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complement of € in g with respect to the negative of the Killing form
—B of g and let

(1.1) m=m +m, + my

be the irreducible decomposition of m. Note that each G-invariant Rie-
mannian metric on M can be represented by an inner product a:lB|ml +
2B, + z3Bl,, (71, 73, 73 > 0) on m. From now on we identify G-
invariant Riemannian metrics on M with inner products on m. Let M

be the set of all G-invariant Riemannian metrics on M with volume 1.
Then

(1.2) M= {(zy,2,,2;) € R®|z;h2,%2,% =1/V?, z;,2,,2, > 0}

where d; = dimm,; (¢ = 1,2,3), V = Vol(M, B|,). Let {e,} be a
B-orthonormal basis of m adapted to (1.1). We put

2

(1.3) C’fj: Z B([ea,eﬁ],e7)
eaEml.
egEm;
e,YEmk

for 4,5,k = 1,2,3. Note that Cf; is independent of the choice of B-
orthonormal bases of m adapted to (1.1) and symmetric in all three

indices. We denote by S(g) the scalar curvature of a Riemannian mani-
fold (M, g). Then

1 d; 1 T
1.4 =) 22Nk Zk
(14) S0 =535 > e

1,3,k

for g = Bl + 2Bl + 3Bl (21, T, 73 > 0) (cf. [10]). Now we
have the following theorem.

Theorem 1.5 (Wang-Ziller [10]). Let M = G/K be as above and
dim M 2 3. Then g € M is Einstein if and only if

)= (e) =

where u = z,/z,, v =125/, (cf (1.4)).
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§2. Kahler C-spaces

In this section we construct some examples of a K&hler C-space
M = G/K such that G is a compact connected simple Lie group and
that the corresponding isotropy representation of K is decomposed into
non-equivalent three irreducible components.
Let g be the Lie algebra of G and t a maximal abelian subalgebra of
g. We denote by g€ and t€ the complexifications of g and t respectively.
We identify an element of the root system A of g€ relative to the Cartan
subalgebra t© with an element of /—1t by the duality defined by the
Killing form ( , ) of g&. Let Il = {a;,---,a,} be a fundamental system
of A and {A,,---,A,} the fundamental weights of g corresponding to
II; ie.,
2(4,, aj) _
(aj, aj)

Let II;, be a subset of II and put

Y (1=i,j=0).

iJ

(21)  T-Ty={e;, 0} (@<i<-<i, <0

»

We put
(o] = ANn{l},

where {II)}, denotes the subgroup of \/—1t generated by II,. Consider
the root space decomposition of g€ relative to tC :

g“ =1+ ol
aEA

We define a parabolic subalgebra u of g€ by

u=tc+ > g
ag[ljua™

where A* is the set of all positive roots relative to II. Let G be a simply
connected complex simple Lie group whose Lie algebra is g€ and U the
parabolic subgroup of G c generated by u. Asis well known, the complex
homogeneous manifold M = G€/U is compact simply connected and G
acts transitively on M. Note also that K = G N U is a connected
closed subgroup of G and M = G/K as C'"™-manifold and M admits a
G-invariant Kahler metric (cf. [4], [7]). Hence, M is a Kéhler C-space.
We take a Weyl basis E, € g€ (a € A ) with

B, E_,] = —a (€ A)
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N, sE. 15 ifa,B,a+8€A

0, ifa,eAa+3¢A.

where 0# N, s =N_, 5 €R (a,8,a+ f € A) such that

BarBsl = {

g=t+ Y {R(E.+E_,)+R/=I(E, - E_,)}.

acA

Then the Lie algebra £ of K is given by

t=t+ Y {R(E,+E_,)+R/-1(E,—E_)}

a€flly]

For positive integers k,,---, k,, we put

™7

£
A(kl,-.-,kr) :{Zm]aj € A+|mi1 — kl’.."mir :kr}

7=1

For A(ky,---,k.) # 0, we define an Adg(K)-invariant subspace
m(kl""vkr) Ofg by

mky,-- k)= Y. {R(E,+E_)+RV=I(E,— E_,)}.

aEA(ky, k)

Denote by B the negative of the Killing form of g. Let m be the orthog-
onal complement of € in g with respect to B. Then

m= Y mlky,--,k,)

kly"'ikr

is a B-orthogonal decomposition of m. If » = 1, Omura [6] proved that
each m(k,) is irreducible as Adg(K)-module. We give a sufficient con-
dition for the irreducibility of m(k;,---,%,) as Adg(K)-module below
(cf. [6]).

Let €€ and m(k;,---, kr)C be the complexifications of ¢ and
m(k,,- -, k,) respectively. Then

(€4 3 g
O‘e[nol

m(ky, -, k )C=m+(k1,“',kr)+m_(klw-wkr)

r
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where m*(ky,---,k,) = DNINTIR, g%a. Let & be the semi-simple
part of the complex reductive Lie algebra £C; i.e,

V=[S =+ Y ol

agIy]

where b’ = 33 g Ca. Note that each m*(ky, -, k,) is an adc(¥')-
invariant subspace of g€. Now we have the following lemma.

Lemma 2.2. For each m(ky,---,k,), the following (1) (2)(3) are
equivalent.
(1) (adg |, m(ky,- -+, k,)) is a real irreducible representation of .
(2) (adge |y, m*(ky,---,k,)) is a complex irreducible representation
of ¥.
(3) (adye |o, m™(ky,- -, k,)) is a complex irreducible representation
of ¥'.

Proof. We prove only the equivalence between (1) and (2). Since
(adgec |, m*(ky,---,k,)) is equivalent to (ad, |, m(k;,---,k,)) as real
representation of £, we get (1) = (2). Conversely if m, is a non-trivial
ad,(®)-invariant subspace of m(k;,-- -, k,.), then there exists a non-trivial
subset A; of A such that

m, = Z {(R(E,+E_,)+Ry=1(E, - E__)}.

ozEA1

Since },en, g%, is a non-trivial adc(¥)-invariant subspace of
m*(ky,- -, k,), hence we get (2) = (1). Q.E.D.

We can consider that an element of A(k;,---,k,) is a weight of
the representation (ad,c |y, m™(ky,---,k,)) of ¥ relative to §’. Thus
m”(ky, -, k) = ZaeA(kl,--~,k,) g is the decomposition into the weight
spaces.

Lemma 2.3. Suppose that there exists B, € A(ky,---,k,.) satis-
fying the following properties: (1) By, + a; ¢ A for any a; € I, (2)
if a is an element of A(ky,---,k,.), either By — a € A or there ezist
B1,By € II] N AT such that By — a = B; + B, and By — B; € A. Then

m(ky,- -+, k,.) is Adg(K)-irreducible.

Proof.  Since Eg_ is primitive, the ad,c (€')-submodule W of m~ (k,,
-++,k,.) generated by Eg_ isirreducible. For a € A(ky, - ok,), if By—a €
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A, B, 5 € " and thus [B, 5 ,Eg] = AE,(0 # A € C). Hence
E, € W. If B, — a ¢ A, there are 31,832 such that E—ﬂl’E—ﬁz € tC
and Gy — B; € A, and thus [E—Bz’[E—ﬁl’Eﬂo” = pE, (0 # p € C).
Hence E, € W. Thus m(k,,---,k,) is Ad,(K)-irreducible from Lemma
2.2. Q.E.D.

Remark 2.4. Note that m(k,,---,k,) are non-equivalent each other
and mt(k;, -, k) = m~(ky,---,k,) .

We put 6, = § > qea+—_qm, @ Then
(2.5) Om = Ay + -t Ay
where c; , --+c; > 0 (cf. Borel-Hirzebruch [2]). Let & be the highest
root of A and

[4
a=>Y mp; (0Sm;el)
i=1

Now we construct our Kahler C-spaces M = G/K. If we regard M
as the complex manifold G¢/U, M is represented by the pair (II, II,)
of the Dynkin diagram. Our Ké&hler C-space M = G/K is represented
by the pair (II,II;) such that either II — I, = {a,} where m, = 3 or
Il - 1y = {a,,a,} where m,, = m, = 1. Next proposition can be easily
checked by Lemma 2.3, Remark 2.4 and (2.5).

Proposition 2.6. Let G be a compact connected simple Lie group
corresponding to the following Dynkin diagram I and GC/U the complex
manifold corresponding to the following pair (I, ;). Put K = GNU.
Then G/K is a Kihler C-space and the isotropy representation of G/ K
1s decomposed into non-equivalent three irreducible components.

[ (ILI):

E7-() 1 3 4 5 6 7 E7-(i) 1 3 4 5 6 7

o—o—&—g—o—oo—o—ogﬂ—o

2 2
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EsGy 1 3 4 5 6 7 8

(1] (I1,10,) :

Al+m+n-1
1 | l+m km+n-1
I-1
DI-(i)

1

O__-

3]

-1
DI-(ii) DI-(iii)
1 ; 1
|
E6

1 3 4 5 6

xzs—o—g—o—xzs

2

where the vertices contained in II — I, are denoted by “x .
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Moreover, in the case [I], the triple (JA(1)], |A(2)], |A(3)]) is

(1) (18,9,2), for G of type Eg,
(2) (30,15,4), for G of type E,-(i),
(3) (30,15,2), for G of type E,-(ii),
(4) (54,27,2), for G of type Eq4-(i),
(5) (56,28,8), for G of type Eq-(ii),
(6) (12,6,2), for G of type F,,
(7)) (2,1,2), for G of type G,,

and, in the case [II], the quadruple (|A(1,0)], |A(0,1)], |A(1,1)|, §,,) is

L+m m+n

(1) (¢m, mn, {n, 5 A+ 5 Apim)s
for G of type Ay min_1,
—1)(£—-2) ¢ g
(2) (e - 1a - 1: ( _“_“——‘)2( ), 51\3_1 + §A£)’

for G of type D,-(i),

3) ((-1, “;Qzﬁe—‘i) (-1, -;iAl + (€= 2)Ap),
for G of type D,-(ii),
(0 (-1, D Dy ooy,

for G of type D,-(iii),
(5) (8,8, 8, 4A, +4Aq),
for G of type Eg,

where 1 < {,m,n € Z in the case of type A, . ., and 4 Sl e Z in
the case of type D,.

§3. G-invariant Einstein metrics

In this section we find all G-invariant Einstein metrics on the K&hler
C-spaces of Proposition 2.6. We will use the same notation as in § 2.
The next theorem is well-known.

Theorem 3.1 (Borel-Hirzebruch [2], cf. [7]). Let M = G/K be
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the Kdhler C-space in Proposition 2.6. We put

B|m(1) + 2B|m(z) + 3Blm(3), in the case [I],
9= )
Bl o) T €aBlnony T (cp +¢)Blo 1), in the case [1I],

where §,, = c,A, +c A, in the case [II]. Then g is a unique G-invariant
Einstein-Kihler metric on M = G©/U up to homotheties, where we
consider the natural complez structure on G€/U.

We obtain the following theorem by Theorem 1.5.

Theorem 3.2. Let M = G/K be the Kihler C-space in Proposi-
tion 2.6. In the case [I], M has three G-invariant Finstein metrics up to
homotheties. In the case [II], M has four G-invariant Einstein metrics
g, up to homotheties, expressed explicitly in the form

9=21B| 1,0 + 2B,y + 3Bl

where (z1, T4, T3) is given as follows:
If G is of type Ayy iin_1)
BVf+m,m+n,+2m+n), (2)(¢+m,m+n,{+n),
B)l+m,2l+m+n,L+n), (4)({L+m+2n, m+n,L+n).
If G is of type D,-(i),
(1)(19 1, 2), (2)(£7 e, 2L — 4)7
(3)(¢, 36— 4, 20— 4), (4)(3¢—4, £, 20 — 4).
If G is of type D,-(ii) or D,-(iii),
(1)(€,2¢—4,3L—4), (2)(4, 204, 1),
(3) (1, 2, 1)) (4) (38 -4, 2¢ - 4, l)
If G is of type Eg,
1)(1,1,2), (2)(1, 1, 1), 3)(1,2,1), (4)(2,1, 1).
Moreover, in each type, the case (1) is a Kihler metric on G&/U.

Proof. First we consider the case [I[]. We put ¢ = lelm(l) +
T, B ) + z3B| .3 (1, Tz, T3 > 0). Then we get the following from
(1.4).

T3

2 T T
=) 4 2C3,( 4 =2 4 1
Ty T1Zy T3z Tyl

S(0) = 30 5 - O (2% + )

where d; = |A(4)] (¢ = 1,2,3). Note that d; ( = 1,2,3) are known by
Proposition 2.6. We put u = z,/2;, v =23/, and N =d; +d, +d; =
dimgc M. By Theorem 1.5, g is Einstein if and only if
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(3.3) dyuv — (dy — %Cfl)(% ~1)v+dyu — icfl(% + 1)u’v
+5Ch(g — Dt = OR( + e+ 30h(5 — 1) =0

(3.4) dyuv + (dy — %cfl)v - ds(% ~1u- inluzv
~5Ch(G + 1+ 5Ch(G — Dut + 5Ch(F ~ D =0,

Since u = 2,v = 3 is a common root of (3.3) and (3.4) by Theorem 3.1,
we get C?, and C5,. From (3.3) and (3.4), we see that

clu —ug){u — uy)

(3:5) Y= ) (u )

where ¢ > 0, u;, u,, us, uy € R. Since u > 0, v > 0, we get the domain
I of u from (3.5). Substitute (3.5) to (3.3) and multiply it by a constant
multiple of (u—us)?(u—uy)?/(v—2). Then we have an equation f(u) =
0, where f(u) is a polynomial of 4 with an integral coefficient. We have
a one-to-one correspondence between the set {u = 2}U{u € I|f(u) = 0}
and the set of G-invariant Einstein metrics on M up to homotheties.
Consider the case of type Eg4. In this case, we see that

0121 = 6:032 = 3/2
and
U = —2,uy = 10/11,u3 =11/7 + \/249/21,u4 = 11/7 — \/249/21.

Hence
I'=(0,uy) U (uy,uy)

and
f(u) = 532u° — 3800u* + 8809u® — 9398u? — 4860u — 1000.
Now we obtain the following result from Strum’s theorem.
Hu € (0,u)if(u) =0} =1 and [{u € (uy,us)|f(u) =0} = 1.

Therefore M has three G-invariant Einstein metrics up to homotheties.
Results for other types in the case [I] are obtained by the same method.
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Next we consider the case [II]. We put g =z, B| ; o) +Z3B| 1) +
m3B|m(171) (zy, T4, 3 > 0). Then by (1.4)

d, 1 T z z
= o 5Ch T )
T 2 TiTy TyTy  TyTy

where d; = |A(1,0)|, d, = |A(0,1)|, d; = |A(1,1)|. By Theorem 1.5, g
is Einstein if and only if

(3.6) Cla(dy +d3 )0 + 2dy(dyu — dy — dy)v

~C3y(dy + 2dy + dy)u® + 2dydgu + Cy(dy + dy) =0

(3.7) —C3,(dy + dy + 2d3)v* + 2dy(dyu + dy)v

+C3y(dy + dy)u? — 2d5(dy + dy)u + CPy(dy +dy) = 0

where u = z,/2,, v = z3/z;. We put §, = c,A, +c,A,. Note that d;

(z =1,2,3), ¢, and ¢, are known by Proposmon 2.6. Smce u = cg/cp,
=(c p—l-cq)/cp is a common root of (3.6) and (3.7) by Theorem 3.1, we

get C3,. Therefore we can get all positive common roots (u,v) of (3.6)

and (3.7) for each type of the case [lI] by the same method as in the
case [I]. Q.E.D.

84. G-invariant complex structures

Let M = G/K be the Kihler C-space in Proposition 2.6. We have
a one-to-one correspondence between the set J of G-invariant complex
structures J on M and the set P of parabolic subgroups P of GC with
GNP = K. If a G-invariant Einstein metric g on M is K&hler for
a complex structure J on M, J is G-invariant. Suppose that J € J
corresponds to P € P. Then (M,J) and G%/P are biholomorphic,
where we consider the natural complex structure on G¢/P. Thus if we
regard (M, J) as GC/ P, g is the form of Theorem 3.1 up to homotheties.
Hence if a G-invariant Einstein metric is Kahler, it is a known metric.

On the other hand we obtain the following results from Nishiyama
[5]. There is a one-to-one correspondence between J and the set W’ of
elements o of the Weyl group W with o(I1;) C II. Suppose that J € J
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corresponds to o € W’. Then let U, be a parabolic subgroup of G®
whose Lie algebra u, is

D Y
a€lo(y)luat

And let f be the diffeomorphism from M to G®/U, induced from
the automorphism of g€ defined by o. Then f is a biholomorphic
map from (M,J) to G&/U,. Moreover, K, = GNU, is a connected
closed subgroup of G, M = G/K, as C*-manifold, and f defines a
G-equivariant isometry from (G/K,B|,) to (G/K,,B|,- ), where m?,
A%(ky,--+,k.) and m7(k;,---,k,) for G/K, are corresponding to that
of m, A(ky,---,k,) and m(k;,---,k,) for G/K. G-invariant complex
structures J and J' on M are said to be equivalent if the complex man-
ifolds (M,J) and (M,J') are biholomorphic. Let J, J' be G-invariant
complex structures on M and let o, o' be the elements of W' corre-
sponding to J, J' respectively. Then J and J' are equivalent if and only
if there exists a graph automorphism v of the Dynkin diagram II such
that y(c(Ily)) = o'(Il;). Moreover, in this case the pairs (II, o(I1,)),
(IL, o' (IL;)) of the Dynkin diagrams are called equivalent.

Remark 4.1. Let M = G/K be the Kihler C-space of Proposition
2.6. We put
1), if M is in the case [I],
1,0), if M is in the case {11},

0,1), if M is in the case [II],
_ { A(3),  if M isin the case [I],
* 7 1 AQ1,1), if M isin the case [II],

and we define m;, m,, m, similarly. Then we get the followings.

(1) Let o be an element of W with o(II;) C II, and f the above G-
equivariant diffeomorphism from G/K to G/K, induced by o. Suppose
that g; is a G-invariant Riemannian metric on G/K,. We put

( {
( [
(2), 'if M is in the case 1,
( [
( [

91 =21 Blpe +25B|ng +73B|,g (z1, 25,23 > 0).
Then
.f*gl = xr(l)B|m1 + wr(2)B|m2 + $7(3)Blm3

where 7 € G5 such that o(A;) = A7, (i =1,2,3).
(2) Let {Jy,---,J,} be the set of all G-invariant complex structures on
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M up to equivalence, and o,,---, 0, the elements of W’ corresponding
to Jq,---,J, respectively. Suppose that g;, --- , g, are the G-invariant
Einstein-Kahler metrics on G/ Kgl, --+, G/K, , respectively. For each

integer k (1 £ k < n), we put
9 = 2Bl on + 23 Bl ou +23B| o (a1, 23,25 > 0).

If g is a G-invariant Einstein-Kahler metric on M, there exist an integer
k(1 £k £n)and 7 € G; such that

9= xf(l)B;ml + z’:(2)B|m2 + mf’(:})B;ms
up to homotheties.

Remark 4.2. Let M = G/K be the Kéhler C-space in Proposition
2.6-[I]. Then M has one and only one G-invariant complex structure
up to equivalent (cf. [2], [5]). Let BJ .y + uB| ;) + vB|,3) bea G-
invariant Einstein metric on M found newly in Theorem 3.2. Then u
and v are irrational. Therefore they are not Kéihler for any complex
structure on M by Theorem 3.1 and Remark 4.1-(2).

When M = G/K is a Kihler C-space of Proposition 2.6-[II], we
construct the root system A in a subspace of the Euclidean space RY of
an appropriate dimension N as usual. Let {g,,---,e5} be the standard
basis of R¥.

Example 4.3. Let M = G/K be the Kihler C-space of type
Agpmyn_1 Of Proposition 2.6-[IT]. Then a; =¢; —¢;,; (1 S i S £+
m +n — 1). When we regard M as G/U, M is represented by the

following pair (II,II,) of the Dynkin diagram.
(II,10,) :

Hm+n-1

O———O-&-O——0-&-O0———0-0

The pairs of the Dynkin diagrams corresponding to G-invariant com-
plex structures on M up to equivalent are as follows
(IL, o(ITy )):

1 n n+l l+m+n-1
where o € W is defined by a permutation

(51 cr €gpm Ceymal o Etpmin
€ntl v+ Eopmin £ En
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(0,0/(,)):
O OO —O—&-O———0-0

where o' € W is defined by a permutation

( € €, €opp ve- 5e+m+n>
Emintl -+ Eopmin €1 o+ Emin

Note that if £, m and n are all distinct, the above three pairs are not
equivalent each other. Note also that if £, m and n are not all distinct,
there exist the equivalent pairs. By Theorem 3.2,

(n+ K)B|m"(1,0) +(¢+ m)Blm"(O,l) +(n+20+ m)Blm”(l,l)
is an Einstein-Kéhler metric on GC/U. Moreover
a(A(1,0)) = A7(0,1), o(A(0,1)) = —A%(1,1), o(A(1,1)) = —A7(1,0).

Hence the metric (3) of Theorem 3.2 is Kéhler for the G-invariant com-
plex structure corresponding to ¢ by Remark 4.1-(1). The metric (4)
of Theorem 3.2 is Kéhler for the G-invatiant complex structure corre-
sponding to ¢’ similarly. On the other hand, the metric (2) of Theorem
3.2 is not Kahler for any complex structure on M from Theorem 3.2
and Remark 4.1-(2). If £ = m = n, the metric (2) of Theorem 3.2 is the
standard metric of G/K, in the sence that it comes from the negative
of Killing form.

Example 4.4. Let M = G/K be the Kéhler C-space of type D,
of Proposition 2.6-[II]. Then a; = ¢; —¢;,; (1 £ i S £ —-1), o =
€4_1 + €, Since the Kéhler C-spaces defined by the pairs (i), (ii) and
(iil) of Proposition 2.6-[II] are isomorphic as G-manifold each other, we

regard GC/U as (i), i.e,
H
1
o

(I1,1I,):
The pairs of the Dynkin diagrams corresponding to G-invariant com-
plex structures on M up to equivalent are as follows:
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(IL, o (1) ):

O—-

where o € W is defined by a permutation
€1 -- €1 &1
62 RS El 51

o(A(1,0)) = —A7(1,0), o(A(0,1)) = A%(1,1), o(A(1,1)) = A°(0,1).

Then

Hence the metric (3) of Theorem 3.2-(i) is Ké&hler for the G-invariant
complex structure corresponding to ¢ € W by Theorem 3.2-(ii) and
Remark 4.1-(1). We define o’ € W by a permutation

€ ... € £ i s
( L &1 f) if £ is odd,
—€, ... —&5 &
€ € ... € € o
( ! 2 -1 l) if ¢ is even.
€, —€p_4 - —E5 &

Then if £ is odd, the pair (II, o'(II;)) of the Dynkin diagram is the type
(ii) of Proposition 2.6. And if £ is even, it is the type (iii) of Proposition
2.6. Moreover

o' (A(1,0) = =A% (1,1),  ¢'(A(0,1)) = A7 (1,0),

o' (A(1,1)) = —=A7(0,1).

The metric (4) of Theorem 3.2-(i) is Kihler for the complex structure
corresponding to o' € W by Theorem 3.2-(ii),(iii) and Remark 4.1-(1).
On the other hand the metric (2) of Theorem 3.2-(i) is not K&hler for
any complex structure on M by Theorem 3.2 and Remark 4.1-(2).

Example 4.5. Let M = G/K be the Kihler C-space of type Eg4 of
Proposition 2.6-[II]. Then M has one and only one G-invariant complex
structure up to equivalent (cf.-[5]). The metric (2) of Theorem 3.2 is not
Kéhler for any complex structure on M by Theorem 3.2 and Remark
4.1-(2). But it is the standard metric of G/K, in the sence that it comes
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from the negative of Killing form. Now we define automorphisms ¢, o'
of A by the following:

olay) = ag, olay) = a3, o(ag) = a5, o(ay) =ay, o(a) = ay,
o(ag) = —(og + 205 + 203 + 3y + 205 + 0g);
o'(ay) = —(ay + 205 + 205 + 30y + 205 + 0g),
o'(ay) = a5, 0'(a3) = ay, 0'(ay) = oy, o'(a5) = a3, () = .
Then
a(A(1,0)) = A(0,1), a(A(0,1)) = —A(1, 1),
o(A(1,1)) = —A(1,0)

and
o' (A(1,0)) = —A(1,1), a'(A(0,1)) = A(1,0),

o' (A(1,1)) = —A(0,1).
We define parabolic subalgebras p, p’ of g& by the followings:

p=t"+ ) &

and
e D D
€My Ulo" (1)}

where [o(I)] and [¢/(IT)]t are the sets of all positive roots relative
to o(Il) and o'(II) respectively. Let P, P’ be the parabolic subgroups
of GC corresponding to p, p’ respectively, and let J, J, and J,, be
the G-invariant complex structures on M corresponding to the natural
complex structures on G€/U, GE/P and G®/P' respectively (cf. [5]).
Let f and f' be the G-equivariant diffeomorphisms on M defined by o
and ¢’ respectively. Then f and f’ are biholomorphic maps from (M, J)
to (M,J,) and (M, J,,) respectively. On the other hand, the pairs
(I1,1,), (o(II), IIy) and (o'(11),II,) of the Dynkin diagrams are all the
same. Hence the metrics (3) and (4) of Theorem 3.2 are Kéhler metrics
on (M,J,) and (M, J,.) respectively by Theorem 3.2 (cf. Remark 4.1-

(1))

From above, we get our Main Theorem.
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