Homogeneous Einstein Metrics On Certain Kähler C-Spaces

Masahiro Kimura
Dedicated to Professor Shingo Murakami on his 60th birthday

§0. Introduction

Most known non-standard examples of compact homogeneous Einstein manifolds are constructed via Riemannian submersions. Here the word "standard"means that the Einstein metric on a homogeneous manifold is constructed from the irreducible isotropy representation of the homogeneous manifold. However, such a method does not work effectively if the isotropy representation associated with the homogeneous manifold decomposes into more than two irreducible representations. In fact, only few examples (cf. Wang [8]) of such homogeneous Einstein manifolds are known so far.

Let $M=G / K$ be a Kähler C-space, where G is a compact connected simple Lie group. Then M carries a complex structure J and a Kähler metric g, with respect to J, such that the group Aut (M, J, g) of holomorphic isometries of the Kähler manifold (M, J, g) acts transitively on M. Assuming now that the associated isotropy representation of K decomposes into non-equivalent three irreducible components, we construct in § 2 examples of such Kähler C-spaces . In § 3, in view of the method of Wang and Ziller (cf. § 1), we find all G-invariant Einstein metrics on the Kähler C-spaces G / K constructed in the preceding section. On the other hand, given a G-invariant complex structure on G / K, we have a unique G-invariant Einstein-Kähler metric on G / K up to homotheties (cf. § 2). Thus if a G-invariant Einstein metric on G / K found in $\S 3$ is Kähler with respect to some G-invariant complex structure on G / K, then it is nothing but a known metric. Therefore, we check in § 4 whether the G-invariant Einstein metrics found in § 3
are Kähler or not by taking suitable G-invariant complex structures on G / K. We now state our Main Theorem.

Main Theorem. Let G / K be a Kähler C-space which is locally isomorphic to one of the following.
(1) $E_{6} / U(2) \times S U(3) \times S U(3)$,
(2) $E_{7} / U(3) \times S U(5)$,
(3) $E_{7} / U(2) \times S U(6)$,
(4) $E_{8} / U(2) \times E_{6}$,
(5) $E_{8} / U(8)$,
(6) $F_{4} / U(2) \times S U(3)$,
(7) $G_{2} / U(2)$,
(8) $S U(\ell+m+n) / S(U(\ell) \times U(m) \times U(n))$,
(9) $S O(2 \ell) / U(1) \times U(\ell-1)$,
$(10) E_{6} / U(1) \times U(1) \times \operatorname{Spin}(8)$,
where ℓ, m and n are positive integers in the case of (8), and $4 \leqq \ell \in \mathbb{Z}$ in the case of (9). Then the isotropy representation of compact homogeneous space G / K is decomposed into non-equivalent three irreducible components (cf. Proposition 2.6).
[I] If G / K is either (1),(2),(3),(4),(5),(6), or (7), then G / K has exactly three G-invariant Einstein metrics up to homotheties (cf. Theorem 3.2). One of them is Kähler for a G-invariant complex structure on G / K and the other two are non-Kähler for any complex structure on G / K (cf. Remark 4.2).
[II] If G / K is either (8), (9), or (10), then G / K has exactly four G invariant Einstein metrics, up to homotheties, which are written down very explicitly (cf. Theorem 3.2). Three of them are Kähler for suitable G-invariant complex structures on G / K and the rest is non-Kähler for any complex structure on G / K (cf. Examples 4.3, 4.4, 4.5).

Note, in the above theorem, that the non-Kähler G-invariant Einstein metrics in the case of (8) with $\ell=m=n$ and (10) are known metrics of G / K, coming from the Killing form.

The author wishes to express his sincere gratitudes to Professor Yusuke Sakane for his valuable and inspiring suggetions.

§1. Preliminaries

In this section we recall some results of Wang and Ziller [10].
Let G be a compact connected simple Lie group, K a connected closed subgroup of G, and let $\mathfrak{g}, \mathfrak{k}$ be the Lie algebras of G, K respectively. For the compact connected homogeneous manifold $M=G / K$, we assume that the isotropy representation of G / K is decomposed into non-equivalent three irreducible components. Let \mathfrak{m} be the orthogonal
complement of \mathfrak{k} in \mathfrak{g} with respect to the negative of the Killing form $-B$ of g and let

$$
\begin{equation*}
\mathfrak{m}=\mathfrak{m}_{1}+\mathfrak{m}_{2}+\mathfrak{m}_{3} \tag{1.1}
\end{equation*}
$$

be the irreducible decomposition of \mathfrak{m}. Note that each G-invariant Riemannian metric on M can be represented by an inner product $\left.x_{1} B\right|_{\mathrm{m}_{1}}+$ $\left.x_{2} B\right|_{m_{2}}+\left.x_{3} B\right|_{m_{3}}\left(x_{1}, x_{2}, x_{3}>0\right)$ on \mathfrak{m}. From now on we identify G invariant Riemannian metrics on M with inner products on \mathfrak{m}. Let \mathcal{M} be the set of all G-invariant Riemannian metrics on M with volume 1 . Then

$$
\begin{equation*}
\mathcal{M}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}{ }^{d_{1}} x_{2}{ }^{d_{2}} x_{3}{ }^{d_{3}}=1 / V^{2}, x_{1}, x_{2}, x_{3}>0\right\} \tag{1.2}
\end{equation*}
$$

where $d_{i}=\operatorname{dim} \mathfrak{m}_{i}(i=1,2,3), V=\operatorname{Vol}\left(M,\left.B\right|_{m}\right)$. Let $\left\{e_{\alpha}\right\}$ be a B-orthonormal basis of \mathfrak{m} adapted to (1.1). We put

$$
\begin{equation*}
C_{i j}^{k}=\sum_{\substack{e_{\alpha} \in m_{i} \\ e_{\beta} \in m_{j} \\ e_{\gamma} \in m_{k}}} B\left(\left[e_{\alpha}, e_{\beta}\right], e_{\gamma}\right)^{2} \tag{1.3}
\end{equation*}
$$

for $i, j, k=1,2,3$. Note that $C_{i j}^{k}$ is independent of the choice of B orthonormal bases of \mathfrak{m} adapted to (1.1) and symmetric in all three indices. We denote by $S(g)$ the scalar curvature of a Riemannian manifold (M, g). Then

$$
\begin{equation*}
S(g)=\frac{1}{2} \sum_{i} \frac{d_{i}}{x_{i}}-\frac{1}{4} \sum_{i, j, k} C_{i j}^{k} \frac{x_{k}}{x_{i} x_{j}} \tag{1.4}
\end{equation*}
$$

for $g=\left.x_{1} B\right|_{\mathrm{m}_{1}}+\left.x_{2} B\right|_{\mathrm{m}_{2}}+\left.x_{3} B\right|_{\mathrm{m}_{3}}\left(x_{1}, x_{2}, x_{3}>0\right)$ (cf. [10]). Now we have the following theorem.

Theorem 1.5 (Wang-Ziller [10]). Let $M=G / K$ be as above and $\operatorname{dim} M \geqq 3$. Then $g \in \mathcal{M}$ is Einstein if and only if

$$
\frac{\partial S}{\partial u}(g)=\frac{\partial S}{\partial v}(g)=0
$$

where $u=x_{2} / x_{1}, v=x_{3} / x_{1} \quad$ (cf. (1.4)).

§2. Kähler C-spaces

In this section we construct some examples of a Kähler C-space $M=G / K$ such that G is a compact connected simple Lie group and that the corresponding isotropy representation of K is decomposed into non-equivalent three irreducible components.

Let \mathfrak{g} be the Lie algebra of G and \mathfrak{t} a maximal abelian subalgebra of \mathfrak{g}. We denote by $\mathfrak{g}^{\mathbb{C}}$ and $\mathfrak{t}^{\mathbb{C}}$ the complexifications of \mathfrak{g} and \mathfrak{t} respectively. We identify an element of the root system Δ of $\mathfrak{g}^{\mathbb{C}}$ relative to the Cartan subalgebra $\mathfrak{t}^{\mathbb{C}}$ with an element of $\sqrt{-1} t$ by the duality defined by the Killing form $($,$) of \mathfrak{g}^{\mathbb{C}}$. Let $\Pi=\left\{\alpha_{1}, \cdots, \alpha_{\ell}\right\}$ be a fundamental system of Δ and $\left\{\Lambda_{1}, \cdots, \Lambda_{\ell}\right\}$ the fundamental weights of $\mathfrak{g}^{\mathbb{C}}$ corresponding to П; i.e.,

$$
\frac{2\left(\Lambda_{i}, \alpha_{j}\right)}{\left(\alpha_{j}, \alpha_{j}\right)}=\delta_{i j} \quad(1 \leqq i, j \leqq \ell)
$$

Let Π_{0} be a subset of Π and put

$$
\begin{equation*}
\Pi-\Pi_{0}=\left\{\alpha_{i_{1}}, \cdots, \alpha_{i_{r}}\right\} \quad\left(1 \leqq i_{1}<\cdots<i_{r} \leqq \ell\right) \tag{2.1}
\end{equation*}
$$

We put

$$
\left[\Pi_{0}\right]=\Delta \cap\left\{\Pi_{0}\right\}_{\mathbb{Z}}
$$

where $\left\{\Pi_{0}\right\}_{\mathbb{Z}}$ denotes the subgroup of $\sqrt{-1} t$ generated by Π_{0}. Consider the root space decomposition of $\mathfrak{g}^{\mathbb{C}}$ relative to $\mathfrak{t}^{\mathbb{C}}$:

$$
\mathfrak{g}^{\mathbb{C}}=\mathfrak{t}^{\mathbb{C}}+\sum_{\alpha \in \Delta} \mathfrak{g}_{\alpha}^{\mathbb{C}}
$$

We define a parabolic subalgebra \mathfrak{u} of $\mathfrak{g}^{\mathbb{C}}$ by

$$
\mathfrak{u}=\mathfrak{t}^{\mathbb{C}}+\sum_{\alpha \in\left[\Pi_{0}\right] \cup \Delta^{+}} \mathfrak{g}_{\alpha}^{\mathbb{C}}
$$

where Δ^{+}is the set of all positive roots relative to Π. Let $G^{\mathbb{C}}$ be a simply connected complex simple Lie group whose Lie algebra is $\mathfrak{g}^{\mathbb{C}}$ and U the parabolic subgroup of $G^{\mathbb{C}}$ generated by \mathfrak{u}. As is well known, the complex homogeneous manifold $M=G^{\mathbb{C}} / U$ is compact simply connected and G acts transitively on M. Note also that $K=G \cap U$ is a connected closed subgroup of G and $M=G / K$ as C^{∞}-manifold and M admits a G-invariant Kähler metric (cf. [4], [7]). Hence, M is a Kähler C-space.

We take a Weyl basis $E_{\alpha} \in \mathfrak{g}_{\alpha}^{\mathbb{C}}(\alpha \in \Delta)$ with

$$
\left[E_{\alpha}, E_{-\alpha}\right]=-\alpha \quad(\alpha \in \Delta)
$$

$$
\left[E_{\alpha}, E_{\beta}\right]= \begin{cases}N_{\alpha, \beta} E_{\alpha+\beta}, & \text { if } \alpha, \beta, \alpha+\beta \in \Delta \\ 0, & \text { if } \alpha, \beta \in \Delta, \alpha+\beta \notin \Delta\end{cases}
$$

where $0 \neq N_{\alpha, \beta}=N_{-\alpha,-\beta} \in \mathbb{R}(\alpha, \beta, \alpha+\beta \in \Delta)$ such that

$$
\mathfrak{g}=\mathfrak{t}+\sum_{\alpha \in \Delta}\left\{\mathbb{R}\left(E_{\alpha}+E_{-\alpha}\right)+\mathbb{R} \sqrt{-1}\left(E_{\alpha}-E_{-\alpha}\right)\right\} .
$$

Then the Lie algebra \mathfrak{k} of K is given by

$$
\mathfrak{k}=\mathfrak{t}+\sum_{\alpha \in\left[\Pi_{0}\right]}\left\{\mathbb{R}\left(E_{\alpha}+E_{-\alpha}\right)+\mathbb{R} \sqrt{-1}\left(E_{\alpha}-E_{-\alpha}\right)\right\} .
$$

For positive integers k_{1}, \cdots, k_{r}, we put

$$
\Delta\left(k_{1}, \cdots, k_{r}\right)=\left\{\sum_{j=1}^{\ell} m_{j} \alpha_{j} \in \Delta^{+} \mid m_{i_{1}}=k_{1}, \cdots, m_{i_{r}}=k_{r}\right\} .
$$

For $\Delta\left(k_{1}, \cdots, k_{r}\right) \neq \emptyset$, we define an $\operatorname{Ad}_{G}(K)$-invariant subspace $\mathfrak{m}\left(k_{1}, \cdots, k_{r}\right)$ of \mathfrak{g} by

$$
\mathfrak{m}\left(k_{1}, \cdots, k_{r}\right)=\sum_{\alpha \in \Delta\left(k_{1}, \cdots, k_{r}\right)}\left\{\mathbb{R}\left(E_{\alpha}+E_{-\alpha}\right)+\mathbb{R} \sqrt{-1}\left(E_{\alpha}-E_{-\alpha}\right)\right\} .
$$

Denote by B the negative of the Killing form of \mathfrak{g}. Let \mathfrak{m} be the orthogonal complement of \mathfrak{k} in \mathfrak{g} with respect to B. Then

$$
\mathfrak{m}=\sum_{k_{1}, \cdots, k_{r}} \mathfrak{m}\left(k_{1}, \cdots, k_{r}\right)
$$

is a B-orthogonal decomposition of \mathfrak{m}. If $r=1$, Omura [6] proved that each $\mathfrak{m}\left(k_{1}\right)$ is irreducible as $\operatorname{Ad}_{G}(K)$-module. We give a sufficient condition for the irreducibility of $\mathfrak{m}\left(k_{1}, \cdots, k_{r}\right)$ as $\operatorname{Ad}_{G}(K)$-module below (cf. [6]).

Let $\mathfrak{k}^{\mathbb{C}}$ and $\mathfrak{m}\left(k_{1}, \cdots, k_{r}\right)^{\mathbb{C}}$ be the complexifications of \mathfrak{k} and $\mathfrak{m}\left(k_{1}, \cdots, k_{r}\right)$ respectively. Then

$$
\begin{gathered}
\mathfrak{k}^{\mathbb{C}}=\mathfrak{t}^{\mathbb{C}}+\sum_{\alpha \in\left[\Pi_{0}\right]} \mathfrak{g}_{\alpha}^{\mathbb{C}} \\
\mathfrak{m}\left(k_{1}, \cdots, k_{r}\right)^{\mathbb{C}}=\mathfrak{m}^{+}\left(k_{1}, \cdots, k_{r}\right)+\mathfrak{m}^{-}\left(k_{1}, \cdots, k_{r}\right)
\end{gathered}
$$

where $\mathfrak{m}^{ \pm}\left(k_{1}, \cdots, k_{r}\right)=\sum_{\alpha \in \Delta\left(k_{1}, \cdots, k_{r}\right)} \mathfrak{g} \mathfrak{q}_{\mp \alpha}^{\mathbb{C}}$. Let \mathfrak{k}^{\prime} be the semi-simple part of the complex reductive Lie algebra $\mathfrak{k}^{\mathbb{C}}$; i.e,

$$
\mathfrak{k}^{\prime}=\left[\mathfrak{k}^{\mathbb{C}}, \mathfrak{k}^{\mathbb{C}}\right]=\mathfrak{h}^{\prime}+\sum_{\alpha \in\left[\Pi_{0}\right]} \mathfrak{g}_{\alpha}^{\mathbb{C}}
$$

where $\mathfrak{h}^{\prime}=\sum_{\alpha \in \Pi_{0}} \mathbb{C} \alpha$. Note that each $\mathfrak{m}^{ \pm}\left(k_{1}, \cdots, k_{r}\right)$ is an $\operatorname{ad}_{\mathfrak{g}^{\mathbb{C}}}\left(\mathfrak{k}^{\prime}\right)$ invariant subspace of $\mathfrak{g}^{\mathbb{C}}$. Now we have the following lemma.

Lemma 2.2. For each $\mathfrak{m}\left(k_{1}, \cdots, k_{r}\right)$, the following (1) (2) (3) are equivalent.
(1) $\left(\left.\operatorname{ad}_{\mathfrak{g}}\right|_{\mathfrak{k}}, \mathfrak{m}\left(k_{1}, \cdots, k_{r}\right)\right)$ is a real irreducible representation of \mathfrak{k}.
(2) $\left(\left.\operatorname{ad}_{\mathfrak{g}} \mathbb{C}\right|_{\mathfrak{k}^{\prime}}, \mathfrak{m}^{+}\left(k_{1}, \cdots, k_{r}\right)\right)$ is a complex irreducible representation of \mathfrak{k}^{\prime}.
(3) $\left(\left.\operatorname{ad}_{\mathfrak{g}} \subset\right|_{\mathfrak{k}^{\prime}}, \mathfrak{m}^{-}\left(k_{1}, \cdots, k_{r}\right)\right)$ is a complex irreducible representation of \mathfrak{k}^{\prime}.

Proof. We prove only the equivalence between (1) and (2). Since $\left(\left.\operatorname{ad}_{\mathfrak{g}} \mathbb{C}\right|_{\mathfrak{k}}, \mathfrak{m}^{+}\left(k_{1}, \cdots, k_{r}\right)\right)$ is equivalent to $\left(\left.\operatorname{ad}_{\mathfrak{g}}\right|_{\mathfrak{k}}, \mathfrak{m}\left(k_{1}, \cdots, k_{r}\right)\right)$ as real representation of \mathfrak{k}, we get $(1) \Rightarrow(2)$. Conversely if \mathfrak{m}_{1} is a non-trivial $\operatorname{ad}_{\mathfrak{g}}(\mathfrak{k})$-invariant subspace of $\mathfrak{m}\left(k_{1}, \cdots, k_{r}\right)$, then there exists a non-trivial subset Δ_{1} of Δ such that

$$
\mathfrak{m}_{1}=\sum_{\alpha \in \Delta_{1}}\left\{\mathbb{R}\left(E_{\alpha}+E_{-\alpha}\right)+\mathbb{R} \sqrt{-1}\left(E_{\alpha}-E_{-\alpha}\right)\right\}
$$

Since $\sum_{\alpha \in \Delta_{1}} \mathfrak{g}_{-\alpha}^{\mathbb{C}}$ is a non-trivial $\operatorname{ad}_{\mathfrak{g}^{\mathbb{C}}}\left(\mathfrak{k}^{\prime}\right)$-invariant subspace of $\mathfrak{m}^{+}\left(k_{1}, \cdots, k_{r}\right)$, hence we get $(2) \Rightarrow(1)$.
Q.E.D.

We can consider that an element of $\Delta\left(k_{1}, \cdots, k_{r}\right)$ is a weight of the representation $\left(\left.\operatorname{ad}_{\mathfrak{g}^{\mathbb{C}}}\right|_{\mathfrak{k}^{\prime}}, \mathfrak{m}^{-}\left(k_{1}, \cdots, k_{r}\right)\right)$ of \mathfrak{k}^{\prime} relative to \mathfrak{h}^{\prime}. Thus $\mathfrak{m}^{-}\left(k_{1}, \cdots, k_{r}\right)=\sum_{\alpha \in \Delta\left(k_{1}, \cdots, k_{r}\right)} \mathfrak{g}_{\alpha}^{\mathbb{C}}$ is the decomposition into the weight spaces.

Lemma 2.3. Suppose that there exists $\beta_{0} \in \Delta\left(k_{1}, \cdots, k_{r}\right)$ satisfying the following properties: (1) $\beta_{0}+\alpha_{i} \notin \Delta$ for any $\alpha_{i} \in \Pi_{0}$, (2) if α is an element of $\Delta\left(k_{1}, \cdots, k_{r}\right)$, either $\beta_{0}-\alpha \in \Delta$ or there exist $\beta_{1}, \beta_{2} \in\left[\Pi_{0}\right] \cap \Delta^{+}$such that $\beta_{0}-\alpha=\beta_{1}+\beta_{2}$ and $\beta_{0}-\beta_{1} \in \Delta$. Then $\mathfrak{m}\left(k_{1}, \cdots, k_{r}\right)$ is $\operatorname{Ad}_{G}(K)$-irreducible.

Proof. Since $E_{\beta_{0}}$ is primitive, the $\operatorname{ad}_{\mathfrak{g}} \mathbb{C}\left(\mathfrak{k}^{\prime}\right)$-submodule W of $\mathfrak{m}^{-}\left(k_{1}\right.$, $\left.\cdots, k_{r}\right)$ generated by $E_{\beta_{0}}$ is irreducible. For $\alpha \in \Delta\left(k_{1}, \cdots, k_{r}\right)$, if $\beta_{0}-\alpha \in$
$\Delta, E_{\alpha-\beta_{0}} \in \mathfrak{k}^{\mathbb{C}}$ and thus $\left[E_{\alpha-\beta_{0}}, E_{\beta_{0}}\right]=\lambda E_{\alpha}(0 \neq \lambda \in \mathbb{C})$. Hence $E_{\alpha} \in W$. If $\beta_{0}-\alpha \notin \Delta$, there are β_{1}, β_{2} such that $E_{-\beta_{1}}, E_{-\beta_{2}} \in \mathfrak{k}^{\mathbb{C}}$ and $\beta_{0}-\beta_{1} \in \Delta$, and thus $\left[E_{-\beta_{2}},\left[E_{-\beta_{1}}, E_{\beta_{0}}\right]\right]=\mu E_{\alpha}(0 \neq \mu \in \mathbb{C})$. Hence $E_{\alpha} \in W$. Thus $\mathfrak{m}\left(k_{1}, \cdots, k_{r}\right)$ is $\operatorname{Ad}_{G}(K)$-irreducible from Lemma 2.2.
Q.E.D.

Remark 2.4. Note that $\mathfrak{m}\left(k_{1}, \cdots, k_{r}\right)$ are non-equivalent each other and $\overline{\mathfrak{m}^{+}\left(k_{1}, \cdots, k_{r}\right)}=\mathfrak{m}^{-}\left(k_{1}, \cdots, k_{r}\right)$.

We put $\delta_{\mathrm{m}}=\frac{1}{2} \sum_{\alpha \in \Delta^{+}-\left[\Pi_{0}\right]} \alpha$. Then

$$
\begin{equation*}
\delta_{\mathrm{m}}=c_{i_{1}} \Lambda_{i_{1}}+\cdots+c_{i_{r}} \Lambda_{i_{r}} \tag{2.5}
\end{equation*}
$$

where $c_{i_{1}}, \cdots, c_{i_{r}}>0$ (cf. Borel-Hirzebruch [2]). Let $\tilde{\alpha}$ be the highest root of Δ and

$$
\widetilde{\alpha}=\sum_{i=1}^{\ell} m_{i} \alpha_{i} \quad\left(0 \leqq m_{i} \in \mathbb{Z}\right)
$$

Now we construct our Kähler C-spaces $M=G / K$. If we regard M as the complex manifold $G^{\mathbb{C}} / U, M$ is represented by the pair $\left(\Pi, \Pi_{0}\right)$ of the Dynkin diagram. Our Kähler C-space $M=G / K$ is represented by the pair $\left(\Pi, \Pi_{0}\right)$ such that either $\Pi-\Pi_{0}=\left\{\alpha_{p}\right\}$ where $m_{p}=3$ or $\Pi-\Pi_{0}=\left\{\alpha_{p}, \alpha_{q}\right\}$ where $m_{p}=m_{q}=1$. Next proposition can be easily checked by Lemma 2.3, Remark 2.4 and (2.5).

Proposition 2.6. Let G be a compact connected simple Lie group corresponding to the following Dynkin diagram Π and $G^{\mathbb{C}} / U$ the complex manifold corresponding to the following pair $\left(\Pi, \Pi_{0}\right)$. Put $K=G \cap U$. Then G / K is a Kähler C-space and the isotropy representation of G / K is decomposed into non-equivalent three irreducible components.
[I] $\quad\left(\Pi, \Pi_{0}\right):$

F4

G2

[II] $\quad\left(\Pi, \Pi_{0}\right):$

DI-(ii)

E6

where the vertices contained in $\Pi-\Pi_{0}$ are denoted by " \times ".

Moreover, in the case $[\mathrm{I}]$, the triple $(|\Delta(1)|,|\Delta(2)|,|\Delta(3)|)$ is
(1) $(18,9,2), \quad$ for G of type E_{6},
(2) $(30,15,4)$, for G of type $E_{7}-(\mathrm{i})$,
(3) $(30,15,2)$, for G of type E_{7}-(ii),
(4) $(54,27,2)$, for G of type E_{8}-(i),
(5) $(56,28,8), \quad$ for G of type E_{8}-(ii),
(6) $(12,6,2), \quad$ for G of type F_{4},
(7) $(2,1,2), \quad$ for G of type G_{2},
and, in the case $[\mathrm{II}]$, the quadruple $\left(|\Delta(1,0)|,|\Delta(0,1)|,|\Delta(1,1)|, \delta_{\mathrm{m}}\right)$ is
(1) $\left(\ell m, m n, \ell n, \frac{\ell+m}{2} \Lambda_{\ell}+\frac{m+n}{2} \Lambda_{\ell+m}\right)$,
for G of type $A_{\ell+m+n-1}$,
(2) $\quad\left(\ell-1, \ell-1, \frac{(\ell-1)(\ell-2)}{2}, \frac{\ell}{2} \Lambda_{\ell-1}+\frac{\ell}{2} \Lambda_{\ell}\right)$, for G of type D_{ℓ}-(i),
(3) $\left(\ell-1, \frac{(\ell-1)(\ell-2)}{2}, \ell-1, \frac{\ell}{2} \Lambda_{1}+(\ell-2) \Lambda_{\ell}\right)$, for G of type D_{ℓ}-(ii),
(4) $\left(\ell-1, \frac{(\ell-1)(\ell-2)}{2}, \ell-1, \frac{\ell}{2} \Lambda_{1}+(\ell-2) \Lambda_{\ell-1}\right)$, for G of type D_{ℓ}-(iii),
(5) $\left(8,8,8,4 \Lambda_{1}+4 \Lambda_{6}\right)$,
for G of type E_{6},
where $1 \leqq \ell, m, n \in \mathbb{Z}$ in the case of type $A_{\ell+m+n-1}$ and $4 \leqq \ell \in \mathbb{Z}$ in the case of type D_{ℓ}.

§3. G-invariant Einstein metrics

In this section we find all G-invariant Einstein metrics on the Kähler C-spaces of Proposition 2.6. We will use the same notation as in $\S 2$. The next theorem is well-known.

Theorem 3.1 (Borel-Hirzebruch [2], cf. [7]). Let $M=G / K$ be
the Kähler C-space in Proposition 2.6. We put

$$
g= \begin{cases}\left.B\right|_{\mathrm{m}(1)}+\left.2 B\right|_{\mathrm{m}(2)}+\left.3 B\right|_{\mathrm{m}(3)}, & \text { in the case }[\mathrm{I}] \\ \left.c_{p} B\right|_{\mathrm{m}(1,0)}+\left.c_{q} B\right|_{\mathrm{m}(0,1)}+\left.\left(c_{p}+c_{q}\right) B\right|_{\mathrm{m}(1,1)}, & \text { in the case }[\mathrm{II}],\end{cases}
$$

where $\delta_{\mathrm{m}}=c_{p} \Lambda_{p}+c_{q} \Lambda_{q}$ in the case [II]. Then g is a unique G-invariant' Einstein-Kähler metric on $M=G^{\mathbb{C}} / U$ up to homotheties, where we consider the natural complex structure on $G^{\mathbb{C}} / U$.

We obtain the following theorem by Theorem 1.5.
Theorem 3.2. Let $M=G / K$ be the Kähler C-space in Proposition 2.6. In the case [I], M has three G-invariant Einstein metrics up to homotheties. In the case [II], M has four G-invariant Einstein metrics g, up to homotheties, expressed explicitly in the form

$$
g=\left.x_{1} B\right|_{\mathrm{m}(1,0)}+\left.x_{2} B\right|_{\mathrm{m}(0,1)}+\left.x_{3} B\right|_{\mathrm{m}(1,1)}
$$

where $\left(x_{1}, x_{2}, x_{3}\right)$ is given as follows:
If G is of type $A_{\ell+m+n-1}$,
(1) $(\ell+m, m+n, \ell+2 m+n)$,
(2) $(\ell+m, m+n, \ell+n)$,
(3) $(\ell+m, 2 \ell+m+n, \ell+n)$,
(4) $(\ell+m+2 n, m+n, \ell+n)$.

If G is of type $D_{\ell^{-}}(\mathrm{i})$,
(1) $(1,1,2),(2)(\ell, \ell, 2 \ell-4)$,
(3) $(\ell, 3 \ell-4,2 \ell-4),(4)(3 \ell-4, \ell, 2 \ell-4)$.

If G is of type $D_{\ell^{\prime}}$-(ii) or $D_{\ell^{-}}$-(iii),
(1) $(\ell, 2 \ell-4,3 \ell-4),(2)(\ell, 2 \ell-4, \ell)$,
(3) $(1,2,1),(4)(3 \ell-4,2 \ell-4, \ell)$.

If G is of type E_{6},
$(1)(1,1,2),(2)(1,1,1),(3)(1,2,1),(4)(2,1,1)$.
Moreover, in each type, the case (1) is a Kähler metric on $G^{\mathbb{C}} / U$.
Proof. First we consider the case [I]. We put $g=\left.x_{1} B\right|_{m(1)}+$ $\left.x_{2} B\right|_{\mathrm{m}(2)}+\left.x_{3} B\right|_{\mathrm{m}(3)}\left(x_{1}, x_{2}, x_{3}>0\right)$. Then we get the following from (1.4).

$$
S(g)=\sum_{i} \frac{d_{i}}{x_{i}}-\frac{1}{4}\left\{C_{11}^{2}\left(\frac{x_{2}}{x_{1}{ }^{2}}+\frac{2}{x_{2}}\right)+2 C_{12}^{3}\left(\frac{x_{3}}{x_{1} x_{2}}+\frac{x_{2}}{x_{1} x_{3}}+\frac{x_{1}}{x_{2} x_{3}}\right)\right\}
$$

where $d_{i}=|\Delta(i)| \quad(i=1,2,3)$. Note that $d_{i}(i=1,2,3)$ are known by Proposition 2.6. We put $u=x_{2} / x_{1}, v=x_{3} / x_{1}$ and $N=d_{1}+d_{2}+d_{3}=$ $\operatorname{dim}_{\mathbb{C}} M$. By Theorem 1.5, g is Einstein if and only if

$$
\begin{gather*}
d_{1} u v-\left(d_{2}-\frac{1}{2} C_{11}^{2}\right)\left(\frac{N}{d_{2}}-1\right) v+d_{3} u-\frac{1}{4} C_{11}^{2}\left(\frac{N}{d_{2}}+1\right) u^{2} v \tag{3.3}\\
+\frac{1}{2} C_{12}^{3}\left(\frac{N}{d_{2}}-1\right) v^{2}-\frac{1}{2} C_{12}^{3}\left(\frac{N}{d_{2}}+1\right) u^{2}+\frac{1}{2} C_{12}^{3}\left(\frac{N}{d_{2}}-1\right)=0 \\
d_{1} u v+\left(d_{2}-\frac{1}{2} C_{11}^{2}\right) v-d_{3}\left(\frac{N}{d_{3}}-1\right) u-\frac{1}{4} C_{11}^{2} u^{2} v \tag{3.4}\\
-\frac{1}{2} C_{12}^{3}\left(\frac{N}{d_{3}}+1\right) v^{2}+\frac{1}{2} C_{12}^{3}\left(\frac{N}{d_{3}}-1\right) u^{2}+\frac{1}{2} C_{12}^{3}\left(\frac{N}{d_{3}}-1\right)=0
\end{gather*}
$$

Since $u=2, v=3$ is a common root of (3.3) and (3.4) by Theorem 3.1, we get C_{11}^{2} and C_{12}^{3}. From (3.3) and (3.4), we see that

$$
\begin{equation*}
v=\frac{c\left(u-u_{1}\right)\left(u-u_{2}\right)}{\left(u-u_{3}\right)\left(u-u_{4}\right)} \tag{3.5}
\end{equation*}
$$

where $c>0, u_{1}, u_{2}, u_{3}, u_{4} \in \mathbb{R}$. Since $u>0, v>0$, we get the domain I of u from (3.5). Substitute (3.5) to (3.3) and multiply it by a constant multiple of $\left(u-u_{3}\right)^{2}\left(u-u_{4}\right)^{2} /(u-2)$. Then we have an equation $f(u)=$ 0 , where $f(u)$ is a polynomial of u with an integral coefficient. We have a one-to-one correspondence between the set $\{u=2\} \cup\{u \in I \mid f(u)=0\}$ and the set of G-invariant Einstein metrics on M up to homotheties. Consider the case of type E_{6}. In this case, we see that

$$
C_{11}^{2}=6, C_{12}^{3}=3 / 2
$$

and

$$
u_{1}=-2, u_{2}=10 / 11, u_{3}=11 / 7+\sqrt{249} / 21, u_{4}=11 / 7-\sqrt{249} / 21
$$

Hence

$$
I=\left(0, u_{4}\right) \cup\left(u_{2}, u_{3}\right)
$$

and

$$
f(u)=532 u^{5}-3800 u^{4}+8809 u^{3}-9398 u^{2}-4860 u-1000 .
$$

Now we obtain the following result from Strum's theorem.

$$
\left|\left\{u \in\left(0, u_{4}\right) \mid f(u)=0\right\}\right|=1 \quad \text { and } \quad\left|\left\{u \in\left(u_{2}, u_{3}\right) \mid f(u)=0\right\}\right|=1
$$

Therefore M has three G-invariant Einstein metrics up to homotheties. Results for other types in the case [I] are obtained by the same method.

Next we consider the case [II]. We put $g=\left.x_{1} B\right|_{\mathrm{m}(1,0)}+\left.x_{2} B\right|_{\mathrm{m}(0,1)}+$ $\left.x_{3} B\right|_{m(1,1)}\left(x_{1}, x_{2}, x_{3}>0\right)$. Then by (1.4)

$$
S(g)=\sum_{i} \frac{d_{i}}{x_{i}}-\frac{1}{2} C_{12}^{3}\left(\frac{x_{3}}{x_{1} x_{2}}+\frac{x_{2}}{x_{1} x_{3}}+\frac{x_{1}}{x_{2} x_{3}}\right)
$$

where $d_{1}=|\Delta(1,0)|, d_{2}=|\Delta(0,1)|, d_{3}=|\Delta(1,1)|$. By Theorem 1.5, g is Einstein if and only if

$$
\begin{gather*}
C_{12}^{3}\left(d_{1}+d_{3}\right) v^{2}+2 d_{2}\left(d_{1} u-d_{1}-d_{3}\right) v \tag{3.6}\\
-C_{12}^{3}\left(d_{1}+2 d_{2}+d_{3}\right) u^{2}+2 d_{2} d_{3} u+C_{12}^{3}\left(d_{1}+d_{3}\right)=0 \\
-C_{12}^{3}\left(d_{1}+d_{2}+2 d_{3}\right) v^{2}+2 d_{3}\left(d_{1} u+d_{2}\right) v \\
+C_{12}^{3}\left(d_{1}+d_{2}\right) u^{2}-2 d_{3}\left(d_{1}+d_{2}\right) u+C_{12}^{3}\left(d_{1}+d_{2}\right)=0
\end{gather*}
$$

where $u=x_{2} / x_{1}, v=x_{3} / x_{1}$. We put $\delta_{\mathrm{m}}=c_{p} \Lambda_{p}+c_{q} \Lambda_{q}$. Note that d_{i} $(i=1,2,3), c_{p}$ and c_{q} are known by Proposition 2.6. Since $u=c_{q} / c_{p}$, $v=\left(c_{p}+c_{q}\right) / c_{p}$ is a common root of (3.6) and (3.7) by Theorem 3.1, we get C_{12}^{3}. Therefore we can get all positive common roots (u, v) of (3.6) and (3.7) for each type of the case [II] by the same method as in the case [I].
Q.E.D.

§4. G-invariant complex structures

Let $M=G / K$ be the Kähler C-space in Proposition 2.6. We have a one-to-one correspondence between the set \mathcal{J} of G-invariant complex structures J on M and the set \mathcal{P} of parabolic subgroups P of $G^{\mathbb{C}}$ with $G \cap P=K$. If a G-invariant Einstein metric g on M is Kähler for a complex structure J on M, J is G-invariant. Suppose that $J \in \mathcal{J}$ corresponds to $P \in \mathcal{P}$. Then (M, J) and $G^{\mathbb{C}} / P$ are biholomorphic, where we consider the natural complex structure on $G^{\mathbb{C}} / P$. Thus if we regard (M, J) as $G^{\mathbb{C}} / P, g$ is the form of Theorem 3.1 up to homotheties. Hence if a G-invariant Einstein metric is Kähler, it is a known metric.

On the other hand we obtain the following results from Nishiyama [5]. There is a one-to-one correspondence between \mathcal{J} and the set \mathcal{W}^{\prime} of elements σ of the Weyl group \mathcal{W} with $\sigma\left(\Pi_{0}\right) \subset \Pi$. Suppose that $J \in \mathcal{J}$
corresponds to $\sigma \in \mathcal{W}^{\prime}$. Then let U_{σ} be a parabolic subgroup of $G^{\mathbb{C}}$ whose Lie algebra u_{σ} is

$$
\mathfrak{u}_{\sigma}=\mathfrak{t}^{\mathbb{C}}+\sum_{\alpha \in\left[\sigma\left(\Pi_{0}\right)\right] \cup \Delta^{+}} \mathfrak{g}_{\alpha}^{\mathbb{C}} .
$$

And let f be the diffeomorphism from M to $G^{\mathbb{C}} / U_{\sigma}$ induced from the automorphism of $\mathfrak{g}^{\mathbb{C}}$ defined by σ. Then f is a biholomorphic map from (M, J) to $G^{\mathbb{C}} / U_{\sigma}$. Moreover, $K_{\sigma}=G \cap U_{\sigma}$ is a connected closed subgroup of $G, M=G / K_{\sigma}$ as C^{∞}-manifold, and f defines a G-equivariant isometry from $\left(G / K,\left.B\right|_{\mathrm{m}}\right)$ to $\left(G / K_{\sigma},\left.B\right|_{\mathrm{m}^{\sigma}}\right)$, where \mathfrak{m}^{σ}, $\Delta^{\sigma}\left(k_{1}, \cdots, k_{r}\right)$ and $\mathfrak{m}^{\sigma}\left(k_{1}, \cdots, k_{r}\right)$ for G / K_{σ} are corresponding to that of $\mathfrak{m}, \Delta\left(k_{1}, \cdots, k_{r}\right)$ and $\mathfrak{m}\left(k_{1}, \cdots, k_{r}\right)$ for G / K. G-invariant complex structures J and J^{\prime} on M are said to be equivalent if the complex manifolds (M, J) and $\left(M, J^{\prime}\right)$ are biholomorphic. Let J, J^{\prime} be G-invariant complex structures on M and let σ, σ^{\prime} be the elements of \mathcal{W}^{\prime} corresponding to J, J^{\prime} respectively. Then J and J^{\prime} are equivalent if and only if there exists a graph automorphism γ of the Dynkin diagram Π such that $\gamma\left(\sigma\left(\Pi_{0}\right)\right)=\sigma^{\prime}\left(\Pi_{0}\right)$. Moreover, in this case the pairs $\left(\Pi, \sigma\left(\Pi_{0}\right)\right)$, ($\Pi, \sigma^{\prime}\left(\Pi_{0}\right)$) of the Dynkin diagrams are called equivalent.

Remark 4.1. Let $M=G / K$ be the Kähler C-space of Proposition 2.6. We put

$$
\begin{aligned}
& \Delta_{1}= \begin{cases}\Delta(1), & \text { if } M \text { is in the case [I] }, \\
\Delta(1,0), & \text { if } M \text { is in the case [II], }\end{cases} \\
& \Delta_{2}= \begin{cases}\Delta(2), & \text { if } M \text { is in the case [I], } \\
\Delta(0,1), & \text { if } M \text { is in the case [II], }\end{cases} \\
& \Delta_{3}= \begin{cases}\Delta(3), & \text { if } M \text { is in the case [I], } \\
\Delta(1,1), & \text { if } M \text { is in the case [II], }\end{cases}
\end{aligned}
$$

and we define $\mathfrak{m}_{1}, \mathfrak{m}_{2}, \mathfrak{m}_{3}$ similarly. Then we get the followings.
(1) Let σ be an element of \mathcal{W} with $\sigma\left(\Pi_{0}\right) \subset \Pi$, and f the above G equivariant diffeomorphism from G / K to G / K_{σ} induced by σ. Suppose that g_{1} is a G-invariant Riemannian metric on G / K_{σ}. We put

$$
g_{1}=\left.x_{1} B\right|_{\mathrm{m}_{1}^{\sigma}}+\left.x_{2} B\right|_{\mathrm{m}_{2}^{\sigma}}+\left.x_{3} B\right|_{\mathrm{m}_{3}^{\sigma}} \quad\left(x_{1}, x_{2}, x_{3}>0\right) .
$$

Then

$$
f^{*} g_{1}=\left.x_{\tau(1)} B\right|_{\mathrm{m}_{1}}+\left.x_{\tau(2)} B\right|_{\mathrm{m}_{2}}+\left.x_{\tau(3)} B\right|_{\mathrm{m}_{3}}
$$

where $\tau \in \mathfrak{S}_{3}$ such that $\sigma\left(\Delta_{i}\right)= \pm \Delta_{\tau(i)}^{\sigma}(i=1,2,3)$.
(2) Let $\left\{J_{1}, \cdots, J_{n}\right\}$ be the set of all G-invariant complex structures on
M up to equivalence, and $\sigma_{1}, \cdots, \sigma_{n}$ the elements of \mathcal{W}^{\prime} corresponding to J_{1}, \cdots, J_{n} respectively. Suppose that g_{1}, \cdots, g_{n} are the G-invariant Einstein-Kähler metrics on $G / K_{\sigma_{1}}, \cdots, G / K_{\sigma_{n}}$, respectively. For each integer $k(1 \leqq k \leqq n)$, we put

$$
g_{k}=\left.x_{1}^{k} B\right|_{\mathrm{m}_{1}^{\sigma_{k}}}+\left.x_{2}^{k} B\right|_{\mathrm{m}_{2}^{\sigma_{k}}}+\left.x_{3}^{k} B\right|_{\mathrm{m}_{3}^{\sigma_{k}}} \quad\left(x_{1}^{k}, x_{2}^{k}, x_{3}^{k}>0\right) .
$$

If g is a G-invariant Einstein-Kähler metric on M, there exist an integer $k(1 \leqq k \leqq n)$ and $\tau \in \mathfrak{S}_{3}$ such that

$$
g=\left.x_{\tau(1)}^{k} B\right|_{\mathrm{m}_{1}}+\left.x_{\tau(2)}^{k} B\right|_{\mathrm{m}_{2}}+\left.x_{\tau(3)}^{k} B\right|_{\mathrm{m}_{3}}
$$

up to homotheties.
Remark 4.2. Let $M=G / K$ be the Kähler C-space in Proposition $2.6-[\mathrm{I}]$. Then M has one and only one G-invariant complex structure up to equivalent (cf. [2], [5]). Let $\left.B\right|_{\mathrm{m}(1)}+\left.u B\right|_{\mathrm{m}(2)}+\left.v B\right|_{\mathrm{m}(3)}$ be a G invariant Einstein metric on M found newly in Theorem 3.2. Then u and v are irrational. Therefore they are not Kähler for any complex structure on M by Theorem 3.1 and Remark 4.1-(2).

When $M=G / K$ is a Kähler C-space of Proposition 2.6-[II], we construct the root system Δ in a subspace of the Euclidean space \mathbb{R}^{N} of an appropriate dimension N as usual. Let $\left\{\varepsilon_{1}, \cdots, \varepsilon_{N}\right\}$ be the standard basis of \mathbb{R}^{N}.

Example 4.3. Let $M=G / K$ be the Kähler C-space of type $A_{\ell+m+n-1}$ of Proposition 2.6-[II]. Then $\alpha_{i}=\varepsilon_{i}-\varepsilon_{i+1}(1 \leqq i \leqq \ell+$ $m+n-1$). When we regard M as $G^{\mathbb{C}} / U, M$ is represented by the following pair (Π, Π_{0}) of the Dynkin diagram. $\left(\Pi, \Pi_{0}\right):$

The pairs of the Dynkin diagrams corresponding to G-invariant complex structures on M up to equivalent are as follows $\left(\Pi, \sigma\left(\Pi_{0}\right)\right)$:

where $\sigma \in \mathcal{W}$ is defined by a permutation

$$
\left(\begin{array}{cccccc}
\varepsilon_{1} & \ldots & \varepsilon_{\ell+m} & \varepsilon_{\ell+m+1} & \ldots & \varepsilon_{\ell+m+n} \\
\varepsilon_{n+1} & \cdots & \varepsilon_{\ell+m+n} & \varepsilon_{1} & \ldots & \varepsilon_{n}
\end{array}\right) .
$$

$\left(\Pi, \sigma^{\prime}\left(\Pi_{0}\right)\right)$:

where $\sigma^{\prime} \in \mathcal{W}$ is defined by a permutation

$$
\left(\begin{array}{cccccc}
\varepsilon_{1} & \ldots & \varepsilon_{\ell} & \varepsilon_{\ell+1} & \ldots & \varepsilon_{\ell+m+n} \\
\varepsilon_{m+n+1} & \ldots & \varepsilon_{\ell+m+n} & \varepsilon_{1} & \ldots & \varepsilon_{m+n}
\end{array}\right)
$$

Note that if ℓ, m and n are all distinct, the above three pairs are not equivalent each other. Note also that if ℓ, m and n are not all distinct, there exist the equivalent pairs. By Theorem 3.2,

$$
\left.(n+\ell) B\right|_{\mathrm{m}^{\sigma}(1,0)}+\left.(\ell+m) B\right|_{\mathrm{m}^{\sigma}(0,1)}+\left.(n+2 \ell+m) B\right|_{\mathrm{m}^{\sigma}(1,1)}
$$

is an Einstein-Kähler metric on $G^{\mathbb{C}} / U$. Moreover
$\sigma(\Delta(1,0))=\Delta^{\sigma}(0,1), \sigma(\Delta(0,1))=-\Delta^{\sigma}(1,1), \sigma(\Delta(1,1))=-\Delta^{\sigma}(1,0)$.
Hence the metric (3) of Theorem 3.2 is Kähler for the G-invariant complex structure corresponding to σ by Remark 4.1-(1). The metric (4) of Theorem 3.2 is Kähler for the G-invatiant complex structure corresponding to σ^{\prime} similarly. On the other hand, the metric (2) of Theorem 3.2 is not Kähler for any complex structure on M from Theorem 3.2 and Remark 4.1-(2). If $\ell=m=n$, the metric (2) of Theorem 3.2 is the standard metric of G / K, in the sence that it comes from the negative of Killing form.

Example 4.4. Let $M=G / K$ be the Kähler C-space of type $D_{\boldsymbol{\ell}}$ of Proposition 2.6-[II]. Then $\alpha_{i}=\varepsilon_{i}-\varepsilon_{i+1}(1 \leqq i \leqq \ell-1), \alpha_{\ell}=$ $\varepsilon_{\ell-1}+\varepsilon_{\ell}$. Since the Kähler C-spaces defined by the pairs (i), (ii) and (iii) of Proposition 2.6-[II] are isomorphic as G-manifold each other, we regard $G^{\mathbb{C}} / U$ as (i), i.e, $\left(\Pi, \Pi_{0}\right)$:

The pairs of the Dynkin diagrams corresponding to G-invariant complex structures on M up to equivalent are as follows:
$\left(\Pi, \sigma\left(\Pi_{0}\right)\right)$:

where $\sigma \in \mathcal{W}$ is defined by a permutation

$$
\left(\begin{array}{cccc}
\varepsilon_{1} & \ldots & \varepsilon_{\ell-1} & \varepsilon_{\ell} \\
\varepsilon_{2} & \ldots & \varepsilon_{\ell} & \varepsilon_{1}
\end{array}\right)
$$

Then

$$
\sigma(\Delta(1,0))=-\Delta^{\sigma}(1,0), \sigma(\Delta(0,1))=\Delta^{\sigma}(1,1), \sigma(\Delta(1,1))=\Delta^{\sigma}(0,1)
$$

Hence the metric (3) of Theorem 3.2-(i) is Kähler for the G-invariant complex structure corresponding to $\sigma \in \mathcal{W}$ by Theorem 3.2-(ii) and Remark 4.1-(1). We define $\sigma^{\prime} \in \mathcal{W}$ by a permutation

$$
\begin{gathered}
\left(\begin{array}{cccc}
\varepsilon_{1} & \cdots & \varepsilon_{\ell-1} & \varepsilon_{\ell} \\
-\varepsilon_{\ell} & \cdots & -\varepsilon_{2} & \varepsilon_{1}
\end{array}\right) \quad \text { if } \ell \text { is odd } \\
\left(\begin{array}{ccccc}
\varepsilon_{1} & \varepsilon_{2} & \cdots & \varepsilon_{\ell-1} & \varepsilon_{\ell} \\
\varepsilon_{\ell} & -\varepsilon_{\ell-1} & \cdots & -\varepsilon_{2} & \varepsilon_{1}
\end{array}\right) \quad \text { if } \ell \text { is even. }
\end{gathered}
$$

Then if ℓ is odd, the pair $\left(\Pi, \sigma^{\prime}\left(\Pi_{0}\right)\right)$ of the Dynkin diagram is the type (ii) of Proposition 2.6. And if ℓ is even, it is the type (iii) of Proposition 2.6. Moreover

$$
\begin{gathered}
\sigma^{\prime}(\Delta(1,0))=-\Delta^{\sigma^{\prime}}(1,1), \quad \sigma^{\prime}(\Delta(0,1))=\Delta^{\sigma^{\prime}}(1,0) \\
\sigma^{\prime}(\Delta(1,1))=-\Delta^{\sigma^{\prime}}(0,1)
\end{gathered}
$$

The metric (4) of Theorem 3.2-(i) is Kähler for the complex structure corresponding to $\sigma^{\prime} \in \mathcal{W}$ by Theorem 3.2-(ii),(iii) and Remark 4.1-(1). On the other hand the metric (2) of Theorem 3.2-(i) is not Kähler for any complex structure on M by Theorem 3.2 and Remark 4.1-(2).

Example 4.5. Let $M=G / K$ be the Kähler C-space of type E_{6} of Proposition 2.6-[II]. Then M has one and only one G-invariant complex structure up to equivalent (cf. [5]). The metric (2) of Theorem 3.2 is not Kähler for any complex structure on M by Theorem 3.2 and Remark 4.1-(2). But it is the standard metric of G / K, in the sence that it comes
from the negative of Killing form. Now we define automorphisms σ, σ^{\prime} of Δ by the following:

$$
\begin{gathered}
\sigma\left(\alpha_{1}\right)=\alpha_{6}, \sigma\left(\alpha_{2}\right)=\alpha_{3}, \sigma\left(\alpha_{3}\right)=\alpha_{5}, \sigma\left(\alpha_{4}\right)=\alpha_{4}, \sigma\left(\alpha_{5}\right)=\alpha_{2} \\
\sigma\left(\alpha_{6}\right)=-\left(\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+3 \alpha_{4}+2 \alpha_{5}+\alpha_{6}\right) \\
\sigma^{\prime}\left(\alpha_{1}\right)=-\left(\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+3 \alpha_{4}+2 \alpha_{5}+\alpha_{6}\right) \\
\sigma^{\prime}\left(\alpha_{2}\right)=\alpha_{5}, \sigma^{\prime}\left(\alpha_{3}\right)=\alpha_{2}, \sigma^{\prime}\left(\alpha_{4}\right)=\alpha_{4}, \sigma^{\prime}\left(\alpha_{5}\right)=\alpha_{3}, \sigma^{\prime}\left(\alpha_{6}\right)=\alpha_{1} .
\end{gathered}
$$

Then

$$
\begin{gathered}
\sigma(\Delta(1,0))=\Delta(0,1), \quad \sigma(\Delta(0,1))=-\Delta(1,1) \\
\sigma(\Delta(1,1))=-\Delta(1,0)
\end{gathered}
$$

and

$$
\begin{gathered}
\sigma^{\prime}(\Delta(1,0))=-\Delta(1,1), \quad \sigma^{\prime}(\Delta(0,1))=\Delta(1,0) \\
\sigma^{\prime}(\Delta(1,1))=-\Delta(0,1)
\end{gathered}
$$

We define parabolic subalgebras $\mathfrak{p}, \mathfrak{p}^{\prime}$ of $\mathfrak{g}^{\mathbb{C}}$ by the followings:

$$
\mathfrak{p}=\mathfrak{t}^{\mathbb{C}}+\sum_{\alpha \in\left[\Pi_{0}\right] \cup[\sigma(\Pi)]^{+}} \mathfrak{g}_{\alpha}^{\mathbb{C}}
$$

and

$$
\mathfrak{p}^{\prime}=\mathfrak{t}^{\mathbb{C}}+\sum_{\alpha \in\left[\Pi \Pi_{0}\right] \cup\left[\sigma^{\prime}(\Pi)\right]^{+}} \mathfrak{g}_{\alpha}^{\mathbb{C}}
$$

where $[\sigma(\Pi)]^{+}$and $\left[\sigma^{\prime}(\Pi)\right]^{+}$are the sets of all positive roots relative to $\sigma(\Pi)$ and $\sigma^{\prime}(\Pi)$ respectively. Let P, P^{\prime} be the parabolic subgroups of $G^{\mathbb{C}}$ corresponding to $\mathfrak{p}, \mathfrak{p}^{\prime}$ respectively, and let J, J_{σ} and $J_{\sigma^{\prime}}$ be the G-invariant complex structures on M corresponding to the natural complex structures on $G^{\mathbb{C}} / U, G^{\mathbb{C}} / P$ and $G^{\mathbb{C}} / P^{\prime}$ respectively (cf. [5]). Let f and f^{\prime} be the G-equivariant diffeomorphisms on M defined by σ and σ^{\prime} respectively. Then f and f^{\prime} are biholomorphic maps from (M, J) to $\left(M, J_{\sigma}\right)$ and $\left(M, J_{\sigma^{\prime}}\right)$ respectively. On the other hand, the pairs $\left(\Pi, \Pi_{0}\right),\left(\sigma(\Pi), \Pi_{0}\right)$ and $\left(\sigma^{\prime}(\Pi), \Pi_{0}\right)$ of the Dynkin diagrams are all the same. Hence the metrics (3) and (4) of Theorem 3.2 are Kähler metrics on (M, J_{σ}) and ($M, J_{\sigma^{\prime}}$) respectively by Theorem 3.2 (cf. Remark 4.1(1)).

From above, we get our Main Theorem.

References

[1] A. L. Besse, "Einstein Manifolds", Springer Verlag, Berlin, 1987.
[2] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, Amer. J. Math., 80 (1958), 458-538.
[3] N. Bourbaki, "Groupes et algèbres de Lie, Chap. 4-6", Hermann, Paris, 1968.
[4] S. Murakami, "Compact complex homogeneous manifolds and induced representations", Lecture Notes, Inst. Math. Nat. Tsing Hua Univ., 1985.
[5] M. Nishiyama, Classification of invariant complex structures on irreducible compact simply connected coset spaces, Osaka J. Math., 21 (1984), 39-58.
[6] I. Omura, On Einstein metrics of certain homogeneous spaces, master thesis, Osaka Univ. (1987), in Japanese.
[7] M. Takeuchi, Homogeneous Kähler submanifolds in complex projective spaces, Japan. J. Math., 4 (1977), 171-219.
[8] M. Wang, Some examples of homogeneous Einstein manifolds in dimension seven, Duke Math. J., 49 (1982), 23-28.
[9] M. Wang and W. Ziller, On normal homogeneous Einstein manifolds, Ann. Sc. Ec. Norm. Sup., 18 (1985), 563-633.
[10] - Existence and non-existence of homogeneous Einstein metrics, Invent. Math., 84 (1986), 171-194.

Autonomous Robot Systems Laboratory
NTT Human Interface Laboratories
Yokosuka, Kanagawa 238-03, Japan

