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Introduction 

In the study of degenerations of various geometric objects such as 
Einstein metrics or complex structures, the construction of natural com­
pactifications of the corresponding moduli spaces is of crucial impor­
tance. For instance, the Satake compactification [17] of the moduli 
spaces of principally polarized abelian varieties plays a beautiful role 
in the study of modular forms, while the recent study of Donaldson [8] 
on the ends of moduli spaces of anti-self-dual connections provides us 
with new aspects of differentiable 4-manifolds. 

The purpose of this paper is to give a natural compactification of the 
moduli space of polarized Einstein-Kahler orbifolds with a given Hilbert 
polynomial. We shall then show that, for compact Riemann surfaces, 
our compactification coincides with those of Mumford [15] and Bers [5] 
(see 2.6 and 2. 7). A couple of other examples of our compactification will 
be given in Section 4 where we discuss the moduli spaces of polarized 
Abelian varieties and also of a special type of del Pezzo surfaces (see [12]). 
As to Abelian varieties, for instance, our approach has some relation 
to Igusa's compactification [11] in view of both heavy dependence on 
theta functions. We would also say that Anderson [l], Bando, Kasue 
and Nakajima [3] recently succeeded in applying Gromov's theory to 
compactifying the moduli spaces of Einstein manifolds of dimll? ::; 4 with 
a fixed volume and bounded diameters, though our compactification 
needs no boundedness of diameters because of the algebra-geometric 
nature of our construction. 

In conclusion, I wish to thank my colleagues Y. Imayoshi and I. 
Enoki for valuable suggestions and encouragement. 

Received November 30, 1989. 
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§ 1. Construction of the compactification 

By a polarized orbifold, we shall mean a compact complex connected 
V-manifold X ( cf. Satake [18]) endowed with an ample holomorphic line 
bundle L. Further, Kx will denote the canonical bundle of X. In this 
paper, we fix once for all a Hilbert polynomial P = P(m), and consider 
the associated moduli space Mp of polarized orbifolds ( X, L) by setting 

Mp:= { (X, L); x(X, O(L®m)) = P} / =, 
where we write (X 1 ,L 1) = (X 2 ,L 2 ) if there exists an isomorphism 
({): X 1 =:! X 2 of complex V-manifolds such that L1 = ({)* L 2 • Moreover, 
define subsets Mt, Mp, M<], of Mp by 

Mt:= { [X, L] E Mp; c1(X)1R > 0, L = Ki/}, 

Mp:= {[X,L] E Mp; c1(X)JR < 0, L = Kx }, 

Mi:= { [X, L] E Mp; c1(X)1R = 0 }, 

where [X, L] E MP denotes the equivalence class of (X, L) in the equiv­
alence relation = above. Hence Mt (resp. Mp) is the set of the iso­
morphism classes of compact complex connected V-manifolds X such 
that x(X, O(K1m)) = P(-m) (resp. P(m)) for all integers m. Now, a 
triple (X, L, w) is called an Einstein-Kahler polarized orbifold, if w is an 
Einstein-Kahler V-metric on X and in addition if (X,L) is a polarized 
orbifold such that the Kahler class 21rc1 (L)IR is represented by w. Recall 
that a Kahler V-metric won X is called an Einstein-Kahler V-metric if 

is a constant multiple of w, where n := dimc;X. Now for an Einstein­
Kahler polarized orbifold (X, L, w ), replacing w by its suitable constant 
multiple if necessary, we have either Ric( w) = 0 or Ric( w) = -w or 
Ric(w) = w. Note that Ric(w) represents 21rc1(X)JR. Therefore, for 
(X,L,w) as above, we always assume one of the following: 

(1) c1(X)IR = 0 and w is a Ricci-flat Kahler V-metric; 
(2) c1(X)IR < 0, L = Kx and Ric(w) = -w; 
(3) c1(X)IR > 0, L = Kx 1 and Ric(w) = w. 

Choose moreover a Hermitian metric h( w) for L, unique up to constant 
multiple, such that the Chern form c1 ( L, h( w)) coincides with w /21r. For 
instance, for (2) (resp. (3)) above, we choose (wn)* (resp. wn) as h(w). 
Let us now define the moduli space £ P of Einstein-Kahler polarized 
orbifolds (X, L, w) with Hilbert polynomial P by 

£p := {(X,L,w); [X,L] E Mp}/""', 



Compactification of the Moduli Space 361 

where each (X, L, w) is required to satisfy one of the conditions (1), (2), 
(3) above, and we write (X1,L1,w1) ,.._, (X2,L2,w2) if there exists an 
isomorphism cp: X 1 ~ X2 of complex V-manifolds such that Li = cp* L2 

and w1 =. cp* w2 • Set further 

et:= { [X,L,w] E ep; c1(X)R > O}, 

e; := { [X, L,w] E ep; c1(X)R < 0 }, 

ei := {[X,L,w] E ep; c1(X)R = 0}, 

where [X,L,w] E ep denotes the equivalence class of (X,L,w) in terms 
of the equivalence relation ,.._, above. By sending [X, L, w] to [X, L], we 
have a natural projection 

pr([X, L, w]) := [X, L], 

together with its restrictions 

+ <-+ M+ - ,._ M-pr : e,P -+ p, pr : e,P -+ p, 

to et, e;, ei, respectively. In view of the results of Aubin-Calabi-Yau 
(see for instance [7]) and Bando-Mabuchi [4], one obtains 

Lemma 1.1. The map pr: e p -+ Mp is injective and so is pr+. 
Moreover, both pr-: e; -+ Mp and pr 0 : ei -+ M~ are bijective. 

Proof. Note that, by standard methods, arguments in [4] and [7] 
are valid also for orbifolds. Hence, in view of such orbifold versions, the 
maps pr-, pr 0 , pr+, pr are injective by the uniqueness of Einstein-Kahler 
metrics ( cf., e.g., [4], [7]) and the surjectiveness of pc and pr 0 follows 
from the existence results of Aubin and Yau ( cf., e.g., [7]). Q.E.D. 

We now assume ep i= ¢>. For each positive integerµ, let eP;µ, be the 
set of all [X,L,w] E ep satisfying 

(1) hi(X, O(L®m)) = 0, i > O; 
(2) L®m is very ample on X, 

for all m with m 2". µ. Then eP;µ,, µ = 1,2, ... , form an increasing 
sequense of subsets of e p such that 

U;:'=1 eP;µ, = ep. 

Let us now take a subset :F of e p such that :F C e P;µ, for some µ. Let 
;:,, be the image of the mapping 

[X,L,w] t--> i,,([X,L,w]) := [X,L®"',µw], 
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where we put Pµ,(m) := P(µm). Then the mapping iµ,: :F _, :Fµ, is 
bijective, for instance, if either :F c C}; or :F C Ei,. However, it is 
in general finite-to-one. Now, our main purpose in this section is to 
construct a natural compactification of :Fµ,. Let us first give two typical 
examples of :F. 

Example 1.2. (1) Let Ep·•· be the set of all [X,L,w] E [p such 
that Xis nonsingular. Then by Matsusaka's big theorem (cf. [14]), there 
exists a positive integer µ 0 = µ 0 (P), depending only on P, such that 
Ep·•· C EP;µ, for allµ 2 µo. 

(2) Let Ci, C2 E 1__ be such that Ci > 0. Put P(m) := ½(m2 - m)ci + 
1\(d + c2 ). We then consider the subset Sc~,cz of all [X,Kx,w] in 
E p such that X is a canonical model of a minimal algebraic surface of 
general type. Note that Sc~,cz C EP;µ, wheneverµ 2 5 (cf. Bombieri [6]). 
Moreover, by Lemma 1.1, Sc2 c coincides with the set of isomorphism 

1' 2 

classes of all minimal algebraic surfaces S of general type with Ci ( S) = Ci 
and c2 (S) = Cz. 

We shall now explain how to compactify :Fµ,. Let [X,L,w] E :F. 
Then by setting N := h0 (X, O(L®µ,))-1 = P(µ)-1, we have a projective 
embedding 

<P:i:;: X <-, IPN (C), 

where :E := {O'o, 0' 1 , ... , O'N} is a unitary C-basis for H 0 (X, O(L®µ,)), so 
that the natural L2-pairing on H 0 (X, O(L®µ,)) induced by w satisfies 

i, j E {0, 1, ... , N}, 

where< O'i,O'j >L2,w denotes the quantity fxki,O'j)h(w)wn/n!. Since 

(<I>:i:;)*Oi:m(l) is O(L®µ,), the image X:E := 4>:i:;(X) satisfies 

m E 1. 

Therefore, X:i:; is regarded as a point of the Hilbert scheme Hµ, := 

(HilbpN )P,. which parametrizes the subschemes of [PN (C) with Hilbert 
polynomial P µ,. For another unitary C-basis :E' : = { O'b, O'~, ... , O''rv} for 
H 0 (X, O(L®µ,)), there exists a unitary matrix u = (u;i) E U(N + 1) 
such that 

j = 0,1, ... ,N. 

Let us now consider cN+i as a set of row vectors on which U(N + 1) 
acts naturally from the right. This then induces a right U( N + 1 )-action 
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on pN ( C) and also on the Hilbert scheme H µ. Since 

for all x EX, 

we can relate X1:, := <1>1:, (X) to X1: by X1:, = X1: · u in Hµ, so that by 
sending [X, L®µ, µw] E :F to 

we have a well-defined map il>: Fµ -t Hµ / U(N + 1). Note that, if 
[X, L®µ, µw] = [X, L®µ, µw] in :Fµ, i.e., if there exists cp: X ~ X such 
that cp* L®µ = L®µ and cp*w = w, then the pullback i; := cp*:E is again 
a unitary C-basis for H 0(.X, O(L®µ)), and therefore <1>1:(X) = il>t(X) 
by il>t = cp*il>1:. We shall now show that il> yields an inclusion :Fµ '---+ 

Hµ/U(N + 1). 

Lemma 1.3. il> is injective. 

Proof. Let [X1, L1, w1], [X2, L2, w2] be elements in :F such that 
<1>([X1,Lfµ,µw1]) = il>([X2,L?µ,µw2]). Then by choosing unitary C­
hases :E1, :E2 for H 0 (X 1, O(Lfµ)), H 0 (X 2, O(L?µ)), respectively, we 
have the identity X{ = X2 · u for some u E U(N + 1), where X{ := 

<1>1:1 (X1) and X2 := il>1:2 (X2). Hence (X1, Lfµ) = (XL Ox~ (1)) = 
(X2,0x;(l)) = (X2,L?µ). Then, as in the proof of Lemma 1.1, the 
orbifold version of the uniqueness of Einstein-Kahler metrics asserts that 
[X1, Lfµ, µw1] = [X2, L?µ, µw2l, as required. Q.E.D. 

Recall that Hµ is projective algebraic. Then Hµ, endowed with 
an ordinary topology induced by the manifold topology of the projec­
tive space, is a compact Hausdorff space, and so is Hµ / U(N + 1) with 
quotient topology. Now by Lemma 1.3, :Fµ is regarded as a subset of 
Hµ / U(N + 1). Let :Fµ be the closure of :Fµ in Hµ / U(N + 1). Then :Fµ 
is a compact Hausdorff space containing :Fµ as a dense subset. The com­
pactification of;=µ, we are looking for, is just :Fµ for some suitably cho­
sen µ, and will be studied in detail in subsequent sections. Here, a crucial 
point is that we have no difficulty in taking the quotient Hµ / U(N + 1), 
since the group U(N + 1) is compact. We note, in taking group quotient, 
that the Einstein-Kahler form won the orbifold X (where [X, L, w] E £p) 
allows us the reduction of the group GL(N + 1,C) to U(N + 1). This 
reveals the fact that the existence of Einstein-Kahler forms can somehow 
be a differential-geometric substitute for the concept of semistability in 
Mumford's geometric invariant theory. 
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§2. The moduli space of compact Riemann surfaces 

Throughout this section, we fix integers g ~ 2 and µ ~ 4, and put 
P(m) = (2m - l)(g - 1), m E 1. Moreover, all curves are assumed 
to be projective algebraic and defined over C. Let Eg be the set of 
all [C,Ke,we] E £-;; such that C is a nonsingular irreducible curve of 
genus g, i.e., a compact Riemann surface of genus g. We then consider 
the universal covering 

p: ~ = { z EC; lzl < 1}----+ ~/r = C, 

where r := ?r1 ( C) acts on ~ as the covering transformation group. Since 
Ric( we) = -we, we can characterize we by 

* 2A _ 
p (we)= (1 - lzl2)2 dz I\ dz. 

Here, the Kahler metric on C associated with we is called the Poincare 
metric of C and is denoted often by we by abuse of terminology. Let 
Mg be the isomorphism classes of all nonsingular irreducible curves of 
genus g. Then by Lemma 1.1, we have the set-theoretical identification: 

[C,Ke,we] +--+ C. 

Moreover, the compactification Mg of Mg by Mumford [15] (cf. Bers 
[5] for a Teichmiiller-theoretic approach) is defined to be the set of all 
stable curves of genus g (see below for the definition of stable curves). 

Definition 2.1 (cf. [15]). An irreducible reduced curve C is called 
a stable curve of genus g, if it satisfies the following conditions: 

(a) dimcH 1 (C,Oe) = g. 
(b) Singular points of C are, if any, ordinary double points. 
( c) No smooth rational components of C meet the remainder 

of the curve in fewer than three points. 

Let C be a stable curve of genus g, and write it as a union Ui=l C; of 
irreducible components. Taking its desingularization 

(2.1.1) v: C----+ C, 

we can express C as a disjoint union Ui=l C; of nonsingular irreducible 
curves C; of genus g; such that v( C;) = C;. Let m (resp. n;) be the num­

ber of the points in Csing (resp. v- 1 (Csing)nC;), where Csing (resp. C,eg) 
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denotes the set of singular (resp. nonsingular) points in C. We obviously 
have 2m = n1 + n2 + · · · + nr. Then the condition (a) above says that 

(2.1.2) 

Note that, by the condition (b ), each point p of Csing has an open neigh­
bourhood Up in C written in the form 

(2.1.3) Up= { (z,w) E C2 ; zw = 0, lzl < 1/2, lwl < 1/2 }, 

for some holomorphic functions z, w on Up, and if q E Greg, we have 
a coordinate neighbourhood Uq = { v E C; lvl < 1} with holomorphic 
local coordinate v centered at q. Moreover, in view of ( c) above, 

(2.1.4) ni ~ 3 - 2gi. 

Let Kc be the line bundle on C associated to the dualizing sheaf of C. 
Then K3µ has a holomorphic local base 

dz®µ dw®µ 
-- + (-lt-- (resp. dv®µ) zµ wµ 

over the open neighbourhood UP (resp. Uq) as above. By (2.1.4) above, 
one can easily check that K3µ is very ample, and moreover 

(2.1.5) 

For the rest of this section, we set :F = Eg, and apply the argument 
in Section 1. Then by :F C £-;;, the mapping iµ: :F - :,:µ is bijective. 
This together with Lemma 1.3 implies 

(2.2.1) 

where N = P(µ )-1. Therefore, the closure :Fµ of:,:µ in Hµ / U( N + 1) is 
regarded as a compactification of Mg, The purpose of this section is to 
give an explicit construction of a natural homeomorphism between two 

-µ -
compactifications :F and Mg of Mg. Let C be a stable curve of genus 
g as above. In view of (2.1.4), we first observe that each Cf := Greg n Ci 
is covered by a disc 6. = { z E C; lzl < 1 }. Hence C0 := Greg carries a 
unique Einstein-Kahler form w0 such that its restriction to each Cf is 
characterized by 
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where p; : ~ -> Cf is the universal covering. By abuse of terminology, 
this we is often called the Poincare metric of the stable curve C. We 
now write Csing as {p0 ,p 1 , •.• ,Pm- 1 }. Since K3µ is very ample, there 
exists a C-basis {00 ,0 1 , .. ,,0N} for H 0 (C,CJ(K3µ)) such that 

(1) 0a.(Pa.)-:/-0, 0 ~a< m; 
(2) 013(Pa.) = 0, 0 ~a< m, 0 ~ /3 ~ N, a-:/- {3. 

For 0', 011 E H 0 (C,O(K3µ)) with {0' = 0} n {011 = 0} n Csing =</>,we 
can define a positive definite Hermitian pairing < 01, 011 > E C by 

< 0', 011 > = f ( R 01 A 011)/w~µ- 1• 
fco 

Therefore, we may assume that 0m, 0m+l, ... , 0 N form a unitary C-basis 
for Aµ:={ 0 E H 0 (C, O(K3µ)); 01c.ing = 0 }, i.e., 

(2.2.2) < Ba., 013 > = 8a.13, m ~ a ~ N, m ~ f3 ~ N. 

Moreover, replacing each 0 a. ( 0 ~ a < m) by an element of 0,, + Aµ, we 
may further assume 

(2.2.3) 0 ~ a < m, m ~ f3 ~ N, 

where for each O ~a< m, such a 0,, is unique up to a constant multiple. 
Note also that < 0,,, 013 > < +oo for O ~ a < m, 0 ~ f3 < m with a -:/-{3. 
We now put Af = { 0 E Aµ; 01c; = 0 for all j -:/-i} for each i. Then Aµ 
is written as a direct sum of vector subspaces: 

Put mo:= m and mi:= dime Af. Moreover, put N; := (:E;=omi )-1, so 
that No = m - 1 and Nr = N. Since Af l. A'J for i -:/-j with respect to 
the Hermitian pairing<,> above, we may further assume that 

{Ba; N;-1 <a~ Ni} 

is a unitary C-basis for Af (1 ~ i ~ r). Now, for O ~ a <m, let ba. be the 
point 0H1N(C) = { ((o: (1 : .. ·: (N)} defined by 

(2.2.4) 0 ~ /3 ~ N. 

We then put B := { bo, b1, ... , bm-1}. For 1 ~ i ~ r, let II; be the linear 
subspace of pN (C) defined by 

II; := { (,, = 0 if either a~ Ni-l or Ni <a}~ pm,- 1 (C), 
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where the isomorphism between II; and pm, - 1 ( C) is obtained by the 
projection 

Identifying II; with pm,- 1 (C), we can now define meromorphic maps 

1/J;: C; -----> II;, 1 ~ i ~ r, by 

1/;;(q) := (0N,_,+1 (v(q)): 0N,_,+2 (v(q)): · · ·: 0N,(v(q))), q EC;. 

Lemma 2.3. Each 1/J; defines an embedding, so that we have an 
isomorphism 1/J;: C; ~ 1/J; ( C;). 

Proof. Let D; be the reduced divisor v- 1 ( C,ing) n C; on C;. Then 

by (2.1.4), deg D; = n; ~ 3 - 2g;. Note also that Af ~ H 0 ( C;, Kf(DD), 

where Kf := O(Kt') and D~ := (µ - l)D;. Hence, 1/J; is associated 

with the complete linear system IKf(D:)I. Sinceµ~ 4, we have 

deg Kf(D;} = µ(2g; - 2) + deg D~ ~ 2g; + µ - 3 ~ 2g; + 1. 

Thus, Kf(DD is very ample, and therefore 1/J; defines a projective em­
bedding, as required. Q.E.D. 

Now, for simplicity, we put c; := 1/;;( C:). Moreover, let 1j;: C -----> 

pN ( C) be the mapping defined by 

1 ~ i ~ r. 

For each a with O ~a< m, the set 1j;(v-1 (Pa)) consists of just two points, 
so that we put 

(2.4.1) 

Note that the sets B, Cf, C~, ... , C~ are mutually disjoint. We then 
consider the complex projective line f,~ (resp. £~) which passes through 
p~ (resp. p~) and ba. Let C* be the reduced subvariety 

(2.4.2) 

in PN(C). Let Hµ be as in Section 1, where Pµ(m) := (2mµ- l)(g-1). 

Lemma 2.5. C* E Hµ. 

Proof. In view of the proof of Lemma 2.3, we have 

deg Cl = deg Kf(DD = (µ - 1) deg D; + µ(2g; - 2). 
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Together with Ei=l deg D; = 2m, it now follows that Ei=l deg c; 
2{(µ - l)m + µEi= 1 (g; - l)}. Hence, by (2.1.2), we obtain 

deg C* = 2m + 2{(µ - l)m + µ1::i=1 (g; -1)} = 2µ(g -1). 

On the other hand, dime H 0 ( C*, Oc·) is just 1, since C* is connected. 
Moreover, dime H 1 (C*,Oc•) = dime H 1 (C,Oc) = g. Thus, by the 
Riemann-Roch theorem, 

x(C*, Oc.(m)) = 1 - g + mdeg C* = 1 - g + 2µm(g -1) = P,,(m), 

as required. Q.E.D. 

For simplicity, we put h(C) := C* · U(N + 1) E Hµ,/U(N + 1). 
Then, from our construction, one can easily check that h( C) is uniquely 
determined by C. Note that, if C is nonsingular, then h(C) is the 
corresponding element of;::µ in (2.2.1), i.e., the restriction of h to Mg 
defines nothing but the bijection M 9 ~;::µin (2.2.1). We are now able 

- -µ 
to define a homeomorphism between Mg and F as follows: 

Theorem 2.6. h: Mg ---+ Hµ / U(N + 1) is continuous. 

- -µ 
Corollary 2.7. The image h(Mg) coincides with F , and the 

mapping h: Mg ---+ Fµ is a homeomorphism. 

The proof of Theorem 2.6 will be postponed until the next section, 
and we shall here show how Corollary 2.7 is obtained from Theorem 2.6. 

Proof of2.7 (with 2.6 taken for granted). Since h(Mg) =;::µ,the 

continuity of h implies that h( Mg) = Fµ. Each C E Mg is obtained 
from C* by collapsing the projective lines u;:,:""o1 (l~ U l~) to a point, and 
therefore the mapping h: Mg ---+ Fµ is injective. Thus h: Mg ---+ Fµ is 

a continuous bijection. Since both Mg and Fµ are compact Hausdorff 

spaces, h: Mg---+ Fµ is a homeomorphism, as required. Q.E.D. 

Remark 2.8. Since the integerµ?:: 4 in 2.6 and 2.7 can be chosen 
arbitrarily, Corollary 2. 7 above in particular says that Fµ is topologically 
independent of the choice of the integer µ, as long as µ ?:: 4. On the other 
hand, even if µ = I, the compactification Fµ of;::µ says something, since 
the natural Hermitian metric on H 0 ( C, O(K3,,)) ~ H 1,0 ( C), CE Mg, is 
defined purely homologically, appearing often in the theory of arithmetic 
surfaces by Arakelov and Quillen. In this special case µ = I, however, 
the mapping 'P: ;::µ ---+ Hµ / U( N + 1) is no longer injective, losing for 
instance most information in parametrization of hyperelliptic curves. 
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§3. Proof of Theorem 2.6 

In this section, using the same notation as in the previous section, we 
give a complete proof of Theorem 2.6, where our proof is divided into five 
steps. Before getting into the proof, we here introduce some notation. 
Let C E Mg, i.e., let C be a stable curve of genus g. Numbering the 
singular points of C as in Section 2, we put 

Then for an open neibourhood V of the point C in Mg, we have a 
system of local uniformizing holomorphic coordinates s = ( s0 , s1 , ... , 

Sm-I, Sm, ... , S3g-4) on a uniformizing open set 

satisfying the following properties ( cf. Earle and Marden [9]; see also 
Masur [13], Wolpert [23]): 

(a) V = V /F for some finite subgroup F of U(3g- 3) acting on V; 
(b) the natural projection ,\: V -----+ V maps the origin O of V to the 

point C of V; 
( c) there exists a proper morphism 1J: X -----+ V of complex manifolds 

such that the scheme-theoretic fibre x. over each s E V is just 
the stable curve .\(s) E Mg; 

(d) if p E Csing, i.e., p = Pa for some a, then by regarding pas a 
point of X (via the natural identification of C with X 0 ), we have 
an open neighbourhood Ua of pin X and holomorphic functions 
Za, Wa on Ua centered at p such that the mapping 

Ua 3 q f---+ (za(q),wa(q), (11*s)(q)) E C3g-l 

defines an isomorphism of U a onto 

Note here that the restriction of (za, wa) in ( d) to s = 0 gives the 
expression (2.1.3). If there is no fear of confusion, 11* s is simply denoted 
bys, and s0 , .•• , s3g_ 4 are regarded as holomorphic coordinates on Ua. 

3.1. Let K X/V be the relative canonical bundle Kx©11* K~ 1 • Then 
the restriction of K x;v to each fibre x. is naturally identified with K x .. 
Moreover, by (2.1.5), 

h0 (x., O(Kf~)) = P(µ) = N + 1 
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for all s E V. Hence the direct image sheaf 

over V is locally free, and by shrinking V if necessary, we may choose a 
holomorphic local basis { r0 , r 1 , ... , TN } for £ such that the restriction 
of rf3 = r,a(s) to s = 0 satisfies 

(3.1.1) 0 :s; /3 :s; N, 

where each 0,a is just as in Section 2, satisfying (2.2.2) and (2.2.3), and 

r,a(O) is naturally regarded as an element of H 0 (C, O(K3µ,)). By the 
same argument as in Masur [13], each 7,a = r,a(s) is written in the form 

(3.1.2) 
dz 0 JL dw 0 µ 

_ a _ ( l)µ, a Tf3 - aa,6--µ,- - - aa,6--µ,-, 
Za Wa 

0 :s; /3 :s; N, 

on Ua for some holomorphic function aaf3 = aa,a(za, Wa, s) in Za, Wa, 

s. We multiply each rf3, if necessary, by a holomorphic function on V 
whose value at the origin is 1. Then we may assume 

(3.1.3) 

for some eaf3 E C (0 :s; o: < m, 0 ~ {3 :s; N) and holomorphic functions 

fa,a = fa,a(za,wa,s), 9af3 = 9a,a(za,wa,s) in Za, Wa, s. Note here that, 
by (3.1.1), we have 

(3.1.4) eaf3 = 0 if and only if o: -=/ /3. 

For each s E V, let w. be the Poincare metric of the stable curve X •. 
There exists a constant 1 < k E R independent also of o: and s such that 

(3.1.5) 

on Ua for all a, where we put T/a := Min { (log lzal)2, (log lwal)2 }, 

idzal2 := A dza I\ dza and ldwal2 := A dwa I\ dwa (see Masur [13]). 
For each s EV, regarding T,a(s), r7 (s) as elements of H 0 (x., O(K_t)), 
we define a Hermitian pairing by 
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Take a sufficiently small 0 < e E R Compare (3.1.2), (3.1.3) and (3.1.5) 
above. Then, when restricted to {lso:1112 ~ lzal ~ js0.j1/2 + t:} on Ua, 

{3.1.6) 

for some function i.p with k1-µ, ~ l'PI ~ kµ,-i, where O{lzo:I) denotes a 
function whose absolute value is bounded by some constant multiple of 
I Za I, the constant being independent also of s and c. Similarly, on the 
subset {lsal 1/2 ~ lwo:I ~ lso:11/2 + e} of Ua, 

{3.1. 7) 

for some i.p with k1 -µ, ~ l'PI ~ kµ,-l_ Let u~,e be the subset of Ua n x. 
defined to be 

{ (zo:,Wo:, s) E Uo: n Xs; lzal ~ lso:1112 + c, lwal ~ lsal112 + e }. 

Moreover, put u•,e := u;:,;;01 u~,e and we:= X -U.evu•,e. By {3.1.4) 
together with (3.1.6) and (3.1.7), we have 

1 ( ) _ ( )/ ®µ,-l _ { 0((- log lso:1)2µ,-l) if 0 ~ /3 = 'Y < m, 
Tf3 S I\ T-y S W 8 -

u:,,·• 0( .Ji) otherwise, 

where /3, 'Y E {O, 1, ... , N} and 11s11 « 1. If O ~ /3 < m, there exists a 
constant ke > 1 ( which possibly depends on e but is independent of s) 
such that we actually have the following stronger inequality: 

1 Uu··· r13(s) I\ f13(s)/w~µ,-ll 
k- < " < k 

e - (- log 1s131)2µ,-1 - e, 
{3.1.8) 

with s13 :;t:0 and 11s11 « 1. Moreover, fx.-u•,• ris) I\ 1'-y(s)/w~µ,-l de­

pends continuously on s EV for any /3 and 'Yin {O, 1, ... , N} {cf. Wolpert 
[23]). Let c tend to 0. Shrinking V if necessary, we have 

< r13(s),r-y(s) >---+ < r,a{0},r-y{0) > = < 013,0-y > = D,a-y {ass---+ 0), 

when /3 ~ m or 'Y ~ m or /3 # 'Y • 

3.2. Let V* be the open subset of V consisting of all points s such 
that Sa # 0 for all 0 ~a< m. From now on, until the end of 3.2, the 
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notation s is assumed to denote an element of V*. In particular, X. is 
always nonsingular. We now put 

(3.2.1) 
05:_/3<m 

m ~ /3 ~ N, 

where \\r.B\\2 := < r.B(s), r.B(s) >. Since \\ra(s)\\ - +oo as Sa - 0 for 
0 5:. a< m (cf. (3.1.8)), it then follows that 

(T.B,(s)) := < f.B(s), f,(s) > - 8.B,, ass - 0, 

for all /3, 1 E {0, 1, ... ,N}. Since the square matrix T(s) = (T.B,(s)) of 

degree N + 1 is positive definite and Hermitian, A(s) := T(s)- 1/ 2 tends 
to the identity matrix I as s tends to 0. In terms of the matrix A( s) 
(A.B,(s)), we put 

(3.2.2) (J'.B(s) = 'E~=OA.B,(s) f,(s), /3 = 0, 1, ... , N. 

Then 'E. := { (J'o(s), u1(s), ... , uN(s)} is a unitary C-basis for the vector 
space H 0 (x., O(K~~)). Let P.: x. - PN(C) and P:: x. - PN(C) 
be the projective embeddings defined by 

P.: x. '---+ PN(C), x 1--+ P.(x) := (((J'o(s))(x): ···: (uN(s))(x)), 

P:: x. '---+ PN(C), x 1--+ P:(x) := ((fo (s))(x): · · ·: (fN (s))(x)). 

Then their images Pa{X.) and P:(x.) are regarded as elements of the 
Hilbert scheme H,,. (cf. Lemma 2.5). Let { t; = (t;,o, t;, 1 , .•• , t;, 39 _ 4 ); 

j = 1, 2, ... } be an arbitrary sequence of points t; in v· such that t; - 0 
as j - oo. Since A(t;) - I as j - oo, 

(3.2.3) _lim Pt.(Xt-) = _lim P~_(Xt-) in Hµ, 
3-+oo ' 1 3-+oo ' 1 

if the right-hand side exists. Let us now fix a sufficiently small e > 0. 
Recall that, in view of (3.1.1), the line bundle Kgµ, is generated by the 
sections Om, Bm+l• ... , (JN over the subset C- Csing of C = Xo. Hence, 
by shrinking V if necessary, we have 

W e _ UN we _ UN w· e 
- o:=m a - a:=m a, 

where we put wi := wen { Ta =I-0} for m 5:. a 5:. N, and wi is a suitably 
chosen relatively compact open subset of wi. Let {x;} be a convergent 
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sequence of points in wi, such that Xj E Xt;, with a limit 

Xcx, := _lim Xj E wi. 
J-+CX, 

Then for f3 E {m, m + 1, ... , N}, we have 
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as j--> oo. On the other hand, if 0 5:./3 < m, then by (3.1.8) and (3.2.1), 

0 '5:_ j ( T j3 ( t j) /fa (t j)) ( X j) j $. k, ( - log It j ,j3 j) ½-µ I ( T j3 ( t j) /Ta (t j)) ( X j) I 

5:. k'k,(-logjti,J31)½-µ--> 0, as j--> oo, 

where k' > 0 is a constant independent of j. Write C as a union Ui=l C; 
of irreducible components, and identify X 0 with C. Then by the notation 
in (2.1.1) and 2.3, the limit set of .-P~;(Xt; - ut;,'), as j--> oo, is 

C-,.-ur .,, - 1 (C Cnu 0 ,') c .- i=l 'f'i o V i - i , 

i.e., the set C~ coincides with 

where Y, is the set of all convergent sequences of points {Yi} in pN (C) 
such that Yi E .-P~; (Xt; - ut;,') for all j. Then by setting C' := ui=l CI 
in (2.4.2), we have C~ C C' for all sufficiently small s > 0. Moreover, 
the limit set of 6~ as s --> 0 is C'. 

3.3. Let {ti} be again an arbitrary sequence of points in V* such 
that ti --> 0 as j --> oo. We further fix an arbitrary singular point Pa 

(0 5:. a< m) of C, and shrink V if necessary. By setting 

we see, from (3.1.8), that {di} is a bounded sequence of positive real 
numbers uniformly away from 0, so that some subsequence of { dj} con­
verges to a positive real number d=. Replacing {ti} by its suitable 
subsequence, we have di --> d= as j --> oo. By the notation in the proof 
of Lemma 2.3, JC;(DD is very ample for each i, and hence 

f a/3(0, 0, 0) -=/-0 and 9a-r(0, 0, 0) -=/-0 
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in (3.1.3) for some f}, i E {m, m + 1, ... , N}. For u E C, let q~, q~ be 
the points in PN(C) = { ((0 : ( 1 : · · ·: (N)} defined by 

if O :s; {3 < m, 

if m :S: {3 :S: N, 

if O :S: {3 < m, 

if m :S: {3 :S: N. 

Then in view of (2.4.2), the set { q~, q~} coincides with the set {p~,P~} 
when u = 0. Hence, we may assume qb = p~ and q~ = p~. In particular, 

f~ - {ba,P~} = { q~; u EC*} and f~ - {b,,,p~} = { q~; u EC*}. 

For u E C*, let Pj,u, P'J,u ( where j ~ 1) be the points in u!; ,e defined by 

( f-13( tj )/fr/ tj) )(P1,,J = ( rf3(tj) I rs( tj ))(Pj,u) = ( aa/3( tj) I a a/3( tj) )(Pj,u) 

-t fa13(0, 0, 0)/ f a/3(0, 0, 0), m :S: {3 '.S: N, as j-> oo. 

Moreover, by (3.1.4), if {O, 1, ... , m - 1} 3 {3 -/-a, then 

( f-13( tj) / f{3(tj) )(Pj,u) = llr,a( tj )11-1 ( 713( tj) / r/3( tj) )(Pj,u) 

-> (_lim llr13(ti)ll-1 )faf3(0,0,0)/f 13·(0,0,0) = 0 
J-+CXJ a 

as j -, oo. Finally, considering the case {3 = a, we have 

-> U • e00 d;;,1 / f a/3(0, 0, 0), 

Therefore, it follows that 

as j _, oo. 

u EC*. 

Similary, by computing (f-y(ti)/f 1(tj))(p'J,u), 0 :S: 1 :S: N, we obtain 

l• ;F,.I ( II ) II 
. 1m 'i! t. P1· u = qu, 

J-+00 1 ' 
u EC* . 
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Thus, the limit set of ip~;(ut;,c) (as j --+ oo) always contains f~, f~, 
a= 0, 1, ... , m - 1. 

3.4. For the Hilbert scheme HJJ. (cf. Section 2), we have the cor­
responding universal family 7r/J.: zµ. --+ HJJ. with a natural embedding 
V' <--+ HJJ. x pN ( C) such that 1rJJ. is the proper flat morphism induced by 
the projection HJJ. x PN(C)--+ HJJ.. Moreover, let iJJ.: zµ.--+ PN(C) be 
the restriction to Z,µ. of the projection HJJ. x pN (C) --+ pN (C). For each 
l E HJJ., let Zf denote the scheme-theoretic fibre of 1rµ. over l. Then 

is the closed subscheme of pN (C) associated with f We can then assign, 
to each s E V*, an element l(s) of HJJ. such that 'P:(x.) is just [l(s)]. 
Let {t;} CV* be an arbitrary sequence of points converging to 0, and 
the associated element l(t;) in HJJ. will be denoted simply by l;- First, 
we assume that l; converges to a point loo in HJJ. as j --+ oo. Then by 
3.2 and 3.3, there exists a subsequence { liv} of { l;} such that 

C* C limset{ 'P~. (Xt. )}, 
1v Jv 

where C* is as in (2.4.2), and on the right-hand side, limset{ ... } means 
the limit set of{ ... } as v--+ oo. On the other hand, since 'irµ. is flat, 

limset{ ip~- (Xt. ) } = limset{ [l;J} = [loo]-'"' ,,., 
Hence, [l00 ] :J C* set-theoretically. Recall that, by C*, we also denote 
the corresponding element in HJJ. (cf. Lemma 2.5). Since both loo and 
C* belong to HJJ., 

deg [e00 ] = deg C*. 

Hence, [l00 ] coincides with the reduced scheme C*, except [l00 ] can have 
embedded primes at singular points of [loolred = C*. Again by using the 
fact that both [l00 ] and C* belong to HJJ., we have 

x(O[eco]) = x(Oc.), 

and in particular, [l00 ] is reduced. Therefore, regarding C* as an el­
ement of HJJ., we obtain the convergence l; --+ C* E HJJ. as j --+ oo. 
We must next consider the more general case that the sequence {l;} 
does not necessarily converge in HJJ.. However, { l;} always converges. 
Because, otherwise, the compactness of HJJ. would yield two convergent 
subsequences {l;.}, {l:'} of {l;} such that 

lim l~ # lim l:', 
k-+oo l-+oo 

in HJJ., 
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contradicting the fact that these limits must coincide with C* by the 
above consequence for convergent cases. Thus (j · U(N + 1) converges 
to h(C) = C* · U(N + 1) in Hµ /U(N + 1), as j-> oo, in all cases. 
Here, our stable curve C can be chosen arbitrarily. Hence if Dj E Mg, 
j = 1, 2, ... , are such that D 1 -> D 00 in Mg for some D 00 E Mg, then 

h(Dj) -> h(D 00 ) in Hµ / U(N + 1), as j -> oo. 

3.5. Let {Dj} be a convergent sequence of points in Mg, and D 00 

its limit. Then the proof of Theorem 2.6 is reduced to showing 

For contradiction, assume that the sequence { h( D j)} does not converge 
to h(D 00 ) in Hµ/U(N + 1). Then replacing {D 1} by its subsequence, 
we may assume 

(3.5.1) h(D 1) -> F in Hµ / U(N + 1), as j _., oo, 

for some F E Hµ / U(N + 1) with F -1-h(D 00 ). By Urysohn's lemma, 
endow both Hµ / U(N + 1) and Mg with a metric structure. Now, put 

(3.5.2) b := dist (F, h(D 00 )) > 0, 

by the distance function. For each j, take a sequence { D 1,., }~=l C Mg 
such that D1,., -> D1 (v-> oo). By 3.4, h(D 1,.,) _., h(D 1) (v _., oo). 
Hence, for each j, there exists v1 satisfying the following: 

(3.5.3) 

(3.5.4) 

dist(D 1, D1,.,;) < 1/j; 

dist ( h(D 1 ), h(Dj,v;)) < 1/ j. 

Since D 1 _., D 00 in Mg, the inequality (3.5.3) yields the convergence 
D 1,v; _., D 00 in Mg as j _., oo. Hence, by 3.4, 

h(D 1,v;) _., h(D 00 ) in Hl'/U(N + 1), as j _., oo. 

In view of this and (3.5.1), the identity (3.5.2) implies 

dist (h(D 1), h(Dj,v; )) -> b, as j _., oo, 

in contradiction to (3.5.4). Thus, h(D 1) _., h(D 00 ) in Hµ/U(N + 1) as 
j _., oo. The proof of Theorem 2.6 is now complete. 
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§4. Concluding remarks 

The preceding section shows that our compactification of the moduli 
space coincides with the classical one for compact Riemann surfaces. In 
this section, we shall discuss other examples of our compactification by 
posing a couple of related conjectures. 

4.1. Let d be an integer with 1 ::; d::; 6, and put 

1 
P(m) := 2 (m 2 + m) d + 1, mE l. 

Let M 2 ,d be the set of isomorphism classes of all nonsingular del Pezzo 
surfaces of degree d. Now, using freely the notation in Section 1, we 
have a natural inclusion 

M2,d c M"j;. 

Let £2,d be the preimage of M2,d under the mapping pr+: E"j; - M"j;. 
By the works of Siu [19], Tian [20, 21], Tian and Yau [22], every nonsin­
gular del Pezzo surface X carries an Einstein-Kahler metric wx. Hence, 
in view of Lemma 1.1, the injection pr+ restricts to a bijection 

[X,K_x:1,wx] - X, 

where wx is chosen in such a way that Ric(wx) = wx. By setting 
:F = £2,d, we now apply the argument in Section 1. Letµ be the integer 
1, 2 or 3 according as d > 2, d = 2, or d = 1. Then if m ~ µ, the line 
bundle L®m = K-;_m for XE M 2 ,d is very ample, and moreover 

i > 0, 

by the vanishing theorem. In view of :F c Efa, the mapping i,.,,: :F - :,:µ, 
is bijective, so that by Lemma 1.3, 

M2,d ~ E2,d = :F ~ :,:µ, CHµ,/ U(N + 1), 

with N = P(µ)-1. Therefore, the closure :F,.,, of :F,.,, in H,.,, / U(N +1) can 
be regarded as a compactification of M2,d• On the other hand, Anderson 
[1], Bando, Kasue and Nakajima [3] (see also Bando [2]) succeeded in 
constructing a natural compactification E2,d of £2,d ( = M2,d) by using 
Gromov's theory, where the topological structure of E2,d is given by the 
Hausdorff convergence. We now pose the following: 

Conjecture A. 
-µ, -
:F = E2,d for all d with 1 ::; d::; 6. 

This is obviously true for d = 5, 6, since both £ 2 ,5 and £2, 6 consists of a 
single point. Moreover, one can prove this for d = 4, which will be given 
elsewhere ( cf. [12]). 
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4.2. We next consider the moduli space of polarized Abelian vari­
eties. Take a positive integers e, n and put P(m) := e · mn. Using the 
notation in Section 1, let An,e denote the set of all [X, L, w] E ep such 
that (X, L) is a polarized Abelian variety with c1 (Lt[X]/n! = e. Then 
for instance, An,1 coincides set-theoretically with the moduli space of 
principally polarized Abelian varieties. Let µ be an integer satisfying 
µ ~ 3. Now, it is well-known that An,e C eP,µ· Hence, by setting 
:F = An,e, we see that the mapping i,, : :F -+ :Fl-' ( cf. Section 1) is bi­
jective in view of the Aut 0 (X)-action on Pic(X) for any Abelian variety 
X. It now follows from Lemma 1.3 that 

An,e = :F ~ :Fl-' CHI-'/ U(N + 1), 

-µ 
where N = P(µ) - l. Then the closure :F of :Fl-' in HI-'/ U(N + 1) 
is regarded as a compactification of An,e· In order to see this com­
pactification more clearly, we assume e = 1 for simplicity. Note, in the 
construction of our compactification, the main difficulty arises from the 
fact that there are no explicit methods, in general, to find out a uni­
tary C-basis for H 0 (X,O(L®1-')). However, as you see below, there is a 
method so far as principally polarized Abelian varieties are concerned. 
Let Sn be the n-th Siegel's upper half-plane consisting of all n x n 
complex symmetric matrices n = Re n + A Im n such that Im n is 
positive definite. Moreover, let Sp(n, 1.) denote the group of all 2n x 2n 
integral matrices h satisfying 

th J h = J, 

Then Sp(n, l) acts on Sn in such a way that, for each n E Sn, the 
action is expressible as 

h • 0 :=(An+ B)(CD. + D)- 1 , h = ( i ~) E Sp(n,1.). 

Recall that An,1 is identified with Sn/ Sp(n, 1.) as follows. For n in Sn, 
we put rn := zn+ nzn and consider the Abelian variety Vn := en I r11. 
Following the notation in Mumford [16], define the theta function 

t?(z,n) := L exp(1rv-Itmnm+21rv-Itm.z), 
mE:Zn 

and let 011 be the associated theta diviosor on V11 defined as the zeroes 
oft? = t?(z, 0). Then the line bundle £11 := 0(011) on Vn carries a 



Compactification of the Moduli Space 379 

Hermitian metric, denoted by h(wo), such that ( cf. Faltings [10]) 

II l llh(wo)(z) := (det n) 1!4 • exp( -1r ty (Im n)- 1y) · lt9(z, U)I, 

where z = x + .;=I y E en, and functions on Vo are identified with 
ro-invariant functions on en. The corresponding Chern form is (see 
Section 1 for how wo and h( wo) are related) 

wo Ht 1 c1(Lo,h(w 0 )) = 21r = - 2- dz(Imn)- dz, 

which obviously defines a fl.at Kahler metric on Vo. Now, we have the 
identification 

6n/ Sp( n, l) ~ An,1, Sp(n,l) · n - [Vo,Lo,wo]. 

Next, for an integer µ ;::: 3, let R~ denote the space of all holomorphic 
functions 0 = 0(z) on en such that 0 is quasi-periodic of weight µ, i.e., 

{ 0(z + m) = 0(z), 

0(z +nm)= exp(-1rµF[tmnm - 21rµF[tz · m) · 0(z) 

for all m E zn and z E en. To find a basis for R~, recall now that 
theta functions of rational characteristic are defined as translates of t9 
multiplied by an exponential factor. Namely, for a, b E qn, put 

Let e,. be the set of all a= t(a 1 , ... , an) E qn such that, for all i, the 
multiple µ ai is an integer satisfying O ::; µ ai < µ. Then the functions 

(4.2.1) 0a(z) := t9 [~] (µz,µn), a Ee,., 

form a e-hasis for R~ (cf. [16; II-§1]). Moreover, we have 

Ro c:e H 0 (Vi O(L ®µ,)) ,. - n, o , 0 f--+ 0 := 0(z)jt9(µz,µn), 

where fa-invariant meromorphic function 0 on en is naturally regarded 
as a global section of Lffµ. Now, the Hermitian metric hP := h(wo)®µ 
on the line bundle Lff µ is written in the form 

( 4.2.2) II 0 llh .. (z) := { ( det n) 1!4 • exp(-7r ty (Im n)- 1y) }µ . l0(z)I, 
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for all 0 E R~. Then by the quasi-periodicity of fJ, 

( 4.2.3) Ba(z + b) = exp(21rµ.j=Ita · b) · Ba(z), a, b EEµ, 

so that, for each a EEµ, we have a C-linear automorphism Ta of R~ by 
setting 

Ta(B)(z) = B(z + a), 0 ER~. 

In view of ( 4.2.2), 

II Ta(B) llhl' (z) = { ( <let n) 114 · exp(-1r ty (Im n)- 1y) V · ITa(z)I 

= { ( <let n) 1/ 4 • exp(-1r ty (Im n)- 1y) }µ · IB(z + a)I = II 0 llh,. (z + a) 

for all 0 E R~. Integrating this identity by the translation-invariant 
volume form Wo /n! over the space Vo, we have 

II Ta(B) lli•,wn = f II Ta(B) Ill .. Wo /n! = f 11011i .. Won /n! = II o lli•,wn lv0 lvo 
for all 0 ER~ and a EEµ. We endow R~ with the L2-norm defined by 

0 ER~. 

In terms of this L2-norm, the automorphism Ta induces an isometry of 
R~ for all a EEµ- Together with (4.2.3), we have 

(4.2.4) a/b. 

Note, in (4.2.1), our 80 (z) is nothing but fJ(µz,µO.). Then the definition 
of theta functions of rational characteristics yields 

IBa{z)I = { exp{-1r ta (Im n) a - 271" ta· y) }µ · IBo{z + n a)I 

for a E Eµ- Therefore, in the identity ( 4.2.2), substituting 80 for 0 and 
also z + n a for z, we obtain 

II 0: llhl' (z + n a)= {(det S1)114 • exp{-1r ty {Im n)- 1y)}µ. IBa{z)I 

= II Ba llh,.(z). 

Integrate this by the volume form w0n / n! over the space Vo. Then, 
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Let c > 0 be the left-hand side of this identity. In view of (4.2.4), we 
now see that { c- 1 Ba; a E Eµ} is a unitary C-basis for R~, i.e., 

is a unitary C-basis for H 0 (Vo, O(Liµ)). Then the corresponding pro­
jective embedding is given explicitly by 

with z E en, where elements of Eµ are so numbered that 

Eµ = {ao,ai,,,.,aN}, 

Then the image Xlln := <PEn (Vo) is a point in the Hilbert scheme Hµ 
(cf. Section 1), and the closure of 

{ Xlln · U(N + 1); n E 6n} 

in Hµ / U(N + 1) is nothing but our compactification :Fµ of A..,1 • This 
construction suggests that our compactification have some relation to 
Igusa's compactification [11], at least, in view of both heavy dependence 
on theta functions. 

Let us now assume n = 1, and describe explicitly our compactifica­
tion :Fµ of A1,1 for µ = 4. Since Sp(l, Z) = SL(2, Z), it follows that 

A1,1 ~ 6if SL(2, Z), 

where 6 1 = {z EC; Im z > O}. In view of (4.2.1), we put 

[j/4] 0;;4(z) := iJ O (4z,4r), j = 0, 1, 2, 3, 

[ a/2] iJa,b(z) := iJ b/ 2 (2z,r), a, b E {0,1}, 

for z EC and r E 61, Then (cf. [16]), 

= Bo + 01;2 

Bo - 01;2 

81;4 + 03/4 

= A (01;4 - B3;4), 
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so that, for the elliptic curve V-r := C2 /l + lr, the theta functions 

a,bE{O,l} 

form a unitary C-basis for R4 ~ H 0(Vn CJ(L~4 )), with c := llt?o,011£2· 
Therefore the corresponding projective embedding is given by 

where z EC and rT := l + lr. Recall that the image XIlr := PI:r(V-r) 
in P3 (C) := { ( = (( 0 : ( 1 : (2 : ( 3 )} is just the scheme-theoretic complete 
intersection of quadrics (cf. [16; p.23]) 

t?o,o(O)2 (a2 = t?o,1 (0)2 (i2 + t?1,o(O)2 (l, 

t?o,o(O)2 (l = t?1,o(O)2 (i2 - t?o,1(O)2 ,r 
Moreover, the fundamental region of SL(2, l) in 61 is 

{ r = x + Ry; :z:2 + y2 ~ 1, lxl ~ 1/2, y > 0 }, 

where {:z: = -1/2} and {:z: = 1/2} are identified by the map r 1-+ T + 1, 
and {:z:2 + y2 = 1} is identified with itself by the map r 1-+ -1/r. Hence 

A1,1 ~ Si/ SL(2, l) ~ R2 • 

As y = Im r---+ +oo, we have (cf. [16;p.4O]) 

{ 
iJ.o,0(O) = 1 + O(exp(-11'y)), 

.io,1(O) = 1 + O(exp(-11'y)), 

iJ1,0(O) = O(exp(-7l'y/4)), 

so that the curve XIlr in P3 (C) converges uniformly to the union of four 
lines 

Xoo := { ( E P3 (C); (a2 = (i2, (a2 = -(l }, 
which is regarded as a point of the Hilbert scheme Hµ, (where µ = 4). 

-µ, 
We now put p 00 := X 00 • U(N + 1) E Hµ, / U(N + 1). Then our :F is 
nothing but a one-point compactification of A1,1 as follows: 

-µ, 2 
:F = A1,1 u {poo} ~ S . 

4.3. Let cL c2, P(m), S 2 be the same as in (2) of Example 1.2. 
c1 ,c2 

Then :F = S 2 coincides with the set of isomorphism classes of all 
c1 ,c2 
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minimal algebraic surfaces of general type of given Chern numbers d, 
c2. Moreover, 

µ?. 5. 

Now, look at our compactification :Fµ of S 2 • As in the curve case 
c 1 ,c2 

( cf. 2. 7), we can expect the following: 

Conjecture B. There exists an integer µ 0 ?. 5 such that for every 
-µ -µo 

µ?. µ0, one has a natural homeomorphism between :F and :F . 

We also hope that our compactification says something on the mod­
uli spaces of polarized K3-surfaces. Finally, in view of the existence 
of Einstein-Hermitian metrics for stable bundles, an idea as in Section 
1 is also applicable to compactifying the moduli space of stable vector 
bundles over a nonsingular projective algebraic variety. 
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