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U niformization of Complex Surfaces 

Ryoichi Kobayashi 

Abstract. 

This is an expository paper on the structure of complex surfaces 
which have the Hirzebruch proportionality 3c2 = Ci or 2c2 = Ci 
between their Chern numbers. We characterize surfaces with 3c2 = d 
as ball quotients in the category of normal surfaces with branch loci. 
We discuss the uniformization problem for surfaces with 2c2 = d 
from the point of view of Kahler-Einstein metrics and holomorphic 
conformal structures. 

§0. Introduction 

The purpose of this expository paper is to discuss some aspects of 
the uniformization problem for complex surfaces. Let us first of all fix 
the notion of uniformization. 

Definition. A complex orbi-surface is a pair (X, D) of a quasi
projective complex surface X and a Q-divisor D with the following 
properties: 
(1) There exists a compact complex normal surface X containing X as 
a Zariski open set and X - X consists of a finite number of points. 
(2) If Di are the irreducible components of D, then D = ~;=1 (1- f )Di 

where each b; is either infinity or an integer greater than one. 
(3) For each point p EX -Ub;=ooDi there exists a neighborhood U(p) c 
X of panda holomorphic (branched) Galois covering B 2 --. U(p) (B 2 is 
the unit open ball in C 2 ) with covering transformation group r c U(2) 
and Ui(Di n U(p)) is the branch locus. 
(4) For each point p E Ub;=ooDi there exists a neighborhood U(p) C X 
of p and a holomorphic (branched) Galois covering ~ x ~ * --. U (p) -
Ub,=ooDi or ~ * x ~ * --. U(p) - Ub,=ooDi with covering transformation 
group r c U(2) and Ub;<ooDi is the branch locus. 
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(5) For each point p E X - X there exists a neighborhood U(p) C X 
which is uniformized by 
(i) a horoball of B 2 at a boundary point oo with covering transformation 
group r c PSU(2, 1) a discrete parabolic subgroup at oo, 
or by 
(ii) a horoball of ~ x ~ at the boundary point ( oo, oo) with covering 
transformation group r c Aut(~ x ~) a discrete parabolic subgroup at 
( oo, oo) which does not project down to operate ~ * x ~ *. 
In both (i) and (ii), Ub;<oo(Di n U(p)) is the branch locus of the 
(branched) Galois covering. 

The integers bi are branch indices. If bi = oo, we can delete the 
corresponding Di. Namely, writing D 00 for the union of Di with bi= oo, 
we put the following 

Definition. A complex orbi-surface (X, D) is uniformizable if 
there exists a holomorphic branched Galois covering Y --+ X - D 00 

with branch locus Supp(D - D 00 ) of indices bi along Di. 

These definitions refine the definition of V-manifolds in [Sat] in some 
respects. There will be many ways to generalize the definition of orbi
surfaces in higher dimensions, because various bounded symmetric do
mains come in in higher dimensions. But it may be possible to consider a 
restricted class of orbifolds, for instance compact n-dimensional orbifolds 
(X, D) (D = ~i(l - ti )Di is a Q-divisor as above) with all bi < oo. 

There are several approaches to the uniformizability problem for 
orbi-surfaces and orbifolds. 

The most direct approach is looking at the relation of the global 
fundamental group 1r1 (X - Supp(D)) and the local fundamental groups 
at points in Di. This approach is due to Kato [Kat] and Namba [Nam]. 
They proved theorems which give sufficient conditions for the uniformi
zability in terms of the fundamental group 1r1 (X - Supp(D)). 

Secondly, there is a differential geometric approach to the uniformi
zation problem. This is to characterize Hermitian symmetric spaces 
by curvature conditions. Mok studied this problem extensively ([Mo]). 
There are also works by Yang [Yan], Mostow-Siu [MS], Siu-Yang [Si-Y] 
and Wong [Wo]. Siu and Yang [Si-Y] developed differential geometry 
of Kahler- Einstein surfaces. In general, developing differential geometry 
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of Kahler-Einstein manifolds would be very important, if one wants to 
apply Kahler-Einstein manifolds to problems in algebraic geometry. 

Thirdly, seeking numerical characterizations for ball quotients is also 
a uniformization problem. This is initiated by Yau [Yaul]. In this ap
proach, there is so far a big difference between dimension 2 and higher 
dimensions. This difference arises from the fact that 2-dimensional 
log-canonical singularities are all quotient singularities (possibly with 
an infinite group) but this is not the case in higher dimensions (see 
Sugiyama's survey [Su] in this volume). This causes the difficulty in 
analyzing the canonical Kahler-Einstein metric (see [Sul) around singu
larities. In higher dimensions, there are partial results by Tsuji [Tl] and 
Tian and Yau [T-Y]. 

The fourth approach is to look at the holomorphic geometric struc
tures modeled after Hermitian symmetric spaces. Partially based on 
Gunning's earlier work ([Gu]), Kobayashi and Ochiai developed a the
ory of G-structures modeled after Hermitian symmetric spaces. We refer 
to papers of Inoue-Kobayashi-Ochiai [IKO], Kobayashi-Ochiai [KOl,2,3]. 
In the case of complex dimension two, these structures are those of affine 
C2, P2( C) and Q2( C). The infinitesimal version of these structures are 
respectively the holomorphic affine connection, holomorphic projective 
connection and the holomorphic conformal structure. All compact com
plex smooth surfaces admitting such structures are completely classified 
in [IKO] and [KOl,2]. In particular, uniformization for such surfaces 
are also given. Their approach is to study the properties of surfaces 
admitting such structures. 

We should mention here that there is a new approach due to Simp
son [Sim] to the higher dimensional uniformization problem based on 
the construction of the variations of Hodge structures using Yang-Mills 
theory. 

In this paper, we make some contributions to the third and fourth 
approaches to the uniformization problem of complex surfaces. Now we 
state our results with some comments on future developments of the 
theories. 

In Section 3, we prove the best possible form of the numerical char
acterization of ball quotients in dimension 2. This general result heavily 
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depends on the fact that every two dimensional log-canonical singular
ity is uniformizable by a bounded symmetric domain n with local cover
ing transformation group an appropriate parabolic discrete subgroup of 
Aut(n) (see Subsection 3.1). It would be interesting to understand this 
fact differential geometrically. For instance, Bando, Kasue and Naka
jima (BKN] are able to characterize log-terminal surface singularities 
as those singularities which appear in the limit of Kahler-Einstein sur
faces with a fixed Einstein constant, a fixed volume and bounded diam
eters. By putting Kobayashi-Todorov's example (see, for instance [K4, 
Section 3]) into a general theory, they captured ALE gravitational in
stantons bubbling off in the limit. In the known examples ([KT](see 
[K4]) and [T2] (see also [Sul)), the bubbling out ALE gravitational in
stanton corresponds to the simple surface singularity appearing in the 
limit. It is desirable to generalize Bando-Kasue-Nakajima's result in the 
cases of log-canonical surface singularities. To do so, one must aban
don the hypothesis of bounded diameter and must capture other kinds 
of {non-ALE) gravitational instantons bubbling off at infinity. Natu
ral candidates for these are complete Ricci-fl.at Kahler surfaces which 
are compactified by adding an anti-canonical divisor ( e.g., an elliptic 
curve, a cycle of rational curves or two rational curves with an ordinary 
contact point). The corresponding surface singularities are essentially 
smoothable simple elliptic singularities, smoothable cusp singularities. 
The multi-Taub-NUT gravitational instantons (see, for example [E-G
H]) are examples of such Ricci-fl.at Kahler surfaces. Some existence 
theorems for such Ricci-fl.at Kahler surfaces are established in (K5]. 

The fourth approach we take in Section 4 of this paper is based 
on an idea which is complementary to Kobayashi-Ochiai's point of view 
[KOl,2,3]. Namely, our approach is to seek a method of constructing a 
flat G-structure modelled after a standard Hermitian symmetric spaces 
M on an orbifold which we want to uniformize. If there exists such a 
fl.at G-structure which is compatible with the given orbifold structure, 
then the developing map of {X, D) to an open subset of M for this fl.at 
G-structure will give a multivalued map ( X - D 00 , D) --+ M which is the 
inverse of the universal branched covering map M --+ (X -D 00 , D). This 
point of view opens a way to constructing a differential equation satisfied 
by the period map of a family of algebraic varieties, i.e., finding geomet
rically a new transcendental function ( "period map") characterized by 
a simple uniformizing differential equation on a locally Hermitian sym
metric orbifold. We mention briefly some examples due to [Sa-Y] and 
[Sato] in Section 4. See [Nar2] for the construction of families of K3 
surfaces over a quotient space of domains of type IV. 
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We now explain the geometric meaning of our results. Let X be the 
canonical model of a minimal algebraic surface X' of general type. We 
set 

(0.1) 
1 

~ (e(E(p)) - IG(p)I ), 
pESmg(X) 

and 

(0.2) 

where E(p) is the exceptional set in X sitting over p in the minimal 
resolution and G(p) is the local fundamental group of p. Note that 
c2 (X) .is the Euler number of the orbifold X. The space Xis a complex 
orbifold (in an extended sense) and there exists a unique Kahler-Einstein 
orbifold-metric [Kol]. Using this Kahler-Einstein metric, we can show 
that 

(0.3) 

where W _ is the anti-self-dual part of the Weyl conformal curvature 
tensor. Since W _ vanishes if and only if the holomorphic sectional cur
vatures are constant for a Kahler-Einstein metric on a complex surface, 
we have the following three equivalent conditions for a compact complex 
smooth surface X of general type (see for example [KNr, p.4861). 
(a) 3c2(X) = c1(X) 2 , 

(b) X admits a holomorphic projective connection, 
(c) Xis uniformized by an open unit ball B 2 in C2 • 

This is the reason why ball quotients are characterized simply by a nu
merical condition of Chern numbers. Namely it suffices to show only 
the existence of a Kahler-Einstein metric on surfaces with the extremal 
equality (a) between Chern numbers without examining the existence 
of a holomorphic projective connection. Examples of orbi-surfaces uni
formized by the open unit ball are found in [BHH] and uniformizing dif
ferential equations for these orbi-surfaces are extensively studied in [Yo]. 
These differential equations are fulfilled by the developing map of holo
morphic projective structures and are expressed in terms of holomorphic 
projective connections with appropriate singularities along branch loci. 
We shall not discuss these examples but instead shall examine explicitly 
some examples of uniformization of orbifolds D x D Jr in Section 4. 
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Another class of surfaces we are interested in is that of normal sur
faces with Hirzebruch proportionality 2c2 = cr in some modified sense. 
It turns out to be the case that such surfaces are not necessarily uni
formized by the bidisk. Examples are constructed by [MT] (a simply 
connected compact smooth surface of general type with 2c2 = Ci) and 
[KNr] ( orbifold example, see Section 4). In this paper, we treat such 
surfaces from a rather special point of view. As is noted by Kobayashi 
and Ochiai [KO2], holomorphic conformal structure together with Ricci
negative Kahler-Einstein structure characterizes bidisk quotients. But 
assuming the existence of only one of these seems to be insufficient for 
the characterization of bidisk quotients. To clarify the reason why this 
is insufficient, we attempt to present a geometric method of the con
struction of holomorphic conformal structures. Roughly speaking, we 
construct a singular holomorphic conformal structure on P2 ( C) with 
prescribed singularities and then desingularize it by using a covering 
trick. The construction reduces to solve the algebraic equations deter
mined canonically by the singularities. This construction leads us to an 
explicit construction of the holomorphic conformal structure on P2 ( C) 
as Hilbert modular orbifolds ([KNr], [Sato]). An interesting by-product 
are two examples of compact complex surfaces, with simple singulari
ties and ample canonical bundle, which fulfill the equality 2c2 = d, but 
are not covered by the bidisk [KNr]. These are Kahler-Einstein surfaces 
with negative Ricci-curvature, one being rigid and the other being de
formed into a certain degenerate member ( see Subsection 4.4). Sasaki 
and Yoshida [ Sa-Y] employed such a singular holomorphic conformal 
structure to regard P2 ( C) as the Hilbert modular orbifold of Q( v'2) 
and relate the structure with classical projective geometry to determine 
explicitly the uniformizing differential equation for that orbifold. Subse
quently, Sato [Sato] improved their methods in some technical points to 
get uniformizing equations for other polyhedral modular groups (see Sec
tion 4). These differential equations come up via the developing maps of 
the holomorphic quadric structures and are expressed partially in terms 
of holomorphic conformal structures ( one need more global consideration 
including integrability conditions to determine all the coefficients in the 
differential equations). We notice that there are no geometric method 
to construct explicitly examples of Kahler-Einstein metrics which are 
not half-conformally flat. These objects are not reduced to holomor
phic ones and hence can be very difficult to construct geometrically. On 
the other hand, the Penrose transform and its inverse [Hit] (see also 
[Bes, Chapter 13] allows us to construct explicitly examples of Ricci-flat 
Kahler-Einstein complete open manifolds. For holomorphic conformal 
structure, there is a way to use singularities for the construction. Gen-
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erally speaking, one can often reach explicit construction of geometric 
objects by putting the problem into holomorphic category and even by 
introducing singularities. 

Finally, the author would like to express hearty thanks to Professors 
I. Naruki, F. Sakai, Doctors S. Nakamura, T. Sato for encouragement 
and stimulus discussions. Without collaborations with them, this paper 
would have never come out. 

§1. Kahler-Einstein metrics and uniforrnization 

The uniformization of compact algebraic curves 1 is classical. Any 
compact algebraic curve has either P1 ( e), e or H as its universal cover
ing complex manifold. Here, H denotes the upper-half-plane. These are 
known as the complete list of simply connected Riemannian 2-manifold 
of constant curvature. Let X be a compact algebraic curve. Its genus 
and its Euler number are denoted by g(X) and e(X), respectively. The 
number g(X) is the dimension of the complex vector space of holomor
phic 1-forms on X and is related to e(X) by the Riemann-Roch formula 
e(X) = 2 - 2g(X). If we introduce a Kahler metric h on X, then the 
Gauss-Bonnet theorem says that e(X) = /ir fx K(h)dvh, where K(h) 
is the Gaussian curvature of h. This suggests that the negative curva
ture property of h is reflected in the ampleness of g(X) and vice-versa. 
Indeed, if T*(X), the bundle of holomorphic 1-forms, is generated by 
global sections, there exists a holomorphic surjective homomorphism 
/ : X x en ----+ T*(X), where n = g(X). Then we apply the Gauss
Codazzi equation ( cf. [GH], [Kob2]) to the fl.at metric for the trivial bun
dle Xx en and the projection f to see that T*(X) admits a Hermitian 
metric with nonnegative curvature. This implies that X admits a Kahler 
metric with nonpositive curvature. Now suppose e(X) < 0 ~ g(X) > 1. 
Since b2 (X) = 1, X admits a Kahler metric of negative curvature. In 
fact, this correspondence holds in more precise sense. Namely, X admits 
a Kahler metric of constant negative curvature if and only if g(X) 2'.: 2. 
So the uniformization of compact algebraic curves is to find a metric of 
constant curvature. Let g be a Riemannian metric on X. The existence 
of isothermal coordinates implies that g determines a unique complex 
structure such that g is a Kahler metric. Let w be a Kahler form of 
g. We seek a new Kahler metric of the form w + F"f88u of constant 
negative curvature. Let I be the curvature form of g. If g is so chosen 

1 Any I-dimensional compact complex manifold is algebraic. 
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that 1 = -w - Ao8f for a real valued function f (since b2 = 1, it 
becomes the case after a scale change if necessary), then u must be the 
solution to the non-linear equation 

(1.1) 

Hereafter we follow the convention 6 = trace of 'v 2 for the Laplacian. 
We apply the maximum principle to the equation (1.1) to get an a priori 
estimate llull00 :S: C(f), where C(f) is a constant which depends only 
on II f II 00 • The maximum principle implies also the uniqueness of the 
solution. If p > 2, the Sobolev imbedding theorem [GT, Chapt.7] gives 
the estimate for du: lldulloo :S: Cllull2,p· Since u and 6 u have a priori 
bounds, the LP-estimate for linear elliptic equations [GT, Theorem 9.11] 
gives the estimate of llull2,p in terms of llulloo· We thus get an a pri
ori estimate for lldulloo· This then gives local Hc>lder estimates for u 
and 6u = -1 + ef+u_ Applying the interior Schauder estimates [GT, 
Theorem 6.2] we get an a priori estimate for the Hc>lder norm llull2,0 • 

Differentiating the equation ( 1.1) and applying the interior Schauder es
timates inductively, we get a priori estimates for all Holder norms of u. 
This allows us to use the continuity method (see, for example [GT]) to 
show the existence of the solution. So the uniformization problem for 
Riemann surfaces of genus 2: 2 is reduced to the equation (0.1). It is well 
known that this uniformization theorem is generalized to the equivariant 
version in the following way. Let (X, D) be a pair of a compact alge
braic curve and a Q-divisor D = I:;=1 (1 - t; )D;, where b; are positive 
integers possibly oo. We say (X, D) a complex I-dimensional orbifold or 
shortly an orbi-curve. A finite b; is the branch index at a point D; and 
b; = oo means the point D; is deleted. We say (X, D) is uniformizable 
if there exists a pair (Y, r) of a curve Y (possibly non-compact, or a 
punctured Riemann surface) and a discrete group r of automorphisms 
of Y such that (X, D) is the quotient space Y/r. A simply connected 

Y is uniquely determined. We denote this X and call this the universal 
branched covering. Suppose (X, D) is uniformizable. By a theorem of 
Fenchel-Fox [Fo], there exists a finite uniformization (Y -D, r), where Y 
is a compact curve, D is a possibly empty finite set of points of Y and r 
is a finite group of automorphisms of Y which leaves D stable. We want 
to define the Euler number of (X, D) by e(Y - D) = lrl e(X, D). This 
definition agrees with the expression of the Euler number as a curvature 
integration, if we consider an orbifold-metric on (X, D). Therefore we 
define the Euler number of (X, D) in the following way. 
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Definition. The Euler number of (X, D) is 

(1.2) 
r 1 

e(X,D) = e(X) + L (t: -1). 
i=l ' 

The generalized uniformization theorem is well-known. 

Theorem 1.1. The orbifold (X, D) is not uniformizable in the 
following two cases: (1) r = 1, (2) r = 2 and b1 i= b2 • Otherwise, (X, D) 
is uniformizable. If (X,D) is uniformizable, then Xis P1(C), C or H 
according as e(X, D) > 0, = 0, < 0. 

We call (X, D) with e(X, D) < 0 a hyperbolic I-dimensional com
plex orbifold or a hyperbolic orbi-curve. Any hyperbolic orbi-curve 
(X, D) is uniformizable and X = H. This assertion is proved by finding 
a constant negative curvature orbifold-metric on (X, D). To find such a 
metric, we first note that Kx + I:;=1 (1 - t; )Di is an ample Q-divisor 

on X. Hence there exists a volume form n, a Hermitian metric II · 112 

for oxo:=;=1 Di), holomorphic sections Ui for Ox(Di) with zeros at 
Di, such that lluill < 1 and the minus of the Ricci-form of the singular 
volume form 

(1.3) 

defines a complete orbifold Kahler form w = A8&Iog Won the orbifold 

(X,D). Here, we interpret bi(l - lluill~) = log llu!II• if bi= oo. Of 
course this agrees with taking the limit b; -. oo. This metric looks 

.l,_ 2 

like an orbifold metric ldz "i around a point with b; = n and like 
(1-\z\ n )2 

a Poincare metric 1 12ddzl2 
1 ) 2 of the punctured disk around a point of 

z og~ 

b; = oo. We again solve the equation (1.1). It is easy to see that the 
function / = log! is an orbifold-smooth bounded function on (X, D). 
The maximum principle then implies the uniqueness of the solution and 
gives an a priori estimate lluii00 < C(/) as before. We consider each D; a 
quotient singularity (if b; = oo, the group is a discrete parabolic group of 
H) and locally uniformize the metric w to get a smooth metric on each 
local uniforrnization. Using the homogeneity of H with the invariant 
metric, we can construct a system of quasi-coordinate neighborhoods 
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and define the Banach space of ck,a_functions on (X, D). See Section 3 
for precise definitions. We then apply the Sobolev imbedding theorem 
lldulloo ~ Cllull2,p, the LP-estimates and the interior Schauder estimates 
in these quasi-coordinate neighborhoods to get a priori estimates for the 
derivatives of u. The continuity method then gives the existence of a 
solution for (1.1). We thus get an orbifold-metric on (X, D) of constant 
negative curvature. Since there is a simply connected space form H, we 
can develop (X, D) isometrically over H by analytic continuation along 
geodesics. This shows that .X = H. 

It is then natural to ask whether it is possible to generalize this 
simple criterion for uniformization of Riemann surfaces to higher di
mensions. Hereafter we consider the case of dimension two. First of all 
we have no simple uniformization theorem which is applicable in any 
wide class of manifolds of dimension 2: 2. Indeed there are infinitely 
many topological types in simply connected compact complex surfaces. 
For instance, the Lefschetz hyperplane section theorem [Mil] implies that 
any smooth surface in P3 ( C) of degree 2: 5 is simply connected. As in 
one-dimensional case, the uniformization theorem should be understood 
in the classification theory of varieties, Higher dimensional algebraic va
rieties are roughly classified according to their Kodaira dimensions. Let 
X be an n-dimensional Kahler manifold. The Kodaira dimension of X 
is the dimension of the image of X under the rational map ~m defined 
by the pluricanonical system lmKxl of X for a sufficiently large m. The 
canonical class in the de Rham cohomology is represented by the neg
ative of the Ricci form ~ {)[J log n for any volume form n. It follows 
from the Calabi/Yau theorem [Yl] (to find a Kahler metric with the 
prescribed volume form) that if the pluricanonical system has no base 
points, then X admits a Kahler metric whose Ricci form is the pull back 
of the negative of a Kahler metric in the canonical class of the image 
~m{X). Thus the Kodaira dimension m of X corresponds to the nega
tivity of Ricci curvature in the sense that X admits a Kahler metric with 
nonpositive Ricci form with rank m. So, whereas 1-dimensional varieties 
are classified according to their Gaussian curvatures, higher dimensional 
ones are roughly classified according to their Ricci curvatures and there 
is no general uniformization theorem for Kahler manifolds with con
stant Ricci curvature, Le., Kahler-Einstein manifolds. For spaces with 
constant holomorphic sectional curvature, the following uniformization 
theorem is well-known [KNm, pp.169-171]: 

Fact 1.1 ([KNm]). A simply connected n-dimensional complete 
Kahler manifold with constant holomorphic sectional curvature c is one 
of the following three spaces with canonical Kahler-Einstein metric: 
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(1) Pn(C), if c > o, (2) en, if c = o, or (3) Bn, the open unit ball 
in Cn, if C < 0. 

A special uniformization theorem due to Chen-Ogiue for higher di
mensional Kahler-Einstein manifolds is: 

Theorem 1.2 ([CO]). Let (X,w) be an n-dimensional compact 
Kahler-Einstein manifold. Then 

and the equality holds if and only if ( X, w) is of constant holomorphic 
sectional curvature. · 

The left hand side is the deviation of the Kahler-Einstein form w to 
be of constant holomorphic sectional curvature. Suppose 'Yw = (n~l)c w, 
where 'Yw is the Ricci form of w and c is a constant, the holomorphic 
sectional curvature. Set 2 

C 
TtJkl = Ri,kl + 2(9i19kl + 9il9;;,,). 

Then a simple tensor calculation shows that for a Kahler-Einstein (X, w ), 

(1 5) (2(n + l)c (X w) - nc (X w)2 ) A. wn- 2 = (n + l)IITll 2 wn > 0 
· 2 ' 1 ' 411"2n(n-1) ,... · 

Integrating (1.5) over X gives (1.4) and the equality holds if and only if 
T = 0, i.e., w is of constant holomorphic sectional curvature. The next 
problem is then to find an algebro-geometric condition for the existence 
of a Kahler-Einstein metric. This is the solution to Calabi's conjecture 
due to Aubin [Aul] and Yau [Yaul]. 

Theorem 1.3 ([Aul], [Yaul]). Let xn be a compact Kahler 
manifold whose real first Chern class c1 (X)R vanishes or is negative, 
i.e., is represented by a negative definite real closed (1, 1)-form. Then 
every Kahler class of X contains a unique Ricci-flat Kahler form if 
c1 (X)R = 0, or there exists a unique ( up to a constant multiple) Kahler
Einstein metric if c1 (X)R < 0. 

The essential point in Aubin and Yau's proof of this theorem in the 
case of c1 ( X) R < 0 is to derive a priori estimates for the equation 

2We use the same convention as in [KNm] for the curvature tensor. Namely, 
Raa is negative in the positive curvature case. 
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(1.6) 

which replaces (1.1) in one-dimensional case. The geometric meaning 
of (1.6) is completely the same as (1.1). As in the case of (1.1), we get 
a uniform estimate for u via maximum principle. The non-linearity in 
(1.6) requires geometric arguments in getting a priori C2-estimate for 
u. In fact, a variant of Bochner-type argument is used for this purpose. 
We recall the following infinitesimal Schwarz lemma: 

Fact 1.2 ([C], [Yau2]). Let (M,g) be a Kahler manifold and 
(N, h) a Hermitian manifold. If f is a non-constant holomorphic map 
of M to N, then 

6 lo l8fl 2 > Rlcg(8f,Ff) 
g g - l8fl2 

Bisecth(8f, Ff, 8f, Ff) 

l8fl 2 

Since this lemma is typical in differential geometry, we outline its 
!)roof. The Bochner formula for holomorphic maps due to Chern [C] is 

Now we compute 

and use the following Schwarz type inequality valid for holomorphic 
maps: 

l8l8fl2l2 s l8fl 2Iv(l,ol8fl2 

to get the result. Since f is holomorphic, we have v<1,0l8f = 0. The 
above Schwarz type inequality then follows: 

LHS = l(V<1,0l8f, 81) + (8f, v7(1,o)8!)I2 

= l(V(1,0)8f, 8f)l2 

5 l8fl2Iv<1,0J8fl2 

We apply this to the identity map of (X,w) to (X,w), where w = w + 
H.88u. Since we use the continuity method to the equations (Et) 
obtained by replacing f by tf for O :St 5 1, we may assume w = Wt, In 
the following argument, all constants are independent of t. Since 
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Ric(wt) = -wt+ (1 - t)A88f 

> (1-t)Ao&f 
2: -cw, 

325 

where c is a positive constant depending only on w and /, and the bisec
tional curvature of w is bounded, we have, for some positive constants 
C1 and C2, 

6;;, log tr;;, w 2: -C1 - C2 tr;;, w. 

Since 6;;,u = n - tr;;, w, if we choose a sufficiently large constant A such 
that A - C2 > 0, we have 

(1.7) 6;;,(logtr;;,w-Au) 2: -An - C1 + (A- C2 )tr;;,w. 

Applying the maximum principle to (1.7), we get, from the uniform 
estimate of u, the C 2-estimate for u. Namely 

Cw< w < c- 1w, 

for some positive constant C. We then apply the Holder estimates for 
second derivatives [GT, Theorem 17.14] to get the C2•0 -estimates for u 
with some O < a < 1. Interior Schauder estimates then give the Ck
estimates for k 2: 3. Using the same strategy as in [Aul], [Yaul] and 
[CY], Kobayashi [Ko2,3] proved an equivariant version of Theorem 1.3 
for some class of normal surfaces with logarithmic Kodaira dimension 2. 
Theorem 1.3 has a direct application to the uniformization problem for 
compact complex manifolds with negative first Chern class. 

Theorem 1.4 ([Yaul]). Let X be an n-dimensional compact 
Kahler manifold with negative first Chern class. Then the inequality 
(1.4) holds and the equality occurs if and only if X is covered by the 
open unit ball in en. 

Miyaoka [Miyl] proved the inequality {1.4) for wider class of com
pact complex surfaces by means of algebraic geometry (without mention
ing the equality case). This is the class of algebraic surfaces of general 
type. A compact complex surface X is of general type if the Kodaira 
dimension of X is two. The Kodaira imbedding theorem implies that 
a surface with negative first Chern class is of general type. There is a 
unique minimal model in the birational class of surfaces of general type. 
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The difference between the negativity of the first Chern class and being 
of general type was clarified by Kodaira [Kod]. 

Fact 1.3 ([Mul], [Kod], [Born], [BPV]). Let X be a minimal alge
braic surface of general type. Then for n ~ 5, the pluricanonical system 
jnKxl has no base point and the pluricanonical map f n is biholomorphic 
modulo£, where E is the union of all curves E such that Kx · E = 0. 
In particular, c1 (X) < 0 if and only if X has no rational curve with 
self-intersection number -2 ((-2)-curve). 

The image X 1 = f n(X) is uniquely determined in the birational 
class and is called the canonical model of X. The canonical model X 1 
has at worst simple singularities and has ample canonical bundle. The 
Miyaoka inequality for minimal algebraic surfaces of general type with 
(-2)-curves is also understood in the Kahler-Einstein context [Kol] us
ing a singular metric. Namely the canonical model X 1 is an orbifold and 
one can establish the equivariant version of Theorem 1.3 which asserts 
that there exists a unique (up to a constant multiple) Kahler-Einstein 
orbifold-metric on X 1. The refinement of the inequality (1.4) was ob
tained in [Miy2] and [Ko2,3]. Although a more general form is proved in 
[Miy2] and [Ko3], we state their result in a restricted form for simplicity. 

Theorem 1.5 ([Miy2], [Ko2,3]). Let X be a minimal algebraic 
surface of general type and X 1 its canonical model. For p E Sing(X 1 ) 

we set E(p) the exceptional set for the minimal resolution of p and G(p) 
the local fundamental group for p. Then 

(1.8) 3(c2{X)- L (e(E(p))- jG~ )I))~ c1(X) 2, 
pESing(Xi) p 

and the equality holds if and only if the orbifold X1 is uniformizable by 
the open unit ball in C 2 • 

An equivariant version [Ko2,3] of Theorem 1.3 implies that the 
canonical model X has a unique Kahler-Einstein orbifold-metric. Using 
this metric, we have an inequality (0.3), which in fact holds in point
wise level. In Section 3, we generalize these results in the category of log 
canonical normal surfaces with branch loci whose logarithmic Kodaira 
dimension is two. As a corollary, we get a numerical characterization 
for ball quotients (possibly with cusps, quotient singularities and branch 
loci) among log canonical normal surfaces with branch loci. 
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§2. Holomorphic G-structures and uniformization 

In this section we discuss the structures of surfaces with the Hirze
bruch proportionality of the quadric. We are mainly interested in holo
morphic conformal structures on Kahler-Einstein surfaces. We shall in
troduce a certain kind of degeneration of holomorphic conformal struc
tures together with a method of construction. The informations aris
ing from singularities are effective to construct explicit examples on 
P2 ( C) ([KNr], [Sat]). We begin with the definition of holomorphic con
formal structures and some results of Kobayashi-Ochiai [K02] which 
have motivated recent research ([KNr], [SaYl,2] and [Sat]). Let M be 
an n-dimensional complex manifold, L(M) the holomorphic GL(n, C)
principal bundle of frames of the holomorphic tangent bundle r<1,0J M. 

Definition ([K02]). A holomorphic conformal structure on Mis 
a holomorphic CO(n, C)-subbundle of L(M), where CO(n, C) = {cU; c 
EC*, U E O(n, C)}. 

As in Riemannian geometry, the degeneration of holomorphic con
formal structures is best understood by introducing a tensor field and 
look at degenerations of it. The following is equivalent to the above: 

Definition ([K02]). A holomorphic conformal structure on Mis 
a pair {Ua, 9a} such that (i) {Ua} is an open covering of M by holomor
phic coordinate neighborhoods, (ii) 9a is a holomorphic non-degenerate 
symmetric covariant 2-tensor field on Ua with the compatibility condi
tion 

(2.1) 

where f af3 is a non-vanishing holomorphic function on Ua n Uf3. 

Let 9a = I::,i=l 9aijdZaidZaj locally. By taking the determinant of 
(2.1) with respect to the basis {dzf3i}, we see that 

(2.2) 

where pn is the holomorphic line bundle defined by the transition func
tions {f af3}- Note that a holomorphic conformal structure on M is a 
holomorphic section of F © S 2 T*(M). 

Holomorphic conformal structure in 2-dimension is exceptional in 
the point that it is equivalent (modulo passing to a double covering) to 
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the holomorphic splitting of the holomorphic tangent bundle. The two 
directions at each point is given by the two projective solutions of the 
quadratic equation 9a(X, X) = 0. 

Example 2.1. en has a CO{n)-invariant holomorphic conformal 
structure :E~=l ( dzi) 2 • 

Example 2.2 ([K02]). Set G = O(n + 2, C). Then G = 
Aut(Qn(C)). Qn(C) has a G-invariant holomorphic conformal struc
ture. Indeed, if we write 

Qn(C) = {[(0 : · · ·: c+1] E Pn+i(C); 

_ 2(0C+1 + ((1)2 + ... + {(n)2 = O}, 

then 
-2d( 0dC+i + {d( 1)2 + · · · + {dC) 2 

gives an G-invariant holomorphic conformal structure on Qn(C). The 
group G acts naturally on L(Qn(C)). The subbundle P corresponding 
to the above holomorphic conformal structure is given by P = G · e, 
where e = (8~1,···, a~n) is the frame at Po== [1: 0: ···: O] E Qn(C) 

. {:__ 
with z' = ,o. 

Example 2.3 {[K02]). The noncompact dual M of M = Qn(C) 
is naturally embedded in M and G = Aut(M) is the subgroup of 
G = Aut(M) which preserves M invariant. It follows that M has a 
G-invariant holo'morphic conformal structure. If r is a discrete sub
group of G, then r\M has a holomorphic conformal structure. If r has 
fixed points, then the holomorphic conformal structure on the quotient 
space will have singularities along branch loci. 

The holomorphic conformal structures in Examples 2.2 and 2.3 
comes from the quadric structure. 

Definition ([K02]). A quadric structure in Mis a pair (Ua, </Jo.) 
such that {i) </>a is a biholomorphic map into an open set of Qn( C), 
{ii)the map 

is induced from an element of G. 

If M has a quadric structure, then it naturally has a holomorphic 
conformal structure. A quadric structure is called a fiat holomorphic 
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conformal structure. This definition may be reasonable, since, for a 
quadric structure, the developing map is canonically defined in the fol
lowing way. Let (Ua, <Pa) be a quadric structure on M. Pick a point 
p E Ua. For another point q, we draw a curve joining p and q and 
choose a sequence (o:0 = 0:,0:1,···,o:i.) such that {Ua,} is a chain of 
open sets joining p and q along c. The analytic continuation along c of 
<Pa is well defined from the above definition. Indeed, if <Pao = f a0 a 1 o </>a1 

on Ua0 n Uai, where f aoai E Aut(Qn(C)) is as above, then <Pao is an
alytically continued to / ao a.1 o <Pa1 on U a 1 • We can thus analytically 
continue <Pao along c from Ua0 to Ua.1 • We can do this along any curve 
joining p and q. The result depends only on the homotopy class of the 
path c. A developing map for a quadric structure is a multi-valued holo
morphic map of M to Qn( C) thus constructed. This construction is very 
important in our examples in Section 4. 

The existence of a holomorphic conformal structure causes a strong 
restriction on the analytic structure of a compact complex manifold M. 
Among them, (2.2) is of fundamental importance. For Chern numbers, 
Kobayashi-Ochiai [KO2] proved the following theorems. 

Theorem 2.1 ([KO2]). Let c(i,i) be the (i, i)-component of the real 
i-th Chern class. Then 

c(r,r) = arn-r(c1,1r, 1 ~ r ~ n, 

where ai are positive integers subject to the relation 

m 

~)1 + h)n- 2qh2q = 1 + a1h + a2h2 + · · · + anhn. 
q=O 

Corollary 2.2 ([KO2]). 

(2.3) 

Corollary 2.3 ([KO2]). 
then 

If M is Kahler, then 

If M is a surface, whether Kahler or not, 

2c2 = er 
Theorem 2.1 is proved by constructing a certain affine connection 

from a holomorphic conformal metric tensor and computing its curva
ture form. Corollary 2.3 motivates our interest in surfaces with 2c2 = Ci. 
It is generally not known which manifold admits a holomorphic confor
mal structure. For Kahler-Einstein manifolds, Kobayashi-Ochiai [KO2] 
proved 
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Theorem 2.4 ([KO2]). Let M be a compact Kahler-Einstein man
ifold of dimension n. If M admits a holomorphic conformal struc
ture, then Mis either (i)Qn(C), (ii)flat, i.e., Mis covered by a torus, 
or (iii) the universal covering is the noncompact dual of Qn(C), accord
ing as the scalar curvature of M is positive, zero and negative. 

Since the differential geometric argument Kobayashi-Ochiai gave in 
[KO2, pp.597-600] is typical in concluding that the given metric is lo
cally symmetric ( the origin of this argument goes back to Berger's holon
omy theorem (see [Bes]) which singles out the possibilities of holonomy 
groups of non symmetric spaces), we give here an outline of their proof of 
Theorem 2.4. For simplicity, we assume Ric =/ 0. Since the given holo
morphic conformal structure is non-degenerate, we have a non trivial 
holomorphic section er of 

(2.4) 

by symmetrizing g2 = g @ g. A version of Bochner's vanishing the
orem [Kohl] implies that er is covariant constant with respect to the 
Kahler-Einstein metric. The existence of this parallel object implies the 
existence of a non trivial invariant subspace in the corresponding repre
sentation space (2.4) of the holonomy group. Berger's theorem [Bes] then 
causes reduction of the holonomy group to the one of a symmetric space. 
Using the special properties between Chern numbers enjoyed by mani
folds admitting a holomorphic conformal structure, we infer that M is 
as in Theorem 2.4. Kobayashi-Ochiai [KO2] posed the question whether 
a compact Kahler manifold with c1 > 0 admitting a holomorphic con
formal structure is biholomorphic to Qn( C). It is proved in [KO2] that 
if n is odd the question is true. In general, the question is still open. In 
2-dimensional case, the question is true, as a consequence of the com
plete classification ([KO2]) of smooth compact complex surfaces with a 
holomorphic conformal structure. There is in particular a complete list 
of the uniformization of smooth compact complex surfaces admitting 
holomorphic conformal structure. In fact, each of these surfaces admits 
a flat holomorphic conformal structure ([KO2]). Kobayashi-Ochiai's list 
is as follows. 

Theorem 2.5 ([KO2]). The class of compact complex surfaces 
admitting holomorphic conformal structure is as follows: 

(1) the quadric P 1 (C) x Pi(C); 
(2) flat holomorphic fiber bundles over a compact Riemann surface 

with fiber Pi(C); 
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(3) hyperelliptic surfaces; 
( 4) complex tori; 

331 

(5) minimal elliptic surfaces with c2 = 0 and even first Betti number 
( these consist of fiat orbifold principal bundles with group an elliptic 
curve T and base an orbi-curve; such objects are always uniformizable); 

(6) algebraic surfaces uniformized by the bidisk D x D; 
(7) Hopf surfaces (C2 - {O} )/r, where r consists of linear transfor-

mations of the form ( ~ ~) or ( ~ ~ ) ; 

(8) Inoue surfaces Su associated with U E SL(3; Z); 
These surfaces in fact admit a quadric structure. 

For non-Kahler cases (7) and (8), the uniformization is explicitly 
given in [KO2]. Any surface in cases (3) and ( 4) is uniformized by the Eu
clidean space C 2 with a group of Euclidean motions. The cases (2) (sur
faces uniformized by Li x Pi ( C) where Li = D or C) and 
( 5) ( surfaces uniformized by Li x T, where Li = Pi ( C) or C or D and 
T is an elliptic curve) are hybrid cases for which Kahler geometry is not 
yet fully developed. The case (6) are treated in Theorem 2.4 but not in 
a constructive way. It is then natural to ask whether there is a method 
of construction of explicit examples. For this purpose, we introduce the 
notion of generalized holomorphic conformal structures (we write GHCS 
for abbreviation). Hereafter X will denotes a smooth compact complex 
surface. 

Definition ([KNr]). A generalized holomorphic conformal struc
ture defined by a holomorphic line bundle L over a compact complex 
surface Xis a primitive holomorphic section T of L © S2T*(X). 

Here the primitiveness means that, at the germ level, T is not di
visible by any non-units in the structure sheaf of X. We give a local 
expression of GHCS in the following way. Let Ua be an open Stein cov
ering of X by coordinate neighborhoods and assume H 2 (Ua; Z) = {O} 
for all a:. For a GHCS, we can find a system of holomorphic sections 
Ta E r(Ua, S2T*(X)) such that if Ta = UT~ for u E r(Ua, 0) and 
T~ E r(Ua,S 2T*(X)), then U E r(Ua,O*), and Ta = haf3Tf3 where 
haf3 E r(Ua n Uf3, O*) and the cocycle {ha13} defines the holomorphic 
line bundle L. 

Definition ([KNr]). The discriminant divisor D for a GHCS {Ta} 
is the divisor on X defined by { det( Ta) = O}. The divisor D does not 
depend on the choice of { Ta}· 

By taking the determinant of Ta = ha13T13, we obtain 
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(2.5) [D] = 2(L + Kx), 

which replaces (2.2). If the discriminant divisor [D] is empty, then a 
GHCS reduces to a non-singular holomorphic conformal structure and 
(2.5) becomes (2.2). The relation (2.5) says that we can consider the 
double covering X of X branching exactly over D, which one can realize 
as an analytic subspace of the total space of the line bundle L + K x ( see 
[BPV, p.42]). We note that there are 2b1 +c5 such coverings where b1 is 
the first Betti number and 6 is the number of independent 1-cycles whose 
doubles are zero. Then the number of homomorphisms of H 1 (X; Z)--+ 
Z2 is 2b1 +8. If one takes the double X associated with L + Kx, then 
X depends functorially on (X, D). We now introduce a special class 
of GHCS's which describes the behavior near cusp singularities of the 
standard holomorphic conformal structure inherited from D x D. 

Definition ([KNr]). Let X be a smooth surface and D a reduced 
divisor with normal crossings. A GHCS r behaves logarithmically near 
D if r is locally given by 

(2.6) y2 P(dx) 2 + 2xyQ(dx)(dy) + x2 R(dy) 2 

with Q2 - PR -:/-0 in coordinates ( x, y) such that D is locally given by 
xy = 0. The discriminant divisor is 2D. 

Example 2.4. For this example we refer to Hirzebruch's theory 
of Hilbert modular surfaces [Hir2] (see also [BPV]). Let K be a totally 
real quadratic field over Q and M a free abelian subgroup of rank 2 and 
V a totally positive multiplicative group of rank 1 such that V M = M. 
Let M = Z + Zw with O < w1 < 1 < w, where w1 means the non-trivial 
Galois action in K. The semi-direct product 

(2.7) G(M, V) = { ( ~ i) I e E V, µ E M} 
acts on H 2 = {(z1,z2) E C21 Im(zi) > 0, Im(z 2) > O} by 

This action is free and properly discontinuous. The (Hilbert modular) 
cusp singularity is obtained by adjoining a point oo to the complex man
ifold H 2 /G(M, V) with its neighborhood system the image of y1y2 > 
d(d > 0), where Zi = x; + v'=Iyi(i = 1,2). Of course the point oo 



Uniformization of Complex Surfaces 333 

is regarded as the image of the boundary point ( ioo, ioo) of H 2 • The 
Hilbert modular cusp singularity is desingularized if we replace oo by 
a cycle of P1(C)'s, say E = I;;,:-; Ei, with self intersection numbers 
-q;, (0 .::; i :S r - l, qi ~ 2 and some qi> 2). The r numbers qi are 
determined by expanding the quadratic irrational number w into the pe
riodic continued fraction: w = qo - (q1 - (q2 - · · · - (qr-1 - (qr - (qr+l -
(···)- 1)- 1)- 1)-· -)- 1)- 1 withperiodr, where qr= qo andqr+I = q1, etc. 
Let Pk and Qk be positive integers such that tis equal to the finite con
tinued fraction obtained by cutting w at qk-1· Define Rk = Pk - Qkw. 
Then qkRk = Rk-l + Rk+l· This relation with the initial conditions 
determines Rk for all integers and Rr is a generator for V =:! Z under 
the isomorphism R; -t n. The equation 

determines a canonical local coordinates (Uk, Vk) around the intersection 
Ek-l n Ek, where (z1,z 2 ) are the standard coordinates of H 2 and Ek 
are considered to be periodic with period r. It is then clear that the 
standard holomorphic conformal structure dz1 dz2 projects down to a 
GHCS in coordinates (uk, vk) which behaves logarithmically along E. 

There are many ways in formulating logarithmic versions of the case 
(iii) in Theorem 2.4. The following is the simplest one. 

Theorem 2.6 ([KNr]). Let X be a smooth compact complex sur
face with at worst quotient singularities and E a divisor lying over the 
regular part of X and set X = X - E. Assume Kg+ E is numerically 
ample modulo E and big. If X admits an orbifold-holomorphic confor
mal structure which extends across E to a GHCS on X which behaves 
logarithmically along E, then X is uniformized by the bidisk. 

Proof. [Ko3, Theorem 1] implies that there exists a unique com
plete Kahler-Einstein orbifold metric on X. Just as in [K02], we can 
construct from the given logarithmic GHCS a holomorphic section s of 

(Kx © [E])- 2 © S4T* X(log E). 

Examining the behavior near E of the complete Kahler-Einstein metric 
(see [Ko2]), we see that if U is the boundary of small a neighborhood of 
E, 

f 8lsl2 ___. O 
lu on 
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as U goes smaller and smaller. We can thus use the Stokes' Theorem to 
get 

fx .0.!sl2 = 0. 

Bochner's formula [Kb] tells us that 

.6.lsl2 = IV sl2. 
Therefore s is covariant constant. As in [K02], by the holonomy the
orem, the canonical Kahler-Einstein metric on X is locally symmetric 
and modeled after bidisk. This implies the uniformization. 

There is a desingularization procedure for a certain class of GHCS. 
This is simply a local uniformization procedure for orbifold holomorphic 
conformal structures with branch loci. Instead of formulating holomor
phic conformal structures on orbifolds in full generality, we give a char
acterization for a certain class of them. Let X be a smooth complex 
surface and r = {r0 } be a GHCS on X with the defining line bundle L 
and with the discriminant divisor D. We consider the following: 

(I) the discriminant divisor D is reduced, 
(II) r O is of rank 1, i.e., rank(gaij) = 1, along the regular part 

Reg(D) of D, 
(III) for every p E Reg(D), the one dimensional null space Np (mul

tiplicity 2) of r at p coincides with Tp(D). 

Definition ([KNr]). A GHCS is called tangential if it satisfies the 
condition (III) along Reg(D). 

Let X be compact. Since [D] is divisible by 2 in the Picard group, 
we may consider a double covering X of X branching exactly over D. 
Let X = X( v'I5) be the double covering associated to L + Kx (recall 
(2.5)). It is well known ([BPV, III-7]) that Sing(X) = Sing(D) and any 
quotient singularity of X is a rational double point ( corresponding to a 
simple singularity of D). Set D* = Reg(D)u{simple singularities of D}. 
Then we can formulate a desingularization procedure as follows. 

Theorem 2. 7 ([KNr]). Assume that the conditions (I), (II), (III) 
are fulfilled. Then the holomorphic conformal structure induced on X - D 
uniquely extends to a non-degenerate holomorphic conformal structure 
on Reg(X) = (X - D) U Reg(D). Moreover, it extends automatically to 
an orbifold holomorphic conformal structure on (X - D) U D*. 

For a proof, see [KNr, pp.491-492]. This theorem characterizes orb
ifold holomorphic conformal structures on quasi-regular orbi-surfaces X 
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with branch loci D with Ox(D) divisible by 2 in the Picard group with 
only simple singularities. Here, an orbi-surface X is called quasi-regular 
if X is smooth simply as a complex surface. We shall use Theorems 
2.6 and 2. 7 to construct explicitly examples and counter examples for 
uniformization problem in Section 4. 

§3. Numerical characterization of ball quotients for normal 
surfaces with branch loci 

3.0. Kahler-Einstein geometry for normal surfaces 

The aim of this section is to develop Kahler-Einstein geometry in 
the category of log-canonical normal surfaces with branch loci (for def
initions, see Section 3.2.1). Note that a normal surface has at worst 
isolated singularities. For basic results on normal surfaces, we refer to 
[Sakl], [Sak2]. In particular, we use the intersection theory defined by 
Mumford [Mu2]. As is stated in Introduction, the canonical Kahler
Einstein metric on a compact complex smooth surface X of general type 
is naturally defined on its canonical model X', in other words, the canon
ical Kahler-Einstein metric singles out the obstruction ((-2)-curves) for 
the canonical bundle to be ample and sees X as X' whose canonical 
divisor Kx, is ample. We shall generalize this in the category of normal 
surfaces. Let (X, D) be a pair of a compact complex normal Moishezon 
surface X and a Q-divisor 3 D = I:i(l - }; )Di (bi = 2, 3, ... , oo ). We 
call such a pair (X, D) a normal surface pair. 

Deflniti~n. Let (X, D) be a normal surface pair. We say a point 
p E X is a singularity of (X, D) if p is a singular point of a surface X 
or if pis a smooth point of X and a curve Supp{D) has a singularity at 
this smooth point p EX. Otherwise, pis a regular point. Furthermore, 
pis quasi-regular if pis a smooth point of V. 

Remark. We can also deal with non-Moishezon surfaces and get 
the same results. For simplicity's sake, we treat Moishezon case. For 
necessary modifications, see [Sakl,2]. 

The classification theory for normal surfaces is studied by Sakai 
[Sakl,2]. The rough classification starts with the log-Kodaira dimension. 
Define the log-canonical ring (as a normal surface pair): 

R(X, D) = EBm>oH0 (X, O(m(Kx + D))), 

3 By a divisor, we mean a Weil divisor, i.e., a linear combination of irreducible 
curves with integral coefficients, unless otherwise specified. A Q-divisor is a 
linear combination of irreducible curves with rational coefficients. 
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where m(Kx + D) is understood to be the integral part. Then the 
log-Kodaira dimension R, is defined by: 

_( ) { tr. deg . .R(X, D) - 1 
,;, X,D = . _ 

-oo 1f R(X, D) = C. 

Then .R(X, D) :5 2. These are not bimeromorphic invariants in a gen
eral sense. Normal surfaces (the case of D = 0) with K,(X) :5 1 (K,(X) = 
R-(X, 0)) are classified in [Sak2]. For normal surface pairs, something 
should still be done. It is an interesting open question whether the 
Hirzebruch proportionality between orbifold Chern numbers ( see Intro
duction and Section 3.0) characterizes quotients of P2 (C). For the case 
of maximum (log-)Kodaira dimension, very little is known ( cf. [Sak2]). 
We want to develop Kahler-Einstein geometry for this case. To do this, 
we first look at singularities of normal surface pairs. 

Let (V, D,p) be a germ of a normal surface pair, i.e., (V,p) is a germ 
of a normal surface and Dis a finite union of branch loci D = Li(l -
t; )Di (bi are integers ~ 2 or oo) ( each component Di passes through 

the point p). A resolution (V,D,E) of (V,D,p) consists of 

(i) a resolutionµ: (V, E)-+ (V,p) of (V,p) such that the proper trans
form uiiJi of UiDi is non-singular, 

(ii) iJ = Li(l - t )Di, 
and 
(iii) the exceptional set E = µ- 1 (p). 

A resolution of (V, D, p) is good if the union of the proper transform 
of Supp(D) and the exceptional set E has only simple normal crossings. 
Suppose· the blowing down of a ( -1 )-curve C c E preserves goodness. 
Then, by blowing down such ( -1 )-curves successively, we arrive at a 
minimal good resolution. For a given (V, D,p), there exists a unique 
minimal good resolution. Let (V, D,p) be a germ of a normal surface 
pair and µ : (V, iJ, E) -+ (V, D, p) a minimal good resolution and E = 
La Ea the decomposition of E into irreducible components. Let K v 
denote the canonical divisor of V. We call the sum Kv + D a log
canonical divisor. 

We want to know how the log-canonical divisor K v + D looks like 
in a resolution (V, D). We can write as 

(3.1) µ*(Kv+D) = Kv+D+Ll (Supp(-6.) c E). 
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Define 

a 

The intersection theory of Mumford ([Mu2], [Sak2], see Section 
3.2.1) uniquely defines rational numbers aa by the equations 

(3.2) for each (3. 
a 

We have thus defined the inverse image of a log-canonical divisor. This 
definition is natural from a differential geometric point of view (see 
[Ko2]), since any Kahler metric of (V,p) induced from the Euclidean 
space in which (V, p) is imbedded sees exceptional set E as a point p. 
We then introduce the notion of log-canonical and log-terminal singular
ities (see [Kawl], [Kaw2], [Sak2], [Wa] and [Na]) using the inverse image 
of a log-canonical divisor. 

Definition. A germ of a normal surface pair (V, D, p) is a log
canonical (resp. log-terminal) singularity if there exists a good resolution 
such that aa ::; 1 for all o: (resp. aa < 1 for all o: and bi < oo for all i). 

Here the coefficients a0 have the same meaning as in (3.2). Clearly a 
smooth point of (X, D) is log-canonical (see the classification in Section 
3.1). We note that if (V, D,p) is a log-terminal (resp. log-canonical) sin
gularity, then the property in the definition for log-terminal (resp. log
canonical) singularities holds for all good resolutions. And if (V, D, p) is a 
log-terminal (resp. log-canonical) singularity, then for any resolutionµ : 
(V', D', E') -+ (V, D,p) the coefficients in D' + E' = µ*(Kv + D) - Kv, 
is smaller than (resp. not greater than) one. Any singularities which 
appear in the compactifications of orbit spaces of finite volume of 2-
dimensional Hermitian symmetric domains is of log-terminal and log
canonical type. The converse of this is also true in a certain sense, 
namely, the 2-dimensional log-canonical singularities are characterized 
as normal surface singularities locally uniformizable by symmetric do
mains, or an extended unification of quotient singularities, simple elliptic 
singularities and cusp singularities. This was conjectured and partially 
proved by F. Sakai and R. Kobayashi. A complete proof is given by 
S.Nakamura [Na]. We explain this fact in Section 3.1 with a table of 
classification. For a normal surface pair with at worst log-canonical 
singularities, we write LCS(X, D) for all log-canonical singularities of 
(X, D) which are not log-terminal. We shall show in Section 3.1 that es
sentially all LC S singularities are finitely uniformized by simple elliptic 
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singularities and cusp singularities. The Kahler-Einstein geometry we 
shall develop for normal surface pairs (X, D) is stated as follows (basic 
definitions will be given in Section 3.2.1). 

Theorem 1. Let (X, D) be a normal surface pair with ~(X, D) = 
2. Suppose (X, D) has at worst log-canonical singularities. Let (X", D 11) 

be the log-canonical model for (X, D) which again has at worst log
canonical singularities. Then 

(i) Xb' = X 11 - Ub,=ooD~' - LCS(X",D") with D~ = D" n Xb' 
is an orbifold with branch loci Supp(D~) with branch indices {b;}. In 
particular, any singular point of X 11 outside Ub,=ooD? U LCS(X", D") 
is an isolated quotient singularity, 

(ii) there exists a unique complete Kahler-Einstein orbifold metric 
with negative scalar curvature on the orbifold (Xb',D~) whose Kahler 
form w defines a closed current on any resolution µ : Y" --+ X 11 and 
satisfies [µ*w] = 21rc1(µ*(Kx11 + D")). 

The unique complete Kahler-Einstein orbifold metric on the log
canonical model (X", D") is called the canonical Kahler-Einstein metric 
of (X, D). If we integrate the Chern forms for the canonical Kahler
Einstein metric of (X, D) in Theorem 1, we have the following inequality 
for Chern numbers. 

Theorem 2. Let ( X, D) and ( X", D") be as in Theorem 1. Then 
we have 

(3.3) (Kx,, + D") 2 ~ 3{e(X~') 

+ ~(~ - l)(e(Di;)-di)+ ~),r~)l -1)}, 
• p 

where e(X 0') means the Euler number of X 0' etc., D~i = D? n X 0', di 
is the number of singularities of (X",D") lying over D~;, and lr(p)I is 
the order of the local fundamental group r(p) ( which is a finite subgroup 
of U(2)) of a log-terminal singular point p of (X", D") in the sense 
of orbifolds. The equality holds if and only if the orbifold (Xb', D~) is 
biholomorphic to the ball quotient r\B 2 with r a discrete subgroup of 
PSL(2, 1) and Ub,,too Supp(D~;) is the branch loci with branch indices 
{b;}. 

In (3.3), we write c1 (X",D") 2 (resp. c2 (X",D")) for the left (resp. 
right) hand side and call them the logarithmic Chern numbers for an 
open orbifold (X0', D~). The proof of Theorem 1 goes as follows. We 
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start with a normal surface pair (X, D) with R(X, D) = 2. It is known 
[Sakl] that the log-canonical model (X'1, D") exists and is unique. If 
(X, D) has at worst log-canonical singularities, then so does (X", D") 
and it follows that the log-canonical divisor Kx,, + D" is ample, i.e., 
some positive multiple of Kx,, + D" is an ample line bundle (every log
canonical surface singularity turns out to be Q-Gorenstein). Thus X" is 
realized in the projective space PN(C) of the space H0 (X", O(m(Kx" + 
D"))) of holomorphic sections of a very ample line bundle m(Kx" +D") 
for some positive integer m (see Section 3.2.1). The space X" is precisely 
the space on which the canonical Kahler-Einstein metric lives and the 
ample divisor Kx" + D" gives its cohomology class. Let µ : Y" --+ X" 
be a resolution of singularities of (X", D"). If we restrict the Fubini
Study Kahler form on X", we get a Kahler metric on X" whose Kahler 
form w" satisfies [µ*w"] = 21rc1 (µ*(Kx" + D")). We say this simply 
[w"] = 21rc1 (Kx,, +D"). Intuitively, the Kahler metric w" is represented 
by a generic hyperplane section of X". We seek a Kahler-Einstein metric 
in c1(Kx,, + D") by a Kahler deformation w" --+ w = w" + Ff_88u, 
where u is contained in a certain function space constructed using the 
local uniformization of log-canonical singularities ( the Bergmann metric 
of symmetric domains), and may neither be smooth nor be bounded on 
X" (see Section 3.2.2). To find u with w Kahler-Einstein, we first glue w" 
with Bergmann metrics (which are Kahler-Einstein) defined only near 
log-canonical singularities to construct a complete Kahler metric on X(/ 
whose Kahler form w0 is cohomologous to w" in the sense of current. 
This procedure concerns the unbounded part of u and we may reach a 
Kahler-Einstein metric after a slight perturbation. 

3.1. Classification and uniformization of 2-dimensional 
log-canonical singularities 

In this section we present a table of log-terminal and LC S surface 
singularities together with examples of arguments for the classification 
and uniformization. For details we refer to [Na]. First, we recall the 
definition of log-canonical singularities. Let (V,D,p) be a germ of a 
normal surface V with a normal point p and D = ~i(l - t, )Di a Q
divisor (branch loci) passing through p, where bi = 2, 3, · · ·, oo. We take 
a good resolutionµ* : (V,D,E) --+ (V,D,p) and consider the inverse 
image of the log-canonical divisor: 

µ*(Kv + D) = Kv + .iJ + ~-

We call the singularity (V, D,p) a log-terminal (resp. log-canonical) sin
gularity if the coefficients in the Q-divisor .iJ + ~ are smaller than 
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(resp. not greater than) one. This definition does not depend on the 
choice of a good resolution and any resolution of a log-terminal {resp. 
log-canonical) singularity has the same property stated in the defini
tion. A log-canonical singularity is LC S if it is not log-terminal. If p is 
a regular point of V, we call p quasi-regular. Quasi-regular log-canonical 
singularities are very important in the classification. Next, we examine 
quotient and covering operations on log-canonical singularities. 

Lemma 1. Let (V, D, p) be a germ of a normal surface pair. Given 

a ramified covering f : V -+ V which ramifies only over p, we define a 
new pair (V, b,.p) where b is the strict transform of D by f and p is the 
point over p. Then, (V, D, p) is a log-terminal ( resp. LCS) singularity if 

and only if so is (V, D,p). 

Proof. Let µ : {V, b, E) -+ (V, D,p) be a good resolution. Then 
we can find a good resolutionµ: (V*,D*,E*)-+ (V,D,p) which fits 
into the following commutative diagram: 

(V*,D*,E*) 
i (V,b,E) -

µ l lµ 
(v,b,p) -I 

(V,D,p) 

in which f and / are holomorphic maps. We claim that every coefficient 
in 3. in 

µ*(Kv + D) = Kv· + D* + 3. 
is S 1 {resp. some coefficient is = 1) iff every coefficient in Ll. is so. But 
from the above commutative diagram we have: 

Kv• + D* + 3. = f*µ*(Kv + D) 

= /*(Kv + D + Ll.). 

We apply the ramification formula for the canonical divisor to l Set 
Supp{D*) = un; and Supp(E*) = uE;. Then we have 

Since the property a > 1 (resp. a = 1, a < 1) in :: is invariant under 
the covering and quotient operation, we get the claim. 



Uniformization of Complex Surfaces 341 

The following lemma combined with Lemma 1 tells us that the uni
formization problem for log-canonical singularities reduces ( up to rigid
ity) to that for quasi-regular ones. 

Lemma 2 ([Kaw3, Lemma 9.2]). For every log-canonical singular
ity (V, D,p) with D =f. 0, the isolated singularity (V, 0,p) is a log-terminal 
singularity. 

Proof. Let µ : (V, b, E) -+ (V, D,p) be a good resolution and 
µ 0 : (V0 , 0, E0 ) -+ (V, 0, p) the minimal resolution. Then there is a 
birational morphism ¢ : V -+ V0 which consists of a finite number of 
blow ups. -Set 

We then have 

µ*(Kv + D) = Kv + iJ + A, 

µ~Kv = Kv 0 + Ao, 

µ* D = iJ + Av. 

Kv 0 +Ao= ¢.(¢*(Kv 0 + Ao)) 

= ¢.(µ*Kv) 

= ¢.(Kv + A - Av) 

= Kv 0 + ¢.(A - Av). 

Since 0 = µ* D · Ea = iJ ·Ea+ Av· Ea., we have Av· Ea ~ 0. It follows 
from Zariski's Lemma [Z, Lemma 7.1] that Av> 0 and Supp(Av} = E. 
Thus every coefficient in Ao is < 1. 

The above proof using Zariski's Lemma is ubiquitous in the classifi
cation of log-canonical singularities. For reader's convenience, we state 
Zariski's Lemma. 

Zariski's Lemma ([Z, Lemma 7.1]). Let (V,p) be a germ of a 

normal surface and (V, E) -+ (V, p) be a resolution of a singularity. Let 
A be a Q-divisor supported in E, i.e., A = :Ea aaEa, aa E Q. If 
A· Ef3 ~ 0 for all Ef3 c E, then A~ 0. 

We now proceed to present the classification and uniformization 
of log-canonical singularities. We fix the notation. For a sequence of 
positive integers ( a1 , ···,an) with ai ~ 2, define the continued fraction: 



342 R. Kobayashi 

where (d,e) = 1. We denote by< d,e;b > a chain of P1(C)'s with 
self-intersections -a 1, ···,-an and a segmental curve with b being the 
index of ramification. We write this by a weighted dual graph: 

0---0----- - - - - - ---o----e b ( b E N U { oo}) 
(-at) (-a2) (-an) 

< d, e; b > 

As conventions, we also use < 1, O; b > and < d, e; 1 > to indicate 
the extremal cases: 

• b 0------0------ - - - - - --0 
(-ai) (-a2) (-an) 

< 1, O; b > and < d, e; 1 > 

We denote by< a0 , < d1, e1; b1 >, · · ·, < dk, ek; bk>> a star shaped 
dual graph: 

E1,1 E1,2 

u----u-- - - - - - ---o----e bi 
(-a1,1 )(-a1,2) (-a1,n 1) 

Eo 

[ >--<>-- - - - - - ---o----e ~ 

(-at,il (-at,2) (-at,n,) 

< ao,< d1,e1;b1 >,···,< dk,ek;bk >> 

We also use the notations < < n1, · · · , nk > > to indicate the set of 
weighted dual graphs with the invariants: d1 b1 = n1, · · ·, dkbk = nk. 

Theorem 3.1 ([Na]). Log-canonical surface singularities are 
classified into the following twelve classes (i),(i)* ,(i)**, i = 1, 2, 3, 4. 

(1) Every regular point (V, D,p) in which D = 0 or D = (1 - t; )D1 

with b1 < oo is log-terminal. In the latter case, it is uniformized by the 
former via ( z1, z2) ---+ ( z~1 , z2) with the covering transformation group 
Zb1 X {id}. 

(1)* An isolated singularity (V, 0,p) is log-terminal if and only if 
it is a quotient singularity [Br]. The exceptional set in the minimal 
resolution is a configuration of P1(C)'s of ADE-type (see [Br]). Every 
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quotient singularity is rigid, i.e., its analytic structure is determined by 
its dual graph. It is uniformized by C 2 and the covering transformation 
group is a finite subgroup of U(2) free of reflections. 

(l)** The singularities given by the group (l)** of dual graphs in 
Appendix exhaust log-terminal singularities with D f 0. These sin
gularities are rigid. Each of these singularities is obtained by taking 
the factor space of C 2 with respect to a finite subgroup G(V, D, p) of 
U(2) which is an extension of a unitary reflection group. In fact, the 
set of analytic types of the log-terminal singularities and the conju
gacy classes of the finite subgroups of U(2) is in 1-1-correspondence. 
Among these singularities, we give the list of quasi-regular ones ( Q R)i 
and their uniformization. It turns out to be the case that quasi-regular 
log-terminal singularities and 2-dimensional unitary reflection groups are 
in 1-1 correspondence under (V,D,p) f--+ G(V,D,p). In the table (1)**, 
((n)), n = 4, 5, · · ·, 22 stand for the number used in Shephard-Todd's 
classification of unitary reflection groups [ST]. 

(2) Every cusp singularity is LC S. The exceptional set in the min
imal resolution is a cycle of P 1 ( C)' s or a rational curve with a node 
and every component appears in E with its coefficient one. Every cusp 
singularity is rigid. It is uniformized by H x H with the covering trans
formation group G(M, V) (see [Hir2] or Section 3 of this paper) which 
is a reflection-free discrete subgroup of Aut(H x H) fixing the point 
( oo, oo) in the boundary. It is easy to see from the construction ( see 
Example 2.4) that the boundary of the tubular neighborhood of a cusp 
singularity is a torus bundle over a circle. 

(2)* Every surface singularity (V,0,p) whose minimal resolution is 
given by one of the dual graphs in group (2)* in Appendix is LC S 
([Sakl]). Each of these singularities is rigid and obtained by taking 
the factor space of a cusp singularity with respect to an involution 
( cf. [Hir2]). Hence it is uniformized by H x H with the covering trans
formation group a discrete subgroup G(M, V) of Aut(H x H) fixing 
( oo, oo) which is an extension of some G(M, V) by Z 2 • It is easy to find 
a symmetric cycle of P1 ( C)' s sitting over the above A ( C)-configuration 
by which we determine G( M, V). For instance, the dual graph (a) sits 
over the dual graph (b). 

0 
(a) 

(-2) >-< (-2) 

(-2) (-2) 

(b) 
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We can then determine the action of the involution on this P1 ( C)
cycle with four isolated fixed points corresponding to four ( -2)-curves 
(see [Hir2, Section l]). Then we determine the group G(M, V) via the 
formula in Example 2.4. 

(2)** Each of the singularities given by one of the dual graphs 
in the group (2)** in Appendixis LCS. Since each of these P1 (C)
configurations is rigid, its uniformization is reduced to that for the 
quasi-regular ones (QR)2. Karras [Kar] classified (QR);s. We list the 
dual graphs and uniformizations [Kar] for (QR)~s. Every LCS singu
larity of this type is uniformized by H x H and the covering trans
formation group is a discrete subgroup G(M, V) of Aut(H x H) fixing 
( oo, oo) which is an extension of some G( M, V) by the transposition 
r : ( z1 , z2) -+ ( z2 , z1 ). It is easy to recover the symmetric Pi ( C)-cycle 
sitting over a given dual graph, by which we determine G(M, V). Several 
examples of this process are found in [Hir2, Section l]. The parabolic 
subgroup P of Aut(H x H) corresponding to ( ioo, ioo) consists of au
tomorphisms (z1 ,z 2 ) -+ (az 1 + b,a'z 2 + b') with a > 0, aa' = 1 and 
b, b' E R. Considering the developing map for the holomorphic con
formal structures, we have a 1-1-correspondence between H x H-cusp 
singularities and the conjugacy classes (in P) of the discrete subgroups 
of P with a finite co-volume (w.r.to the Bergman metric) in P. 

(3) Every simple elliptic singularity ( cf. [SJ) is LC S. A simple elliptic 
singularity is resolved by an elliptic curve C of self-intersection number 
-b. Grauert's criterion [Gr] implies that any simple elliptic singular
ity is obtained from a line bundle over an elliptic curve C of negative 
degree -b by blowing down the zero section. Hence a simple elliptic 
singularity involves a parameter r E H of analytic structures of C and 
a discrete parameter b, so it is determined by ( r, b). It is uniformized by 
the 2-dimensional open ball B 2 and the covering transformation group 
r is isomorphic to the Heisenberg group which is a discrete parabolic 
subgroup of Aut(B 2 ) fixing a boundary point p. To see these explicitly, 
we realize B 2 as a Siegel domain: 

S = {(u,v,1) E P2(C)llm(u)- lvl2 > O} 

via z1 :~; and z2 = ,:~;. Then the parabolic subgroup P fixing 

the boundary point p = (1, 0) E EJB2 is written in the Siegel domain 
expression as follows (using the terminology in [Yo]): 

P = {((µ,1,r)) Iµ E U(l), 1 EC, r ER}, 
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where ( (µ, 1 , r)) stands for the automorphism of S given by 

Note that 

2iµ'y 
µ 
0 

r + il,12 ) 

' . 
1 

((µ, 1 , r) )( (µ', 1 1, r 1)) = ((µµ', µ1 1 + 1 , r + r' - 2 Im(µ'?,'))). 
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Suppose µ = 1, 1 E L where L = {m + nwl Im(w) > O} is the lattice 
defining C and r = -2h(,), where h(m + nw) = mna (mod 2ba Z). Then 
we get a discrete subgroup r E P (and its conjugates in P) which fits 
into the exact sequence 

(3.4) 1 -t Z -t r -t L -t 1 

where Z is identified with the center Z(r) = ((1, 0, 2ba Z)) and r -t L is 
defined by ((1, 1 ,r)) 1----+ 1 . Note that the new coordinates (w,z) defined 
by w = exp( b;!u) and z = v exactly describe the factor space Z\ S. 
Conversely, starting from a simple elliptic singularity, we again arrive at 
r (cf. [Ko2]). 

(3)* Every surface singularity (V, 0,p) given by one of dual graphs in 
the group (3)** in Appendix is LCS. These singularities are called the 
ball cusp singularities ( see [Ho] and [Sakl ]). Each of these singularities is 
uniformized by a simple elliptic singularity. All of these graphs are star 
shaped and the central curve is the image of the elliptic curve C resolving 
the simple elliptic singularity sitting over (V, 0,p). Such Chas a non
trivial point group G, i.e., the corresponding lattice is invariant under 
the action of a non-trivial finite subgroup of U(l). The central curve 
is an orbifold defined over P1 ( C) described by (b1 , · · ·) where b1 , · · · are 
branch indices. The possible triads ( C, G, ( b1 , · · ·)) are (i) L = Z + Z w 
(general lattice), G =< -1 >, (2, 2, 2, 2); (ii) L = Z +Zi (square lattice), 
G =< i >, (2, 4, 4); (iii) L = Z + Za (hexagonal lattice), G =< a > 
(a= e 2a'), (2,3,6); (iv) L = Z + Za, G =< a 2 >, (3,3,3). It is not 
difficult to construct discrete parabolic groups r corresponding to these 
triads, which fit into the exact sequence 

(3.5) 1 -t Z -t r -t E -t 1, 

where r consists of automorphisms ( (µ, 1 , r)) with µ E G ( a finite sub
group of U(l)), 1 E L (a lattice with a non-trivial point group G) and 
r = r(µ, 1 ) ER modulo \a Z obeying 

r(µµ', µ1 1 + 1 ) = r(µ, 1 ) + r(µ', 1 1) - 2Im(µ7 1 1) mod 4: Z, 
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and E is a discrete Euclidean motion group generated by L and G. The 

map r -+ E is defined by ( (µ, 1 , r)) f-t ( ~ i) . For instance, we can 

construct the discrete group r consisting of the automorphisms ( (µ, 1 , r)) 
if we requireµ E< -1 >, 1 E L (a general lattice)) and r(-1,0) = 
2; mod \a Z, r(l, m + nw) = -2mna mod \a Z. The last condition 
on r fixes the conjugacy class of r in P. The group r' consisting of 
elements with µ = 1 is a normal subgroup of r and the factor space 
f'\S is compactified to the normal bundle of C on which f'\r acts with 
four isolated fixed points on C of order 2. We thus get r's corresponding 
to the above dual graphs. 

(3)** Every surface singularity (V,D,p) with D =I-0 defined by 
one of the dual graphs in the group (3)** in Appendix is LCS. The 
quasi-regular ones ( Q Rh turn out to be identical to Yoshida-Hattori's 
classification [YH] of 2-dimensional parabolic reflection groups. All of 
these singularities are uniformized by B 2 and the universal branched 
covering transformation group is r with the exact sequence (3.5). The 
same procedure as in (3)* enables us to find the explicit form of r 
by choosing r(µ, 1 ) in a suitable way. For instance, take the hexag-

onal lattice L and a = e 2t and consider the group r consisting of 
((µ, 1 , r)) such that µ E< a >, 1 E L and r(a, 0) = ;~ mod \a Z, 

r(l, m + na) = -2mna mod \a z. Suppose b = 2 mod(6). Then we 
uniformize the singularity given by the dual graph: 

/(-2~ 
(-a)~-;) 

(-2) 

a ball cusp singularity with a branch locus 

Indeed, if r' c r is the normal subgroup defined byµ = 1, then the 
factor space r'\S is compactified to a line bundle N of degree -b < 0 
over the elliptic curve C(L) of the lattice L. The group r /f' ~ Z6 

then acts on N with three special orbits 0 1 , 0 2 and 0 3 of fix points 
on C ( L) with the isotropy of order 6, 3 and 2. At these points on 
C(L), the action is locally (x, y) f-t (-x, -y), f-+ (a- 2 x, a 2y) or f-+ 

( -x, ay ), where x is a base coordinate and y a fiber coordinate. The 
above dual graph is obtained by resolving quotient singularities of the 
factor space of N with respect to the action of r /r'. In particular, the 
dual graph is star-shaped with the image of C(L) as the central curve 
E. The self-intersection number of E is -b 5io, since a C 00 section of 
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N having zeros at points in 0 1 (resp. 02 and 0 3 ) of order +3 (resp. 
+2 and +1) and simple zeros (with sign ±1) outside special orbits is 
mapped to a C 00 multisection of multiplicity 6 of the normal bundle of 
E with no zeros at intersection points of three branches. The number 
10 is then 3 + 2 x 2 + 1 x 3. Since b = 2 mod (6), possible numbers 
E · E are all integers ::; -2. Considering the developing map for the 
G-structure characterizing B 2 ( the holomorphic projective structure or 
the Kahler structure with constant holomorphic sectional curvature), 
we get a one to one correspondence of the ball-cusp singularities ( dual 
graphs in {3),(3}*,{3)"*) and the conjugacy classes {in P) of the discrete 
subgroups of P with a finite co-volume (w.r.to the Bergman metric). 

(4) A regular point (V, D,p) with D = D 1 , i.e., bi = oo, is LCS. 
It is uniformized by H x H via the map ( zi, z2 ) --+ ( e21rizi, z2 ) with 
the covering transformation group Z acting on H x H by {zi, z2 ) --+ 

(zi + n, z2 ). This map is a infinitely cyclic branched covering branching 
along Di and the condition bi = oo means to delete Di. So D* x D 
is a {deleted} neighborhood of p. A surface singularity (V, D,p) with 
D = Di + D 2 where Di and D 2 intersect transversely is LC S. It is 
uniformized by H x H via (zi,z 2)--+ (e2,riz 1 ,e 21riz2 ) with the group 
Z x Z acting on H x H by {zi, z2} --+ {zi +n,z 2 + m) and p has D* x D* 
as a (deleted) neighborhood. 

( 4) * Each surface singularity (V, D, p) with non-empty branch loci 
D; only with b; = oo defined by one of the dual graphs in the group 
{4)* in Appendix is LCS. Note that only types A and D occur in these 
dual graphs. Each of these is uniformized by D* x D or D* x D* and 
the covering transformation group is a finite subgroup of U{2) acting 
linearly on D* x D(D*) c C2 without reflections. The singularity with 
the dual graph of type A is uniformized by D* x D (resp. D* x D*) if it 
has one {resp. two) •, and that with the dual graph of type Dis always 
uniformized by D* x D*. 

{4)** Each surface singularity (V, D,p} with mixed branch loci D; 
in which both b; < oo and b; = oo appear and whose dual graph is given 
by one of those in the group {4)** in Appendix is LCS. Note that only 
types A and D occur. Each of these is uniformized by D* x D (if the 
dual graph is of type A and contains only one •) or D* x D* (in the 
case of type A with two• or of type D) and the covering transformation 
group is a finite subgroup of U{2) which is an extension of a reflection 
group. Finding explicit forms of uniformizations is reduced to examining 
the action of finite subgroups of U{2) of types A and D, so we omit this. 
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It is now easy to calculate rational numbers a0 such that 

for all /3, 

to see that all singularities in the above list are log-canonical. Conversely, 
any log-canonical singularity has the minimal good resolution whose dual 
graph is one of the above list. The proof of the converse is elementary 
but quite long. Namely, we first classify the dual graphs of log-canonical 
singularities according to the maximum multiplicity of intersections of 
E and b. Then we use the definition of the log-canonical singularity to 
bound possible types of dual graphs. Zariski's Lemma is very useful in 
simplifying the proof. For details, we refer to Nakamura's master thesis 
[Na]. Once one classifies the possible dual graphs of log-canonical sin
gularities, it is an elementary (up to long computations) task to show 
the rigidity ( except LC S singularities of type < < 2, 2, 2, 2 > >) and uni
formize these singularities. Each of these exceptional LC S singularities 
is uniformized by a simple elliptic singularity. 

It directly follows from the classification that 

Corollary. All log-canonical surface singularities are Q
Gorenstein. 

3.2. Kahler-Einstein metrics on log-canonical normal 
surfaces with branch loci 

3.2.1. Log-minimal models and log-canonical models 

For details of this section, we refer to [Saki] and [Sak2]. Let X be 
a normal compact complex surface. According to Mumford [Mu2], we 
have a nice intersection theory on divisors on X, which is defined in 
the following way. Let µ : X - X be a resolution of singularities and 
E = UiEi the exceptional set. Let i5 be the strict transform of D by µ. 
The~ we define the inverse image µ• D of D by the following Q-divisor 
onX: 

µ*D =D+ LaiEi, 
i 

with rational numbers ai obeying 

L ai(Ei · E;) = -15 · E;. 
i 

This is well-defined since the intersection matrix (Ei · E;) is negative 
definite. 
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Definition. For two divisors D and D' on X, the intersection 
number D · D' is defined as (µ* D)(µ* D') E Q. 

To define log-minimal and log-canonical models, we need to gen
eralize the definition of the inverse image of a divisor to holomorphic 
mappings of normal surfaces. Let X and X' be normal surfaces and 
f : X ------> X' a holomorphic mapping. There exist resolutions µ : X -+ X 

and µ' : X' -+ X' and a holomorphic mapping f : X -+ X' such that 

µ'of= f o µ. For a divisor D' on X', we define the inverse image f • D' to 
beµ.([*µ'* D'). We can now discuss the log-minimal and log-canonical 
models. Let (X, D) be a normal surface pair as in Section 3.0. Assume 
for simplicity that X is a Moishezon surface, i.e., any resolution is a 
smooth projective algebraic surface. 

Definition. An irreducible curve C on X is a log-exceptional 
curve of the first kind (resp. log-exceptional curve of the second kind) if 
C 2 < 0 and (Kx + D) · C < 0 (resp. if C 2 < 0 and (Kx + D) · C = 0). 

Let C be a log-exceptional curve. Since C 2 < 0, C is contracted 
to a normal point (see [Sak2, Theorem 1.1]). Let f : X -+ X' be the 
contraction of C and set D' = f.D. We have from the definition that 

Kx + D = f*(Kx, + D') + (Kx ~~).CC. 

In particular we have Kx, + D' = f.(Kx + D) 4 • By successive contrac
tions oflog-exceptional curves of the first kind, we arrive at a log-minimal 
normal surface pair (X', D'), i.e., it contains no log-exceptional curves 
of the first kind (induction on the Picard number). We call (X', D') a 
log-minimal model of (X, D). A log-minimal model (X', D') of (X, D) 
is characterized by the following two properties: 
(i) (X', D') is log-minimal, 
(ii) there exists a bimeromorphic holomorphic mapping f : (X, D) -+ 

(X', D') such that D' = f.D and Kx + D = f*(Kx, + D') + L; a;C;, 
a; > 0 for all i, where C = U;C; is the exceptional set off, i.e., the set 
of all curves contracted by f. 
If one further contract log-exceptional curves of the second kind in the 
log-minimal model (X', D'), we arrive at a log-canonical normal surface 
pair (X", D"), i.e., it contains neither log-exceptional curves of the first 
kind nor log-exceptional curves of the second kind. We call (X", D") 

4 More generally, if f : X -+ X' is a bimeromorphic mapping of normal com
pact complex surfaces, then K'x = f.Kx. 
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a log-canonical model of (X, D). If (X', D') is log-minimal, then a log
canonical model (X", D") is characterized by the following two proper
ties: 
(i) (X", D") is log-canonical, 
(ii) there exists a bimeromorphic holomorphic mapping g : (X', D') -+ 

(X", D") with D" = g*D' and g*(Kx,, + D") = Kx, + D'. 
To discuss the uniqueness of these models, we need to introduce the 
following definition. 

Definition. Let D be a Q-divisor on a normal surface X. We say 
that D is numerically effective if D · C 2 0 for all irreducible curves C on 
X and that D is pseudoeffective if D · P 2 0 for all numerically effective 
divisor P on X. 

Fact 1 (a special case of [Sakl, Theorem 7.4]). Let (X, D) be a 
normal surface pair. If Kx + D is pseudoeffective, then the log-minimal 
model is unique. In this case Kx, + D' is numerically effective. 

Suppose now K x + D is pseudoeffective. This assumption is fulfilled 
if some positive multiple m(Kx + D) becomes an effective divisor. Let 
(X', D') be the unique minimal model and f : (X, D) -+ (X', D') the 
bimeromorphic holomorphic mapping. Set P = f*(Kx, + D') and N = 
(Kx + D) - P. Then: 
(i) P is a numerically effective Q-divisor on X and N is either 0 or an 
effective Q-divisor whose support has negative intersection matrix, 
(ii) the intersection of P and each irreducible component of N is zero. 
The decomposition Kx + D = P + N with the properties (i) and (ii) is 
unique ( corresponding to Fact I) and is called the Zariski decomposition 
of pseudoeffective Q-divisor Kx + D (see [Sakl, Corollary 7.5]). The set 
Supp(N) consists of curves contracted by f. 

Fact 2 ([Sakl, p.886], see also [Sak2, Theorem 4.7]). Let 
(X, D) be a normal surface pair with pseudoeffective log-canonical di
visor, (X', D') its minimal model and Kx + D = P + N the Zariski 
decomposition. Suppose P 2 > 0( ¢:? R-(X, D) = 2). Then the canonical 
model (X", D") is unique. In this case, Kx,, + D" is numerically am
ple, i.e., (Kx" + D") · C > 0 for all irreducible curves C on X" and 
(Kl+ D") 2 > 0. 

Assume P 2 > 0. Just as in Kodaira's theory [Kod] of canonical mod
els for algebraic surfaces of general type, we directly get the unique log
canonical model by contracting the set A of all curves C with P · C = 0 
( which turns out to be finite and contractible by the Hodge index theo
rem). The image in (X', D') of the set A- N consists of log-exceptional 
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curves of the second kind. For normal surfaces, even if the log-canonical 
model X" is unique, it is not necessarily realized as a projective image 
of sections of a log-pluricanonical bundle ( compare this with the clas
sical surface theory [Kod]). This problem is quite complicated because 
log-pluricanonical divisors may never become a line bundle, i.e., any 
log-pluricanonical divisor may passes through singularities. Sakai [Sak2] 
proved 

Fact 3 ( [Sak2]). For a log-canonical normal surface pair ( X", D") 
with R,(X", D") = 2, the log-canonical ring fl( X", D") is finitely gen
erated if and only if (X",D") is Q-Gorenstein. In this case, X" = 
Proj(R(X", D")). 

We call (a germ of) normal surface pair (X, D) Q-Gorenstein if its 
log-canonical divisor is Q-Cartier. A Q-divisor Don a normal surface X 
is called Q-Cartier if some positive multiple mD becomes a line bundle 
which is trivial around singular points of X. 

We sketch the proof of Fact 3. We recall that a Q-Cartier divisor 
is ample if and only if it is numerically ample, which is a consequence 
of Nakai's criterion of ampleness (see [BPV]). We apply this to the Q
Cartier divisor Kx" + D" to prove the if part. Next, suppose R(X, D) 
is finitely generated. For a log-canonical normal surface pair (X", D"), 
by taking the inverse image of a log-pluricanonical divisor, we get a line 
bundle L (proportional to µ • ( K X" + D")) on a resolution Y of X", which 
is numerically effective and L 2 > 0. It now follows that L is semiample, 
i.e., some positive multiple of Lis generated by global sections. Indeed, 
[Z, Corollary 10.3 (or Theorem 10.6) and Theorem 6.1] (see also [Fu, 
Corollary (6.14)]) implies 

Fact 3'. Let L be a line bundle over a compact complex smooth 
surface S. Suppose L is numerically effective and L 2 > 0. Then R( S, L) 
is finitely generated if and only if L is semiample. 

Since L -t Y is generated by global sections and L · Ei = 0, L is 
trivial near the exceptional set ofµ. Therefore µ.L is a line bundle on 
X" and is a multiple of Kx,, + D", i.e., (X", D") is Q-Gorenstein. 

Let ( X", D") be a log-canonical model. We want to find a Kahler 
metric w on X" such that for any resolution µ : Y -t X" we have 
[µ*w] = 21rc1 (µ*(Kx" + D")). It is possible if a line bundle defined by a 
positive multiple of µ*(Kx" + D") is generated by global sections. Fact 
3 implies that this occurs if and only if (X", D") is Q-Gorenstein. Ac
cording to the classification in Section 3.1, all log-canonical singularities 
are Q-Gorenstein, because the branch loci pass through only quotient 
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singularities and other log-canonical singularities free of branch loci are 
also Q-Gorenstein as is shown in [Sak2, Appendix]. In particular, if 
(X, D) is a normal surface pair with at worst log-canonical singulari
ties, then (X, D) is Q-Gorenstein. Although Q-Gorensteinness is not 
preserved in the process of going to log-minimal and log-canonical mod
els (this is Kawamata's observation, see [Sak2]), we have the following 
lemma which suggests the goodness of the log-canonical singularities. 

Lemma 1 (Sakai's observation). Let (X, D) be a normal surface 
pair. Then 

(i) if (X, D) has at worst log terminal singularities, then so does its 
log-minimal model (X', D'). 

(ii) if (X, D) has at worst log-canonical singularities, then so does 
its log-canonical model (X", D"). 

Lemma 1 gives a meaning to the following 

Fact 4 ( cf. [Sak2]). For a normal surface pair (X, D) with at worst 
log-canonical singularities, the following conditions are equivalent: 

(i) R(X, D) = 2, 

(ii) Kx" + D" is numerically ample, 
(iii) Kx,, + D" is ample. 

Furthermore, if one of the above conditions is fulfilled, then R(X, D) is 
finitely generated and X" = Proj R(X, D). 

Indeed, if R(X, D) = 2, then the log-minimal model and the log
canonical model exists uniquely. The implication (i)* (ii) follows from 
Fact 2. If Kx" + D" is numerically ample, then we have a line bundle 
L (proportional to µ*(Kx,, + D")) on a resolution Y of X" such that 
L · C 2 0 for all irreducible curves on Y and L 2 > 0. The assertion (i) 
then follows from the Riemann-Roch inequality. Since (X", D") has at 
worst log-canonical singularities, (X", D") is Q-Gorenstein. This implies 
(ii) <=> (iii). 

Let (X,D) be as in Fact 4. Then the log-minimal model (X',D') 
exists uniquely with at worst log-canonical singularities and Kx, + D' is 
numerically effective and has positive self-intersection number. It then 
follows from Fact 4 that Kx, + D' is semiample in the sense that it 
is Q-Cartier and the line bundle m(Kx, + D') is generated by global 
sections for m ~ 0. Furthermore, the log-canonical model (X", D") is 
the projective image of sections of m(Kx, + D') and it has at worst 
log-canonical singularities. 
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3.2.2. Kahler-Einstein metrics 

In this section we prove Theorem 1. Let (X, D) be a normal sur
face pair as in Theorem 1, i.e., with at worst log-canonical singularities 
and R(X, D) = 2. Then by Lemma 1 and Fact 4 the log-canonical 
model (X", D") has again at worst log-canonical singularities and the 
log-canonical divisor Kx,, + D 11 is ample. Let 

µ: (X,D,E)----+ (X",D") 

be the minimal good resolution of (X,D), where b = ~i(l - ¼Jbi(= 
~i(l-¼)Di for simplicity) is the strict transform of D = ~i(l-t)Di 
and E = ~a Ea is the exceptional set. Let 

/: X"----+ Pn(C) 

be the projective embedding defined by the ample line bundle L = 
m(Kx,, + D") for some large m. Let w(l) = H88log IIZll2 be the 
Fubini-Study form of Pn(C). Then wo = -!;.(! o µ)*w(l) is a semiposi

tive real closed (1, 1)-form on X which is positive definite outside of the 
curves contracted by µ. Set 

* II - ~ µ (Kx,, + D ) = K x + D + ~ aaEa, 
a 

with rational numbers aa ~ 1. Then there exist a smooth volume form 
n on X, holomorphic sections <Ti and Hermitian metrics II · 112 for [Di], 
and holomorphic sections <Ta and Hermitian metrics II· 112 for [Ea] such 
that 

{3.6) wo = Ric cJ 

where 

(3.7) 

and the Ricci form of a (singular) volume form W is defined by 

Ric cl= -A88log cl. 

Since we deform w0 into a Kahler-Einstein metric in the cohomology 
class 21rc1 ( L) containing Wo, we call Wo a background metric ( for the 
construction of a Kahler-Einstein metric). 
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As we have shown in the previous section, all two dimensional log
canonical singularities are "quotient singularities" in a broad sense.5 We 
take a full advantage of this special situation to prove the existence of a 
canonical Kahler-Einstein metric on log-canonical normal surface pairs 
(X'1, D 11) (this special situation is characteristic in dimension 2 and this 
seems to correspond partially to the fact that the L2-norm of the curva
ture tensor is scale invariant in real dimension 4 and partially to the fact 
that the square of the L2-norm of the curvature tensor is a topological 
invariant, the Euler number, for Einstein 4-manifolds (cf. (BKN])). 

First of all we recall that the Bergman metric of the bounded sym
metric domains, which is Kahler-Einstein, is invariant under the action 
of automorphisms. So, all log-canonical singularities have a neighbor
hood on which a Kahler-Einstein metric is defined which becomes the 
Bergman metric on the local uniformizations. 

All log-terminal singularities of types (1 ), (1 )" and (1 )** are lo
cally the factor space G\C 2 , where G is a finite subgroup of U(2). The 

Kahler potential log ( (l..:_IJ~ll2)2 ) of the ball metric is invariant under 

U(2). Hence the ball metric is defined near the log-terminal singulari
ties in the Kahler potential level. 

All LCS singularities (V, D,p) of types (2), (2)* and (2)** are locally 
the factor space G\H x H, where G is a discrete subgroup of Aut(H x H) 

fixing the boundary point (ioo,ioo). The Kahler potential log (- 1-) 
Y1Y2 

for the H x H-metric is invariant under G. Hence the H x H-metric is 
defined near the LC S-singularities of these types in the Kahler potential 
level. The Kahler potential assumes -oo at the singular point p and this 
corresponds to the pseudoconcavity of the end which arises if p is deleted. 
Clearly the end has a finite volume and this metric is complete toward 
the end. 

All LCS singularities (V, D,p) of types (3),(3)* and {3)** are locally 
the factor space G\S where S = {(u, v, 1) E P2(C)IJm(u) - Jvl2 > 0} is 
the Siegel domain realization of the unit open ball B 2 and G is a discrete 
subgroup of the parabolic subgroup P C Aut(S) corresponding to the 
boundary point (1, 0, 0) E P2( C). The Kahler potential log Im(u)-lvl' 

for the ball-metric is invariant under P. Hence the ball-metric descends 
near the LC S singularities of these types in the Kahler potential level 

5 All log-terminal (resp. LCS) surface singularities are uniformizable by 
bounded symmetric domains with a covering transformation group with an 
interior point (resp. with a point in the boundary (at infinity)) which is fixed 
by all elements. 
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and this is complete toward the end corresponding to p. The end has a 
finite volume and is pseudoconcave in the sense that the Kahler potential 
assumes -oo at p. 

For LCS singularities (V, D,p) of types ( 4), ( 4)* and ( 4)**, the prod
uct of the Poincare metrics of D and D* descends near pin the Kahler 

potential level (we take the Kahler potential of D* to be log (10g W )-2 

which goes to -oo at the end). The resulting metric is complete toward 
Di with bi = oo and has locally finite volume. 

Let (X", D") be as above. Then, the classification oflog-canonical 
singularities implies that 

X 11 = X 11 - u -- D!' - LCS(X" D 11) 0 ~-00 • ' 

together with Di = D" n Xt is an orbifold with branch indices bi along 
Supp(D? n xn. Since orbifolds are the so called b - spaces [Kat], we 
say a function g : X" -+ R is b - C 00 if it is C 00 in the local uniformiza
tions. The same definition is possible for covariant tensor fields. Since 
the invariant metrics of bounded symmetric domains descend near the 
singularities of (X 11, D") in the Kahler potential level, there exists a pos
itive b - C 00 function g : X~' -+ R ( we write g instead of (/ o µ )* g.) such 
that the singular volume form 

on X satisfies the following properties: 
(i)~ is b- C 00 and has negative Ricci form, i.e., w = - Ric~ defines 

a Kahler orbifold metric on X~', 
(ii) the Kahler orbifold metric w is complete on Xf, 
(iii) the b - C00 function f =log~ is bounded on Xb'-
The function log g is strictly plurisubharmonic and goes to -oo at 

the end of xg. The local behavior of g at quotient singularities and at 
ends is like the Kahler potential of the Poincare metric of D (or B 2 ) and 
D*. We look at some examples of its behavior. Around a smooth point 
where D 1 and D2 ( two branches) with b1, b2 < oo intersect transversely, 
we have approximately 

with some Hermitian metrics for [Di] and [D2]. Note that limb,--+oo bi(l-
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llui II fl) = log 11; 112. Around a smooth point on Di with bi = oo, we have 

1 
9 ~ 1 2. 

{log 11.,., 112) 

with certain Hermitian metrics for [Di]-Around a smooth point where 
D 1 and D2 ( two branches) with b1 = b2 = oo intersect transversely, we 
have 

2 1 
g ~ IT {lo 1 )2 · 

i=l g llo-dl2 

with some Hermitian metrics for [Di] and [D2]. Around an elliptic curve 
Ea. resolving a simple elliptic singularity, we have 

1 
9 ~ {l 1 )3 og 110-.,.112 

with a certain Hermitian metric for [Ea.]. More precisely, if {u, v) are 
the Siegel domain coordinates, then w = exp( b;!") and z = v provide a 
system of local coordinates around a point in Ea. such that the zero-locus 
of w is Ea. and 

for some positive constant c. Around a cycle Ea. {0 ~ a: ~ r - 1) of 
P1 ( C)' s with self-intersection number -qa. resolving a cusp singularity, 
we have 

1 
9 = {Ra.-1 log~+ Ra. log~ )2{R!,_1 log~ + R1 log~ )2 ' 

1Ua1 1t1a1 1uo:1 1Vo:1 

where (ua., va.), local coordinates around Ea.-l n Ea., and Ra. are as 
introduced in Example 2.4. 

We now consider a complete Kahler orbifold (X",w). Using the 
same strategy as in [Ko2], we construct a good quasi-coordinate system 
on ( X", D", w) which exhibit ( X", D") as a complete Kahler orbifold 
with bounded geometry ( cf. [Ko2, Lemma 6) ). The above approxima
tions of g at the ends are in O00 -level in the following sense. Namely two 
metrics w and the invariant metric defined at one end are of bounded 
geometry at the same time, i.e., define the same quasi-coordinate system 
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in which both of two metrics ga,i'J and ha,i'J satisfy 

with common positive constants c, etc. and ( v~) are quasi-coordinates 
exhibiting bounded geometries of g and h. We then introduce the Ba
nach space b-Ck,a of b-Ck,a_functions on (X", D", w) with the Holder 
type norm defined by a good quasi-coordinate system for (X",D",w). 
Note that this definition is canonical in the sense that the orbifold 
structure and the metric structure which are canonically introduced on 
(X", D") by the classification and the uniformization of log-canonical 
singularities are involved. We then have 

Lemma 3.5 ( cf. [Ko2,Lemma 71). The function f = log~ is of 

class b - ck,a for any nonnegative integer k and a E (0, 1). 

We consider the Monge-Ampere equation: 

(3.8) 

The solution u E nk,ab - ck,a of (3.8) is a Kahler-Einstein orbifold 
metric on (X~,ni). Using again the same strategy as in (Ko2] (the 
idea using bounded geometry was first introduced by Cheng-Yau [CY] 
to show the existence of a complete Kahler-Einstein metric on strictly 
pseudoconvex domains (see also [MY])), it is shown that such a solution 
u exists with a priori estimates which are formally the same as those for 
the smooth case (cf. [Aul,2], [Yl], see also Section 1 of this paper). In 
particular, there exists a positive constant c such that 

cw< w =w+ .;=:r.aau < c-1w. 

which implies that w is a complete Kahler-Einstein orbifold-metric with 
negative scalar curvature. It follows from (3.6), (3.7), the construction 
of w and the a priori estimates for u that the singular differential form 
w defines a real closed (1,1)-current on X whose cohomology class is 
c1 ((f o µ)*(Kx,, + D")) = ¾,c1 ((f o µ)*L). The point here is the fact 
that the Poincare metric of the punctured disk D* has the origin as an 
end with a finite volume. This completes the proof of Theorem 1. 
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3.2.3. Inequality between Chern numbers and the nu
merical characterization of ball quotients for nor
mal surfaces with branch loci 

Normal surface pairs often appear as ball quotients (cf. [BHH]). Ball 
quotients are characterized by the existence of the ball metric. From 
Theorem 1, there exists a unique Kahler-Einstein orbifold-metric w with 
negative scalar curvature on a log-canonical surface ( X", D 11) with at 
worst log-canonical singularities. If 11 and 12 are the first and the second 
Chern forms of w, then 312 - 'Yi is equal to the square of the pointwise 
deviation of the Kahler-Einstein metric w being of constant holomorphic 
sectional curvature (i.e., being the ball metric). Since the metric is an 
orbifold-metric which is approximately an invariant metric at the ends, 
we compute as in [Ko2] and [Ko3] the following curvature integra: 

f ,i = (Kx,, + D 11) 2 , Jx,, 

fx,, ,2 = e(X~') + Z:,(:i - l)(e(D~i) - di)+ }:) 1rtp)I -1) 
• p 

where X~' = X" -ub,=ooD?-LCS(X",D"), e(·) is the Euler number of 
·, D~i = D? nX~', di is the number of singularities of (X", D 11) lying over 
D~i and jr(p) I is the order of the local fundamental group (in the sense of 
orbifolds) of r(p) of a log-terminal singular point p of (X 11, D"). We thus 
have an inequality in Theorem 2 between Chern numbers of (X", D11). 

The equality holds if and only if w is the ball metric. Then the geodesic 
developing map of the complete orbifold with the ball metric exhibit 
( X", D", w) as a ball quotient. This completes the proof of Theorem 2. 

Recently, Holzapfel [Ho2] obtained an effective finiteness theorem for 
ball lattices whose quotient surface has the orbifold structure supported 
by a given orbital configuration. 

The general Miyaoka-Yau inequality in [Miy2] can be applied to the 
classical problem on how many singularities a plane curve of degree d 
has. Considering a cyclic covering and applying [Miy] give an estimate. 
For this application, see [Hir5], [I], [M-S], [Yr]. If we use Theorem 2, 
then we do not need the existence of a cyclic covering and so do not 
need any assumption on d. See [Ko6] and [Sak3]. 

§4. GHCS and uniformization of complex surfaces 

In this section we exhibit some examples and counter examples for 
uniformization problem for compact complex surfaces with ample canon-
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ical bundle and with at worst rational double points satisfying 2c2 = Ci 
in the sense of (0.1) and (0.2). 

4.1. GHCS and OUDE 

We begin by establishing a method of the construction of GHCS's 
on P2 (C) (see [KNr]). Let !la be an affine part of P2 (C) defined by 
Za -::j. 0 and Jr : C3 - {0} -. P2 ( C) be the natural projection. Let 
T = { Ta}, Ta E r(na, S2T* A ( C)) be a GHCS on P2( C) defined by a line 
bundle L. Let D be the discriminant divisor and assume [D] = O(2m), 
i.e., D is a curve of degree 2m. Since [DJ = 2(L + K) and K = 0( -3), 
we have that L = O(m + 3). Recall that 0(1) is the hyperplane bundle 
on P2(C) defined by the cocycle {;~ }. Hence we may assume after 
multiplying a suitable non-vanishing holomorphic function that 

lf*(Ta) = (Z(3) m+3 in C3 - {0}. 
Jr*(T(3) Za 

So we have compatibility conditions 

lf*(Ta)z;:'+3 = 1f*(Tf3)z;+3 

and the Hartogs Theorem implies that this extends across the origin to 
a holomorphic symmetric covariant 2-tensor 

g = lf*(Ta)z;:'+ 3 

on the whole C 3 • Since g is of homogeneous degree m + 3, if we write g 
as 

3 

g = L hi1(z)dzidz 1 (hij = h1i), 
i,j=l 

hi1(z) is a homogeneous polynomial of degree m + 1. That g defines a 

GHCS on P2 ( C) is equivalent to ieg = 0, where ~ = I:;=1 z; a~., the 
vector field generating the action of C* on C3 • And this is written as 

3 

( 4.1) L h;j(Z)Zj = 0 (i = 1, 2, 3). 
j=l 

Using (4.1), we have 

( 4.2) 9 = L h~~} d( :i )d( ;i) on !la, 
Za i,j-,:a Za a a 
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where !!:ii is a polynomial in E... (i # a). It also follows from ( 4.1) that 
Za Za 

the following polynomial of degree 2m 

does not depend on a. By (4.2), Ll = 0 defines the discriminant divisor 
of T. Since we want to construct examples which are desingularizable by 
Theorem 2. 7, we rewrite conditions (I), (II) and (III) in Section 2 ( see 
Theorem 2. 7) in this special situation. First, we look at the condition 
(II). Clearly (II) is equivalent to 

(II)' the rank of T is one along the regular part of Ll = 0. 
We may assume by a suitable linear change of (z1, z2, z3) if necessary 

that 
(i) no prime factor of Ll divides one and the same column or row of 

( hij (z )i :Si,j 9 ), 
(ii) Ll is not divisible by any coordinate Zi-

Assuming these two conditions and (II)', (III) is equivalent to 
(III)' the homogeneous polynomial hjjLlk - hjkLli of degree 3m is 

divisible by Ll for every even permutation (i,j,k) of (1,2,3). 
Indeed, for p E Reg(D) the 1-dimensional null space Np is spanned 

by the vector v; = h3j(x) a~. - hjk(x) a~;, where Xj = ¥,, etc. are 
inhomogeneous coordinates in the affine part z; # 0. The condition 
v E Tp(D) is then equivalent to v;Ll(p) = 0 and this holds for every 
p E Reg(D) which implies (III)' in the C3 level. (I) is of course equiva
lent to 

(I)' no multiple factor occurs in the prime factorization of Ll. 
For explicit examples, we want to construct a GHCS for prescribed 

discriminant divisor D with high symmetry with group G. Therefore 
we further use the G-invariance (which is translated to some relations 
among coefficients of polynomials hij) to determine the GHCS with 
divisor D. We have thus established, modulo (maybe) involved com
putations in explicit examples, the method of geometric construction 
of a GHCS with prescribed discriminant divisor. We remark that the 
above construction is generalized to higher dimensions by Sasaki-Yoshida 
[SaY2]. 

Before proceeding to examples, we briefly discuss orbifold uniformiz
ing differential equation (we say OUDE for abbreviation). Let M be a 
Hermitian symmetric space and r a discrete group of automorphisms of 
M and 7f : M _. X = r\M the projection. A multivalued inverse map 
'I/;= 7f- 1 : r\M _.Mis called a developing map of the orbifold r\M. 
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Definition. A linear differential equation on X of rank N is an 
orbifold uniformizing differential equation (OUDE) if its projective so
lution 

1/;: X 3 x - (z1(x): · · ·: ZN(x)) E PN-1(C) 

takes its values in M C PN _1 ( C) and gives a developing map. 

Gauss' hypergeometric differential equation (see [Yo]) is the first ex
ample of OUDE's. This is the second order ordinary differential equation 
defined on Pi ( C) with singularities at 0, 1 and oo 

(4.3) z(z - l)u" + {c - (a+ b + l)x}u' - abu = 0. 

Ifwe assume ll-cl- 1 , lc-a-bl- 1 and la-bl- 1 are integers (or oo) b0 , b1 

and b00 , then the projective solution of ( 4.3) uniformizes the orbi-curve 
(Pi ( C), D) with D = (1 - fo-){O} + (1 - ti-Hl} + (1 - b~ ){ oo }. We are 
interested in higher dimensional analogue of this. Yoshida [Yo] studied 
extensively OUDE's on A ( C) with the open unit ball as the uniformiza
tion. Here we discuss how GHCS's are applied in finding new OUDE's, 
those uniformizing Hilbert modular orbifolds. In fact, although Theo
rem 2.7 says that a GHCS (with a Kahler-Einstein metric) is sufficient 
to show the existence of the developing map to D 2 , it is not sufficient 
in determining the explicit form of the OUDE, i.e., we need another es
sential information. This is first pointed out by Sasaki- Yoshida [SYl]. 
Since D 2 is naturally imbedded in Pi ( C) x Pi ( C) and P 1 ( C) x Pi ( C) is a 
smooth quadric surface in P3 (C), the OUDE we want to find is of rank 
four and the projective solution obeys a quadratic relation. This im
plies that we must know the criterion in terms of local invariants which 
describes whether a surface segment in P3 ( C) is contained in a quadric 
surface up to projective transformations, i.e., we must know the solution 
to the equivalence problem of quadric surfaces in projective differential 
geometry (see [Sas] and [SaY2]). 

In fact, as in surface theory in R3 , there is the fundamental theo
rem which asserts that two surfaces in Pn+l ( C) are locally equivalent if 
and only if certain local invariants under the integrable condition ( equa
tions of Gauss-Codazzi and Minardi) coincides. But such theorem exists 
only for dimensions n 2: 3. This corresponds to the special feature in 
2-dimensional conformal geometry. Namely the 2-dimensional holomor
phic conformal structure (up to passing to the double covering) is equiv
alent to the splitting of the tangent bundle, which corresponds to the 
local decomposition SO( 4, C) ~ S0(3, C) x S0(3, C). In other words, 
Qn(C) is irreducible for n 2: 3 and Q2 (C) = P1 (C) x Pi(C). We now 
compute local invariants of a complex surface (segment) i : M '-------+ P3 ( C) 
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( the following discussion up to Fact 4.3 is valid for a hypersurface seg
ment in P n+l ( C)). Let e0 : M --+ C4 - { 0} be a holomorphic lifting of 
i. We associate a set e(p) = { e1 (p ), e2 (p ), e3 (p)} of linearly independent 
vectors at e0 (p) such that ei(P) (i = 1, 2) are tangent to e0 (M) modulo 
eo(P), and we call {eo(P),e1(P),e2(P),e3(p)} a projective frame for M 
at p. We always assume that det(e 0 , · • ·, e3 ) = 1. We consider e as a 
holomorphic map of M to ( C4 ) 4 which obeys an infinitesimal equation 

( 4.4) 
3 

de = ew (dea = L e13w~), 
/3=0 

where w is a holomorphic one form with values in sl( 4, C) ( differentiate 
<let( e0 , • • • , e3 ) = 1) and is called the Maurer-Cartan form. Taking the 
exterior derivative of ( 4.4) gives the integrability condition for the total 
differential equation ( 4.4) for e: 

3 

( 4.5) dw + w/\w = 0, (dw~+ Z:w~ /\w: 0). 
,=O 

Since W6 = 0, we have from ( 4.5) 

2 

( 4.6) L wt I\ wf = 0. 
i=l 

Set w~ = wi (i = 1, 2). Then wi (i = 1, 2) are coframes along e0 (M). 
Since wi (i = 1, 2) are linearly independent, ( 4.5) and Cartan's lemma 
imply that there exists a symmetric form h;j such that 

2 

(4.7) w3 
' 

L h;jWj (i = 1, 2). 
j=l 

Define a holomorphic symmetric covariant 2-tensor 

( 4.8) 
2 

c/J2 = L h;jWiWj. 

i,j=l 

Then it is easy to see the following 
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Fact 4.1. The conformal class of ¢2 is independent of the choice 
of a frame. 

Here a frame change is written as 

3 

e = ge, ea= Lg~e/3 
/3=0 

with g~ = g3 = gf = 0 (i = 1, 2). In this way, degenerate holomorphic 
conformal structures naturally appear in projective differential geome
try. Assume that ¢2 is non-degenerate. Then M admits a holomorphic 
conformal structure. Under this assumption, we may assume after a 
frame change if necessary that 

( 4.9) 

If we set 

2 2 2 

( 4.10) L hijkWk = dh;1 - L h;kwj - L h1kwf, 
k=l k=l k=l 

then ( 4.9) implies the following 

Fact 4.2. Set 

2 

( 4.12) L 
i,j,k=l 

Then ¢3 is a symmetric cubic form and its conformal class is inde
pendent of the choice of a frame, i.e., <p3 is uniquely determined up to 
multiplication of non-vanishing holomorphic functions. 

We call </)3 the Wiczynski-Fubini-Pick cubic form. Using these in
variants, we have a local characterization for quadric surfaces. 

Fact 4.3 (Berwelt, Wilczynski; see [Sas]). Let M be a holomorphic 
surface segment in P3 ( C) and assume </)2 is non-degenerate. Then one 
can find a frame with ( 4.9) and define the Fubini-Pick cubic form <p3. 
The hypersurface M is locally a quadric if and only if <p3 = 0. 

We are now ready to construct OUDE for orbifolds M = r\H x H. 
Now the special feature of the 2-dimensional conformal geometry comes 
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in. First of all, it is essential to realize D 2 ~ H x H as an open domain 
in a quadric surface in P3 ( C). Explicitly, we have 

(4.11) 

where [· : ·] stands for the ratio. Moreover, Aut(H x H) is a subgroup 
of Aut(P 3 (C)) which leaves H x H invariant. In the regular part of 
M, we take (z1 , z2 ) as local coordinates. The above Q2(C) is given 
by (o( 3 = (1 (2 and the standard holomorphic conformal structure is 
2d( ~ )d( ~ ). Then our differential equation in these coordinates is that 

which is fulfilled by a map covering ( 4.11). Write z1 = u, z2 = v. Then 
the differential equation 

( 4.12) 
Zuu = 0 

Zvv = 0 

is of rank four and the basis of the solution space is given by {l, u, v, uv} 
( note ( 4.12) is characteristic in dimension 2 since it corresponds to the 
splitting Q2(C) = Pi(C) x P1 (C}). Therefore (4.12) is our differen
tial equation in these coordinates and ( 4.11) is its projective solution. 
There is a PG L( 4, C)-ambiguity in the choice of a projective solution. 
The analytic continuation of a locally defined projective solution gives 
a developing map for M. Set e0 = (l,u,v,uv), e1 = ~ = (0, 1,0,v), 

e2 = ~ = (0,0,1,u), e3 = g~~~ and e = {e0 , .. ·,e 3 }. Then e forms 
a projective frame for the imbedding (4.11) with det(e 0 , · · ·, e3 ) = 1. If 
we set 

( 
0 0 0 0) 

du O O 0 
w = dv O O 0 

0 dv du 0 

then e obeys the total differential equation de = ew, which, as an equa
tion for e = (z,zu,Zv,Zuv), is equivalent to (4.12) (cf. (4.4)). Note 
that the holomorphic conformal structure 2dudv is induced from that 
of Q2(C) under the map (4.11). If we perform a coordinate change 
(u,v)---> (x,y), then (4.12) is transformed into the following form. 

( 4.13) 
Zxx = lzxy + az,, + bzy 

Zyy = mzxy + cz,, + dzy 
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l = _-_2_Yu_Y_v_ 
XuYv + YuXv 

-2XuXv 
and m=-----

XuYv + YuXv 
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If M = P2(C), we take an affine coordinate system (x,y) of P2(C) as 
new coordinates. If we further perform a change of the unknown z -+ eP z 
to ( 4.13) with p a holomorphic function, we arrive at the general form 
of linear differential equations with 2 variables and of rank 4. 

(4.14) 
Zu = lzxy + az,, + bzy + pz 

Zyy = mzxy + cz,, + dzy + qz 

We note that under the above change of the unknown, the coefficients l 
and m are unchanged. Moreover we. have 

Fact 4.4. The conformal class of the symmetric 2-forin l(dx) 2 + 
2( dx)(dy) + m(dy) 2 is independent of the change of coordinates (x,y) -+ 

( U, V) with XuYv + VuXv ::/= 0. 

Indeed, a direct computation shows 

l(dx) 2 + 2(dx)(dy) + m(dy) 2 = 2(XuYv - YuXv) 2 dudv. 
XuYv + YuXv 

Proposition 4.1. The holomorphic conformal structure l(dx) 2 + 
2( dx )( dy) + m( dy )2 coincides with the holomorphic conformal structure 
obtained by pulling back the canonical one on the quadric surface by a 
projective solution. 

Indeed, dudv is the pull back of the canonical holomorphic conformal 
structure under the projective solution of ( 4.12). Thus Fact 4.4 implies 
the assertion of the proposition. 

Let {zo, z1, z 2 , z3 } be a basis for the space of solutions of ( 4.14). Set 
z = (zo, · · · ,z3) and 

e29 = det(z, z,,, Zy, z.,y)-

We call this the normalization factor. If we fix a coordinate system, 
the normalization factor varies if we change the unknown z by ePz. 
This fact is used successfully by Sasaki-Yoshida [SaYl] and Sato [Sat]. 
Thus the surface in P3 ( C) defined by the projective solution [eo] of 
(4.14) has a projective frame e = (eo,e1,e3,e 3) = (z,z.,,zy,e- 29 z.,y) 
with det(e 0 , · • ·, e3 ) = 1. Indeed, a direct computation shows 
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( ) e4P(XuYv + YuXv) 
<let z, z.,, zy, z,,y = ( )3 I 0. 

XuYv - YuXv 

hereafter we assume that the orbifold structure M is defined over P2 ( C) 
and (x, y) in (4.14) are affine coordinates. Hirzebruch's descriptions 
(see [Hir3,4]) for certain Hilbert modular orbifolds give such examples. 
His descriptions are so explicit that we can get all informations on the 
orbifold structure. We take a full advantage of this special situation to 
find the explicit form of OUDE. Proposition 4.3 implies that the first 
step in finding OUDE for a Hilbert modular orbifold over P2(C) is to 
apply the method of construction of GHCS on P2(C) ([KNr]) explained 
at the beginning of this section. The next step is to apply Fact 4.2 which 
guarantees that the surface eo ( M) in P3 ( C) defined by the projective 
solution [e0] = (zo : · · · : z3 ) is a quadric surface. One can compute the 
Wilczynski-Fubini-Pick cubic form of the surface eo(M) explicitly, after 
a certain explicit frame change (eo,···,e3)-+ (eo,···,e3) (see [SaYl]) 
necessary to achieve the condition (4.9). A direct computation then 
shows that Fact 4.2 in this case reads as follows. 

Proposition 4.2 ([SaYl]). The surface in P3(C) defined by the 
projective solution [ e0 ] is locally equivalent to a quadric if and only if 

8 1 l 8 1 
a = -( -e + 0) - - -(log l - -~ + 0) 

8x 4 2 8y 4 

( 4.15} 

l 8 3 
b = --(logl - -~ - 0) 

2 8x 4 
m 8 3 

c = --(logm - -~- 0) 
2 f)y 4 

8 1 m 8 1 
d = -(-~ + 0) - --(logm - -~ + 0) 

fJy 4 2 8x 4 

where 
~ = log(l - lm). 

Proposition 4.2 implies that once we fix the normalization factor 
e29 , then the coefficients a, b, c and d are determined by the holomor
phic conformal structure ¢2 = l(dx) 2 +2(dx)(dy) +m(dy) 2 • Since ¢2 is 
written using rational functions, a, b, c and d are also rational functions 
provided e29 is fixed to be a rational function. We note that p and q do 
not appear in the condition ¢3 = 0. Therefore we need global considera
tions (not infinitesimal considerations) to determine p and q. We should 
compare this with the case of dimension ~ 3 which is treated in [Sa Y2]. 



Uniformization of Complex Surfaces 367 

Sasaki-Yoshida showed that, in higher dimensions, the condition ¢3 = 0 
determines all coefficients of OUDE in terms of (the derivatives of) the 
GHCS and the integrability condition ( 4.5) is automatically fulfilled if 
the GHCS is flat (i.e., the quadric structure). 

The final step is to determine p and q. For this purpose, we make 
use of the integrability condition for the equation ( 4.14 ). The projective 
frame e = (z, z,,, zy, z,,y) for the surface defined by the projective solution 
[z] obeys the following total differential equation which is equivalent to 
( 4.14): 

de= ew, 

with the Maurer-Cartan form w given by 

where 

p(dx) 
a(dx) 
b(dx) 

q(dy) 
c(dy) 
d(dy) 

e29 (ldx + dy) e29 (mdy + dx) 

Bo= Py+bq+l(q,, +cp)
1 

1-lm 

B 1 = (A+ lq)(l - lm)- 1 , 

co= q,, + cp + m(py + bq) 
1- lm 

(4.16) B 2 = (B + q)(l - lm)- 1 , 

C 1 = (C + q)(l - lm)- 1 

C2 = (D + mp)(l - lm)- 1 

A= ay +be+ l(c., + ac), B =by+ bd + l(d,, + be) 

C = c,, + ac + m(ay + be), D = d,, +be+ m(by + bd). 

Proposition 4.2 ([SaYl]). The integrability condition (4.5) for 
the equation ( 4.14) is given by the following equations: 

(ICO) (a+ B 3 )y = (d + C3 ),, 

(ICl) lqy - 2q,, -mpy - (l(y -(,, - 2ly)q = R 1 

(IC2) mp,, - 2py - lq,, - (m(,, - (y - 2m,,)p = R 2 

(IC3) Pyy - q,,,, - mpxy + lqxy 

= cp,, - bqy + (d + 2m,, + (y - m(.,)Py 

- (a+ 2ly + (x - l(y)q,, 

+(may+ 2c,, - 2cly - lcy - c((,, - l(y))p 

- (ld,, + 2by - 2bm,, - mb., - b((y - m(,,))q, 
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where 

(4.17) 

R. Kobayashi 

R1 = (C 3 + (y)A - (B 3 - a+ (,,)C - Ay + C., - cB 

R 2 = (B3 + (.,)D - (C3 - d + (y}B - D., + By - bC 

B3 = (ly +a+ bm} + l(m,, + d + cl))(l - lm)- 1 

C3 = (m., + d +cl}+ m(ly +a+ bm})(l - lm)- 1 . 

We note that (IC0} is a condition for l, m, a, b, c and d. For explicit 
examples, once one finds l and m (also a fixed normalization factor), 
(IC0} should be examined directly. (ICl} and (IC2) are effectively used 
to determine p and q. Sasaki-Yoshida established the strategy in deter
mining p and q, which, modulo very involved computations, is as follows 
([SaYl], see also [Sat]). 

(0) We use the expression of the GHCS ¢2 and the already fixed 
normalization factor e28 and a, b, c and d. A clever choice of the normal
ization factor, for example imposing the invariance under the symmetry 
group of D, is very important to simplify the computation. 

(1) We estimate the poles of p and q outside the discriminant locus 
D of ¢2 (which coincides with the branch locus of the orbifold}. To do 
this, we start with (4.12} and transform (4.12) into the form (4.15) by 
the coordinate change ( u, v) -+ ( x, y) where ( x, y) are the inhomoge
neous coordinates and the change of the unknown z -+ eP z. One can 
easily write down the new coefficients in terms of the old ones and the 
derivatives of p with respect to ( x, y) as well as the derivatives of ( x, y) 
with respect to (u, v). Using the expressions as rational functions of e28 

and ¢2, we can estimate the poles of rho and therefore those of p and q 
outside D (see [SYl, transformation formula (2.9) in p.103]). 

(2) To estimate the poles along D, we need to start with the canon
ical form 

Zuu = Zuv 

( 4.18) 

representing locally the composite map of the (1:2)-map 

and the canonical imbedding 
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The branch locus is v = 0. In exactly the same way as in (1), we 
transform (4.18) into the general form and estimate the poles of p along 
D. This gives the estimate of the poles of p, q along D. We thus see that 
p and q are rational functions whose numerators are to be determined. 

{3) Using {ICl), (IC2) and the G-invariance of the equation {4.15), 
we determine the numerators, where G is the group of symmetries of 
D. This process requires involved computations and we sometimes pass 
to the orbifold G\P 2 ( C) with the branch loci the image of D and the 
branch locus of the quotient map by G (see [Sat]). Algebraically, passing 
to the orbit space G\P 2 ( C) corresponds to introducing new coordinates 
which are expressed as certain rational functions of G-invariants. We 
now proceed to explicit examples of uniformizations of Hilbert modular 
orbifolds of Q(v12) [SaYl] and Q(v'5) [Sat]. For the case of Q(./3), see 
[Sat]. 

4.2. Hilbert modular orbifold for Q( v12) and its OUDE 

Let k = Q( \12) and o be the ring of integers in k. We denote by 
r{2) be the principal congruence subgroup of SL(2, o) associated with 
the ideal {2) of o: 

{ ( ~ ~) E SL(2, o); a= 6 = 1, ,B = 1 = 0 mod {2)} · 

Let further r{2) c r c SL(2,o) be the group such that r/r{2) is 
the center of SL{2,o)/r{2). It is easy to see that [r: r{2)] = 2 and 
SL(2, o )/r{2) ~ S4 ( the symmetric group of degree 4 or the symmetry 
group of the cube). The group SL(2, o) acts on H x H by 

( a b ) . ( ) ( az1 + b a' z2 + b' ) 
d . Z1, Z2 I-+ , 

C CZ1 + d c! Z2 + d' 

where ' means the conjugate in Q( \12). Let r be the transposition 
( z1 , z2 ) -+ ( z2 , z1) and rr be the group generated by r and r. Hirzebruch 
[Hirl] showed that the factor space H x H/rr is isomorphic to P2 (C) 
minus six points. The branch locus D of the projection 1r : H x H -+ 

P2 ( C) is the curve of degree 10 consisting of the following four lines and 
three conics: 

x = ±1, y = ±1, xy = ±1, x2 + y2 = 2, 

provided the affine coordinates x, y are suitably chosen. The double cov
ering branched exactly along D is the compactified quotient r\H x H. 
The curve D has exactly six singular points and these are quasi-regular 
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log-canonical singularities of the normal surface pair (P 2 (C), ½D). In
deed these singularities correspond to the cusp singularities in the double 
covering and each of them is resolved by a the cycle of two rational curves 
of self-intersection numbers -2 and -4 (see Section 4). Thus there exists 
a unique tangential GHCS with discriminant divisor D. With the aid of 
the S4 -invariance we can determine the explicit form of this ([KNr]): 

l(dx) 2 +2(dx)(dy) + m(dy) 2 

with 
2 _ y2 _ x2y2 

l = ---=-----='-' xy(x 2 - 1) 
2 - x2 - x2y2 

m= . 
xy(y 2 - 1) 

Sasaki-Yoshida [SaYl] constructed the OUDE for the orbifold I'r\HxH. 
They fixed the normalization factor for the equation ( 4.14) to be 

e29 = (1 - lm)-l(xy)- 6, 

which is S4-invariant (i.e., ifwe change the variables (x,y) to (x',y') by 
an element of S4 , the normalization factor of the new equation has the 
same form with respect to (x',y',···,l',m')). And they carried out the 
above procedure (O),· · ·,(3). The result is an equation (4.14) with l, m 
as above, and a, b, c, d as determined by the formulae (4.15), and 

q = (1 - x2)(1 - y2)2. 

Let g be the full modular group PSL(2,o) and Qr be the group gener
ated by g and r. It is shown in [KKN] that S4 \ P2 ( C) is birational to 
P2 ( C) and the rational map 

8: P2(C) - P2(C) ~ S4\P2(C) 

is given by 8[x : y : z] = [A3 : B 2 : AC] where A= x2 + y2 + 2z 2 , 

B = (x2 - y2)z, and C = (z2 - x2)(z 2 - y2). It is an easy task to 
transform </J2(x,y) into ¢2(X,Y) in terms of the new variables X and 

Y which are defined by X = !: and Y = .£ . Hence if we perform the 
change of variables (x, y) - (X, Y), we get the transformed equation 
OUDE which is the OUDE for the terminal orbifold Qr\H x H. The 
terminal orbifold defined birationally over P2 ( C) have the branch locus 
D = D1 U D2 of branch index 2 where D1 is the branch locus of 8 and 
D2 is the image of D (D1 and D2 have no common components): 

(4.19) 
D1 := X{(l + 12Y)3 - (54X + 36Y - 1)2} = 0 

D2 := Y(X + Y) = 0 
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The origin X = Y = 0 is a log-canonical singularity of the same type as 
above which corresponds to the cusp point at oo. Since the singular locus 
of Das well as D itself is realized in the real part P2 (R) (see Figure 4.1), 
we can determine the generators and relations of the fundamental group 
1r 1 (P2 ( C)-.D) using the Zariski-van Kampen's method (see, for example, 
[KKN]). Analyzing the rational map b, we get further relations which 
determine the structure of the fundamental group YT of the terminal 
orbifold. 

D2 

Figure 4.1 

Let us use the symbols in Figure 4.1 to explain the result. Let a, /3 
and b be loops sitting in the complex feature of the line l surrounding 
D1 at a, b, and d counterclockwise. Let similarly, and€ be loops in the 
complex feature of l surrounding D2 at c and e. Then yT is a reflection 
group generated by a, /3, ,, b and € with the following relations: 

a~ = /32 = ,2 = 62 = i:2 = 1, 

( af3)2 = (f3a )2 , a€ = rn, a, = ,a, aba = bab, 

/36,e = e/361, (/36,e)b, = 1(/36,e)b, (/36,e)b,b = b(/36,e)b,, 

(/36,e)/3 = /3(/36,e), € = (a/3,be) 3. 

It is not difficult to find the matrix elements in yT. For instance we have 
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a= (1• :) , fi= (;. !) , 1= (;. ~), 

8 = ( i. ~) ' € = ( ;. ~) ' 

where * means the conjugation in Q( v12) and 

A=(o 1) B=(l u+l) C=(u O) 
-1 0 ' 0 1 ' 0 -u* 

D = ( ~ -~•) , E = ( ~ ~) , 

on PSL(2,o)-level, with u = -v12 - 1 (a fundamental unit of o). This 
group is isomorphic to the monodromy group of OU DE. In general 
we must realize the monodromy group as a discrete subgroup of the 
automorphisms of the target space. But this is automatically fulfilled 
in our case, since the projective solution is the developing map of the 
quadric structure if,2(X, Y). If one wish to examine directly the mon
odromy condition, it will be necessary to develop the local theory of 
Fuchsian systems (see [YH]) of rank four with the quadratic relation. It 
should corresponds to the study of the uniformizing differential equations 
for quasi-regular log-canonical singularities ( whose double coverings are 
Hilbert modular cusp singularities). Note that these log-canonical sin
gularities have a canonical tangential GHCS. For their classification, see 
[Kar] (also [Na]) and Section 3 of this paper. 

4.3. Hilbert modular orbifold of Q( ./5) and its OUDE 

Let o be the ring of integers in Q( ./5) and r = r( v15) the principal 
congruence subgroup of G = PSL(2, o) associated with the prime ideal 
( ./5) of o. Let fr (Gr) be the groups of automorphisms of H x H 
generated by r (resp. G) and the transposition r. Hirzebruch [Hir4] 
showed that the Hilbert modular surface r\H x H is completed with 
six cusps and the Hilbert modular orbifold fr\H x H, which is the 
quotient by the action of the involution induced by the transposition r, 
is isomorphic to P2 ( C) minus six points with the Klein curve C = 0 of 
degree ten as the branch locus C with branch index 2. The equation of 
C is given by: 
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C = 320x2 y2 - 160x3y3 + 20x4y4 + 6xsys 

- 4(xs + ys)(32 - 20xy + 5x 2y2) + x10 + y10 . 

l{lein's curve of degree 10 

Figure 4.2 

The curve C has six singularities each of which is the double (2, 3)
cusp. This is locally given by the equation (x3 + y2 )(x 2 + y3 ) = O. 
It is easy to see that the double covering z 2 - ( x3 + y 2 )( x 2 + y3 ) = 
0 is the Hilbert modular cusp singularity resolved by a cycle of two 
rational curves of self-intersection number -3. It is known [Hir2] that 
the operation of G/r = PSL(2,Fs) ~ As is the natural action of the 
icosahedral group ( ~ As) induced from the canonical action on R3 • 

The Klein curve is invariant under this action and the six double cusps 
form a unique minimal orbit of As (see [Kl] and [KKN]). It is shown in 
[KKN] that the completed terminal orbifold Gr\H x H = As\P 2(C) is 
birationally isomorphic to P2 ( C) and the rational map is given by 

8: P2(C) 3 (1: x: y] f-+ (As: A2 B: C] E P2(C) 

in the inhomogeneous coordinates ( x, y), where A = l + xy, B = Bxy -
2x2y2 + x3y3 - x 5 -y 5 and C is as above. A is the invariant conic, B the 
unique curve of degree 6 through six double cusps and C is the unique 
curve of degree 10 through the unique minimal orbit of As. The branch 
locus C of the terminal orbifold consists of the image C1 = 0 of C and 
the branch locus C2 = 0 of 8 and is of index 2: C = C1 U C2. Explicitly, 
we have 

C1 =Y 

C2 = 1728Xs - 720X3Y + 80XY 2 - 64(5X 2 - Y) 2 - y 3 • 
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(-2) D< 

the exceptional curve of the 
cusp singularity corresponding 
to the double (2.3)-cusp 

Figure 4.3 Figure 4.4 

The origin X = Y = 0 is the image of the cusp point which is a quasi
regular log-canonical singularity locally given by ( x + y2 )( x2 + y5 ) = 0 
the double covering of which is the Hilbert modular cusp singularity 
z2 = (x + y2 )(x 2 + y 5 ) resolved by a rational curve with a node of 
self-intersection number -2 (see Figure 4.4). Sato [Sat] determined the 
OUDE for these orbifolds. First, the tangential GHCS ¢2 = l(dx) 2 + 
2(dx)(dy) + m(dy) 2 was computed by Kobayashi-Naruki [KNr]: 

2(8y 2 - 6xy 3 + x 2y4 - x4 y + 4x 3 ) 
l=-'--'------'---'---~ 

-24xy + 10x2y2 - 2x 3y3 + x 5 + y5 

2(8x 2 - 6x3y + x4 y2 - xy 4 + 4y 3 ) m=-------------. -24xy + 10x 2y2 - 2x3y3 + x 5 + y5 

Changing the variables (x, y) -. (X, Y), where X = .fa and Y = 

i, gives rise to the transformation of the equation ( 4 .14) with co
efficients l(x,y), m(x,y),···,q(x,y) into the equation (4.14) with co
efficients l(X, Y), m(X, Y), · · ·, q(X, Y) defined on the terminal orb
ifold with coordinates X and Y. We have the tangential GHCS ¢2 = 
m(dX) 2 + 2(dX)(dY) + m(dY) 2 on the terminal orbifold [Sat]: 

f = 20( -4X 2 + 4Y - 3XY) 
36X 2 - 32X - Y 

_ 2(50X 2 - 54X3 - 2Y + 3XY) 
m = 5Y(36X 2 - 32X - Y) 

Sato [Sato] fixed the normalization factor for ( 4.14) to be 

e28 = (l - lm)-½A- 3 , 
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which is As-invariant in the same sense as above. Changing the variables 
(x, y)-+ (X, Y), we compute the normalization factor for ( 4.14) on the 
terminal orbifold: 

20 {32X - 36X 2 + Y)Y½ 
e =------'--------'-------~ 

(l 728X 5 - 720X 3 Y + 80XY 2 - 64(5X2 - Y) 2 - Y 3 ) ½ • 

Formulae ( 4.15) then gives the coefficients a, b, c, and J: 

_ 5(4X 2 - 9XY + 4Y) 
a=~~~------'--

Y(36X2 - 32X - Y) 

b = -10{8X + 3Y) 
36X 2 -32X -Y 
54X 3 - 50X 2 + 3XY - 2Y c=----------

10Y2(36X2 - 32X - Y) 

J _ -216X 2 + 200X + 9Y 
- 10Y{36X 2 - 32X - Y). 

Estimating the poles of p and q and using the integrability condition 
{!Cl) and (IC2) for (4.14), one may determine p and ij [Sat]: 

40X +9Y 
p = 2Y{36X 2 - 32X - Y) 

-540X 2 + 400X - 3Y 
ij = 400Y 2 (36X 2 - 32X - Y). 

The reflection group PSL(2, o)r is isomorphic to the fundamental group 
of the terminal orbifold. We may compute this explicitly [KKN]. Let l 
be a line as in Figure 4.4 and a, (3, 1 loops in the complex feature of 
l surrounding C2 counterclockwise at a, b, c and similarly 6 a loop in 
l surrounding C1 at d. Then the fundamental group of the terminal 
orbifold is isomorphic to the group generated by a, (3, 1 and 8 with the 
following relations: 

a2 = /32 = 12 = 52 = 1, 

a(3 = (3a, a 1 a = 1a1 , a8 = fo, (8(3,)28 = 8(8(3,)2, 

(8/31)2/31 = (J(6(Jr)2(J, (6/31)2/3 = 1(6fJ1)2, 

( a/31 6)5 = 1. 

As the matrix representations for the generators a, (J, 1 , 8 of PSL(2, o)r, 
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we have for instance 

where * means the conjugation in Q( v15) and 

with u = ~- 1 and the action of a on H x His given by a(z 1 , z2 ) = 

(Az 2 ,A*zi), etc. 

4.4. Counter examples of uniformization problem 

The general uniformization theorem in Section 3 characterizes ball 
quotients among certain normal surfaces in terms of numerical invariants 
(i.e., the logarithmic Chern numbers Ci and c2 of open orbifolds). This is 
the converse of Hirzebruch's proportionality theorem [Hirl] er = 3c2 for 
ball quotients with finite volume. The other Hirzebruch's proportionality 
asserts er = 2c2 for H X H-quotients with finite volume. However, 
the converse of this is not true ([KNr, Examples 6.5 and 6.6]). We 
briefly describe counter examples. These are double planes for which 
the proportionality is fulfilled but not uniformized by H x H. 

Counter Example 1. Let C be a non-degenerate conic in P2 ( C) 
and p 1 be a point outside it. We draw two lines l1 , l2 through p 1 which 
are tangent to C. Let z; be the line connecting two contact points of l1 , 

l2 and C. We then take a point p~ on the line z; and from it draw two 
tangent lines l~ and z; to C. Let l3 be the line connecting two contact 
points of l1 , l2 and C. It is then a simple theorem in projective geometry 
that p1 is on the line l3 • Let D be the octic curve consisting of one conic 
C and six lines li and z: (i = 1,2,3). 

Configuration D 

The configuration D is rigid, i.e., unique up to projective transfor
mations. The double covering branching along D is a canonical surface 
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with 5 A1 , 2 D4 and 4 D6 simple singularities (see [BPV, p.87]). In par
ticular, it admits a Kahler-Einstein orbifold metric with negative scalar 
curvature. We compute from Theorem 2 that 

-2 1 2 
c1 = 2(Kp 2 (C) + 2D) = 2, 

c2 = 2(e(A(C)) - e(D)) + e(D) - (correction terms)= 1, 

where b is a smooth octic curve and the correction term is e( Ep) -

lr(v)I for a simple singularity p where Ev is the exceptional set in the 

minimal good resolution and r(p) is the local fundamental group of p. 
We thus have the proportionality c~ = 2c2 • We show that there exists 
no tangential GHCS with discriminant divisor D. By the rigidity, we 
may suppose that D is given by D = 0 with 

D = xy(x 2 - l)(y 2 - l)(x 2 + y2 - 1) 

The configuration D is invariant under the transformations ( x, y) --> 

(±x,±y) and (x,y) --> (y,x). We seek a GHCS (ds) 2 = P(dx) 2 + 
2Q(dx)(dy)+R(dy) 2 such that (i) PR-Q 2 = ±D, (ii) P, Q, Rare poly
nomials of degree 5, (iii) (ds) 2 is invariant as a GHCS under the above 
transformations (see Section 4.1). The invariance under (x, y) --> (-x, y) 
implies that P and R are simultaneously even or odd in x. The invari
ance under the transposition then implies that P and R are divisible by 
x 2y2 • Since P and Q are of degree 5, this contradicts to the invariance 
P(x,y) = ±R(y,x). This means that there exists no GHCS (tangential 

or not) with discriminant D. In particular, the double plane P2 ( C)( viJ) 
is not uniformized by H x H. 

Remark. Let r be an involution (x,y) --> (s,t) = (x 2 ,y) of the 
bidisk. Then the invariant holomorphic conformal structure dxdy on 
the bidisk projects down to a GHCS }.dsdt with discriminant s = 0. 

Not only tangential GHCS but also this possibility is excluded in the 
above counter example. 

Counter Example 2. We consider the five conics 

Ci: 
2 x2 2 1 

z = 2 + xy + ajaky = 2 (x - aiaiy)(x - aiaky) 
ai ai 

C±: z 2 = (xy + +py 2 ) ± 2xy, 

where ( x, y, z) are the homogeneous coordinates of P2 ( C), a 1 , a2 and 
a3 are the parameter of the family obeying a 1 + a2 + a3 = 0 and p = 
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a2a3 + a3 a 1 + a1a2. The dependence on the parameters is projective 
and hence we get a family of 5 conics parametrized by t E P1 ( C}. Each 
member has generically 16 ordinary contact points. This family contains 
singular members ( corresponding to p = 0) with more ordinary contact 
points. In approaching a singular member, 2 A1 singularities become 
closer and collapse into 1 A3 singularity in the limit. The existence of 
such conic arrangements was found by Naruki (see [Narl]}. Pictorially 
these arrangements look like 

Naruki's arrangement of 5 conics and their degeneration 

where o represents a non-degenerate conic in P2( C}, o--o means 
two conics intersect transversely at two points and contact at one point, 
and c=:i means two conics contact at two points. Let Dt be. the 
arrangement corresponding tot and Xt the double plane branching over 
Dt. The generic double planes fulfill the proportionality 

and we have 
- -2 3 2c2 - C1 = - 2 

for singular members. We note that this family consists of canoni
cal surfaces, i.e., surfaces with at worst simple singularities and with 
ample canonical divisor. In particular any member admits a unique 
Kahler-Einstein orbifold-metric with negative scalar curvature. Apply
ing Tsuji's theory [T2] of convergence of Kahler-Einstein metrics un
der degeneration in the category of canonical surfaces (more generally, 
in the category of minimal algebraic varieties of general type (see also 
Sugiyama's survey in this volume [Sul)}, we infer that Kahler-Einstein 
metrics of the generic members converge to those defined on the singu
lar members. It follows that the Kahler-Einstein metric for the generic 
member sufficiently close to the singular member has highly concen
trated curvature in a small region. This implies that any general mem
µer sufficiently close to a singular member is not uniformized by H x H. 
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The Euler number defect ¾ in the singular member is interpreted, by 
Bando-Kasue-Nakajima's theory, as the part of the curvature of the 
Kahler-Einstein metrics of generic members, which pops out in the limit 
as an ALE gravitational orbifold-instanton ( cf. [BKN]). 

§5. Appendix 

In this Appendix, we present tables of log-canonical surface singu
larities mainly with branch loci. We follow the notations of Section 3.1. 

(l)** log-terminal singularities with branch loci. 

C ------0----------. b1 
(-a1,n 1 ) 

(-ao) 
- - - - - -0----------. b, 

(-a2,n 2 ) 

<< 2,2,m >> 

c-..,t:: ---------o---<o ,, 

(-ai) (-an) 

"a > 1 + f;,_,, 
O d3 

( ) 

0 

(-ao) - - - - - - ----0---e b3 

(-a1) (-an) 

"ao >½+a;" 

ho)~ _____ --a-----. ;, 
(-ai) (-an) 

"a > ~" 
O d3 
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<<2,3,3>> 

"ao ?: 1" 
ao = 1 ¢> ((4)) 

<-o,J~-:, ;_,, ~ 
"ao ?: 2" 

<< 2,3,4 >> 

(-2) 

(-3) 

(-ao) 
4 

"ao 2: 1" 
ao = 1 ~ ((8)) 

R. Kobayashi 

L_(~2~ L(-2) 
(-ao)~: (-ao)~-2) 

"ao ?: 1" "ao ?: 2" ao = 1 ¢> ((5)) "ao ?: 1" 

,-~,~-,, (-,,,~-,, 
(-2) (-2) 

"ao ?: 2" "ao ?: 1" 

3 

"ao ?: 1" 
ao = 1 ¢> ((6)) 

"ao ?: 1" 
ao = 1 ¢> ((7)) 

L: E') 
) 

(-ao) 2 (-•o)~-2) 

(-2) 

"ao 2: 2" 

L~-2) 
(-ao)~ 

(-2) (-2) (-2) 

"ao 2: 2,, 

"ao 2: 2" 

"ao 2: 1" 

L: 
(-a 0 )~-2) 

(-2) 2 

"ao 2: 2" 

(-2) (-2) (-2) 

"ao 2: 2" 



,-,,,~-SJ 
(-4) 

''aa 2: 1" 
aa = 1 {} ( ( 12)) 

"ao 2'.: 1" 

(-a,JL: 
~(-4) 

"ao 2:: I'' 

<< 2,3,5 >> 

~,-,, 
(-3) 

(-ao) 
5 

"a.a 2:. 1" 
a.a= 1 {} ((16)) 

E (-ao) 

(-3) (-2) 

"ao 2:: I" 
a.a= 1 {} ((20)) 

~ (-ao) 

) 

(-3) (-2) 

"ao 2:. I'' 
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,-.. ~ 
~HJ 

(-aoJ : E (-ao) 
2 

(-2) (-2) (-2) 
''aa 2: 1" 

(-2) 

"ao ~ 2" aa = l '{} ((10)) "ao 2:: 2" 

(-ao)L ~-') 
~2 

(-2) 

,-.,J~-,, (-·-~:· 
"ao 2:: 1" "a0 :2:: 1" 

(-2) 

"a0 2:: 2" 
aa = 1 {} ( ( 1 3)) aa = l {} ((9)) 

,-,.~ 
(-2) (-2) (-2) 

"ao 2:: 1" 
aa = l {} ((14)) 

,-.. ,~: 
"ao ~ 1" 

aa = l {} ((11)) 

,--.,~, 
(-2) 

"ao ~ 1" 
aa = l {} ((1.5)) 

~ ,-.,~-SJ 

~HJ 

(-ao) 
3 

(-ao) 

) 

(-5) 
(-2) (-3) 

"ao 2:. I" "ao 2:. 2" "ao 2:. 1'.' 
ao = 1 {} ((22)) 

E ~ ~> (-3) 

(-ao) (-ao) (-ao) 
(-5) 

(-'.l) (-3) (-'.l) (-2) (-2) (-2) 

"a.0 2:: 2'' "a.a 2:. 2" "a0 2:. l" 

~ (-••~;'' ,-.,~-OJ 
(-ao) 

) 

(-5) 

(-2) (-2) (-2) (-2) 
(-3) (-2) 

"a.a 2:. 2'' "ao 2:. 1" "ao 2:. 2" 
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<--,,~-,, ,-.. ,~ 
L(-2) 

(-ao)~: 
(-2) (-3) 

"ao ~ 2" 

,-.. ~-,, 
"a0 ~ 1" 

ao=l ¢? ((17)) 

(-2) (-2) (-2) (-2) 

"ao ~ 2" 

~' 
(-ao) 

3 

(-5) 

"ao ~ 1" 

(-2) (-2) (-2) (-2) 

"a > l" o_ 
ao = l ¢? ((21)) 

"ao ~ l" 
ao = 1 ¢> ((18)) 

,-.. ,~ 
(-3) (-2) 

"ao ~ 1" 

"a0 ~ l" 
ao = l ¢? ((19)) 

(2)* cusp singularities uniformized by those in (2). 

(-2) ~------__/ (-2) 

(-2,r ~(-2) 

(2)** cusp singularities with branch loci. 

(-2)~-a)2 

(-1) 

2 2 

a~3 

(-2) 

2 

a~ 5 

"ao ~ 1" 

,-.. ,~ 
(-2) (-3) 

"ao ~ l" 

(-2) 

2 

(-2)~(-2) 

(-a) 
(-1) 

2 2 

(-2)~(-2) 

(-a) 
(-1) 

2 (-2) 

a~3 a>4 
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(-2)~ (-2) 

----- --U-------<">--O (-1) 

2 
(-ao)(-ai) (-an-il (-an-2) 

2 

aa 2:: 2, an 2'. 1 

(-
2

) ),z,-------0---<1~-n (-1) (-
2

) 

(-ao)(-ai) (-an-il (-an-2) 

(-2) 2 

"aa 2:: 3, an 2'. 1" or "aa 2:: 2, an 2'. 2" or 
"n 2:: 2, 1 :S 3j :S n -- l; a1 2'. 3, a.a 2:: 2, G.n 2'. 1" 

2 ~------ ---<>-------<>-------<J(-1) (-2) 

(-ao)(-a1) (-an-1) (-an-2) 

2 2 

"a.a 2:: 2, an 2'. 1" or "a.a 2:: 1, an 2'. 2" 
or n 2'. 2, 1 :S 3j :Sn; a.1 2'. 3, a.a 2:: 1, G.n 2'. 1" 

(-2)~ (-2) 

- - - - - ---0----------1:J----O ( -1) 

2 
(-1)(-ao -2) (-an_,) (-an -2) 

2 

"a.a 2:: 2, G.n 2'. 1" or "n 2:: 2, 1 :S 3j :Sn - l; a.1 2'. 3, a.a 2:: 1, an 2'. 1" 

"a.a 2:: l,a.n 2:: 2" or "n 2'. 2, 2>-, ~2 
(-ao) (-an) 1 :S 3j :Sn - l; a.1 2'. 3, a.a 2:: 1, G.n 2'. 1" 

2 2 

(-2)>-, ~2 
(-ao) (-an) 

(-2) 2 

(-2)>-, ~(-2) 
(-ao) (-an) 

(-2) 2 

"a.a 2:: 2, G.n 2'. 2" or "a.a 2:: 3, G.n 2'. 1" or 
"n 2:: 2, 1 :::; 3j :::; n - l; 

a.1 2'. 3, a.a 2:: 2, G.n 2'. 1" 

"a.a 2:: 2, G.n 2'. 2" 
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(-2)~ /(-2) 

2/ao) ~2 

"ao 2: 2, an 2: 2" 

2~ /(-2) 

2F ~2 

(3)* ball cusp singularities uniformized by simple elliptic singulari
ties (2). 

~HJ € € ~-,J (-3) 
-2) -2) -2) 

(-3) ( ) 

(-2) (-2) (-2) (-2) 

~HJ 

(-4) 
(-2) (-2) (-2) 

(-4) 
(-2) (-2) (-2) (-2) (-2) (-2) 

(-2) (-2) (-2) 

~HJ 
(-3) 

~-,J (-6) ) 
(-2) (-2) (-2) (-2) (-2) 

(-2) ( ) (-2) 

HJXHJ 

(-2) (-2) (-2) (-2) (-2) 

(-2) (-2) (-2) 
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(3)** ball cusp singularities with branch loci. 
<< 3,3,3>> 

L: E-2) 
(-ao)?-2) (-ao)?-2) 

"ao 2:: 1" "ao 2:: 2" "ao 2:: 2" 

L(-3) 
(-ao)~: 

(-,,,~-,) (-o,)~: 
"a0 2:: 1" "ao 2:: 1" "ao 2:: 1" 

<<2,4,4>> 

/(-2~ ~ 
(-ao)~-2) 

/:-~: 
(-ao)~ 

(-2) 2 

"ao 2:: 2" "ao 2:: 1" 

L:_1' 
(-aoJ~-2) 

(-2) 

"ao 2:: 2" 

(-,,)~'' 

(-2) (-2) (-2) 

"a > 2" 0 -

L: 
(-ao)~2 

(-2) 2 

"ao 2:: 2" 

"ao 2:: 2" 

"a > 1" o_ 

L(-2) 
(-ao)~: 

"ao 2:: 1" 

"ao 2:: 1" 

"ao 2:: 2" 

L: 
(-ao)~

2 

"a > 2" 0 -

L~ 
(-ao)~-2) 

"ao 2:: 1" 

385 
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(-2) 2 

"a0 ~ l" 

<<2,3,6>> 

~HJ 
(-3) 

(-ao) 
6 

"ao ~ l" 

"a > l" a_ 

E_. ) 

(-ao) 
2 

(-2) (-2) 

"ao ~ 2" 

€ (-ao) -2) 

(-2) 2 

"ao ~ 2" 

L~-2) 
(-ao)~ 

(-2) (-2) (-2) (-2) (-2) 

"ao ~ 2" 

R. Kobayashi 

(-2) 

"ao ~ 2" 

,-~J~: 
(-2) 

"ao ~ 2" 

E ) (-ao) 

(-2) 3 

"ao ~ 2" 

~ (-ao) 6 -2) 

"ao ~ 2" 

~ (-ao) 

(-2) (-2) 2 

"ao ~ 2" 

"ao ~ 1" 

(-•,J~: 
"ao ~ l" 

E ) (-ao) 

(-3) 2 

"ao ~ 2" 

€ (-ao) -2) 

(-2) 3 

"ao ~ 2" 

~HJ 

(-ao) 
3 

(-6) 

"ao ~ l" 

(-2) (-2) (-2) (-2) (-2) 

~'a0 ~ 2" 



(-oo)~-:) 7-,) ~ 
"ao 2'. 1" 

L~-2) 
(-ao)~

3 

(-2) 

"ao 2'. 2" 

"ao 2'. 1" 
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2 

(-ao) (-2) (-2) 

/. (-2) 

(-ao)~: 

(-2) (-2) (-2) (-2) (-2) 

"ao 2'. 2" "a0 2'. 1" 

L~-2) 
(-ao)~

2 

(-3) 

"ao 2'. 1" 

L~-") 
(-ao)~

3 

(-2) 

"ao 2'. 1" 

L~-2) 
(-ao)~

2 

(-2) (-2) 

L~-") 
(-ao)~

2 

(-3) 

"a > 1" 0 -

"ao 2'. 2" 

L~-") 
(-ao)~

2 
(-oo)~-'I (-00)~-;1 

(-2) (-2) (-2) 

."ao 2'. 2" "ao 2'. 1" "ao 2'. 2" 

ho)~-; (-o0)~' 

,_,,,L: 
~(-6) 

(-ao) 

(-3) 

"ao 2'. 2" 

3 

(-2) (-2) (-2) (-2) (-2) 

"ao 2'. 1" 

(-3) 

"ao 2'. 1" 

(-2) (-2) 

"ao 2'. 2" "ao 2'. 1" 

(-oo)~' 

"ao 2'. 1" 

(-oo)~' 

(-2) (-2) 

"ao 2'. 1" 

(-2) 

"ao 2'. 1" 
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<< 2,2,2,2 >> 

2v2 

2A2 

"ao ~ l" 

2v2 

(-2)A(-2) 

"ao ~ 2" 

2v2 

2A(-2) 

"a0 ~ l" 

2v(-2) 

(-2)A(-2) 

"ao ~ 2" 

( 4)* LCS singularities with only branch loci with indices oo. 

C-----~ 00 

(-ao) 

----- -0----. 00 

(-a2,il (-a2,n 2 ) 

, -·· ,E _____ ------0------<o 00 

"ao>I+a;-" t=[a1,···,an] 

(-ai) (-an) 

(4)** LCS singularities with mixed branch loci. 

- - - - -~ 00 

(-a.J,n 1 ) 

(-ao) 
-----~oo<b 

(-a2,i) (-a2,n 2 ) 

"ao > t+ ~" %} = [a1,1, · · ·, a1,n1] * = [a2,1, · · ·, a2,n2 ] 
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~~-2) . 

(-ao )~ _____ -o------e 
00 

(-a1) (-an) 

,-~,~----- ~ 00 

"ao > t" * = [a1, · ··,an] 

(-ai} (-an) 

Quasi-regular log-canonical singularities are those ones such that 
their dual graphs contain a ( -1 )-curve and the successive blowing down 
of ( -1 )-curves yields a regular point with branch loci. For the uni
formization of quasi-regular log-terminal singularities, we refer to 
Yoshida [Yo]. For the uniformization of quasi-regular cusp singulari
ties, we refer to Karras [Kar]. Taking the double covering of a quasi
regular cusp singularity gives a cusp singularity in the ordinary sense. 
For the uniformization of quasi-regular ball cusp singularities, we refer 
to Yoshida-Hattori's table [YH] (we observed in {3)** an example of the 
uniformizations of non quasi-regular ball cusp singularities). The point 
here is that all of these singularities are unified in the notion of log
canonical singularities and all of them have canonical Kahler-Einstein 
and holomorphic G-structures. 

[Aul] 
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