Advanced Studies in Pure Mathematics 18-I, 1990 Recent Topics in Differential and Analytic Geometry pp. 283-301

Harmonic Functions with Growth Conditions on a Manifold of Asymptotically Nonnegative Curvature II

Atsushi Kasue

§0. Introduction

According to a theorem due to Greene-Wu [13], a complete connected noncompact Riemannian manifold M abounds harmonic functions so that M can be imbedded properly into some Euclidean space by them. However various problems on harmonic functions on M with specific conditions (e.g., boundedness, positivity, L^p integrability, etc.) arise in connection with the geometry of M and in fact they have been investigated by many authors (cf. e.g., [11: Section 11], [23], [29: Section 4,6.4 and the references therein). In the previous paper [21], we have discussed bounded or positive harmonic functions on a manifold of asymptotically nonnegative curvature (which will be defined later), and extended all of the results by Li-Tam [24:25] to such manifolds. The purpose of the present paper is to study harmonic functions with finite growth on a manifold of asymptotically nonnegative curvature and then to verify the results stated in [21] without proofs. To state the main results of the paper, we need some definitions. For a harmonic function h on a complete connected noncompact Riemannian manifold M, we denote by $m_x(h,t)$ the maximum of |h| on the metric sphere $S_t(x)$ around a point x with radius t. In this note, h is said to be of finite growth, if lim sup $m_x(h,t)/t^p$ is finite for some constant p > 0. After Abresch

[1], we call M a manifold of asymptotically nonnegative curvature, if the sectional curvature K_M of M satisfies:

(H.1)
$$K_M \ge -K \circ r,$$

where r denotes the distance to a fixed point, say o, of M and k(t) is a nonnegative, monotone nonincreasing continuous function on $[0,\infty)$ such that the integral $\int_{0}^{\infty} tk(t)dt$ is finite. In [19], we have constructed

Received August 1, 1988.

a metric space $M(\infty)$ associated with a manifold M of asymptotically nonnegative curvature. Let us here explain it briefly (see [19] for details). We say two rays σ and γ of M equivalent if dis_M($\sigma(t), \gamma(t)$)/t, goes to zero as $t \to \infty$. Define a distance δ_{∞} on the equivalence classes by $\delta_\infty([\sigma],[\gamma]) := \lim_{t \to \infty} d_t(\sigma \cap S_t(o), \gamma \cap S_t(o))/t$, where d_t stands for the inner (or intrinsic) distance on $S_t(o)$ induced from the distance $dis_M(,)$ on M. Then we have a metric space $M(\infty)$ of the equivalence classes of rays with distance δ_{∞} which is independent of the choice of the fixed point o and to which a family of scaled metric spheres $\{\frac{1}{t}S_t(o)\}$ converges with respect to the Hausdorff distance as t goes to infinity. We note that the complement $M - B_R(o)$ of a metric ball $B_R(o)$ centered at o with large radius R is homeomorphic to $S_R(o) \times (R, \infty)$. For simplicity, we call a connected component of $M - B_R(o)$ (for large R) an end δ of M. We write $M_{\delta}(\infty)$ for the connected component of $M(\infty)$ corresponding to δ , so that $\{\frac{1}{t}, S_t(o) \cap \delta\}$ converges to $M_{\delta}(\infty)$ with respect to the Hausdorff distance as $t \to \infty$, and then $M_{\delta}(\infty)$ turns out to be a compact inner metric space. Since $\operatorname{Vol}_{m-1}(S_t(o) \cap \delta)/t^{m-1}$ $(m := \dim M)$ tends to a nonnegative constant as $t \to \infty$, let us denote the limit by Vol $(M_{\delta}(\infty))$.

In Euclidean space \mathbb{R}^m , the harmonic functions of finite growth (harmonic polynomials) form an important subclass which is closely connected to the eigenfunctions of the unit sphere $S^{m-1}(1) (= \mathbb{R}^m(\infty))$. Moreover if we equip \mathbb{R}^m with a complete metric g which is written in the polar coordinates (r, θ) as $g = dr^2 + r^{2\alpha} d\theta^2$ ($0 \le \alpha < 1$) for large r, then (\mathbb{R}^m, g) admits no nonconstant harmonic functions of finite growth. In this case, $(\mathbb{R}^m, g)(\infty)$ consists of only one point. We are interested in relationships (if any) between the space of harmonic functions of finite growth on a manifold M of asymptotically nonnegative curvature and the geometry of $M(\infty)$. At this stage, we have rather satisfactory results for the case of dim M = 2 and for the case that the sectional curvature of M decays rapidly and the metric balls of M have maximal volume growth (see [3], [4] and the references therein), but for cases without such conditions, little is known. In this paper, we shall prove the following

Theorem A. Let M be a manifold of asymptotically nonnegative curvature. Suppose that M has one end, i.e., $M(\infty)$ is connected. Then: (i) For a nonconstant harmonic function h on M, one has

$$\liminf_{t\to\infty} \frac{\log m(h,t)}{\log t} \geq \log\left[\frac{(\exp c(m)\operatorname{diam}(M(\infty))+1}{(\exp c(m)\operatorname{diam}(M(\infty))-1}\right] > 0,$$

where c(m) is a positive constant depending only on $m := \dim M$. In

particular, M has no nonconstant harmonic functions of finite growth if $M(\infty)$ consists of only one point.

(ii) Suppose that m = 2 and $\operatorname{diam}(M(\infty)) > 0$. Then for a nonconstant harmonic function h of finite growth, $\log m(h,t)/\log t$ converges to a constant, say $\operatorname{ord}(h)$, as $t \to \infty$, and $\operatorname{ord}(h)$ is given by $\operatorname{ord}(h) = n\pi/\operatorname{diam}(M(\infty))$ for some positive integer n. Moreover the dimension of the space of harmonic functions h with $\operatorname{ord}(h) \leq n\pi/\operatorname{diam}(M(\infty))$ is equal to 2n + 1.

It is conjectual that for a manifold of asymptotically nonnegative curvature, the space \mathcal{H}_p of harmonic functions h with $\limsup_{t\to\infty} m(h,t)/t^p$ $< +\infty$ would be of finite dimension for any p > 0. In Section 3, we shall show a result related to this question. We remark that Kazdan [23] shows an example of a complete, noncompact Riemannian manifold such that it possesses no nonconstant positive harmonic functions, but the dimension of \mathcal{H}_p is infinite for any p > 0. The sectional curvature of his example behaves like $-1/r^2 \log r$ for large r.

In case of a complete, connected noncompact Riemannian manifold M with nonnegative Ricci curvature, a theorem due to Cheng [8] says that for a harmonic function h on M, any point x of M, and every t > 0, $|dh|(x) \leq c(m) m_x(h,t)/t$, where c(m) is a constant depending only on $m = \dim M$, and hence h must be constant if h is of sublinear growth, i.e., $\lim_{t\to\infty} \inf m(h,t)/t = 0$ (see also [29: Section 6.4]). Moreover the Cheeger-Gromoll splitting theorem [6] asserts that M as above contains a distance minimizing geodesic $\sigma : \mathbf{R} \to M$ (which is called a line of M) if and only if M splits isometrically into $\mathbf{R} \times M'$. The latter condition is obviously equivalent to saying that M admits a nonconstant totally geodesic function (i.e., a function of vanishing second derivatives). Motivated by these results, we are led to ask whether a nonconstant harmonic function h of linear growth (i.e., $\limsup m(h,t)/t < +\infty$) on

such M would be totally geodesic (or equivalently a nonzero *d*-closed harmonic 1-form on such M with bounded length would be parallel). It is easy to see that the above question is affirmative in case of dim M = 2. In fact, since the Gaussian curvature is nonnegative, $|\omega|^2$ satisfies: $\Delta |\omega|^2 \geq 2 |\nabla \omega|^2 \geq 0$. This implies that $|\omega|^2$ is a bounded subharmonic function on M, so that $|\omega|^2$ must be constant, because M possesses no nonconstant bounded subharmonic functions. Thus ω must be parallel and moreover M is flat. In this paper, we shall answer the above question under stronger conditions. Actually we prove the following

Theorem B. Let M be a complete, connected noncompact Rie-

mannian manifold of nonnegative sectional curvature: $K_M \ge 0$. Suppose that K_M decays in quadratic order, i.e.,

(H.2)
$$K_M \leq \frac{c}{r^2}$$

for some positive constant c, where r stands for the distance to a fixed point of M. Then a nonzero d-closed harmonic 1-form on M with bounded length must be parallel. In particular, if M admits a nonconstant harmonic function h of linear growth, then h is totally geodesic and M splits isometrically into $\mathbf{R} \times M'$ along the gradient of h.

Theorem A and Theorem B are, respectively, proved in Section 1 and Section 2. In Section 3, other related results are given.

The author would like to thank Prof. H. Wu for drawing his attention to the lecture [30] in which some open problems related to this paper were proposed.

§1. Proof of Theorem A

We shall begin with proving the first assertion of Theorem A. Let h be a nonconstant harmonic function on M. Set $\overline{m}(h,t) := \max\{h(x) : x \in S_t\}$ and $\underline{m}(h,t) := \min\{h(x) : x \in S_t\}$, where S_t denotes the metric sphere around a fixed point o of M with radius t. Since M has only one end, S_t is connected for large t. Hence for large t, we can take two points p_t and q_t of S_t such that $h(p_t) = \overline{m}(h,t)$ and $h(q_t) = \underline{m}(h,t)$, and then join q_t to p_t by an arc-length parametrized Lipschitz curve $\tau_t : [0, a_t] \to S_t$ whose length a_t is equal to the inner distance $d_t(p_t, q_t)$ between p_t and q_t in S_t . Let us fix here a positive integer n which is greater than diam $(M(\infty))$ and let $p_{t,i} := \tau_t(ia_t/3n)$ $(i = 0, 1, \dots, 3n)$. Then we observe that

(1.1)
$$\begin{split} \lim_{t\to\infty} \sup_{t\to\infty} \frac{a_t}{t} &\leq \operatorname{diam}(M(\infty)) \\ \lim_{t\to\infty} \sup_{t} \frac{1}{t} \; \operatorname{dis}_M(p_{t,i}, p_{t,i+1}) \leq \frac{\operatorname{diam}(M(\infty))}{3n} < \frac{1}{3}. \end{split}$$

Since $\overline{m}(h,t)$ is monotone increasing, $\overline{m}(h,3t/2) - h$ is a positive harmonic function on the metric ball $B_{t/2}(p_{t,i})$ around $p_{t,i}$ with radius t/2(*t* is assumed to be sufficiently large). Applying a theorem due to Cheng-Yau [9: Theorem 6] to $\overline{m}(h, 3t/2) - h$, we have

$$\overline{m}(h, \frac{3}{2}t) - h(p_{t,i+1}) \le \exp\{c_m(1 + t\sqrt{k(\frac{t}{2})})\frac{a_t}{3nt}\}\{\overline{m}(h, \frac{3}{2}) - h(p_{t,i})\}$$

where k(t) is as in (H.1) and c_m is a constant depending only on $m := \dim M$. Note here that $t\sqrt{k(t/2)}$ goes to zero as $t \to \infty$ (cf. [1: p.667]). This implies that

$$(1.2) \ \overline{m}(h,\frac{3}{2}t) - \underline{m}(h,t) \leq \exp\{c_m(1+t\sqrt{k(\frac{t}{2})})\frac{a_t}{t}\}\{\overline{m}(h,\frac{3}{2}t) - \overline{m}(h,t)\}.$$

Moreover since $\underline{m}(h,t)$ is monotone decreasing, $h-\underline{m}(h,\frac{3}{2}t)$ is a positive harmonic function on $B_{t/2}(p_{t,i})$. Hence by the same reason as above, we have

$$(1.3) \ \overline{m}(h,t) - \underline{m}(h,\frac{3}{2}t) \leq \exp\{c_m(1+t\sqrt{k(\frac{t}{2})})\frac{a_t}{t}\}\{\underline{m}(h,t) - \underline{m}(h,\frac{3}{2}t)\}.$$

If we set $\mu(t) := \overline{m}(h,t) - \underline{m}(h,t)$, then it follows from (1.2) and (1.3) that

$$\mu(rac{3}{2}t)+\mu(t)\leq \exp\{c_m(1+t\sqrt{k(rac{t}{2})}\;)\;rac{a_t}{t}\}\{\mu(rac{3}{2}t)-\mu(t)\},$$

which shows

(1.4)
$$\mu(t) \leq \frac{\exp\{c_m(1+t\sqrt{k(t/2)}) a_t/t\} - 1}{\exp\{c_m(1+t\sqrt{k(t/2)}) a_t/t\} + 1} \mu(\frac{3}{2}t).$$

Thus it turns out from (1.1), (1.4) and the standard iteration argument that

$$\liminf_{t\to\infty} \frac{\log\ \mu(t)}{\log\ t} > \log\left[\frac{\exp\{c_m \operatorname{diam}(M(\infty))\}\ +\ 1}{\exp\{c_m \operatorname{diam}(M(\infty))\}\ -\ 1}\right].$$

This proves the first assertion of Theorem A.

Let us now prove the second assertion of Theorem A. Since M has finite total curvature: $\int_M K_M \operatorname{dvol}(g_M) < +\infty$ (cf. [20:Proposition 4.1]), we can apply some of the results by Finn [12] and Huber [15;16] to our manifold M. In fact, it follows from [15] that the end of M is conformally equivalent to the end of \mathbf{C} , to be precise, there is a conformal diffeomorphism $\Psi: M - K \to \mathbf{C} - D_R$ from the complement M - K of a compact set K onto the one of a disk $D_R := \{z \in \mathbf{C} : |z| \leq R\}$. Through the conformal diffeomorphism Ψ , we identify M - K with $\mathbf{C} - D_R$ which has the metric $G := \Psi_* g_M = e^{2u} dz d\bar{z}$. Without loss of generality, we may assume that G defines a complete metric on \mathbf{C} with finite total curvature: $\int_{\mathbf{C}} K_G \operatorname{dvol}(G) < +\infty$. Denote here by ρ the distance in \mathbf{C} to the origin with respect to G. Then applying Theorems 11 and 13 in

[12] and Théorème 1 in [16] to (\mathbf{C}, G) , we get

(1.5)
$$\lim_{x \in M \to \infty} \frac{\log r(x)}{\log |\Psi(x)|} = \lim_{z \in \mathbf{C} \to \infty} \frac{\log \rho(z)}{\log |z|} \\ = 1 - \frac{1}{2\pi} \int_{\mathbf{C}} K_G \operatorname{dvol}(G).$$

We note that

$$1 - \frac{1}{2\pi} \int_{\mathbf{C}} K_G \operatorname{dvol}(G) = \lim_{t \to \infty} \frac{\operatorname{Length}(S_t)^2}{4\pi \operatorname{Area}(B_t)}$$
$$= \lim_{t \to \infty} \frac{\operatorname{Area}(B_t)}{\pi t^2}$$
$$= \lim_{t \to \infty} \frac{\operatorname{Length}(S_t)}{2\pi t}$$
$$= \frac{1}{\pi} \operatorname{diam}(M(\infty))$$
$$= \chi(M) - \frac{1}{2\pi} \int_M K_M \operatorname{dvol}(g_M)$$

(cf. [20: Proposition 4.1], [26]). Let h be a nonconstant harmonic function on M. Since the flux of the restriction of h to M-K (= $\mathbf{C}-D_R$) vanishes, there exists a harmonic function H on \mathbf{C} such that |H-h| is bounded on $\mathbf{C} - D_R$ (cf. [2: Chap.III]). Hence if h is of finite growth, then we have by (1.5) and (1.6)

(1.7)
$$\operatorname{ord}(h) = \lim_{x \in M \to \infty} \frac{\log |h(x)|}{\log r(x)} = \frac{n\pi}{\operatorname{diam}(M(\infty))},$$

where $n := \lim_{|z|\to\infty} \log |H(z)|/\log |z| \in \{1, 2, \cdots\}$. Moreover, for any harmonic function f on M - K the flux of which vanishes, there exists a harmonic function F on M such that |F - f| is bounded on M - K (cf. [2: Chap.III]). Thus it follows from (1.7) that the dimension of harmonic functions h with $\operatorname{ord}(h) \leq n\pi/\operatorname{diam}(M(\infty))$ is equal to 2n + 1. This completes the proof of the second assertion of Theorem A. //

Remark. As we have seen in the above proof for Theorem A(ii), the same assertion holds for a complete Riemannian manifold of dimension 2 with finite total curvature and one end, if we replace diam $(M(\infty))$ in the theorem with $\lim_{t\to\infty} \text{Length}(S_t)^2/(4 \text{ Area}(B_t)) \ (= \lim_{t\to\infty} \text{Area}(B_t)/t^2 = \lim_{t\to\infty} \text{Length}(S_t)/2t = \chi(M) - \frac{1}{2\pi} \int_M K_M$).

288

Let us now conclude this section with a corollary and a remark on it.

Corollary. Let M be a complete connected noncompact Riemannian manifold such that the sectional curvature is bounded from below by $c/r^2 \log r$ outside a compact set, where c is a positive constant and r is the distance to a fixed point of M. Then M has no nonconstant harmonic functions of finite growth, if M has only one end.

Proof. This follows immediately from Theorem A(i), because $M(\infty)$ consists of only one point (cf. [19: Proposition 5.2]).

Remark. In the above corollary, if M has more than one end, then M may admit nonconstant bounded harmonic functions. Actually, it is easy to construct such manifolds.

§2. Proof of Theorem B

The purpose of this section is to show Theorem B. To begin with, we shall prove the following

Lemma 2.1. Let N be a complete connected Riemannian manifold of nonnegative sectional curvature. Let h be a nonconstant harmonic function on the Riemannian product $\mathbf{R} \times N$ with $\sup |dh| < +\infty$, and let t be the projection : $\mathbf{R} \times N \to \mathbf{R}$. Then $\langle dt, dh \rangle$ is constant on $\mathbf{R} \times N$ and the restriction of h to $\{t\} \times N$ is harmonic on $\{t\} \times N$. In particular, if N is compact, then h = ct for some constant c.

Proof. Since $\langle dt, dh \rangle$ is a bounded harmonic function on $\mathbb{R} \times N$, $\langle dt, dh \rangle$ must be constant (cf. Yau [31]), so that, in particular, the derivative of $\langle dt, dh \rangle$ in the direction of grad t vanishes identically. This shows that the restriction of h to $\{t\} \times N$ is harmonic. This completes the proof of Lemma 2.1. //

Lemma 2.2. Let M be a complete, connected noncompact Riemannian manifold of nonnegative sectional curvature. Suppose M admits a nonconstant harmonic function h which satisfies:

$$(2.1) |dh|(x) \longrightarrow c_1,$$

 $(2.2) r(x) |\nabla dh|(x) \longrightarrow 0$

as $x \in M$ goes to infinity, where c_1 is a positive constant and r(x) denotes as usual the distance to a fixed point of M. Then the second

derivative ∇dh of h vanishes identically and moreover M splits isometrically into $\mathbf{R} \times M'$ along the gradient vector ∇h of h.

Proof. According to the splitting theorem by Toponogov [27], M has one end (namely, M is connected at infinity) or M is isometric to $\mathbf{R} \times M'$, where M' is compact. If the latter case occurs, then Lemma 2.2 is obvious (cf. Lemma 2.1). Hence in what follows, we assume that M has one end, and further that c_1 is equal to 1 for simplicity. Define a vector field Λ on the open set $U := \{x \in M : \nabla h(x) \neq 0\}$ by $\Lambda := \nabla h/|\nabla h|^2$, and for a point $x \in U$, denote by $\lambda_x(t)$ ($-\infty \leq \underline{\tau}_x < t < \overline{\tau}_x \leq +\infty$) the maximal integral curve of Λ such that $\lambda_x(0) = x$. Then by (2.1), it is not hard to see that for some point $x \in U$, the integral curve $\lambda_x(t)$ is defined for all t and the length is bounded away from zero. We fix such a point x. Now we claim first that

(2.3)
$$\lim_{t \to \pm \infty} \frac{1}{|t|} \operatorname{dis}_M(x, \lambda_x(t)) = 1.$$

In fact, let $\sigma_t : [0, a_t] \to M$ be a distance minimizing geodesic joining $x = \sigma_t(0)$ with $\lambda_x(t) = \sigma_t(a_t)$ $(a_t := \operatorname{dis}_M(x, \lambda_x(t)))$. Consider the case: t > 0. Then we have

$$egin{aligned} t &= h(\lambda_x(t)) - h(x) = h(\sigma_t(a_t)) - h(\sigma_t(0)) \ &= \int_0^{a_t} <
abla h, \dot{\sigma}_t(s) > ds < a_t, \end{aligned}$$

since $|\nabla h|^2$ is subharmonic (i.e., $\Delta |\nabla h|^2 = 2|\nabla dh|^2 + 2\operatorname{Ric}_M(\nabla h, \nabla h) \geq 0$) and so $|\nabla h| < \sup |\nabla h| = 1$. On the other hand, we get

$$a_t \leq ext{the length of } \lambda_{x \mid [0,t]} \ = \int_0^t rac{1}{|
abla h | (\lambda_x(s))} \ ds.$$

Therefore we have

$$\begin{split} 1 \leq & \liminf_{t \to \infty} \frac{a_t}{t} \leq \limsup_{t \to \infty} \frac{a_t}{t} \leq \\ & \limsup_{t \to \infty} \frac{1}{t} \int_0^t \frac{1}{|\nabla h|(\lambda_x(s))} \ ds \leq \limsup_{t \to \infty} \frac{1}{|\nabla h|(\lambda_x(t))} = 1. \end{split}$$

Thus we have shown (2.3) in case: t > 0. The same argument can be applied to the case: t < 0.

Let us next claim

(2.4)
$$\lim_{t\to\infty} \frac{1}{t} \operatorname{dis}_M(\lambda_x(t),\lambda_x(-t)) = 2.$$

In fact, let $\eta_t : [0, b_t] \to M$ be a distance minimizing geodesic joining $\eta_t(0) = \lambda_x(-t)$ with $\eta_t(b_t) = \lambda_x(t)$. Then by (2.3), we have

(2.5)
$$\limsup_{t\to\infty}\frac{b_t}{t}\leq \limsup_{t\to\infty}\frac{1}{t}\{\operatorname{dis}_M(x,\lambda_x(t))+\operatorname{dis}_M(x,\lambda_x(-t))\}=2.$$

On the other hand, if $\dim_M(x, \eta_t([0, b_t]))/t = \dim_M(x, \eta_t(c_t))/t$ tends to zero as $t \to +\infty$, then we have

(2.6)
$$\lim_{t \to +\infty} \inf_{t} \frac{b_{t}}{t} \geq \liminf_{t \to +\infty} \frac{1}{t} \left\{ \operatorname{dis}_{M}(x, \lambda_{x}(t)) - \operatorname{dis}_{M}(x, \eta_{t}(c_{t})) \right\} + \lim_{t \to +\infty} \inf_{t} \frac{1}{t} \left\{ \operatorname{dis}_{M}(x, \lambda_{x}(-t)) - \operatorname{dis}_{M}(x, \eta_{t}(c_{t})) \right\} = 2.$$

Moreover if $\operatorname{dis}_M(x, \eta_{t(i)}(c_{t(i)}))/t(i) > d > 0$ for some divergent sequence $\{t(i)\}$ and a positive constant d, then by the assumption (2.2), we have

$$(2.7) \qquad |\nabla dh(\dot{\eta}_{t(i)}(s),\dot{\eta}_{t(i)}(s))| \leq \frac{\delta(dt(i))}{dt(i)} \quad (0\leq s\leq b_{t(i)}),$$

where $\delta(u)$ goes to zero as $u \to +\infty$. Hence we get

This shows that

(2.8)
$$\liminf_{t(i)\to+\infty} \frac{b_{t(i)}}{t(i)} \geq 2.$$

Thus (2.4) follows from (2.5), (2.6) and (2.8).

We are now in a position to complete the proof of Lemma 2.2. Let $\sigma_t : [0, a_t] \to M, \ \sigma_{-t} : [0.a_{-t}] \to M$, and $\eta_t : [0, b_t] \to M$ be as above. For each $(s, u) \ (0 \le s \le a_t, \ 0 \le u \le a_{-t})$, let $\Delta_t(s, u)$ be the triangle sketched on \mathbb{R}^2 whose edge lengths are s, u, and $\dim_M(\sigma_t(s), \sigma_{-t}(u))$, and denote by $\theta_t(s, u)$ the angle of $\Delta_t(s, u)$ opposite to the edge of length $\dim_M(\sigma_t(s), \sigma_{-t}(u))$. Then by a theorem due to Toponogov [28: Lemma

19], we see that $\theta_t(s,u) \leq \theta_t(s',u')$ if $s' \leq s$ and $u' \leq u$. Note that by (2.4)

$$\lim_{t\to+\infty} \theta_t(a_t,a_{-t})=\pi.$$

This shows that for any $s, u \in (0, \infty)$, we have

(2.9)
$$\lim_{t \to +\infty} \theta_t(s, u) = \pi.$$

If we take a divergent sequence $\{t(i)\}$ such that $\sigma_{t(i)}$ (resp. $\sigma_{-t(i)}$) converges to a ray $\sigma_{\infty} : [0, \infty) \to M$ (resp., a ray $\dot{\sigma}_{-\infty} : [0, \infty) \to M$) starting at x, and if we define a curve $\xi : \mathbf{R} \to M$ by $\xi(t) = \sigma_{\infty}(t)$ for $t \ge 0$ and $\xi(t) = \sigma_{-\infty}(-t)$ for $t \le 0$, then it turns out from (2.9) that ξ is a line, namely, ξ is a distance minimizing geodesic defined on **R**. Thus it follows from the Toponogov splitting theorem that M is isometric to $\xi(\mathbf{R}) \times M'$. Now it is clear from Lemma 2.1 and the above construction of the line ξ that for some constant c, h((t, x')) = t + c on $M = \xi(\mathbf{R}) \times M'$. This completes the proof of Lemma 2.2.

Finally we need the following

Lemma 2.3. Let M and ω be as in Theorem B. Then $|\omega|(x)$ tends to a constant $c_1 > 0$ and $r(x)|\nabla \omega|(x)$ converges to zero, as $x \in M$ goes to infinity, where r(x) denotes the distance to a fixed point, say o of M.

Proof. We first observe that $|\omega|^2$ is subharmonic on M, by the Weitzenböck's formula:

(2.10)
$$\Delta |\omega|^2 = 2|\nabla \omega|^2 + 2 \operatorname{Ric}_M(\omega^{\#}, \omega^{\#})$$

 $(\omega^{\#} := \text{the dual vector field of } \omega)$. Set $m(t) := \text{the maximum of } |\omega|$ on the metric sphere S_t around o with radius t. Then it follows from the maximum principle for subharmonic functions that m(t) is nondecreasing, and hence m(t) converges to a positive constant c_2 as t goes to infinity. For the sake of simplicity, we assume that $c_2 = 1$. Let us here take points $\{x_t\}$ of M such that $x_t \in S_t$ and $|\omega|(x_t)$ converges to 1 as $t \to \infty$. Choosing an orthonormal basis of the tangent space $T_{x_t}M$ of M at each x_t , we identify $T_{x_t}M$ with Euclidean space \mathbb{R}^m , and write \mathbb{B}_R for the ball of \mathbb{R}^m around the origin with radius R. Then by the assumption (H.2) in Theorem B, we can fix a sufficiently small constant a > 0 so that for each x_t , the restriction Ψ_t of the exponential map $\exp_{x_t} : \mathbb{R}^m (= T_{x_t}M) \to M$ to \mathbb{B}_{at} induces a smooth map of maximal rank from \mathbb{B}_{at} onto the metric ball $B_{at}(x_t)$ of M around x_t with radius at. Define a family of Riemannian metrics $\{g_t\}$ on \mathbb{B}_a by

292

 $g_t := \frac{1}{t^2} \Psi_t^* g_M$, where g_M denotes the Riemannian metric on M. Then (H.2) implies that the sectional curvature of g_t is bounded uniformly in t. Hence, choosing a smaller constant a if necessarily and taking harmonic coordinates appropriately around the origin with respect to g_t , we can see that the coefficients of g_t (with respect to the harmonic coordinates) have $C^{1,\alpha}$ -Hölder norms ($0 < \alpha < 1$) and $W^{2,p}$ -Sobolev norms bounded uniformly in t (cf. e.g., [14], [20]). Thus we can assert that

(2.11) : for any divergent sequence $\{t(i)\}$, there exists a subsequence $\{t(j)\}$ of $\{t(i)\}$ such that $g_{t(j)}$ converges to $C^{1,\alpha}$ Riemannian metric g_{∞} on \mathbf{B}_a in the $C^{1,\alpha}$ -norm with respect to the harmonic coordinates. Moreover the coefficients of g_{∞} belong to the Sobolev space $W^{2,p}$ $(p \geq 1)$.

Let us now define a family of 1-forms ω_t on \mathbf{B}_a by $\omega_t := \frac{1}{t} \Psi_t^* \omega$. Then ω_t is a d-closed harmonic 1-form such that the length $|\omega_t|$ (with respect to g_t) satisfies: $|\omega_t| < 1$ and $|\omega_t(o)| \to 1$ as $t \to \infty$. Since \mathbf{B}_a is simply connected, there exists a smooth function h_t on \mathbf{B}_a with $\omega_t = dh_t$. Here we may assume that $h_t(o) = 0$. Hence $|h_t|$ is bounded uniformly in t. Moreover since the coefficients of g_t (with respect to the harmonic coordinates) have bounded $C^{1,\alpha}$ -norms uniformly in t, it follows from the a priori estimates that the $C^{2,\alpha}$ -norms of h_t is bounded uniformly in t. Thus by (2.11), we see that for any divergent sequence $\{t(i)\}$, there exists a subsequence $\{t(j)\}$ such that in the $C^{2,\alpha}$ -norm (with respect to the harmonic coordinates), $h_{t(i)}$ converges to a $C^{2,\alpha}$ function h_{∞} which is harmonic with respect to g_{∞} . We put here $\omega_{\infty} := dh_{\infty}$. Then the length $|\omega_{\infty}|$ (with respect to g_{∞}) satisfies: $|\omega_{\infty}| \leq 1$ and $|\omega_{\infty}|(o) = 1$. Since $|\omega_t|^2$ is subharmonic (with respect to g_t), so is $|\omega_{\infty}|^2$ (with respect to g_{∞}). Hence applying the maximum principle to $|\omega_{\infty}|^2$, we see that $|\omega_{\infty}|$ is constantly equal to 1. Noting that (2.10) holds for each ω_t , and $\omega_{t(i)}$ (resp. $g_{t(i)}$) converges to ω_{∞} (resp. g_{∞}) in the $C^{1,\alpha}$ -norm as $t(j) \to \infty$, we have the identity (2.10) for ω_{∞} in a weak sense. Namely, for any smooth function η with compact support in \mathbf{B}_a ,

(2.12)

$$\int g_{\infty}(d|\omega_{\infty}|^{2}, d\eta) \operatorname{dvol}(g_{\infty})$$

$$= -2 \int \{|\nabla_{\infty}\omega_{\infty}|^{2} + \operatorname{Ric}_{\infty}(\omega_{\infty}^{\#}, \omega_{\infty}^{\#})\}\eta \operatorname{dvol}(g_{\infty}).$$

Here we have used the fact that g_{∞} has the Ricci tensor $\operatorname{Ric}_{\infty}$ in the L^{p} -sense $(p \geq 1)$ and the Ricci tensor $\operatorname{Ric}_{t(j)}$ of $g_{t(j)}$ converges weakly

to $\operatorname{Ric}_{\infty}$ as $t(j) \to \infty$. Since the left-hand side of (2.12) vanishes, we see that $|\nabla_{\infty}\omega_{\infty}|^2 + \operatorname{Ric}_{\infty}(\omega_{\infty}^{\#}, \omega_{\infty}^{\#}) = 0$ almost everywhere and hence ω_{∞} is parallel. Thus we have shown that if we take points $x_t \in S_t$ with $\lim_{t\to\infty} |\omega|(x_t) = 1$, then

(2.13)
$$\begin{array}{l} \max\{1-|\omega|(x):x\in B_{at}(x_t)\}\longrightarrow 0,\\ \max\{r(x)|\nabla\omega|(x):x\in B_{at}(x_t)\}\longrightarrow 0, \end{array}$$

as t goes to infinity. Since the diameter of S_t with respect to the inner distance on S_t is bounded by bt for some constant b, (2.13) proves Lemma 2.3. //

We are now in a position to complete the proof of Theorem B. Let Mand ω be as in Theorem B, and let $\Pi: \widetilde{M} \to M$ be the universal covering of M. Set $\widetilde{\omega} := \Pi^* \omega$. Then there is a harmonic function h on \widetilde{M} which satisfies: $\tilde{\omega} = dh$. Therefore if the fundamental group $\pi_1(M)$ of M is finite, then \widetilde{M} also satisfies assumption (H.2), and hence by Lemmas 2.2 and 2.3, ∇dh vanishes identically and \widetilde{M} splits isometrically into $\mathbf{R} \times M'$ along the gradient ∇h of h. Moreover in this case, M' is flat, because the sectional curvature of M decays to zero. We shall now consider the case that $\pi_1(M)$ is infinite. Let Σ be a soul of M (i.e., a compact, totally geodesic and totally convex submanifold of M). Then by Theorem 9.1 in [7], $\widetilde{\Sigma} := \Pi^{-1}(\Sigma)$ splits isometrically into $\mathbf{R}^k \times \widetilde{\Sigma}_o$, where $\widetilde{\Sigma}_o$ is a compact simply connected manifold of nonnegative curvature and furthermore $k \geq 1$, because $\pi_1(M) = \pi_1(\Sigma)$ is infinite. Hence \widetilde{M} is isometric to the Riemannian product $\mathbf{R}^k \times \widetilde{M}_o$ of Euclidean space \mathbf{R}^k and a complete, noncompact simply connected manifold \widetilde{M}_o with nonnegative sectional curvature. We observe here that the sectional curvature of \widetilde{M}_o decays in quadratic order, since \widetilde{M}_{o} is compact. Now it follows from Lemma 2.1 that the restriction \widetilde{h} of h to $\{o\} \times \widetilde{M}_o$ is constant or it gives a nonconstant harmonic function on \widetilde{M}_{o} , the gradient of which has bounded length. If the former case occurs, then it is clear that h is totally geodesic. When the latter case occurs, we can apply Lemmas 2.2 and 2.3 and show that h is totally geodesic. This completes the proof of Theorem B. //

Corollary. Let M be as in Theorem B. Suppose that the Ricci curvature of M is positive somewhere. Then any d-closed harmonic 1-form with bounded length must be zero.

Proof. This is clear from the above proof of Theorem B. //

§3. Some other results

Let M be a manifold of asymptotically nonnegative curvature. In this section, we shall make some observations on the asymptotic behavior of harmonic functions on M with finite growth and then that of the Green function on M, under certain additional conditions. Throughout this section, the dimension m of M is assumed to be greater than two. First we recall the following

Fact 3.1 (cf. [20: Lemma 2.3]). Let M be as above and δ an end of M. Suppose that the sectional curvature K_M of M decays in quadratic order on the end δ , i.e.,

$$(3.1) K_M \leq \frac{c}{r^2} \quad on \quad \delta, \quad and$$

$$(3.2) \qquad \qquad \mathcal{V}o\ell(M_{\delta}(\infty)) > 0$$

where c is a positive constant and r denotes the distance to a fixed point of M. Then :

(i) $M_{\delta}(\infty)$ is a compact, connected smooth manifold with $C^{1,\alpha}$ Riemannian metric g_{∞} (0 < α < 1).

(ii) Fix two positive numbers a, b with a > b, and set $A_t(a, b) := \{x \in M : b < r(x)/t < a\}$ for t > 0. If t is sufficiently large, then there exists a $C^{2,\alpha}$ diffeomorphism Π_t from $A_t(a, b) \cap \delta$ into the cone $\mathcal{C}(M_{\delta}(\infty))$ over $M_{\delta}(\infty)$ (i.e., $\mathcal{C}(M_{\delta}(\infty)) := (0, \infty) \times_{t^2} M_{\delta}(\infty)$) which has the following properties: as t goes to infinity, $\Pi_t(A_t(a, b) \cap \delta)$ converges to $(b, a) \times M_{\delta}(\infty)$ and $\frac{1}{t^2} \Pi_{t*} g_M$ also converges to the metric $dt^2 + t^2 g_{\infty}$ in $C^{1,\alpha'}$ topology $(0 < \alpha' < \alpha < 1)$. Here g_M stands for the Riemannian metric of M.

Let us now prove the following

Proposition C. Let M be a manifold of asymptotically nonnegative curvature and δ an end of M. Suppose (3.1) and (3.2) hold for the end δ . Then if there exists a harmonic function h defined on δ such that $0 < \limsup_{X \in \delta \to \infty} |h(x)|/r(x)^p < +\infty$ for some positive constant p, then

p(p+m-2) $(m := \dim M \ge 3)$ is an eigenvalue of $M_{\delta}(\infty)$. Moreover $p \ge 1$ and if p = 1, then $M_{\delta}(\infty)$ is isometric to the (m-1)-sphere $S^{m-1}(1)$ of constant curvature 1.

To prove Proposition C, we need the following

Fact 3.2. Let *h* be a nonconstant harmonic function on the cone $\mathcal{C}(M_{\delta}(\infty))$ (= $(0, \infty) \times {}_{t^2}M_{\delta}(\infty)$) over $M_{\delta}(\infty)$ such that $|h(t, \theta)|/t^p$ is

bounded on $\mathcal{C}(M_{\delta}(\infty))$ for some p > 0. Then $\lambda := p(p + m - 2)$ is equal to an eigenvalue of $M_{\delta}(\infty)$ and $h(t, \theta)/t^p$ defines an eigenfunction of $M_{\delta}(\infty)$ with eigenvalue λ .

Proof. For the convenience of the reader, we shall give a proof of the fact. Let $\phi(s,\theta)$ $(s = \log t)$ be a function on $\mathbf{R} \times M_{\delta}(\infty)$ defined by $\phi(s,\theta) := e^{-ps} h(e^s, \theta)$. Then ϕ satisfies:

$$rac{\partial^2 \phi}{\partial s^2} + (2p+m-2) \; rac{\partial \phi}{\partial s} + p(p+m-2) \phi + riangle_\infty \phi = 0,$$

where \triangle_{∞} denotes the Laplacian on $M_{\delta}(\infty)$. Let $\{\mu_i\}_{i=1,2,\ldots} : \mu_1 \leq \mu_2 \leq \ldots$ be the eigenvalues of $M_{\delta}(\infty)$ and $\{E_i(\theta)\}_{i=12,\ldots}$ an orthonormal system of eigenfunctions on $M_{\delta}(\infty)$ corresponding to $\{\mu_i\}$. Set $\phi_i(s) := \int_{M_{\delta}(\infty)} \phi(s,\theta) E_i(\theta) \operatorname{dvol}(g_{\infty}) \ (i=1,2,\ldots)$. Then ϕ_i obeys the following ordinary differential equation on \mathbf{R} :

$$\phi_i'' + (2p+m-2)\phi_i' + (p(p+m-2)-\mu_i)\phi_i = 0.$$

Since $|h(s,\theta)|/t^p$ is bounded, so is $|\phi(s,\theta)|$. Hence each ϕ_i is also bounded. Then it turns out that ϕ_i is equal to a constant a_i which is zero unless $\mu_i = p(p+m-2)$, so that $\phi(s,\theta) = \sum_i a_i E_i(\theta)$, where the summation is taken over the indices *i*'s with $\mu_i = p(p+m-2)$. This proves Fact 3.2. //

Proof of Proposition C. Let M, h and p be as in the proposition. Let us first fix a positive integer n and a sufficiently large R for a while, and define a function h_R on $\Pi_R(A_R(n, n^{-1}))$ $(\subset \mathcal{C}(M_{\delta}(\infty))$ by $h_R := h \circ \prod_R^{-1} / R^p$, where \prod_R and A_R are as in Fact 3.1. Then h_R is harmonic with respect to the metric $\frac{1}{R^2} \prod_{R*} g_M$. Moreover since $\mu :=$ lim $\sup |h|(x)/r^p(x)$ is finite $|h_R|$ is bounded from above by cn^p for some $x \in \delta \to \infty$ positive constant c independent of R and n. Thus it follows from Fact 3.1 and the a priori estimates that the $C^{2,\alpha}$ -Hölder norm of h_R is bounded uniformly in R. Let us take here a divergence sequence $\{R(i)\}$ such that $\max\{|h(x)|: x \in S_{R(i)} \cap \delta\}/R(i)^p \text{ converges to } \mu > 0 \text{ as } R(i) \text{ goes to in-}$ finity. Then we can take inductively a subsequence $\{R(n,j)\}$ of $\{R(i)\}$ so that $\{R(n+1,j)\} \subset \{R(n,j)\}$ and as $j \to \infty, h_{R(n,j)}$ converges to a harmonic function h_n on $A_{\infty}(n, n^{-1}) := \{(t, \theta) \in \mathcal{C}(M_{\delta}(\infty)) : n^{-1} < t < n\}$ in the $C^{2,\alpha}$ -Hölder norm. Note that h_n satisfies: $|h_n(t,\theta)| \leq ct^p$ on $A_{\infty}(n, n^{-1})$. Hence if we set $h_{\infty} := h_n$ on $A_{\infty}(n, n^{-1})$, then we get a harmonic function h_{∞} on $\mathcal{C}(M_{\delta}(\infty))$ such that $|h_{\infty}(t,\theta)| \leq ct^{p}$. By the choice of $\{R(i)\}$, we see that h_{∞} does not vanish identically. Thus it

296

turns out from Fact 3.2 that $\lambda := p(p + m - 2)$ must be an eigenvalue of $M_{\delta}(\infty)$ and $h_{\infty}(t,\theta)/t^p$ gives an eigenfunction on $M_{\delta}(\infty)$ with the eigenvalue λ . Finally the remaining assertion of Proposition C follows from Lemma 3.3 below. //

Lemma 3.3. The first eigenvalue μ_1 of $M_{\delta}(\infty)$ is greater than or equal to m-1. Moreover if $\mu_1 = m-1$, then $M_{\delta}(\infty)$ is isometric to the (m-1)-sphere $S^{m-1}(1)$ of constant curvature 1.

Proof. Let $\Pi_t : A_t(a, b) \to \mathcal{C}(M_{\delta}(\infty))$ be as in Fact 3.1. Set $M_t :=$ $\Pi_t^{-1}(\{1\} \times M_{\delta}(\infty))$. Then we observe that the sectional curvature K_t of M_t satisfies: $1 - \varepsilon_1(t) \leq K_t \leq 1 + \varepsilon_1(t) + \kappa_{\delta}$, where $\varepsilon_1(t) > 0$ goes to zero as $t \to \infty$ and $\kappa_{\delta} := \lim \sup r(x)^2 K_M(x)$. Let $\mu_{t,1}$ be the first $x \in \delta \to \infty$ eigenvalue of M_t . Then applying the Lichnerowicz' theorem (cf. [10]) to M_t , we see that $\mu_{t,1} \ge (m-1) - \varepsilon_2(t)$, where $\varepsilon_2(t) > 0$ tends to zero as $t \to \infty$. This implies that $\mu_1 \ge (m-1)$. Suppose that $\mu_1 = (m-1)$. Then the diameter of $M_{\delta}(\infty)$ must take the maximum value π . In fact if the diameter is less than π , then the diameter of M_t is less than $\pi - \varepsilon_3$ for large t and some positive constant ε_3 . It follows now from [10] that $\mu_{t,1} \ge (m-1) + \varepsilon_4$ for large t and some positive constant ε_4 . This is a contradiction. Thus $M_{\delta}(\infty)$ has the maximum diameter π , so that the volume of $M_{\delta}(\infty)$ must be equal to the volume of $S^{m-1}(1)$ (cf. [18: Theorem 4.1] or [5]). Then it turns out from a theorem by Katsuda [22] that the Hausdorff distance between $M_{\delta}(\infty)$ and $S^{m-1}(1)$ is equal to zero, namely, $M_{\delta}(\infty)$ is isometric to $S^{m-1}(1)$. This completes the proof of Lemma 3.3. //

Let us now show a proposition on the minimal positive Green function G(x, y) on $M \times M$. According to Li-Tam [24], we call an end δ of Mlarge (resp., small) if the integral $\int^{\infty} tV_{\delta}(t)^{-1}dt$ is finite (resp., infinite), where $V_{\delta}(t) := \operatorname{Vol}_m(B_t \cap \delta)$. Suppose that M has at least one large end δ . Then based on some of the results in [19] and the arguments in [24;25], we have shown in [21] the following results:

(3.3) There exists a unique positive harmonic function h_{δ} on M such that $\lim_{x \in \delta \to \infty} h_{\delta}(x) = 1$ and $\lim_{y \in \delta' \to \infty} h_{\delta'}(y) = 0$ for another large end δ' (if any).

(3.4) There exists a unique minimal positive Green function G(x, y) on $M \times M$ such that

$$G(x,y) \leq c(x) \int_{{
m dis}_M(x,y)}^\infty rac{t}{V_\delta(t)} \ dt$$

for all $y \in \delta - B_{R(x)}$, and $G(x, y) \longrightarrow c(x, \mathcal{D})$ as $y \in \mathcal{D} \longrightarrow +\infty$ for a small end \mathcal{D} (if any). Here the constants R(x), C(x) and $C(x, \mathcal{D})$ are positive constants depending on the quantities in parentheses.

We remark that the value $h_{\delta}(x)$ of the function h_{δ} at a point x is equal to the hitting probability of the paths starting at x to the large end δ . Moreover as we mentioned in [21], we see that if $G(x, y) / \int_{\dim_M(x,y)}^{\infty} m^{-1} t V_{\delta}(t)^{-1} dt$ converges to $h_{\delta}(x)$ as $y \in \delta$ goes to infinity for some x, then this holds for all $x \in M$. It is unclear whether the limit should exist and be equal to $h_{\delta}(x)$ for some x. The following proposition answers this question partially.

Proposition D. Let M be an m-dimensional manifold of asymptotically nonnegative curvature which has at least one large end δ . Suppose (3.1) and (3.2) hold for δ . Then for any point x of M, one has

$$rac{G(x.y)}{\int_{{
m dis}_{M}(x,y)}rac{t}{mV_{\delta}(t)}dt} \longrightarrow h_{\delta}(x)$$

as $y \in \delta$ goes to infinity. In particular, in this case, one has

$$G(x,y) \operatorname{dis}_M(x,y)^{m-2} \longrightarrow rac{h_\delta(x)}{(m-2)\operatorname{Vol}(M_\delta(\infty))}$$

as $y \in \delta$ goes to infinity.

Proof. We fix a point x of M. We first observe that for some positive constants c_1 and c_2 ,

(3.5)
$$c_1 \leq G(x,y) \operatorname{dis}_M(x,y)^{m-2} \leq c_2$$

on δ . The first inequality is a consequence of the assumption that M has asymptotically nonnegative curvature (cf. [17: Theorem 4.3]) and the second one follows from (3.4). Set $G_R(y) := R^{m-2}G(x,y)$. Then by the same argument as in the proof of Proposition C, we see that given a divergent sequence $\{R(i)\}$, there exists a subsequence $\{R(j)\}$ for which $G_{R(j)}$ converges as $j \to \infty$ to a harmonic function G_{∞} on compact sets of the cone $\mathcal{C}(M_{\delta}(\infty)) = (0, \infty) \times {}_{t^2}M_{\delta}(\infty)$ in the $C^{2,\alpha}$ Hörder norm. By (3.5), we have

$$c_1 \leq G_\infty(t, heta) t^{m-2} \leq c_2$$

for any $(t, \theta) \in \mathcal{C}(M_{\delta}(\infty))$. Moreover it turns out from the same argument as in Lemma 3.2 that $G_{\infty}(t, \theta)t^{m-2}$ is in fact a constant, say c_3 . Then it is not hard to see that the constant c_3 is given by $c_3(m-2)\mathcal{Vol}(M_{\delta}(\infty)) = h_{\delta}(x)$. Thus the constant c_3 is independent of the choice of a divergent sequence $\{R(i)\}$. This shows that

$$G(x,y) \operatorname{dis}_M(x,y)^{m-2} \longrightarrow rac{h_{\delta}(x)}{(m-2)\mathcal{Vol}(M_{\delta}(\infty))}$$

as $y \in \delta$ goes to infinity. Since

$$\operatorname{dis}_{M}(x,y)^{m-2}\int_{\operatorname{dis}_{M}(x,y)}^{\infty}\frac{t}{V_{\delta}(t)}\ dt\longrightarrow \frac{m}{(m-2)\operatorname{Vol}(M_{\delta}(\infty))}$$

as $y \in \delta$ goes to infinity, we have proven Proposition D. //

Remark. Let M and δ be as in Proposition D. Define a function $F_{\delta}(y)$ on M by $F_{\delta}(y) := c_4 G(o, y)^{1/(2-m)}$, where o is a fixed point of M and $c_4 := (h_{\delta}(o)/((m-2)\mathcal{Vol}(M_{\delta}(\infty))))^{1/(m-2)}$. Then we can prove by using the same argument as in the proof of Proposition D that as $y \in \delta$ goes to infinity,

(i)
$$\frac{F_{\delta}(y)}{\operatorname{dis}_M(o,y)} \longrightarrow 1,$$

(ii)
$$|\nabla F_{\delta}|(y) \longrightarrow 1$$
,

(iii)
$$\left|\frac{1}{2} \nabla dF_{\delta}^2 - g_M\right| \longrightarrow 0,$$

where g_M denotes the Riemannian metric of M. Thus F_{δ} gives a nice smooth approximation for the distance function $r = \operatorname{dis}_M(o, *)$ on the end δ .

Added in proof. Theorem B does not hold for a complete, noncompact Riemannian manifold of nonnegative Ricci curvature (even if the sectional curvature decays quadratically).

References

- U. Abresch, Lower curvature bound, Toponogov's theorem, and bounded topology, Ann. Sci. Ecole Norm. Sup., Paris, 28 (1985), 651-670.
- [2] L.H. Ahlfors L. Sario, "Riemann Surfaces", Princeton University Press, 1960.
- [3] S. Bando A. Kasue H. Nakajima, On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, to appear in Invent. Math.
- R. Bartnik, The mass of an asymptotically flat manifold, Comm. Pure Appl. Math., 34 (1986), 661-693.

- [5] D.L.Brittain, A diameter pinching theorem for positive Ricci curvature, preprint.
- [6] J. Cheeger D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geom., 6 (1971), 119–128.
- [7] _____, On the structure of complete manifolds of nonnegative curvature, Ann. of Math., **96** (1972), 413-443.
- [8] S.-Y. Cheng, Liouville theorem for harmonic maps, Proc. Symp. Pure Math., 36 A.M.S. 1980, 147-151.
- [9] S.-Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math., 28 (1975), 333-354.
- [10] C. Croke, An eigenvalue pinching theorem, Invent. Math., 68 (1982), 253-256.
- [11] J. Eells and L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc., 20 (1988), 387-524.
- [12] R. Finn, On a class of conformal metrics, with applications to differential geometry in the large, Comment. Math. Helv., 40 (1965), 1-30.
- [13] R.E. Greene and H. Wu, Embedding of open Riemannian manifolds by harmonic functions, Ann. Inst. Fourier (Gronoble), 25 (1975), 215-235.
- [14] _____, Lipschitz convergence of Riemannian manifolds, Pacific J. Math.,
 131 (1989), 119–141.
- [15] A. Huber, On subharmonic functions and differential geometry in the large, Comment. Math. Helv., 32 (1957), 13-72.
- [16] _____, Mètrique conformes complètes et singularités de fonctions sousharmoniques, C. R. Acad. Sci., Paris, 260 (1965), 6267-6268.
- [17] A. Kasue, A Laplacian comparison theorem and function theoretic properties of a complete Riemannian manifold, Japan. J. Math., 8 (1982), 309-341.
- [18] _____, Application of Laplacian and Hessian comparison theorems, Advanced Studies in Pure Math., 3. 1984, Geometry of Geodesics and Related Topics, 333-386.
- [19] _____, A compactification of a manifold with asymptotically nonnegative curvature, Ann. Sci. Ecole Norm, Sup. Paris, 21 (1988), 593-622.
- [20] _____, A convergence theorem for Riemannian manifolds and some applications, to appear in Nagoya Math. J., 114 (1989).
- [21] _____, Harmonic functions with growth conditions on a manifold of asymptotically nonnegative curvature I, Geometry and Analysis on Manifolds (Ed. by T. Sunada), Lecture Notes in Math., 1339, Springer-Verlag (1988), 158-181.
- [22] A. Katsuda, Gromov's convergence theorem and its application, Nagoya Math. J., 100 (1985), 11-48.
- [23] J.L. Kazdan, "Parabolicity and the Liouville property on complete Riemannian manifolds", Seminar on New Results in Nonlinear Partial

Differential Equations, A Publication of the Max-Plank-Inst. für Math., Bonn, 1987, pp. 153-166.

- [24] P. Li and L.-F. Tam, Positive harmonic functions on complete manifolds with non-negative curvature outside a compact set, Ann. of Math., 125 (1987), 171-207.
- [25] _____, Symmetric Green's functions on complete manifolds, Amer. J. Math., 109 (1987), 1129-1154.
- [26] K. Shiohama, Total curvature and minimal areas of complete open surfaces, Proc. Amer. Math. Soc., 94 (1985), 310-316.
- [27] V.A. Toponogov, Riemannian spaces which contains straight lines, Amer. Math. Soc. Transl. Ser., 37 (1964), 287-290.
- [28] _____, Riemannian spaces having their curvature bounded below by a positive number, Amer. Math. Soc. Transl. Ser., 37 (1964), 291-336.
- [29] H. Wu, "The Bochner Technique in Differential Geometry", Math. Reports, Horwood Acad. Publ., London, 1987.
- [30] _____, "Some open problems in the study of noncompact Kähler manifolds", Lecture presented at the Kyoto Conference on Geometric Function Theory, September 8, 1978.
- [31] S.-T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math., 28 (1975), 201-228.

Department of Mathematics Osaka University Toyonaka, Osaka 560 Japan