i}^{*}, \quad f_{i}^{\infty}=\psi_{i} \psi_{i-1}^{*}, \quad h_{i}^{\infty}=\psi_{i-1} \psi_{i-1}^{*}-\psi_{i} \psi_{i}^{*} . \tag{3.7b}
\end{equation*}
$$

We have

$$
\left[d, e_{i}\right]=\delta_{i 0} e_{i}, \quad\left[d, f_{i}\right]=-\delta_{i 0} f_{i}, \quad\left[d, h_{i}\right]=0 \quad(0 \leq i<r)
$$

and

$$
\left[d, H_{j}\right]=\frac{j}{r} H_{j} \quad \text { for } \quad j \equiv 0 \bmod r .
$$

3.3. Fundamental weights and highest weight modules

Let $\quad \mathfrak{h}^{\infty} \subset \mathfrak{g l}(\infty, \mathbf{C}) \quad$ be the subspace spanned by the elements $\sum_{i \in \mathbf{Z}} b_{i} h_{i}^{\infty}=\sum_{i \in \mathbf{Z}} a_{i}: \psi_{i} \psi_{i}^{*}:+a c$, where $a_{i}=b_{i+1}-b_{i}, a=b_{0}$. Define the linear form $\Lambda_{i}: \mathfrak{h}^{\infty} \rightarrow \mathbf{C}$ by $\Lambda_{i}\left(h_{j}^{\infty}\right)=\delta_{i j}$. Let $\mathcal{U}(\mathfrak{g l}(\infty, \mathbf{C}))$ be the universal enveloping algebra of $\mathfrak{g l}(\infty, \mathbf{C})$. The $\mathfrak{g l}(\infty, \mathbf{C})$-module $\mathcal{F}[\gamma]=\mathcal{U}(\mathfrak{g l}(\infty, \mathbf{C}))|\gamma\rangle$ is a highest weight module with highest weight Λ_{γ}. We have

$$
e_{i}^{\infty}|\gamma\rangle=0, \quad h_{i}^{\infty}|\gamma\rangle=\Lambda_{\gamma}\left(h_{i}^{\infty}\right)|\gamma\rangle \quad \text { for all } i \in \mathbf{Z}
$$

Let $\mathfrak{h}=\left(\oplus_{0 \leq i<r} \mathbf{C} h_{i}\right) \oplus \mathbf{C} c \oplus \mathbf{C} d$ be the Cartan subalgebra of $\widehat{\mathfrak{s l}}(r, \mathbf{C})$. Restricting Λ_{i} to \mathfrak{h} we get the fundamental weights of $\widehat{\mathfrak{s l}}(r, \mathbf{C})$

$$
\Lambda_{i}\left(h_{j}\right)=\delta_{i j}, \quad \Lambda_{i}(c)=1, \quad \Lambda_{i}(d)=0 \quad(0 \leq i, j<r)
$$

More generally $\left.\Lambda_{k r+i}\right|_{\mathfrak{h}}=\left.\Lambda_{i}\right|_{\mathfrak{h}}-(k(k-1) r / 2+k i) \delta$ for $k \in \mathbf{Z}, 0 \leq i<r$, where δ is the null root (in particular $\left.\Lambda_{r}\right|_{\mathfrak{h}}=\left.\Lambda_{0}\right|_{\mathfrak{h}}$). We shall often use the same letter Λ_{i} to mean $\left.\Lambda_{i}\right|_{\mathfrak{h}}$ for $0 \leq i \leq r$. Henceforth we set

$$
\Lambda=\Lambda_{\gamma_{1}}+\cdots+\Lambda_{\gamma_{\ell}} \quad\left(0 \leq \gamma_{1} \leq \cdots \leq \gamma_{l}<r\right)
$$

Since the bilinear form (3.2) is non-degenerate, the tensor module $\mathcal{F}\left[\gamma_{1}\right] \otimes \cdots \otimes \mathcal{F}\left[\gamma_{l}\right]$ is completely reducible. The $\mathfrak{g l}(\infty, \mathbf{C})$ - (resp. $\widehat{\mathfrak{g} l}(r, \mathbf{C})-$, $\widehat{\mathfrak{s l}}(r, \mathbf{C})$-) submodule generated by the vector $v_{\Lambda}=\left|\gamma_{1}\right\rangle \otimes \cdots \otimes\left|\gamma_{l}\right\rangle$ is necessarily irreducible; we denote it by $F(\Lambda)$ (resp. $G(\Lambda), L(\Lambda)$).

$$
\begin{equation*}
\mathcal{F}\left[\gamma_{1}\right] \otimes \cdots \otimes \mathcal{F}\left[\gamma_{l}\right] \supset F(\Lambda) \supset G(\Lambda) \supset L(\Lambda) . \tag{3.8}
\end{equation*}
$$

The last one is the irreducible highest weight $\widehat{\mathfrak{s l}}(r, \mathbf{C})$-module with highest weight Λ. As we have noted before, when $l=1, \mathcal{F}[\gamma]=F\left(\Lambda_{\gamma}\right)$ is
irreducible under the action of the Heisenberg subalgebra $\mathcal{H} \subset \widehat{\mathfrak{g l}}(r, \mathbf{C})$. This implies that one has the explicit realizations

$$
\begin{aligned}
F\left(\Lambda_{\gamma}\right) & =G\left(\Lambda_{\gamma}\right)=\mathbf{C}\left[x_{1}, x_{2}, \cdots\right] \\
L\left(\Lambda_{\gamma}\right) & =\mathbf{C}\left[x_{j} \mid j \in \mathbf{N}, j \not \equiv 0 \bmod r\right]
\end{aligned}
$$

which implies in particular

$$
G\left(\Lambda_{\gamma}\right) \cong L\left(\Lambda_{\gamma}\right) \otimes \mathbf{C}\left[x_{r}, x_{2 r}, \cdots\right]
$$

In general, we have

Proposition 3.2.

$$
\begin{equation*}
G(\Lambda) \cong L(\Lambda) \otimes \mathbf{C}\left[x_{r}, x_{2 r}, \cdots\right] \tag{3.9}
\end{equation*}
$$

Proof. This is a consequence of the decomposition (3.6).

§4. Maya diagrams and Plücker relations

In this section we give a spanning set of $G(\Lambda)^{*}$, the dual of the irreducible highest weight module $G(\Lambda)$ of $\hat{\mathfrak{g} l}(r, \mathbf{C})$. We shall follow Sato [11], in which the Plücker relations are extensively studied in the language of Maya diagrams.

4.1. Maya diagrams

A Maya diagram is a sequence consisting of white or black squares, labeled by integers and arranged on a horizontal line, such that to the far left (resp. right) the squares are all black (resp. white) (Fig.4.1).

Fig. 4.1 A Maya diagram (charge=1).

Alternatively, a Maya diagram can be represented by a bijection m : $\mathbf{Z} \longrightarrow \mathbf{Z}$ such that $(m(j))_{j<0}$ and $(m(j))_{j \geq 0}$ are both increasing. Here $(m(j))_{j<0}\left(\operatorname{resp} .(m(j))_{j \geq 0}\right)$ correspond to the positions of the black (resp. white) squares. For each Maya diagram there exists a unique
$\gamma \in \mathbf{Z}$ such that $m(j)-j=\gamma$ for $|j| \gg 0$. The integer γ is called the charge of m. Let $\mathcal{M}[\gamma]$ denote the set of Maya diagrams of charge γ. For $m \in \mathcal{M}[\gamma]$ we put

$$
m[r]=(m(j)+r)_{j \in \mathbf{Z}} \in \mathcal{M}[\gamma+r]
$$

A Maya diagram can be visualized also by a Young diagram as follows. Consider a lattice on the right half plane with sites $\{(i, j) \in$ $\left.\mathbf{Z}^{2} \mid i \geq 0\right\}$. We consider edges on the lattice as oriented, starting from (i, j) and ending at $(i+1, j)$ or $(i, j+1)$, and as numbered by the integer $i+j$. Given a Maya diagram, draw a path on the lattice. We here mean by a path a map e from \mathbf{Z} to the set of edges on the lattice, $j \mapsto e(j)$, such that $e(j)$ has number j and the ending site of $e(j)$ coincides with the starting site of $e(j+1)$. (This has nothing to do with the definition of paths given in Definition 1.1.) The condition that fixes the path is as follows:
(i) For $j \ll 0, e(j)$ is the edge joining $(0, j)$ and $(0, j+1)$.
(ii) The edge $e(m(j))$ is vertical (resp. horizontal) if and only if $j<0$ (resp. $j \geq 0$).
Note that if $j \gg 0$ the edge $e(j)$ is from $(j-\gamma, \gamma)$ to $(j-\gamma+1, \gamma)$.

Fig. 4.2 The Young diagram corresponding to Fig. 4.1.

The resulting path divides the right half plane into two components. The upper half is an infinite Young diagram \mathcal{Y}, namely a diagram consisting of a quadrant and a (finite) Young diagram Y attached together along a horizontal line determined by the charge γ (Fig.4.2). In this way m is in one to one correspondence with the pair ($Y, \gamma)$.

Lemma 4.1. Let $m \in \mathcal{M}[\gamma], m^{\prime} \in \mathcal{M}\left[\gamma^{\prime}\right]$, and let $\mathcal{Y}, \mathcal{Y}^{\prime}$ be the corresponding infinite Young diagrams. Then the following are equivalent.
(i) $m(j) \leq m^{\prime}(j)$ for $j \geq 0$,
(ii) $\gamma \leq \gamma^{\prime}$ and $m(j-\gamma) \geq m^{\prime}\left(j-\gamma^{\prime}\right)$ for $j<\gamma$,
(iii) $\mathcal{Y} \supset \mathcal{Y}^{\prime}$.

Proof. Let e be the path corresponding to a Maya diagram m. The horizontal edge $e(m(j))(j \geq 0)$ is from $(j, m(j))$ to $(j+1, m(j))$ and the vertical edge $e(m(j))(j<0)$ is from $(\gamma+j, m(j)-j-\gamma)$ to $(\gamma+j+1, m(j)-j-\gamma)$. The equivalence follows from this.

Definition 4.2. We write $m \leq m^{\prime}$ if the conditions in Lemma 4.1 hold.

Let m be a Maya diagram. We put for $j \ll 0$

$$
\begin{aligned}
& \langle m|=\langle m(j)| \psi_{m(j)}^{*} \psi_{m(j+1)}^{*} \cdots \psi_{m(-1)}^{*} \\
& |m\rangle=\psi_{m(-1)} \cdots \psi_{m(j+1)} \psi_{m(j)}|m(j)\rangle
\end{aligned}
$$

These vectors do not depend on the choice of j if it is sufficiently negative, and one sees immediately:

Proposition 4.3. We have $\left\langle m \mid m^{\prime}\right\rangle=\delta_{m m^{\prime}}$.
We denote by $\mathcal{F}_{\mathbf{Z}}^{*}[\gamma]$ (resp. $\mathcal{F}_{\mathbf{Z}}[\gamma]$) the free \mathbf{Z}-module generated by the vectors $\{\langle m|\}_{m \in \mathcal{M}[\gamma]}\left(\right.$ resp. $\left.\{|m\rangle\}_{m \in \mathcal{M}[\gamma]}\right)$. Then we have $\mathcal{F}^{*}[\gamma]=$ $\mathcal{F}_{\mathbf{Z}}^{*}[\gamma] \otimes_{\mathbf{Z}} \mathbf{C}, \mathcal{F}[\gamma]=\mathcal{F}_{\mathbf{Z}}[\gamma] \otimes_{\mathbf{Z}} \mathbf{C}$.

4.2. Plücker relations

There exist natural surjective maps

$$
\left(\mathcal{F}\left[\gamma_{1}\right] \otimes \cdots \otimes \mathcal{F}\left[\gamma_{\ell}\right]\right)^{*} \longrightarrow F(\Lambda)^{*} \longrightarrow G(\Lambda)^{*}
$$

dual to (3.8). Here and in what follows, for a Lie algebra module V we denote by V^{*} its restricted dual, i.e., the direct sum of the dual spaces of the (finite dimensional) weight spaces. The images of the base vectors of $\left(\mathcal{F}\left[\gamma_{1}\right] \otimes \cdots \otimes \mathcal{F}\left[\gamma_{\ell}\right]\right)^{*}$ under these surjections obey quadratic relations in $F(\Lambda)^{*}$ or $G(\Lambda)^{*}$, known as the Plücker or r-reduced Plücker relations.

To state these relations we prepare several notations. Let μ be an integer. A μ-index is a sequence of integers $I=\left(i_{k}\right)_{k<\mu}$ such that $i_{k}=k$ for $k \ll 0$. Let $J=\left(j_{1}, \cdots, j_{\nu}\right)$ be a finite sequence of integers. We set $|J|=\nu$. By $I^{\prime}=I J$ we denote a $(\mu+\nu)$-index $\left(i_{k}^{\prime}\right)_{k<\mu+\nu}$ given by
$i_{k}^{\prime}=i_{k}$ for $k<\mu$ and $i_{k}^{\prime}=j_{k-\mu+1}$ for $\mu \leq k<\mu+\nu$. For a Maya diagram m of charge γ, we denote by $I(m)$ the γ-index

$$
I(m)=(m(j-\gamma))_{j<\gamma}
$$

Let I be a μ-index. We define a vector ξ_{I} in $\mathcal{F}^{*}[\mu]$ by

$$
\xi_{I}=\left\langle i_{k}\right| \psi_{i_{k}}^{*} \cdots \psi_{i_{\mu-2}}^{*} \psi_{i_{\mu-1}}^{*}, \quad k \ll 0
$$

The right hand side does not depend on the choice of k if it is sufficiently negative, and is skew symmetric with respect to the permutations of elements of I. When $I=I(m), m \in \mathcal{M}[\gamma]$, the vector $\xi_{I(m)}$ coincides with $\langle m|$.

Proposition 4.4 (Plücker relations). Let γ_{1}, γ_{2} be two integers such that $\gamma_{1} \leq \gamma_{2}$. Let J be a finite sequence and let I (resp. K) be a $\left(\gamma_{2}+1\right)$ - (resp. $\left(\gamma_{1}-|J|-1\right)$-) index. We have then

$$
\begin{equation*}
\left.\sum_{\substack{I=I^{\prime} \cup I^{\prime \prime} \\\left|I^{\prime \prime}\right|=|J|+1+\gamma_{2}-\gamma_{1}}} \operatorname{sgn}\left(I^{\prime} I^{\prime \prime}\right) \xi_{I^{\prime} J} \otimes \xi_{K I^{\prime \prime}}\right|_{F\left(\Lambda_{\gamma_{1}}+\Lambda_{\gamma_{2}}\right)}=0 . \tag{4.1}
\end{equation*}
$$

Here the sum is over all the partitions ($I^{\prime}, I^{\prime \prime}$) of I such that $\left|I^{\prime \prime}\right|=$ $|J|+1+\gamma_{2}-\gamma_{1}$ and $\operatorname{sgn}\left(I^{\prime} I^{\prime \prime}\right)$ is the signature of the permutation which sends I to $I^{\prime} I^{\prime \prime}$.

Remark. In (4.1) $I^{\prime} J$ is a γ_{1}-index and $K I^{\prime \prime}$ is a γ_{2}-index. Note also that given I, K there are only a finite number of $I^{\prime \prime}$ for which $\xi_{K I^{\prime \prime}} \neq 0$ holds.

Example. Let $\gamma_{1}=\gamma_{2}=0$, and take $I=(\cdots-5-4-3-2$ $-10), J=(1)$ and $K=(\cdots-5-4-3)$. The possible choices of $I^{\prime \prime}$ for which $\xi_{K I^{\prime \prime}} \neq 0$ are $I^{\prime \prime}=(-10),(-20),(-2-1)$. We have thus on $F\left(2 \Lambda_{0}\right)$

$$
\begin{aligned}
0= & \xi \ldots-3-21 \otimes \xi \ldots-3-10-\xi \ldots-3-11 \otimes \xi \ldots-3-20 \\
& +\xi \ldots-301 \otimes \xi \ldots-3-2-1 .
\end{aligned}
$$

Proof of Proposition 4.4. Because of (3.3), any element of $F\left(\Lambda_{\gamma_{1}}+\Lambda_{\gamma_{2}}\right)$ belongs to the linear hull of $\overline{\mathbf{G}_{N}}\left(\left|\gamma_{1}\right\rangle \otimes\left|\gamma_{2}\right\rangle\right)$ for some N. Hence it suffices to show
$0=\sum_{\substack{I=I^{\prime} \cup I^{\prime \prime} \\\left|I^{\prime \prime}\right|=\left|J^{\prime}\right|+1+\gamma_{2}-\gamma_{1}}} \operatorname{sgn}\left(I^{\prime} I^{\prime \prime}\right)\left(\xi_{I^{\prime} J} \otimes \xi_{K I^{\prime \prime}}\right)\left(g\left|\gamma_{1}\right\rangle \otimes g\left|\gamma_{2}\right\rangle\right) \quad$ for $g \in \overline{\mathbf{G}}$.

Without loss of generality we may assume $\langle\gamma| g|\gamma\rangle \neq 0$ for some $\gamma \ll 0$. Set $\mu=|J|+1+\gamma_{2}-\gamma_{1}$ and $\nu=|J|$. Suppose that $I^{\prime}=\left(i_{\alpha}\right)_{\alpha<\gamma_{1}-\nu}, I^{\prime \prime}=$ $\left(l_{1}, \cdots, l_{\mu}\right), J=\left(j_{1}, \cdots, j_{\nu}\right)$ and $K=\left(k_{\alpha}\right)_{\alpha<\gamma_{1}-\nu-1}$. For an index, say K, let \bar{K} signify the finite part $\left(k_{\gamma}, \cdots, k_{\gamma_{1}-\nu-2}\right)$ obtained by dropping k_{α} with $\alpha<\gamma$. The right hand side of (4.2) can be written as

$$
\begin{align*}
& \sum_{\substack{\bar{I}^{\prime}=\bar{I}^{\prime} \cup I^{\prime \prime} \\
\left|I^{\prime \prime}\right|=\mu}} \operatorname{sgn}\left(\bar{I}^{\prime} I^{\prime \prime}\right)\langle\gamma| \psi_{\gamma}^{*} \cdots \psi_{i_{\gamma_{1}-\nu-1}}^{*} \psi_{j_{1}}^{*} \cdots \psi_{j_{\nu}}^{*} g \psi_{\gamma_{1}-1} \cdots \psi_{\gamma}|\gamma\rangle \tag{4.3}\\
& \times\langle\gamma| \psi_{\gamma}^{*} \cdots \psi_{k_{\gamma_{1}-\nu-2}}^{*} \psi_{l_{1}}^{*} \cdots \psi_{l_{\mu}}^{*} g \psi_{\gamma_{2}-1} \cdots \psi_{\gamma}|\gamma\rangle .
\end{align*}
$$

Now set $P=\left(\gamma, \cdots, \gamma_{1}-1\right), Q=\left(\gamma, \cdots, \gamma_{2}-1\right)$ and consider the following $\left(\gamma_{1}+\gamma_{2}-2 \gamma\right) \times\left(\gamma_{1}+\gamma_{2}-2 \gamma\right)$ matrix A :

$$
A=\left(\begin{array}{cc}
A_{J P} & 0 \\
A_{\bar{I} P} & A_{\bar{I} Q} \\
0 & A_{\bar{K} Q}
\end{array}\right)
$$

where

$$
A_{X Y}=\left(\langle\gamma| \psi_{i}^{*} g \psi_{j}|\gamma\rangle\right)_{i \in X, j \in Y}
$$

Thanks to Lemma 3.1, the Laplace expansion of the determinant of A gives (4.3) up to a trivial factor. On the other hand, writing $Q=P \sqcup R$, we have

$$
\begin{aligned}
\operatorname{det} A & =\left|\begin{array}{ccc}
A_{J P} & 0 & 0 \\
A_{\bar{I} P} & A_{\overline{\bar{I}} P} & A_{\bar{I} R} \\
0 & A_{\bar{K} P} & A_{\bar{K} R}
\end{array}\right|=\left|\begin{array}{ccc}
A_{J P} & 0 & 0 \\
0 & A_{\overline{\bar{I} P}} & A_{\overline{\bar{I}} R} \\
-A_{\bar{K} P} & A_{\bar{K} P} & A_{\bar{K} R}
\end{array}\right| \\
& = \pm\left|\begin{array}{ccc}
A_{J P} & 0 & 0 \\
-A_{\bar{K} P} & A_{\bar{K} P} & A_{\bar{K} R} \\
0 & A_{\bar{I} P} & A_{\bar{I} R}
\end{array}\right| .
\end{aligned}
$$

Noting that $|J \cup \bar{K}|=\gamma_{1}-\gamma-1$ and $|P|=\gamma_{1}-\gamma$, we have $\operatorname{det} A=0$.

Next we consider the case of $G(\Lambda)^{*}$. For a μ-index $I=\left(i_{k}\right)_{k<\mu}$ (resp. a finite sequence $J=\left(j_{1}, \cdots, j_{\nu}\right)$) we define its s-shift by $I[s]=$ $\left(i_{k-s}+s\right)_{k<\mu+s}\left(\right.$ resp. $\left.J[s]=\left(j_{1}+s, \cdots, j_{\nu}+s\right)\right)$.

Proposition 4.5 (r-reduced Plücker relations). Let γ_{1}, γ_{2} be two integers such that $\gamma_{1} \leq \gamma_{2}+r$. Let J be a finite sequence and I (resp.
K) $a\left(\gamma_{2}+r+1\right)-\left(\right.$ resp. $\left(\gamma_{1}-r-|J|-1\right)$-) index. We have then

$$
\begin{equation*}
\sum_{\substack{I=I^{\prime} \cup I^{\prime \prime} \\\left|I^{\prime \prime}\right|=|J|+1+\gamma_{2}+r-\gamma_{1}}} \operatorname{sgn}\left(I^{\prime} I^{\prime \prime}\right) \xi_{I^{\prime} J} \otimes \xi_{\left.K I^{\prime \prime}[-r]\right|_{G\left(\Lambda_{\gamma_{1}}+\Lambda_{\gamma_{2}}\right)}=0 . . . ~ . ~ . ~}=0 \tag{4.4}
\end{equation*}
$$

Example. Let $r=2, \gamma_{1}=\gamma_{2}=0$, and take $I=(\cdots-2-1023)$, $J=\phi, K=(\cdots-5-4)$. We have

$$
\begin{aligned}
0= & \xi \cdots-4-3-2-1 \otimes \xi \ldots-4-201-\xi \ldots-4-3-20 \otimes \xi \cdots-4-301 \\
& +\xi \ldots-4-3-22 \otimes \xi \ldots-4-3-21-\xi \ldots-4-3-23 \otimes \xi \ldots-4-3-20 .
\end{aligned}
$$

Proof of Proposition 4.5. Let $a \in \mathcal{U}(\widehat{\mathfrak{g} l}(r, \mathbf{C}))$. We are to prove

$$
\begin{equation*}
\sum_{\substack{I=I^{\prime} \cup I^{\prime \prime} \\\left|I^{\prime \prime}\right|=|J|+1+\gamma_{2}+r-\gamma_{1}}} \operatorname{sgn}\left(I^{\prime} I^{\prime \prime}\right)\left(\xi_{I^{\prime} J} \otimes \xi_{K I^{\prime \prime}[-r]}\right)\left(a\left(\left|\gamma_{1}\right\rangle \otimes\left|\gamma_{2}\right\rangle\right)\right)=0 \tag{4.5}
\end{equation*}
$$

Note that a commutes with $1 \otimes \iota^{r}$ where ι denotes the automorphism (3.5). Using the property

$$
v^{*}(v)=\iota\left(v^{*}\right)(\iota(v)) \quad\left(v^{*} \in \mathcal{F}^{*}, v \in \mathcal{F}\right)
$$

we have

$$
\begin{aligned}
& \left(\xi_{I^{\prime} J} \otimes \xi_{K I^{\prime \prime}[-r]}\right)\left(a\left(\left|\gamma_{1}\right\rangle \otimes\left|\gamma_{2}\right\rangle\right)\right) \\
& =\left(\xi_{I^{\prime} J} \otimes \iota^{-r}\left(\xi_{K I^{\prime \prime}}[-r]\right)\right)\left(a\left(\left|\gamma_{1}\right\rangle \otimes \iota^{-r}\left(\left|\gamma_{2}\right\rangle\right)\right)\right) \\
& =\left(\xi_{I^{\prime} J} \otimes \xi_{K[r] I^{\prime \prime}}\right)\left(a\left(\left|\gamma_{1}\right\rangle \otimes\left|\gamma_{2}+r\right\rangle\right)\right)
\end{aligned}
$$

Therefore (4.5) is reduced to the ordinary Plücker relation (4.1) with K, γ_{2} replaced by $K[r], \gamma_{2}+r$.

4.3. Spanning sets of $F(\Lambda)^{*}$ and $G(\Lambda)^{*}$

Let $I=\left(i_{j}\right)$ and $I^{\prime}=\left(i_{j}^{\prime}\right)$ be increasing μ-index and μ^{\prime}-index, respectively. We denote $I<I^{\prime}$ if $\mu \leq \mu^{\prime}$ and there exists $j_{0}<\mu$ such that $i_{j}=i_{j}^{\prime}$ for $j<j_{0}$ and $i_{j_{0}}>i_{j_{0}}^{\prime}$. By virtue of Lemma 4.1, for Maya diagrams m, m^{\prime} we have $m<m^{\prime}$ if and only if $I(m)<I\left(m^{\prime}\right)$.

For a Maya diagram m, we define its type $t(m)=\left(t(m)_{i}\right)_{i \in \mathbf{Z}}$ by

$$
\begin{aligned}
t(m)_{i} & =1 & & \text { if } i \in I(m) \\
& =0 & & \text { otherwise }
\end{aligned}
$$

Extend this definition to an s-tuple of Maya diagrams $M=\left(m_{1}, \cdots, m_{s}\right)$ by setting $t(M)=t\left(m_{1}\right)+\cdots+t\left(m_{s}\right)$. We call this the total type of
M. Observe that the terms entering the Plücker relation (4.1) have the same total type. As for the μ-indices, we introduce a linear order in M, namely we set $t(M)<t\left(M^{\prime}\right)$ if there exists a j_{0} such that $t(M)_{i}=t\left(M^{\prime}\right)_{i}$ for $i<j_{0}$ and $t(M)_{j_{0}}>t\left(M^{\prime}\right)_{j_{0}}$.

Proposition 4.6. The set

$$
\begin{equation*}
\left\{\left.\xi_{I\left(m_{1}\right)} \otimes \cdots \otimes \xi_{I\left(m_{l}\right)}\right|_{F(\Lambda)} \quad \mid m_{j} \in \mathcal{M}\left[\gamma_{j}\right], m_{1} \leq \cdots \leq m_{l}\right\} \tag{4.6}
\end{equation*}
$$

gives a spanning set of $F(\Lambda)^{*}$.
Proof. First let us consider the case $l=2$.
Let m and m^{\prime} be two Maya diagrams of charges γ and γ^{\prime}, respectively. Assume that $\gamma \leq \gamma^{\prime}$ and $m \not \leq m^{\prime}$. By Lemma 4.1 there exists a $j<\gamma$ such that $m(j-\gamma)<m^{\prime}\left(j-\gamma^{\prime}\right)$. Let j_{0} be the smallest among such, and define a $\left(\gamma^{\prime}+1\right)$ - (resp. $j_{0^{-}}$) index $I=\left(i_{j}\right)\left(\right.$ resp. $K=\left(k_{j}\right)$) by

$$
\begin{aligned}
i_{j} & =m(j-\gamma) & & \text { for } \quad j \leq j_{0} \\
& =m^{\prime}\left(j-\gamma^{\prime}-1\right) & & \text { for } j_{0}<j<\gamma^{\prime}+1 \\
k_{j} & =m^{\prime}\left(j-\gamma^{\prime}\right) & & \text { for } j<j_{0}
\end{aligned}
$$

Further put $J=\left(m\left(j_{0}+1-\gamma\right), \cdots, m(-1)\right)$. With these choices of I, J, K the Plücker relation on $F\left(\Lambda_{\gamma}+\Lambda_{\gamma^{\prime}}\right)$ has the following structure (Fig.4.3):

$$
0=\xi_{I(m)} \otimes \xi_{I\left(m^{\prime}\right)}+\sum_{L, L^{\prime}} \pm \xi_{L} \otimes \xi_{L^{\prime}}
$$

Here the index L (resp. L^{\prime}) is an increasing γ - (resp. γ^{\prime}-) index such that $I(m)>L$ (resp. $\left.I\left(m^{\prime}\right)<L^{\prime}\right)$.

Fig. 4.3 Reduction by the Plücker relation.

Therefore, assuming $m \notin m^{\prime}$ one can reduce $\xi_{I(m)} \otimes \xi_{I\left(m^{\prime}\right)}$ into a linear combination of $\xi_{L} \otimes \xi_{L^{\prime}}$'s with $I(m)>L, I\left(m^{\prime}\right)<L^{\prime}$. Moreover,
since the total type is invariant, L^{\prime} cannot exceed an upper bound determined from $I(m), I\left(m^{\prime}\right)$. The above procedure strictly increases the order of the second index, hence it terminates after a finitely many steps. This implies that we can express $\xi_{I(m)} \otimes \xi_{I\left(m^{\prime}\right)}$ as a linear combination of elements in (4.7).

The general case can be shown by applying this procedure to the adjacent pairs $\xi_{I\left(m_{i}\right)} \otimes \xi_{I\left(m_{i+1}\right)}$ repeatedly.

Proposition 4.7. The set

$$
\begin{equation*}
\left\{\left.\xi_{I\left(m_{1}\right)} \otimes \cdots \otimes \xi_{I\left(m_{l}\right)}\right|_{G(\Lambda)} \quad \mid m_{j} \in \mathcal{M}\left[\gamma_{j}\right], m_{1} \leq \cdots \leq m_{l} \leq m_{1}[r]\right\} \tag{4.7}
\end{equation*}
$$

is a spanning set of $G(\Lambda)^{*}$
Proof. The proof of Proposition 4.6 shows that the linear hull of vectors $\xi_{I\left(m_{1}\right)} \otimes \cdots \otimes \xi_{I\left(m_{l}\right)}$ in $F(\Lambda)^{*}$ with fixed total type $t\left(m_{1}, \cdots, m_{l}\right)$ is spanned by those satisfying $m_{1} \leq \cdots \leq m_{l}$. Let us show that if $m_{l} \notin m_{1}[r]$, then on $G(\Lambda)$ such a vector can be written as a linear combination of those with higher total types. Let j_{0} be the smallest of $j<\gamma_{l}$ such that $m_{l}\left(j-\gamma_{l}\right)<m_{1}[r]\left(j-\gamma_{1}-r\right)$. We apply the r-reduced Plücker relation by taking $I=\left(i_{j}\right)_{j<\gamma_{1}+r+1}, K=\left(k_{j}\right)_{j<j_{0}}$ where (Fig.4.4)

$$
\begin{aligned}
i_{j} & =m_{l}\left(j-\gamma_{l}\right) & & \text { for } \quad j \leq j_{0}, \\
& =m_{1}[r]\left(j-\gamma_{1}-r-1\right) & & \text { for } j_{0}<j<\gamma_{1}+r+1, \\
k_{j} & =m_{1}\left(j-\gamma_{1}-r\right) & & \text { for } j<j_{0},
\end{aligned}
$$

and $J=\left(m_{l}\left(j_{0}+1-\gamma_{l}\right), \cdots, m_{l}(-1)\right)$.

Fig. 4.4 Reduction by the r-reduced Plücker relation.
Arguing as in the proof of Proposition 4.6, we can write $\xi_{I\left(m_{1}\right)} \otimes \cdots \otimes$ $\xi_{I\left(m_{l}\right)}$ as a linear combination of terms $\xi_{I\left(n_{1}\right)} \otimes \xi_{I\left(m_{2}\right)} \otimes \cdots \otimes \xi_{I\left(m_{l-1}\right)} \otimes$
$\xi_{I\left(n_{l}\right)}$ such that $t\left(m_{1}, \cdots, m_{l}\right)<t\left(n_{1}, m_{2}, \cdots, m_{l-1}, n_{l}\right)$. The total type $t\left(m_{1}, \cdots, m_{l}\right)$ is bounded from above if the charges $\gamma_{1}, \cdots, \gamma_{l}$ are fixed. Hence after a finitely many steps the resulting terms eventually satisfy both $m_{1} \leq \cdots \leq m_{l}$ and $m_{l} \leq m_{1}[r]$.

§5. Paths and lifts

In this section we establish the relation between paths and Maya diagrams. Using this relation we then define a set of vectors $\left\{\xi_{\eta}\right\}$ of $L(\Lambda)^{*}$ labeled by the Λ-paths η.

5.1. Lifts of a path

As before, we fix $l \geq 1$ and $\Lambda=\Lambda_{\gamma_{1}}+\cdots+\Lambda_{\gamma_{l}}\left(0 \leq \gamma_{1} \leq \cdots \leq\right.$ $\left.\gamma_{l}<r\right)$. The set of Λ-paths $\mathcal{P}(\Lambda)$, the weight λ_{η} of a path η and the set $\mathcal{P}(\Lambda)_{\mu}$ of Λ-paths of weight μ have been introduced in Section 1 .

Definition 5.1. Let η be a Λ-path. An element $M=\left(m_{1}, \ldots, m_{l}\right)$ $\in \mathcal{M}\left[\gamma_{1}\right] \times \cdots \times \mathcal{M}\left[\gamma_{l}\right]$ is called a lift of η if and only if it satisfies the condition

$$
m_{1} \leq \cdots \leq m_{l} \leq m_{1}[r]
$$

and

$$
\eta(j)=\epsilon_{m_{1}(j)}+\cdots+\epsilon_{m_{l}(j)}
$$

Let $M=\left(m_{1}, \ldots, m_{l}\right), M^{\prime}=\left(m_{1}^{\prime}, \ldots, m_{l}^{\prime}\right)$ be lifts of a Λ-path η. We denote $M \geq M^{\prime}$ if and only if $m_{j} \geq m_{j}^{\prime}$ for $1 \leq j \leq l$.

Proposition 5.2. For each Λ-path η there exists a unique highest lift M of η such that $M \geq M^{\prime}$ for any lift M^{\prime} of η.

Proof. We define a set of integers $t_{j k}(j, k \in \mathbf{Z}, k \geq 0)$ as follows. For each k we require that $t_{j k} \leq t_{j+1 k}, t_{j+l k}=t_{j k}+r$ and $\eta(k)=$ $\sum_{j \bmod l} \epsilon_{t_{j k}+k}$. These conditions determine $t_{j k}(j \in \mathbf{Z})$ up to a shift of the first index, $t_{j k} \rightarrow t_{j-s(k) k}$. For $k \gg 0$ we fix $t_{j k}$ by the condition $t_{j k}=\gamma_{j}(1 \leq j \leq l)$. Suppose that $t_{j k+1}(j \in \mathbf{Z})$ is already given. We then fix $t_{j k}(j \in \mathbf{Z})$ by the condition that $t_{j-s k} \leq t_{j k+1}$ is valid for arbitrary j if and only if $s \geq 0$. Set $m_{j}(k)=t_{j k}+k$ for $1 \leq j \leq l$ and $k \geq 0$. An element $M=\left(m_{1}, \ldots, m_{l}\right) \in \mathcal{M}\left[\gamma_{1}\right] \times \cdots \times \mathcal{M}\left[\gamma_{l}\right]$ is determined by this assignment. The above conditions on $t_{j k}$ imply that M is the highest lift of η.

Definition 5.3. Let $\left(m_{1}, \ldots, m_{l}\right)$ be the highest lift of a Λ-path η. We denote by ξ_{η} the image of $\left\langle m_{1}\right| \otimes \cdots \otimes\left\langle m_{l}\right|$ by the projection $\mathcal{F}^{*}\left[\gamma_{1}\right] \otimes \cdots \otimes \mathcal{F}^{*}\left[\gamma_{l}\right] \longrightarrow L(\Lambda)^{*}$.

Our goal is to prove
Theorem 5.4. The set $\left\{\xi_{\eta} \mid \eta \in \mathcal{P}(\Lambda)_{\mu}\right\}$ is a basis of $L(\Lambda)_{\mu}^{*}$.
The proof follows from Theorem 5.7, Proposition 5.11 and Theorem 6.14 below.

We start with the computation of the $\widehat{\mathfrak{s l}}(r, C)$-weight of the vector ξ_{η}. Consider the case $l=1$. Suppose that m is the highest lift of a Λ_{γ}-path η. Then we have

$$
\begin{equation*}
m(k) \geq m(k+1)-r \quad \text { for all } \quad k \geq 0 \tag{5.1}
\end{equation*}
$$

Conversely, if a Maya diagram m satisfies (5.1), then m is the highest lift of a path.

Proposition 5.5. Let γ be an integer such that $0 \leq \gamma<r$, and let m be a Maya diagram of charge γ such that m is the highest lift of
 λ_{η}.

Proof. Set

$$
\begin{align*}
\delta_{a b}^{(r)} & =1 & & \text { if } a \equiv b \bmod r \tag{5.2}\\
& =0 & & \text { otherwise }
\end{align*}
$$

The weight of $\langle m|$ is given by

$$
\Lambda_{\gamma}-\sum_{k=0}^{\infty} \sum_{m(k)<\mu \leq \gamma+k} \alpha_{\mu}=\Lambda_{\gamma}-\sum_{k=0}^{\infty} \sum_{m(k)<\mu \leq \gamma+k}\left(\pi\left(\epsilon_{\mu-1}-\epsilon_{\mu}\right)+\delta_{\mu 0}^{(r)} \delta\right)
$$

where we set $\alpha_{\mu+r}=\alpha_{\mu}$. Since

$$
\sum_{m(k)<\mu \leq \gamma+k} \pi\left(\epsilon_{\mu-1}-\epsilon_{\mu}\right)=\pi\left(\eta(k)-\eta_{\Lambda_{\gamma}}(k)\right)
$$

it is sufficient to show that
$\sum_{k=0}^{\infty} \sum_{m(k)<\mu \leq \gamma+k} \delta_{\mu 0}^{(r)}=\sum_{k=1}^{\infty} k\left(H(\eta(k-1), \eta(k))-H\left(\eta_{\Lambda_{\gamma}}(k-1), \eta_{\Lambda_{\gamma}}(k)\right)\right)$.

Set

$$
X=\{(k, \mu) \mid k, \mu \in \mathbf{Z}, k \geq 0, m(k)<\mu \text { and } \mu \equiv 0 \bmod r\} .
$$

This set decomposes into a disjoint union of $X_{i}(i \in \mathbf{Z})$ where $X_{i}=$ $X \bigcap\{(k, i r) \mid k \in \mathbf{Z}, k \geq 0\}$ (Fig.5.1).

Fig. 5.1 Counting the number of 0 -boxes.

Take a positive integer k and assume that $m(k-1)<i r \leq m(k)$. Then we have $\sharp\left(X_{i}\right)=k$ and $H(\eta(k-1), \eta(k))=1$. Conversely, if $H(\eta(k-1), \eta(k))=1$ there exists a unique i such that $m(k-1)<$ ir $\leq m(k)$. Argue similarly with $m(k)$ and η replaced by $\gamma+k$ and η_{Λ}, respectively, and consider the difference. Then the equality (5.3) follows immediately.

Now we consider the general case.
Proposition 5.6. Let $\left(m_{1}, \ldots, m_{l}\right)$ be the highest lift of a Λ-path η. Then the Maya diagram m_{j} is the highest lift of the $\Lambda_{\gamma_{j}}$-path $\eta_{j}=$ $\left(\epsilon_{m_{j}(k)}\right)_{k \geq 0}$. The weight of η satisfies the additivity

$$
\lambda_{\eta}=\sum_{j=1}^{l} \lambda_{\eta_{j}}
$$

Proof. For the first half, it is sufficient to show that $m_{j}(k) \geq$ $m_{j}(k+1)-r$, or equivalently that $t_{j k}>t_{j k+1}-r$, for $1 \leq j \leq l, k \geq 0$. Assume that $t_{j k} \leq t_{j k+1}-r$ for some j, k. For $1 \leq i<j$ we have $t_{i+1 k} \leq t_{j k} \leq t_{j k+1}-r=t_{j-l k+1} \leq t_{i k+1}$, and for $j \leq i \leq l$ we have $t_{i+1 k} \leq t_{j+l k}=t_{j k}+r \leq t_{j k+1} \leq t_{i k+1}$. This contradicts the choice of $t_{j k}$.

For $t \in \mathbf{Z}$ denote by \bar{t} the integer satisfying $0 \leq \bar{t}<r$ and $\bar{t} \equiv t \bmod$ r. For the second half, it is sufficient to show that

$$
H(\eta(k), \eta(k+1))=\sum_{j=1}^{l} H\left(\eta_{j}(k), \eta_{j}(k+1)\right)
$$

or equivalently that

$$
\min _{\sigma} \sum_{j=1}^{l} \theta\left(\overline{m_{j}(k)}-\overline{m_{\sigma(j)}(k+1)}\right)
$$

is attained by $\sigma=\mathrm{id}$. Note that $t_{j}=m_{j}(k)(1 \leq j \leq l)$ attains the maximum of $\sum_{j=1}^{l} t_{j}$ under the condition that $m_{j}(k+1)-r \leq t_{j}<$ $m_{j}(k+1)(1 \leq j \leq l)$ and $\overline{t_{j}}=\overline{m_{\sigma(j)}(k)}$ for some σ. Since

$$
m_{j}(k+1)-t_{j}=\overline{m_{j}(k+1)}-\overline{t_{j}}+r \theta\left(\overline{t_{j}}-\overline{m_{j}(k+1)}\right)
$$

$t_{j}=m_{j}(k)(1 \leq j \leq l)$ attains the minimum of $\sum_{j=1}^{l} \theta\left(\overline{t_{j}}-\overline{m_{j}(k+1)}\right)$.
From Propositions 5.5 and 5.6 we have
Theorem 5.7. Let η be a Λ-path and let $\left(m_{1}, \ldots, m_{l}\right)$ be its highest lift. The weight of $\left\langle m_{1}\right| \otimes \cdots \otimes\left\langle m_{l}\right|$ is equal to λ_{η}.

5.2. Lifts and Young diagrams

Let us determine the totality of lifts of a given Λ-path η. From the proof of Proposition 5.2 it follows immediately that

Proposition 5.8. An element $\left(n_{1}, \ldots, n_{l}\right) \in \mathcal{M}\left[\gamma_{1}\right] \times \cdots \times \mathcal{M}\left[\gamma_{l}\right]$ is a lift of η if and only if there exists a unique sequence $(s(k))_{k \geq 0}$ such that $s(k) \geq s(k+1)$ for any $k, s(k)=0$ for $k \gg 0$ and

$$
\begin{equation*}
n_{j}(k)=t_{j-s(k) k}+k \quad \text { for } \quad k \geq 0 \tag{5.4}
\end{equation*}
$$

Let $N=\left(n_{1}, \ldots, n_{l}\right)$ be a lift of η satisfying (5.4). We denote by $Y(N)$ the Young diagram of signature $\left[y_{1}, \ldots, y_{s}\right]$ where

$$
y_{j}=\sharp\{k \mid s(k) \geq j\} .
$$

The following is also immediate.

\square

Fig. 5.2 Lifts and Young diagrams.

Proposition 5.9. Fix a Λ-path η. The correspondence $N \mapsto$ $Y(N)$ from the set of lifts of η to the set of Young diagrams is bijective.

Let Y be a Young diagram with n nodes. We define the degree of Y by $d(Y)=n$. If $Y=Y(N)$ then $d(Y)=\sum_{j=1}^{s} y_{j}=\sum_{k=0}^{\infty} s(k)$.

Proposition 5.10. Let $N=\left(n_{1}, \ldots, n_{l}\right)$ be a lift of a Λ-path η. Then the weight of $\left\langle n_{1}\right| \otimes \cdots \otimes\left\langle n_{l}\right|$ is equal to $\lambda_{\eta}-d(Y(N)) \delta$.

Proof. Let $\left(m_{1}, \ldots, m_{l}\right)$ be the highest lift of η. The difference of the weights of $\left\langle n_{1}\right| \otimes \cdots \otimes\left\langle n_{l}\right|$ and $\left\langle m_{1}\right| \otimes \cdots \otimes\left\langle m_{l}\right|$ is given by

$$
\begin{equation*}
-\sum_{j=1}^{l} \sum_{k=0}^{\infty} \sum_{n_{j}(k)<\mu \leq m_{j}(k)} \alpha_{\mu} \tag{5.5}
\end{equation*}
$$

The interval $n_{j}(k)<\mu \leq m_{j}(k)$ is equal to $t_{j-s(k) k}+k<\mu \leq t_{j k}+$ k. Suppose that integers $p_{1}, p_{2}, q_{1}, q_{2}$ satisfy $\min \left(p_{1}, p_{2}\right) \geq \max \left(q_{1}, q_{2}\right)$. Then the following is obvious.

$$
\begin{equation*}
\left(\sum_{q_{1}<\mu \leq p_{1}}+\sum_{q_{2}<\mu \leq p_{2}}\right) \alpha_{\mu}=\left(\sum_{q_{1}<\mu \leq p_{2}}+\sum_{q_{2}<\mu \leq p_{1}}\right) \alpha_{\mu} \tag{5.6}
\end{equation*}
$$

Note that $t_{l-s k}=t_{1-(s+1) k}+r$. Therefore, by a repeated use of (5.6), we see that the increment of $s(k)$ by 1 induces the change of (1.1) by $-\delta$. This implies that the weight (5.5) is equal to $-\sum_{k=0}^{\infty} s(k) \delta=-d(Y) \delta$.

For $\mu \in \mathfrak{h}^{*}$ we set

$$
\begin{aligned}
G(\Lambda)_{\mu}^{*} & =\left\{\langle v| \in G(\Lambda)^{*} \mid\langle v| h=\langle v| \mu(h) \text { for } h \in \mathfrak{h}\right\} \\
L(\Lambda)_{\mu}^{*} & =\left\{\langle v| \in L(\Lambda)^{*} \mid\langle v| h=\langle v| \mu(h) \text { for } h \in \mathfrak{h}\right\}
\end{aligned}
$$

For an integer t we denote by $\mathbf{C}\left[x_{r}, x_{2 r}, \cdots\right]_{t}$ the subspace of $\mathbf{C}\left[x_{r}, x_{2 r}\right.$, \cdots] consisting of the polynomials of degree t in the sense that the degree of $x_{j r}$ is j. Its dimension is given by $\operatorname{dim} \mathbf{C}\left[x_{r}, x_{2 r}, \cdots\right]_{t}=p(t)$ where $p(t)$ is the number of partitions of t.

Proposition 5.11. Let μ be a $\widehat{\mathfrak{s l}}(r, \mathbf{C})$-weight. Then we have

$$
\sum_{t} p(t) \operatorname{dim} L(\Lambda)_{\mu+t \delta} \leq \sum_{t} p(t) \sharp \mathcal{P}(\Lambda)_{\mu+t \delta} .
$$

Proof. From Proposition 3.2 the weight space $G(\Lambda)_{\mu}$ decomposes into

$$
G(\Lambda)_{\mu}=\sum_{t} L(\Lambda)_{\mu+t \delta} \otimes \mathbf{C}\left[x_{r}, x_{2 r}, \cdots\right]_{t}
$$

From Theorem 5.7 and Proposition 5.10 it follows that

$$
\begin{aligned}
& \operatorname{dim} G(\Lambda)_{\mu}^{*} \leq \sharp\{N \mid N \text { is a lift of a } \Lambda \text {-path } \eta \\
& \text { such that } \left.\lambda_{\eta}-d(Y(N)) \delta=\mu\right\} .
\end{aligned}
$$

Now the assertion follows from Proposition 5.9.

§6. Paths and divisors

We now carry out the final step in the proof of Theorem 5.4 to show that the vectors $\left\{\xi_{\eta} \mid \eta \in \mathcal{P}(\Lambda)\right\}$ are linearly independent and span $L(\Lambda)^{*}$.

6.1. Reduction of divisors

Consider a free abelian group \mathcal{D} in multiplicative form with generators $(k, a)\left(k \geq 1, a \in \mathbf{Z}_{r}\right)$. An element of \mathcal{D} is written as

$$
D=\prod_{k \geq 1, a \in \mathbf{Z}_{r}}(k, a)^{D_{k, a}},
$$

and is called a divisor. We set $(0, a)=1$, the unit element in \mathcal{D}. A divisor D is called positive if $D_{k, a} \geq 0$ for all k, a. We denote by \mathcal{D}_{+} the set of positive divisors and by $\mathbf{Z}\left[\mathcal{D}_{+}\right]$the \mathbf{Z}-free module generated by the positive divisors. For $D \in \mathcal{D}_{+}$we use the following notations:

$$
\begin{aligned}
& \sharp(D)=\sum_{k, a} D_{k, a}, \quad n(D)=\max \left\{k \mid D_{k, a}>0 \text { for some } a\right\}, \\
& L(D, k)=\left\{a \in \mathbf{Z}_{r} \mid D_{k, a}=0\right\}, \\
& N(D, k)=\left\{a \in \mathbf{Z}_{r} \mid D_{k, a}>0, D_{k, a-1}=0\right\} .
\end{aligned}
$$

We set formally $L(D, 0)=\mathbf{Z}_{r}$. Let us denote by $b(D)$ the Young diagram of signature $\left[n^{d_{n}} \cdots 2^{d_{2}} 1^{d_{1}}\right]$ where $n=n(D)$ and $d_{j}=\sum_{a} D_{j, a}$. We also set

$$
b_{i}(D)=b\left(\prod_{k \geq i, a \in \mathbf{Z}_{r}}(k-i+1, a)^{D_{k, a}}\right) .
$$

We write $b(D)<b\left(D^{\prime}\right)$ if and only if there exists an integer i such that $b_{i}(D) \subset b_{i}\left(D^{\prime}\right)$ in the usual sense of inclusion.

0	1	2
0	1	2
2		
1		

Fig. 6.1 The divisor $(3,2)^{2}(1,2)(1,1)$.

Definition 6.1. A divisor D is called reduced if and only if it is positive and $L(D, k) \neq \phi$ for any k.

Proposition 6.2. Let D be a reduced divisor, and let $n=n(D)$. Then we have the following alternative:

Case 1. There exists $a \in \mathbf{Z}_{r}$ such that

$$
\begin{equation*}
a \in N(D, n), \quad L(D, n-1) \neq\{a-1\} \tag{6.1}
\end{equation*}
$$

Case 2. There exists $a \in \mathbf{Z}_{r}$ and an integer k such that

$$
\begin{aligned}
1 \leq k & \leq n-1 \\
N(D, n) & =\{a\} \\
L(D, j) & =\{a-1\} \quad \text { for } \quad k \leq j \leq n-1, \\
L(D, k-1) & \neq\{a-1\} .
\end{aligned}
$$

Proof. If it is not Case 1, then there exists $a \in \mathbf{Z}_{r}$ such that

$$
N(D, n)=\{a\}, \quad L(D, n-1)=\{a-1\}
$$

Take the smallest integer k such that $L(D, j)=\{a-1\}$ for $k \leq j \leq n-1$. Then Case 2 is valid.

Let us follow the notation of Proposition 6.2. Define $k=n$ in Case 1. If we set

$$
D^{\prime}=D \cdot(k-1, a-1) /(k, a)
$$

then D^{\prime} is reduced. We write $D \xrightarrow{k a} D^{\prime}$ to indicate this relation, and call it a reduction from D to D^{\prime} occurring at (k, a). In Case 1 there may be more than one choice of a. In Case 2 the choice of k, a is unique. Note that $\sharp\left(D^{\prime}\right)=\sharp(D)-1$. Therefore, by repeating the above procedure we get a sequence

$$
\begin{equation*}
D=D^{(0)} \xrightarrow{k_{0} a_{0}} D^{(1)} \xrightarrow{k_{1} a_{1}} \ldots{ }^{k_{d-1} a_{d-1}} D^{(d)}=0 \tag{6.2}
\end{equation*}
$$

where $d=\sharp(D)$. We set

$$
A=\left(a_{0}, a_{1}, \cdots, a_{d-1}\right) \in\left(\mathbf{Z}_{r}\right)^{d}
$$

and write $D \longrightarrow A$ if A is obtained from D in this way.
Let us examine the sequence (6.2) more closely.
Lemma 6.3. Suppose that $D \xrightarrow{k a} D^{\prime}$. Then we have $D_{n, a}>0$.
Proof. This is immediate from Lemma 6.4 below.
Lemma 6.4. Suppose that $D \xrightarrow{k a} D^{\prime} \xrightarrow{k^{\prime} a^{\prime}} D^{\prime \prime}$ and $k<n(D)$. Then $k^{\prime}=k$ or $k+1$ and $a^{\prime}=a$.

Proof. The reduction $D \xrightarrow{k a} D^{\prime}$ is Case 2. If $D_{k a}>1$ then Case 2 occurs for D^{\prime} with the same k and a. Therefore $k^{\prime}=k$ and $a^{\prime}=a$. If $D_{k a}=1$ and $k \leq n-2$, then Case 2 occurs for D^{\prime} with $k^{\prime}=k+1$ and $a^{\prime}=a$. If $D_{k a}=1$ and $k=n-1$, then (6.1) is valid for D^{\prime} with a being the unique choice. Therefore $k^{\prime}=k+1(=n)$ and $a^{\prime}=a$.

Proposition 6.5. Consider the sequence (6.2). It contains a divisor $D^{(t)}$ such that

$$
\begin{equation*}
D_{j, a}^{(t)}=D_{j+1, a+1} \quad \text { for } \quad j \geq k_{0}, \forall a \tag{6.3}
\end{equation*}
$$

We choose to be the smallest integer with this property. Then we have

$$
\begin{align*}
a_{i^{\prime}} & \neq a_{i}-1 \quad \text { if } \quad 0 \leq i<i^{\prime} \leq t-1 \tag{6.4}\\
k_{t} & \leq k_{0}
\end{align*}
$$

Fig. 6.2 Reduction from D to $D^{(t)}$.

Proof. We set $n=n(D), a=a_{0}$ and $k=k_{0}$ for short.
Suppose that $k=n$. Then we choose t to be the smallest integer such that $b_{n}\left(D^{(t)}\right)=0$. The conditions (6.3) and (6.4) are obvious. Suppose that $0 \leq i<i^{\prime} \leq t-1$. Since $a_{i} \in N\left(D^{(i)}, n\right)$, we have $D_{n, a_{i}-1}^{(i)}=0$. The order $i<i^{\prime}$ implies $D_{n, a_{i}-1}^{(i)} \geq D_{n, a_{i}-1}^{\left(i^{\prime}\right)}=0$. From Lemma 6.3 we have $D_{n, a_{i^{\prime}}}^{\left(i^{\prime}\right)}>0$. Therefore $a_{i^{\prime}}$ is not equal to $a_{i}-1$.

Next consider the case $k<n$. Then we have

$$
\begin{equation*}
L(D, n)=\{a-1, a-2, \cdots, a-s\} \quad(1 \leq s \leq r-1) . \tag{6.5}
\end{equation*}
$$

Now let us start again from scratch assuming (6.2) and (6.5). Let i_{0} be the smallest integer such that $L(D, j)=\{a-1\}$ for $i_{0} \leq j \leq n-1$. If there is no such j, we set $i_{0}=n$. (In fact i_{0} is equal to k.) Let t_{1} be the largest integer such that $a_{j}=a$ for $0 \leq j \leq t_{1}-1$, and set $D_{1}=D^{\left(t_{1}\right)}$. From Lemma 6.3 it is easy to see that

$$
D_{1}=D \prod_{j=k}^{n}((j-1, a-1) /(j, a))^{D_{j, a}}
$$

We refer to the subsequence of (6.2) from D to D_{1} as an a-cycle. We consider two different cases. First, suppose that $s \neq r-1$. Then $n\left(D_{1}\right)$ is equal to n and the following are valid.

$$
\begin{aligned}
L\left(D_{1}, n\right) & =\{a, a-1, \cdots, a-s\} \\
N\left(D_{1}, n\right) & =\{a+1\} \\
L\left(D_{1}, j\right) & =\{a\} \quad \text { for } \quad k \leq j \leq n-1
\end{aligned}
$$

If we denote by i_{1} the smallest integer such that $L\left(D_{1}, j\right)=\{a\}$ for $i_{1} \leq$ $j \leq n-1$, then $i_{1} \leq i_{0}=k$ and Case 2 is valid for D_{1}. Thus, we return to a similar situation with D, i_{0}, a replaced by $D_{1}, i_{1}, a+1$. Therefore there exists an ($a+1$)-cycle starting from D_{1} and ending at, say D_{2}. By repeating this process we reach the second case; we now suppose that $s=r-1$ in (6.5). In this case $n\left(D_{1}\right)=n-1$, and

$$
L\left(D_{1}, j\right)=\{a\} \quad i_{0} \leq j \leq n-1 .
$$

Therefore, there exists an ($a+1$)-cycle starting from D_{1} such that the first reduction occurs at ($i_{1}, a+1$) with $i_{1} \leq i_{0}$. In conclusion, a succession of cycles, the a-cycle from D to D_{1}, the $(a+1)$-cycle from D_{1} to D_{2}, etc., continues to the ($a-2$)-cycle from D_{r-2} to D_{r-1}. Note also that $i_{0} \geq i_{1} \geq \cdots \geq i_{r-2}$. The choice $D^{(t)}=D_{r-1}$ meets the requirement of Proposition 6.5.

From the above construction it is easy to see the following.
Lemma 6.6. Suppose that for $b \in \mathbf{Z}_{r}$ there exists an integer i satisfying

$$
0 \leq i \leq t-1, \quad a_{i}=b, \quad k_{i}=k_{0}-1
$$

Then we have

$$
D_{k_{0}-1, b-1}^{(t)}=D_{k_{0}, b}
$$

6.2. Reconstruction of divisors

So far we have considered the reduction process $D \longrightarrow A$. Conversely, given a sequence $A=\left(a_{0}, a_{1}, \cdots, a_{d-1}\right) \in\left(\mathbf{Z}_{r}\right)^{d}$, we construct a positive divisor D^{\prime} as follows. Consider a subsequence $I=(I(0), \cdots$, $I(p-1))$ of $(0,1, \cdots, d-1)$ such that $a_{I(j+1)}=a_{I(j)}-1$ for $0 \leq j \leq p-2$. We refer to such I as a p-string. Given a decomposition of ($0,1, \cdots, d-1$) into strings

$$
\begin{equation*}
(0,1, \cdots, d-1)=\coprod_{\text {disjoint }} I_{\lambda} \tag{6.6}
\end{equation*}
$$

a positive divisor is correspondingly defined by

$$
D^{\prime}=\prod_{\lambda}\left(l_{\lambda}, b_{\lambda}\right)
$$

where l_{λ} is the length of I_{λ} and $b_{\lambda}=a_{I_{\lambda}(0)}$. We write $A \Longrightarrow D^{\prime}$ indicating this construction of D^{\prime} from A. It is obvious that $D \longrightarrow A$ implies $A \Longrightarrow D$. The aim of this paragraph is to show that D can be reconstructed from A as the 'maximal' divisor (see Proposition 6.8 for the precise meaning).

Lemma 6.7. Assume that $D \longrightarrow A \Longrightarrow D^{\prime}$. We retain the notation in the proof of Proposition 6.5. Then we have the following alternative:

Case 1. $\quad D_{j, a}=D_{j, a}^{\prime} \quad$ for $\quad j \geq k_{0}, \forall a$.
Case 2. There exists an integer $s\left(k_{0} \leq s \leq n(D)\right)$ such that

$$
\begin{aligned}
& D_{j, a}=D_{j, a}^{\prime} \quad \text { for } \quad j \geq s+1, \forall a \\
& D_{s, a} \geq D_{s, a}^{\prime} \quad \text { for } \quad \forall a \\
& b_{s}(D) \neq b_{s}\left(D^{\prime}\right) .
\end{aligned}
$$

Proof. We prove by induction on $n(D)$. If $n(D)=1$, it is clear that Case 1 holds. Suppose $n(D)>1$ and set $\bar{D}=D^{(t)}$. Then we have $n(\bar{D})=n(D)-1$. Set $\bar{A}=\left(a_{t}, a_{t+1}, \cdots, a_{d-1}\right)$. Then we have $\bar{D} \longrightarrow \bar{A}$. We now construct a reduced divisor \bar{D}^{\prime} satisfying $\bar{A} \Longrightarrow \bar{D}^{\prime}$ by contracting $A \Longrightarrow D^{\prime}$. Consider the decomposition (6.6). From (6.4) it follows that each $j(0 \leq j \leq t-1)$ must be the top of one of the strings, say $I_{\lambda_{j}}$, i.e., $j=I_{\lambda_{j}}(0)$. Set

$$
\bar{D}^{\prime}=D^{\prime} \cdot \prod_{\lambda=\lambda_{0}, \cdots, \lambda_{t-1}}\left(l_{\lambda}-1, b_{\lambda}-1\right) /\left(l_{\lambda}, b_{\lambda}\right) .
$$

Then we have $\bar{A} \Longrightarrow \bar{D}^{\prime}$. Now we are to show that either Case 1 or Case 2 holds. By the induction hypothesis one of the following is valid.

Case 1'. $\bar{D}_{j, a}=\bar{D}_{j, a}^{\prime}$ for $j \geq i_{1}, \forall a$.
Case 2^{\prime}. There exists an integer $\bar{s}\left(i_{1} \leq \bar{s} \leq n(D)-1\right)$ such that

$$
\begin{aligned}
& \bar{D}_{j, a}=\bar{D}_{j, a}^{\prime} \quad \text { for } \quad j \geq \bar{s}+1, \forall a, \\
& \bar{D}_{\bar{s}, a} \geq \bar{D}_{\bar{s}, a}^{\prime} \quad \text { for } \forall a, \\
& b_{\bar{s}}(\bar{D}) \neq b_{\bar{s}}\left(\bar{D}^{\prime}\right) .
\end{aligned}
$$

Note that $i_{1} \leq i_{0}=k_{0}$. From the construction of \bar{D} we have

$$
\begin{equation*}
D_{j, a}=\bar{D}_{j-1, a-1} \quad \text { for } \quad j \geq k_{0}+1 \tag{6.7}
\end{equation*}
$$

Suppose that Case 2^{\prime} occurs for $\bar{s} \geq k_{0}$. We refer to this case as Case $2^{\prime} \mathrm{A}$. Let s_{0} be the smallest integer such that for any $j \geq s_{0}+1$ and $a \in \mathbf{Z}_{r}$

$$
\sharp\left\{i \mid 0 \leq i \leq t-1,\left(k_{\lambda_{i}}, b_{\lambda_{i}}\right)=(j, a)\right\}=D_{j, a}^{\prime} .
$$

Then using (6.7) we can deduce that Case 2 occurs for $s=\max \left(\bar{s}+1, s_{0}\right)$. Suppose that it is not Case 2'A. Then we have $\bar{D}_{j, a}=\bar{D}_{j, a}^{\prime}$ for $j \geq k_{0}, \forall a$ and

$$
\begin{equation*}
\bar{D}_{k_{0}-1, a} \geq \bar{D}_{k_{0}-1, a}^{\prime} \quad \text { for } \quad \forall a \tag{6.8}
\end{equation*}
$$

If $s_{0} \geq k_{0}+1$, then Case 2 occurs for $s=s_{0}$. If $s_{0} \leq k_{0}$, then we have $D_{j, a}=D_{j, a}^{\prime}$ for $j \geq k_{0}+1, \forall a$. Using (6.8) and Lemma 6.6 we can deduce that $D_{k_{0}, a} \geq D_{k_{0}, a}^{\prime}$ for $\forall a$. Thus Case 1 or Case 2 with $s=k_{0}$ occurs.

Proposition 6.8. Assume that $D \longrightarrow A \Longrightarrow D^{\prime}$. Then we have $b(D)>b\left(D^{\prime}\right)$ or $D=D^{\prime}$.

Proof. We prove by induction on $\sharp(D)$. Suppose that $b(D) \leq b\left(D^{\prime}\right)$. Then Case 1 of Lemma 6.7 must hold. We are to show that $D=D^{\prime}$.

Let t_{1} be as in the proof of Proposition 6.5. First we show the following.
(i) Let I_{λ} be one of the strings of (6.6) satisfying $0 \leq I_{\lambda}(0) \leq t_{1}-1$.

We refer to such I_{λ} as a string of the first class. Then $l_{\lambda} \geq k_{0}$.
Assume that $l_{\lambda}<k_{0}$. Define $A^{(1)}$ and $D^{\prime \prime}$ by

$$
\begin{aligned}
A^{(1)} & =\left(a_{1}, \cdots, a_{d-1}\right) \\
D^{\prime \prime} & =D^{\prime} \cdot\left(l_{\lambda}-1, a_{0}-1\right) /\left(l_{\lambda}, a_{0}\right)
\end{aligned}
$$

Then we have $D^{(1)} \longrightarrow A^{(1)} \Longrightarrow D^{\prime \prime}$. On the other hand, we have

$$
\begin{equation*}
D^{(1)}=D \cdot\left(k_{0}-1, a_{0}-1\right) /\left(k_{0}, a_{0}\right) \tag{6.9}
\end{equation*}
$$

By the induction hypothesis $b\left(D^{(1)}\right) \geq b\left(D^{\prime \prime}\right)$. From this follows that $b(D)>b\left(D^{\prime}\right)$, since $l_{\lambda}<k_{0}$. This is a contradiction.

Next we prove
(ii) There exists a k_{0}-string of the first class.

Let n_{j} be the number of j-strings of the first class. For $j \geq k_{0}$ we have $n_{j} \leq D_{j, a_{0}}^{\prime}=D_{j, a_{0}}$. On the other hand from (i) we have $\sum_{j \geq k_{0}} n_{j}=t_{1}=\sum_{j \geq k_{0}} D_{j, a_{0}}$. Therefore we get $n_{k_{0}}=D_{k_{0}, a_{0}}>0$.

$$
D^{\prime \prime \prime}=D^{\prime} \cdot\left(k_{0}-1, a_{0}-1\right) /\left(k_{0}, a_{0}\right)
$$

From (ii) we have $D^{(1)} \longrightarrow A^{(1)} \Longrightarrow D^{\prime \prime \prime}$. The assertion follows from (6.9) by induction.

6.3. Paths and divisors

Let $\mathcal{F}_{\mathbf{Z}}^{*}[\gamma]$ denote the \mathbf{Z}-span of the base vectors $\{\langle m|\}_{m \in \mathcal{M}[\gamma]}$. We define a \mathbf{Z}-linear $\operatorname{map} \Delta: \mathcal{F}_{\mathbf{Z}}^{*}[\Lambda]=\mathcal{F}_{\mathbf{Z}}^{*}\left[\gamma_{1}\right] \otimes_{\mathbf{z}} \cdots \otimes_{\mathbf{z}} \mathcal{F}_{\mathbf{Z}}^{*}\left[\gamma_{l}\right] \longrightarrow \mathbf{Z}\left[\mathcal{D}_{+}\right]$ by

$$
\Delta\left(\left\langle m_{1}\right| \otimes \cdots \otimes\left\langle m_{l}\right|\right)=\prod_{j<0, i=1, \ldots, l}\left(m_{i}(j)-j-\gamma_{i}, m_{i}(j) \bmod r\right)
$$

Lemma 6.9. Suppose that $\Delta\left(\left\langle m_{1}\right| \otimes \cdots \otimes\left\langle m_{l}\right|\right)=\Pi(k, a)^{D_{k, a}}$. Then we have

$$
\begin{equation*}
D_{k, a}=\sum_{i=1}^{l} \sum_{m_{i}(k-1)<b<m_{i}(k)} \delta_{a b}^{(r)} \tag{6.10}
\end{equation*}
$$

where $\delta_{a b}^{(r)}$ is defined in (5.2).
Proof. If $j<0$ and $m_{i}(j)<m_{i}(0)$, then $m_{i}(j)-j-\gamma_{i}=0$. If $k \geq 1, j<0$ and $m_{i}(k-1)<m_{i}(j)<m_{i}(k)$, then we can show inductively that $m_{i}(j)-j-\gamma_{i}=k$. Therefore we obtain (6.10).

Proposition 6.10. The divisor $\Delta\left(\xi_{\eta}\right)$ is reduced.
Proof. Recall the construction of the highest lift. From the proof of Proposition 5.2 we have

Furthermore for each k there exists an integer $s=s(k)(2 \leq s \leq l+1)$ such that $m_{s}(k-1) \geq m_{s-1}(k)$. (We set $m_{l+1}=m_{1}[r]$.) Therefore there exists $\alpha \in \mathbf{Z}$ such that $m_{s-1}(k) \leq \alpha \leq m_{s}(k-1)$. For this α we have $\Delta\left(\xi_{\eta}\right)_{k, \alpha \bmod r}=0$.

Let v_{Λ} be the highest weight vector in $L(\Lambda)$. We choose a reduction $\Delta\left(\xi_{\eta}\right) \longrightarrow A=\left(a_{0}, a_{1}, \cdots, a_{d-1}\right) \in\left(\mathbf{Z}_{r}\right)^{d}$, and set

$$
v_{\eta}=f_{a_{0}} \cdots f_{a_{d-1}} v_{\Lambda}
$$

Notice that for a given path η the choice of A and hence of v_{η} is not unique in general; we choose one and fix it for all. In Section 5 we constructed the vector ξ_{η} in $L(\Lambda)_{\mu}^{*}$ for a Λ-path η of weight μ. Here we show that the vectors $\left\{\xi_{\eta} \mid \eta \in \mathcal{P}(\Lambda)_{\mu}\right\}$ are independent and span the vector space $L(\Lambda)_{\mu}^{*}$. Because of Proposition 5.11 it suffices to show that the pairing between $\left\{\xi_{\eta} \mid \eta \in \mathcal{P}(\Lambda)_{\mu}\right\}$ and $\left\{v_{\eta} \mid \eta \in \mathcal{P}(\Lambda)_{\mu}\right\}$ is non-degenerate. We shall see that the matrix $\left(\xi_{\eta}\left(v_{\eta^{\prime}}\right)\right)_{\lambda_{\eta}=\mu}$ is triangular with positive diagonal entries (Theorem 6.14 below).

An element of $\mathcal{F}_{\mathbf{Z}}^{*}[\Lambda]$ is called a monomial if it is of the form $\left\langle m_{1}\right| \otimes$ $\cdots \otimes\left\langle m_{l}\right|$. An element $M \in \mathcal{F}_{\mathbf{Z}}^{*}[\Lambda]$ is called positive if it is a sum of monomials. For $M, N \in \mathcal{F}_{\mathbf{Z}}^{*}[\Lambda]$ we write $M \geq N$ if and only if $M-N$ is positive.

An element $X \in \mathbf{Z}\left[\mathcal{D}_{+}\right]$is called positive if it is a sum of positive divisors. For $X, Y \in \mathbf{Z}\left[\mathcal{D}_{+}\right]$we write $X \geq Y$ if and only if $X-Y$ is positive.

For $a \in \mathbf{Z}_{r}$ we define a \mathbf{Z}-linear derivation $F_{a}: \mathbf{Z}\left[\mathcal{D}_{+}\right] \longrightarrow \mathbf{Z}\left[\mathcal{D}_{+}\right]$by

$$
F_{a}((k, b))=\delta_{a b}(k-1, a-1) \quad \text { for } \quad k \geq 1
$$

Lemma 6.11. With the above notations we have

$$
\begin{equation*}
\Delta\left(\left(\left\langle m_{1}\right| \otimes \cdots \otimes\left\langle m_{l}\right|\right) f_{a}\right) \leq F_{a}\left(\Delta\left(\left\langle m_{1}\right| \otimes \cdots \otimes\left\langle m_{l}\right|\right)\right) \tag{6.11}
\end{equation*}
$$

Proof. Let m be a Maya diagram. Then we have

$$
\begin{equation*}
\langle m| f_{a}=\sum_{m^{\prime}}\left\langle m^{\prime}\right| \tag{6.12}
\end{equation*}
$$

where the sum is over m^{\prime} such that there exist $j^{\prime} \geq 0$ and $j<0$ satisfying $m\left(j^{\prime}\right)+1=m(j) \equiv a \bmod r$ and

$$
\begin{array}{rlrl}
m^{\prime}(k) & =m(k) \quad & \quad \text { if } k \neq j, j^{\prime}, \\
& =m(j) & \quad \text { if } k=j^{\prime} \tag{6.13}\\
& =m\left(j^{\prime}\right) & & \text { if } k=j
\end{array}
$$

Therefore we have

$$
\begin{align*}
& \Delta\left(\left(\left\langle m_{1}\right| \otimes \cdots \otimes\left\langle m_{l}\right|\right) f_{a}\right) / \Delta\left(\left\langle m_{1}\right| \otimes \cdots \otimes\left\langle m_{l}\right|\right) \tag{6.14}\\
& =\sum_{j<0, k=1, \ldots, l} \delta_{m_{k}(j), a}^{(r)}\left(1-\delta_{m_{k}(j), m_{k}(j-1)+1}\right) \frac{\left(m_{k}(j)-j-\gamma_{k}-1, a-1\right)}{\left(m_{k}(j)-j-\gamma_{k}, a\right)}
\end{align*}
$$

On the other hand

$$
\begin{align*}
& F_{a}\left(\Delta\left(\left\langle m_{1}\right| \otimes \cdots \otimes\left\langle m_{l}\right|\right)\right) / \Delta\left(\left\langle m_{1}\right| \otimes \cdots \otimes\left\langle m_{l}\right|\right) \tag{6.15}\\
& \quad=\sum_{j<0, k=1, \ldots, l} \delta_{m_{k}(j), a}^{(r)} \frac{\left(m_{k}(j)-j-\gamma_{k}-1, a-1\right)}{\left(m_{k}(j)-j-\gamma_{k}, a\right)}
\end{align*}
$$

Comparing (6.14) and (6.15) we obtain (6.11).
Lemma 6.12. Let $A=\left(a_{0}, a_{1}, \cdots, a_{d-1}\right) \in\left(\mathbf{Z}_{r}\right)^{d}$ and let $D \in \mathcal{D}_{+}$ be a positive divisor such that $\sharp(D)=d$. Then

$$
F_{a_{d-1}} \cdots F_{a_{0}}(D) \neq 0
$$

if and only if $A \Longrightarrow D$.
Proof. This is immediate from the definitions.
From Lemma 6.11 and Lemma 6.12 follows

Corollary 6.13. Let η and η^{\prime} be Λ-paths. Suppose that $v_{\eta}=$ $f_{a_{0}} \cdots f_{a_{d-1}} v_{\Lambda}$. Then $\xi_{\eta^{\prime}}\left(v_{\eta}\right)=0$ unless $A=\left(a_{0}, a_{1}, \cdots, a_{d-1}\right) \Longrightarrow$ $\Delta\left(\xi_{\eta^{\prime}}\right)$.

Finally we have
Theorem 6.14. For all Λ-path η we have $\xi_{\eta}\left(v_{\eta}\right)>0$. If η^{\prime} is a Λ-path such that $b\left(\Delta\left(\xi_{\eta^{\prime}}\right)\right) \leq b\left(\Delta\left(\xi_{\eta}\right)\right)$ and $\eta^{\prime} \neq \eta$, then we have $\xi_{\eta}\left(v_{\eta^{\prime}}\right)=0$.

Proof. The latter half is obvious from Proposition 6.8 and Corollary 6.13. The first half follows from the following lemma.

Lemma 6.15. Suppose that $D=\Delta\left(\left\langle m_{1}\right| \otimes \cdots \otimes\left\langle m_{l}\right|\right)$ is reduced. If $D \xrightarrow{k a} D^{\prime}$, then there exists $\left\langle m_{1}^{\prime}\right| \otimes \cdots \otimes\left\langle m_{l}^{\prime}\right| \in \mathcal{F}_{\mathbf{Z}}^{*}[\Lambda]$ satisfying

$$
\begin{align*}
\Delta\left(\left\langle m_{1}^{\prime}\right| \otimes \cdots \otimes\left\langle m_{l}^{\prime}\right|\right) & =D^{\prime} \tag{6.16a}\\
\left\langle m_{1}^{\prime}\right| \otimes \cdots \otimes\left\langle m_{l}^{\prime}\right| & \leq\left(\left\langle m_{1}\right| \otimes \cdots \otimes\left\langle m_{l}\right|\right) f_{a} \tag{6.16b}
\end{align*}
$$

Proof. Note that $a \in N(D, k)$. Therefore, from (6.12) we have $i(1 \leq i \leq l)$ and $j(<0)$ such that

$$
\begin{aligned}
m_{i}(j)-j-\gamma_{i} & =k \\
m_{i}(j) & \equiv a \bmod r \\
m_{i}(j-1) & \neq m_{i}(j)-1
\end{aligned}
$$

Suppose that $m_{i}\left(j^{\prime}\right)=m_{i}(j)-1$. Then we have $j^{\prime} \geq 0$. Define m_{i}^{\prime} by (6.13) and set $m_{k}^{\prime}=m_{k}$ for $k \neq i$. Then (6.16) is valid.

References

[1] E. Date, M. Jimbo, A. Kuniba, T. Miwa and M. Okado, Lett. Math. Phys., 17 (1989), p. 69.
[2] I. M. Gelfand and M. L. Tsetlin, (in Russian): English translation I. M. Gelfand Collected Papers vol. II, p. 653, p. 657 Springer 1988, Dokl. Akad. Nauk USSR, 71 (1959), p. 825, p. 1017.
[3] J. Lepowsky and R. L. Wilson, Comm. Math. Phys., 62 (1978), p. 43.
[4] V. G. Kac, D. A. Kazhdan, J. Lepowsky and R. L. Wilson, Adv. in Math., 42 (1981), p. 83.
[5] I. Frenkel and V. G. Kac, Invent. Math., 62 (1980), p. 23.
[6] J. Lepowsky and R. L. Wilson, Invent. Math., 79 (1985), p. 417.
[7] J. Lepowsky and M. Primc, Structure of the standard modules for the affine Lie algebra $A_{1}^{(1)}$, Contemporary Mathematics 46 AMS, Providence 1985.
[8] K. C. Misra, Jour. Alg, 90 (1984), p. 385.
[9] V. Lakshmibai and C. S. Seshadri, C.R. Acad. Sci. Paris, t. 305 (1987), p. 183.
[10] E. Date, M. Jimbo, A. Kuniba, T. Miwa, and M. Okado, Nucl. Phys., B290[FS 20] (1987), p. 231. Adv. Stud. Pure Math., 16 (1988), p. 17
[11] M. Sato, Lectures given at Kyoto University 1984-85, Notes by T. Umeda.
[12] M. Primc, Standard representations of affine Lie algebra $A_{n}^{(1)}$ (Manuscript).
[13] M. Jimbo and T. Miwa, Publ. RIMS. Kyoto Univ., 19 (1983), p. 943.
[14] M. Jimbo and T. Miwa, Publ. RIMS. Kyoto Univ., 15 (1979), p. 871.

Etsuro Date
Department of Mathematics
College of General Education
Kyoto University
Kyoto 606, Japan
Michio Jimbo
Department of Mathematics
Faculty of Science
Kyoto University
Kyoto 606, Japan

Atsuo Kuniba
Institute of Physics
College of Arts and Science
University of Tokyo
Tokyo 153, Japan
Tetsuji Miwa
Research Institute for Mathematical Sciences
Kyoto University
Kyoto 606, Japan
Masato Okado
Research Institute for Mathematical Sciences
Kyoto University
Kyoto 606, Japan

