Harmonic Functions with Growth Conditions on a Manifold of Asymptotically Nonnegative Curvature II

Atsushi Kasue

§0. Introduction

According to a theorem due to Greene-Wu [13], a complete connected noncompact Riemannian manifold M abounds harmonic functions so that M can be imbedded properly into some Euclidean space by them. However various problems on harmonic functions on M with specific conditions (e.g., boundedness, positivity, L^{p} integrability, etc.) arise in connection with the geometry of M and in fact they have been investigated by many authors (cf. e.g., [11: Section 11], [23], [29: Section 4,6.4] and the references therein). In the previous paper [21], we have discussed bounded or positive harmonic functions on a manifold of asymptotically nonnegative curvature (which will be defined later), and extended all of the results by Li-Tam $[24 ; 25]$ to such manifolds. The purpose of the present paper is to study harmonic functions with finite growth on a manifold of asymptotically nonnegative curvature and then to verify the results stated in [21] without proofs. To state the main results of the paper, we need some definitions. For a harmonic function h on a complete connected noncompact Riemannian manifold M, we denote by $m_{x}(h, t)$ the maximum of $|h|$ on the metric sphere $S_{t}(x)$ around a point x with radius t. In this note, h is said to be of finite growth, if $\lim \sup m_{x}(h, t) / t^{p}$ is finite for some constant $p>0$. After Abresch $t \rightarrow \infty$
[1], we call M a manifold of asymptotically nonnegative curvature, if the sectional curvature K_{M} of M satisfies:

$$
\begin{equation*}
K_{M} \geq-K \circ r \tag{H.1}
\end{equation*}
$$

where r denotes the distance to a fixed point, say o, of M and $k(t)$ is a nonnegative, monotone nonincreasing continuous function on $[0, \infty)$ such that the integral $\int^{\infty} t k(t) d t$ is finite. In [19], we have constructed
a metric space $M(\infty)$ associated with a manifold M of asymptotically nonnegative curvature. Let us here explain it briefly (see [19] for details). We say two rays σ and γ of M equivalent if $\operatorname{dis}_{M}(\sigma(t), \gamma(t)) / t$, goes to zero as $t \rightarrow \infty$. Define a distance δ_{∞} on the equivalence classes by $\delta_{\infty}([\sigma],[\gamma]):=\lim _{t \rightarrow \infty} d_{t}\left(\sigma \cap S_{t}(o), \gamma \cap S_{t}(o)\right) / t$, where d_{t} stands for the inner (or intrinsic) distance on $S_{t}(o)$ induced from the distance $\operatorname{dis}_{M}($, on M. Then we have a metric space $M(\infty)$ of the equivalence classes of rays with distance δ_{∞} which is independent of the choice of the fixed point o and to which a family of scaled metric spheres $\left\{\frac{1}{t} S_{t}(o)\right\}$ converges with respect to the Hausdorff distance as t goes to infinity. We note that the complement $M-B_{R}(o)$ of a metric ball $B_{R}(o)$ centered at o with large radius R is homeomorphic to $S_{R}(o) \times(R, \infty)$. For simplicity, we call a connected component of $M-B_{R}(o)$ (for large R) an end δ of M. We write $M_{\delta}(\infty)$ for the connected component of $M(\infty)$ corresponding to δ, so that $\left\{\frac{1}{t} S_{t}(o) \cap \delta\right\}$ converges to $M_{\delta}(\infty)$ with respect to the Hausdorff distance as $t \rightarrow \infty$, and then $M_{\delta}(\infty)$ turns out to be a compact inner metric space. Since $\operatorname{Vol}_{m-1}\left(S_{t}(o) \cap \delta\right) / t^{m-1} \quad(m:=\operatorname{dim} M)$ tends to a nonnegative constant as $t \rightarrow \infty$, let us denote the limit by $\operatorname{Vol}\left(M_{\delta}(\infty)\right)$.

In Euclidean space \mathbf{R}^{m}, the harmonic functions of finite growth (harmonic polynomials) form an important subclass which is closely connected to the eigenfunctions of the unit sphere $S^{m-1}(1)\left(=\mathbf{R}^{m}(\infty)\right)$. Moreover if we equip \mathbf{R}^{m} with a complete metric g which is written in the polar coordinates (r, θ) as $g=d r^{2}+r^{2 \alpha} d \theta^{2}(0 \leq \alpha<1)$ for large r, then $\left(\mathbf{R}^{m}, g\right)$ admits no nonconstant harmonic functions of finite growth. In this case, $\left(\mathbf{R}^{m}, g\right)(\infty)$ consists of only one point. We are interested in relationships (if any) between the space of harmonic functions of finite growth on a manifold M of asymptotically nonnegative curvature and the geometry of $M(\infty)$. At this stage, we have rather satisfactory results for the case of $\operatorname{dim} M=2$ and for the case that the sectional curvature of M decays rapidly and the metric balls of M have maximal volume growth (see [3], [4] and the references therein), but for cases without such conditions, little is known. In this paper, we shall prove the following

Theorem A. Let M be a manifold of asymptotically nonnegative curvature. Suppose that M has one end, i.e., $M(\infty)$ is connected. Then:
(i) For a nonconstant harmonic function h on M, one has

$$
\lim _{t \rightarrow \infty} \frac{\log m(h, t)}{\log t} \geq \log \left[\frac{(\exp c(m) \operatorname{diam}(M(\infty))+1}{(\exp c(m) \operatorname{diam}(M(\infty))-1}\right]>0
$$

where $c(m)$ is a positive constant depending only on $m:=\operatorname{dim} M$. In
particular, M has no nonconstant harmonic functions of finite growth if $M(\infty)$ consists of only one point.
(ii) Suppose that $m=2$ and $\operatorname{diam}(M(\infty))>0$. Then for a nonconstant harmonic function h of finite growth, $\log m(h, t) / \log t$ converges to a constant, say $\operatorname{ord}(h)$, as $t \rightarrow \infty$, and $\operatorname{ord}(h)$ is given by $\operatorname{ord}(h)=$ $n \pi / \operatorname{diam}(M(\infty))$ for some positive integer n. Moreover the dimension of the space of harmonic functions h with $\operatorname{ord}(h) \leq n \pi / \operatorname{diam}(M(\infty))$ is equal to $2 n+1$.

It is conjectual that for a manifold of asymptotically nonnegative curvature, the space \mathcal{H}_{p} of harmonic functions h with $\lim \sup m(h, t) / t^{p}$ $<+\infty$ would be of finite dimension for any $p>0$. In Section 3, we shall show a result related to this question. We remark that Kazdan [23] shows an example of a complete, noncompact Riemannian manifold such that it possesses no nonconstant positive harmonic functions, but the dimension of \mathcal{H}_{p} is infinite for any $p>0$. The sectional curvature of his example behaves like $-1 / r^{2} \log r$ for large r.

In case of a complete, connected noncompact Riemannian manifold M with nonnegative Ricci curvature, a theorem due to Cheng [8] says that for a harmonic function h on M, any point x of M, and every $t>0$, $|d h|(x) \leq c(m) m_{x}(h, t) / t$, where $c(m)$ is a constant depending only on $m=\operatorname{dim} M$, and hence h must be constant if h is of sublinear growth, i.e., $\lim _{t \rightarrow \infty} \inf m(h, t) / t=0$ (see also [29: Section 6.4]). Moreover the Cheeger-Gromoll splitting theorem [6] asserts that M as above contains a distance minimizing geodesic $\sigma: \mathbf{R} \rightarrow M$ (which is called a line of M) if and only if M splits isometrically into $\mathbf{R} \times M^{\prime}$. The latter condition is obviously equivalent to saying that M admits a nonconstant totally geodesic function (i.e., a function of vanishing second derivatives). Motivated by these results, we are led to ask whether a nonconstant harmonic function h of linear growth (i.e., $\lim _{t \rightarrow \infty} \sup m(h, t) / t<+\infty$) on such M would be totally geodesic (or equivalently a nonzero d-closed harmonic 1 -form on such M with bounded length would be parallel). It is easy to see that the above question is affirmative in case of $\operatorname{dim} M=$ 2. In fact, since the Gaussian curvature is nonnegative, $|\omega|^{2}$ satisfies: $\Delta|\omega|^{2} \geq 2|\nabla \omega|^{2} \geq 0$. This implies that $|\omega|^{2}$ is a bounded subharmonic function on M, so that $|\omega|^{2}$ must be constant, because M possesses no nonconstant bounded subharmonic functions. Thus ω must be parallel and moreover M is flat. In this paper, we shall answer the above question under stronger conditions. Actually we prove the following

Theorem B. Let M be a complete, connected noncompact Rie-
mannian manifold of nonnegative sectional curvature: $K_{M} \geq 0$. Suppose that K_{M} decays in quadratic order, i.e.,

$$
\begin{equation*}
K_{M} \leq \frac{c}{r^{2}} \tag{H.2}
\end{equation*}
$$

for some positive constant c, where r stands for the distance to a fixed point of M. Then a nonzero d-closed harmonic 1-form on M with bounded length must be parallel. In particular, if M admits a nonconstant harmonic function h of linear growth, then h is totally geodesic and M splits isometrically into $\mathbf{R} \times M^{\prime}$ along the gradient of h.

Theorem A and Theorem B are, respectively, proved in Section 1 and Section 2. In Section 3, other related results are given.

The author would like to thank Prof. H. Wu for drawing his attention to the lecture [30] in which some open problems related to this paper were proposed.

§1. Proof of Theorem A

We shall begin with proving the first assertion of Theorem A. Let h be a nonconstant harmonic function on M. Set $\bar{m}(h, t):=\max \{h(x)$: $\left.x \in S_{t}\right\}$ and $\underline{m}(h, t):=\min \left\{h(x): x \in S_{t}\right\}$, where S_{t} denotes the metric sphere around a fixed point o of M with radius t. Since M has only one end, S_{t} is connected for large t. Hence for large t, we can take two points p_{t} and q_{t} of S_{t} such that $h\left(p_{t}\right)=\bar{m}(h, t)$ and $h\left(q_{t}\right)=\underline{m}(h, t)$, and then join q_{t} to p_{t} by an arc-length parametrized Lipschitz curve $\tau_{t}:\left[0, a_{t}\right] \rightarrow S_{t}$ whose length a_{t} is equal to the inner distance $d_{t}\left(p_{t}, q_{t}\right)$ between p_{t} and q_{t} in S_{t}. Let us fix here a positive integer n which is greater than $\operatorname{diam}(M(\infty))$ and let $p_{t, i}:=\tau_{t}\left(i a_{t} / 3 n\right)(i=0,1, \cdots, 3 n)$. Then we observe that

$$
\begin{align*}
& \limsup _{t \rightarrow \infty} \frac{a_{t}}{t} \leq \operatorname{diam}(M(\infty)) \\
& \limsup _{t \rightarrow \infty} \frac{1}{t} \operatorname{dis}_{M}\left(p_{t, i}, p_{t, i+1}\right) \leq \frac{\operatorname{diam}(M(\infty))}{3 n}<\frac{1}{3} \tag{1.1}
\end{align*}
$$

Since $\bar{m}(h, t)$ is monotone increasing, $\bar{m}(h, 3 t / 2)-h$ is a positive harmonic function on the metric ball $B_{t / 2}\left(p_{t, i}\right)$ around $p_{t, i}$ with radius $t / 2$ (t is assumed to be sufficiently large). Applying a theorem due to ChengYau [9: Theorem 6] to $\bar{m}(h, 3 t / 2)-h$, we have

$$
\bar{m}\left(h, \frac{3}{2} t\right)-h\left(p_{t, i+1}\right) \leq \exp \left\{c_{m}\left(1+t \sqrt{k\left(\frac{t}{2}\right)}\right) \frac{a_{t}}{3 n t}\right\}\left\{\bar{m}\left(h, \frac{3}{2}\right)-h\left(p_{t, i}\right)\right\}
$$

where $k(t)$ is as in (H.1) and c_{m} is a constant depending only on $m:=$ $\operatorname{dim} M$. Note here that $t \sqrt{k(t / 2)}$ goes to zero as $t \rightarrow \infty$ (cf. [1: p.667]). This implies that

$$
\begin{equation*}
\bar{m}\left(h, \frac{3}{2} t\right)-\underline{m}(h, t) \leq \exp \left\{c_{m}\left(1+t \sqrt{k\left(\frac{t}{2}\right)}\right) \frac{a_{t}}{t}\right\}\left\{\bar{m}\left(h, \frac{3}{2} t\right)-\bar{m}(h, t)\right\} \tag{1.2}
\end{equation*}
$$

Moreover since $\underline{m}(h, t)$ is monotone decreasing, $h-\underline{m}\left(h, \frac{3}{2} t\right)$ is a positive harmonic function on $B_{t / 2}\left(p_{t, i}\right)$. Hence by the same reason as above, we have

$$
\begin{equation*}
\bar{m}(h, t)-\underline{m}\left(h, \frac{3}{2} t\right) \leq \exp \left\{c_{m}\left(1+t \sqrt{k\left(\frac{t}{2}\right)}\right) \frac{a_{t}}{t}\right\}\left\{\underline{m}(h, t)-\underline{m}\left(h, \frac{3}{2} t\right)\right\} . \tag{1.3}
\end{equation*}
$$

If we set $\mu(t):=\bar{m}(h, t)-\underline{m}(h, t)$, then it follows from (1.2) and (1.3) that

$$
\mu\left(\frac{3}{2} t\right)+\mu(t) \leq \exp \left\{c_{m}\left(1+t \sqrt{k\left(\frac{t}{2}\right)}\right) \frac{a_{t}}{t}\right\}\left\{\mu\left(\frac{3}{2} t\right)-\mu(t)\right\}
$$

which shows

$$
\begin{equation*}
\mu(t) \leq \frac{\exp \left\{c_{m}(1+t \sqrt{k(t / 2)}) a_{t} / t\right\}-1}{\exp \left\{c_{m}(1+t \sqrt{k(t / 2)}) a_{t} / t\right\}+1} \mu\left(\frac{3}{2} t\right) \tag{1.4}
\end{equation*}
$$

Thus it turns out from (1.1), (1.4) and the standard iteration argument that

$$
\liminf _{t \rightarrow \infty} \frac{\log \mu(t)}{\log t}>\log \left[\frac{\exp \left\{c_{m} \operatorname{diam}(M(\infty))\right\}+1}{\exp \left\{c_{m} \operatorname{diam}(M(\infty))\right\}-1}\right] .
$$

This proves the first assertion of Theorem A.
Let us now prove the second assertion of Theorem A. Since M has finite total curvature: $\int_{M} K_{M} \operatorname{dvol}\left(g_{M}\right)<+\infty$ (cf. [20:Proposition 4.1]), we can apply some of the results by Finn [12] and Huber [15;16] to our manifold M. In fact, it follows from [15] that the end of M is conformally equivalent to the end of \mathbf{C}, to be precise, there is a conformal diffeomorphism $\Psi: M-K \rightarrow \mathbf{C}-D_{R}$ from the complement $M-K$ of a compact set K onto the one of a disk $D_{R}:=\{z \in \mathbf{C}:|z| \leq R\}$. Through the conformal diffeomorphism Ψ, we identify $M-K$ with $\mathbf{C}-D_{R}$ which has the metric $G:=\Psi_{*} g_{M}=e^{2 u} d z d \bar{z}$. Without loss of generality, we may assume that G defines a complete metric on \mathbf{C} with finite total curvature: $\int_{\mathbf{C}} K_{G} \operatorname{dvol}(G)<+\infty$. Denote here by ρ the distance in \mathbf{C} to the origin with respect to G. Then applying Theorems 11 and 13 in
[12] and Théorème 1 in [16] to (\mathbf{C}, G), we get

$$
\begin{align*}
\lim _{x \in M \rightarrow \infty} \frac{\log r(x)}{\log |\Psi(x)|} & =\lim _{z \in \mathbf{C} \rightarrow \infty} \frac{\log \rho(z)}{\log |z|} \tag{1.5}\\
& =1-\frac{1}{2 \pi} \int_{\mathbf{C}} K_{G} \operatorname{dvol}(G)
\end{align*}
$$

We note that

$$
\begin{aligned}
1-\frac{1}{2 \pi} \int_{\mathbf{C}} K_{G} \operatorname{dvol}(G) & =\lim _{t \rightarrow \infty} \frac{\operatorname{Length}\left(S_{t}\right)^{2}}{4 \pi \operatorname{Area}\left(B_{t}\right)} \\
& =\lim _{t \rightarrow \infty} \frac{\operatorname{Area}\left(B_{t}\right)}{\pi t^{2}} \\
& =\lim _{t \rightarrow \infty} \frac{\operatorname{Length}\left(S_{t}\right)}{2 \pi t} \\
& =\frac{1}{\pi} \operatorname{diam}(M(\infty)) \\
& =\chi(M)-\frac{1}{2 \pi} \int_{M} K_{M} \operatorname{dvol}\left(g_{M}\right)
\end{aligned}
$$

(cf. [20: Proposition 4.1], [26]). Let h be a nonconstant harmonic function on M. Since the flux of the restriction of h to $M-K\left(=\mathbf{C}-D_{R}\right)$ vanishes, there exists a harmonic function H on \mathbf{C} such that $|H-h|$ is bounded on $\mathbf{C}-D_{R}$ (cf. [2: Chap.III]). Hence if h is of finite growth, then we have by (1.5) and (1.6)

$$
\begin{equation*}
\operatorname{ord}(h)=\lim _{x \in M \rightarrow \infty} \frac{\log |h(x)|}{\log r(x)}=\frac{n \pi}{\operatorname{diam}(M(\infty))}, \tag{1.7}
\end{equation*}
$$

where $n:=\lim _{|z| \rightarrow \infty} \log |H(z)| / \log |z| \in\{1,2, \cdots\}$. Moreover, for any harmonic function f on $M-K$ the flux of which vanishes, there exists a harmonic function F on M such that $|F-f|$ is bounded on $M-K$ (cf. [2: Chap.III]). Thus it follows from (1.7) that the dimension of harmonic functions h with $\operatorname{ord}(h) \leq n \pi / \operatorname{diam}(M(\infty))$ is equal to $2 n+1$. This completes the proof of the second assertion of Theorem A. //

Remark. As we have seen in the above proof for Theorem A(ii), the same assertion holds for a complete Riemannian manifold of dimension 2 with finite total curvature and one end, if we replace $\operatorname{diam}(M(\infty))$ in the theorem with $\lim _{t \rightarrow \infty} \operatorname{Length}\left(S_{t}\right)^{2} /\left(4 \operatorname{Area}\left(B_{t}\right)\right)\left(=\lim _{t \rightarrow \infty} \operatorname{Area}\left(B_{t}\right) / t^{2}=\right.$ $\left.\lim _{t \rightarrow \infty} \operatorname{Length}\left(S_{t}\right) / 2 t=\chi(M)-\frac{1}{2 \pi} \int_{M} K_{M}\right)$.

Let us now conclude this section with a corollary and a remark on it.

Corollary. Let M be a complete connected noncompact Riemannian manifold such that the sectional curvature is bounded from below by $c / r^{2} \log r$ outside a compact set, where c is a positive constant and r is the distance to a fixed point of M. Then M has no nonconstant harmonic functions of finite growth, if M has only one end.

Proof. This follows immediately from Theorem A(i), because $M(\infty)$ consists of only one point (cf. [19: Proposition 5.2]).

Remark. In the above corollary, if M has more than one end, then M may admit nonconstant bounded harmonic functions. Actually, it is easy to construct such manifolds.

§2. Proof of Theorem B

The purpose of this section is to show Theorem B. To begin with, we shall prove the following

Lemma 2.1. Let N be a complete connected Riemannian manifold of nonnegative sectional curvature. Let h be a nonconstant harmonic function on the Riemannian product $\mathbf{R} \times N$ with $\sup |d h|<+\infty$, and let t be the projection : $\mathbf{R} \times N \rightarrow \mathbf{R}$. Then $\langle d t, d h\rangle$ is constant on $\mathbf{R} \times N$ and the restriction of h to $\{t\} \times N$ is harmonic on $\{t\} \times N$. In particular, if N is compact, then $h=c t$ for some constant c.

Proof. Since $\langle d t, d h\rangle$ is a bounded harmonic function on $\mathbf{R} \times N$, $\langle d t, d h\rangle$ must be constant (cf. Yau [31]), so that, in particular, the derivative of $\langle d t, d h\rangle$ in the direction of grad t vanishes identically. This shows that the restriction of h to $\{t\} \times N$ is harmonic. This completes the proof of Lemma 2.1. //

Lemma 2.2. Let M be a complete, connected noncompact Riemannian manifold of nonnegative sectional curvature. Suppose M admits a nonconstant harmonic function h which satisfies:

$$
\begin{align*}
& |d h|(x) \longrightarrow c_{1}, \tag{2.1}\\
& r(x)|\nabla d h|(x) \longrightarrow 0 \tag{2.2}
\end{align*}
$$

as $x \in M$ goes to infinity, where c_{1} is a positive constant and $r(x)$ denotes as usual the distance to a fixed point of M. Then the second
derivative $\nabla d h$ of h vanishes identically and moreover M splits isometrically into $\mathbf{R} \times M^{\prime}$ along the gradient vector ∇h of h.

Proof. According to the splitting theorem by Toponogov [27], M has one end (namely, M is connected at infinity) or M is isometric to $\mathbf{R} \times M^{\prime}$, where M^{\prime} is compact. If the latter case occurs, then Lemma 2.2 is obvious (cf. Lemma 2.1). Hence in what follows, we assume that M has one end, and further that c_{1} is equal to 1 for simplicity. Define a vector field Λ on the open set $U:=\{x \in M: \nabla h(x) \neq 0\}$ by $\Lambda:=\nabla h /|\nabla h|^{2}$, and for a point $x \in U$, denote by $\lambda_{x}(t)\left(-\infty \leq \underline{\tau}_{x}<t<\bar{\tau}_{x} \leq+\infty\right)$ the maximal integral curve of Λ such that $\lambda_{x}(0)=x$. Then by (2.1), it is not hard to see that for some point $x \in U$, the integral curve $\lambda_{x}(t)$ is defined for all t and the length is bounded away from zero. We fix such a point x. Now we claim first that

$$
\begin{equation*}
\lim _{t \rightarrow \pm \infty} \frac{1}{|t|} \operatorname{dis}_{M}\left(x, \lambda_{x}(t)\right)=1 \tag{2.3}
\end{equation*}
$$

In fact, let $\sigma_{t}:\left[0, a_{t}\right] \rightarrow M$ be a distance minimizing geodesic joining $x=\sigma_{t}(0)$ with $\lambda_{x}(t)=\sigma_{t}\left(a_{t}\right)\left(a_{t}:=\operatorname{dis}_{M}\left(x, \lambda_{x}(t)\right)\right)$. Consider the case: $t>0$. Then we have

$$
\begin{aligned}
t & =h\left(\lambda_{x}(t)\right)-h(x)=h\left(\sigma_{t}\left(a_{t}\right)\right)-h\left(\sigma_{t}(0)\right) \\
& =\int_{0}^{a_{t}}<\nabla h, \dot{\sigma}_{t}(s)>d s<a_{t}
\end{aligned}
$$

since $|\nabla h|^{2}$ is subharmonic (i.e., $\Delta|\nabla h|^{2}=2|\nabla d h|^{2}+2 \operatorname{Ric}_{M}(\nabla h, \nabla h) \geq$ $0)$ and so $|\nabla h|<\sup |\nabla h|=1$. On the other hand, we get

$$
\begin{aligned}
a_{t} & \leq \text { the length of } \lambda_{x \mid[0, t]} \\
& =\int_{0}^{t} \frac{1}{|\nabla h|\left(\lambda_{x}(s)\right)} d s
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
1 \leq & \liminf _{t \rightarrow \infty} \frac{a_{t}}{t} \leq \lim \sup _{t \rightarrow \infty} \frac{a_{t}}{t} \leq \\
& \quad \limsup _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} \frac{1}{|\nabla h|\left(\lambda_{x}(s)\right)} d s \leq \lim _{t \rightarrow \infty} \sup \frac{1}{|\nabla h|\left(\lambda_{x}(t)\right)}=1
\end{aligned}
$$

Thus we have shown (2.3) in case: $t>0$. The same argument can be applied to the case: $t<0$.

Let us next claim

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t} \operatorname{dis}_{M}\left(\lambda_{x}(t), \lambda_{x}(-t)\right)=2 \tag{2.4}
\end{equation*}
$$

In fact, let $\eta_{t}:\left[0, b_{t}\right] \rightarrow M$ be a distance minimizing geodesic joining $\eta_{t}(0)=\lambda_{x}(-t)$ with $\eta_{t}\left(b_{t}\right)=\lambda_{x}(t)$. Then by (2.3), we have
(2.5) $\underset{t \rightarrow \infty}{\lim \sup } \frac{b_{t}}{t} \leq \limsup _{t \rightarrow \infty} \frac{1}{t}\left\{\operatorname{dis}_{M}\left(x, \lambda_{x}(t)\right)+\operatorname{dis}_{M}\left(x, \lambda_{x}(-t)\right)\right\}=2$.

On the other hand, if $\operatorname{dis}_{M}\left(x, \eta_{t}\left(\left[0, b_{t}\right]\right)\right) / t=\operatorname{dis}_{M}\left(x, \eta_{t}\left(c_{t}\right)\right) / t$ tends to zero as $t \rightarrow+\infty$, then we have

$$
\begin{align*}
\liminf _{t \rightarrow+\infty} \frac{b_{t}}{t} \geq & \liminf _{t \rightarrow+\infty} \frac{1}{t}\left\{\operatorname{dis}_{M}\left(x, \lambda_{x}(t)\right)-\operatorname{dis}_{M}\left(x, \eta_{t}\left(c_{t}\right)\right)\right\}+ \\
& \liminf _{t \rightarrow+\infty} \frac{1}{t}\left\{\operatorname{dis}_{M}\left(x, \lambda_{x}(-t)\right)-\operatorname{dis}_{M}\left(x, \eta_{t}\left(c_{t}\right)\right)\right\} \tag{2.6}\\
= & 2
\end{align*}
$$

Moreover if $\operatorname{dis}_{M}\left(x, \eta_{t(i)}\left(c_{t(i)}\right)\right) / t(i)>d>0$ for some divergent sequence $\{t(i)\}$ and a positive constant d, then by the assumption (2.2), we have

$$
\begin{equation*}
\left|\nabla d h\left(\dot{\eta}_{t(i)}(s), \dot{\eta}_{t(i)}(s)\right)\right| \leq \frac{\delta(d t(i))}{d t(i)} \quad\left(0 \leq s \leq b_{t(i)}\right) \tag{2.7}
\end{equation*}
$$

where $\delta(u)$ goes to zero as $u \rightarrow+\infty$. Hence we get

$$
\begin{aligned}
2 & =\frac{1}{t(i)} \int_{0}^{b_{t(i)}} \frac{d}{d s} h\left(\eta_{t(i)}(s)\right) d s \\
& =\frac{1}{t(i)}\left(\int_{0}^{b_{t}(i)} \int_{0}^{s} \nabla d h\left(\dot{\eta}_{t(i)}(u), \dot{\eta}_{t(i)}(u)\right) d u d s+b_{t(i)}\left\langle\nabla h, \dot{\eta}_{t(i)}(0)\right\rangle\right) \\
& \leq \frac{\delta(d t(i))}{2 d}\left(\frac{b_{t(i)}}{t(i)}\right)^{2}+\left(\frac{b_{t(i)}}{t(i)}\right) \quad(\text { by }(2.7) \text { and }|\nabla h|<1)
\end{aligned}
$$

This shows that

$$
\begin{equation*}
\lim _{t(i) \rightarrow+\infty} \frac{b_{t(i)}}{t(i)} \geq 2 \tag{2.8}
\end{equation*}
$$

Thus (2.4) follows from (2.5), (2.6) and (2.8).
We are now in a position to complete the proof of Lemma 2.2. Let $\sigma_{t}:\left[0, a_{t}\right] \rightarrow M, \sigma_{-t}:\left[0 . a_{-t}\right] \rightarrow M$, and $\eta_{t}:\left[0, b_{t}\right] \rightarrow M$ be as above. For each $(s, u)\left(0 \leq s \leq a_{t}, 0 \leq u \leq a_{-t}\right)$, let $\Delta_{t}(s, u)$ be the triangle sketched on \mathbf{R}^{2} whose edge lengths are s, u, and $\operatorname{dis}_{M}\left(\sigma_{t}(s), \sigma_{-t}(u)\right)$, and denote by $\theta_{t}(s, u)$ the angle of $\Delta_{t}(s, u)$ opposite to the edge of length $\operatorname{dis}_{M}\left(\sigma_{t}(s), \sigma_{-t}(u)\right)$. Then by a theorem due to Toponogov [28: Lemma

19], we see that $\theta_{t}(s, u) \leq \theta_{t}\left(s^{\prime}, u^{\prime}\right)$ if $s^{\prime} \leq s$ and $u^{\prime} \leq u$. Note that by (2.4)

$$
\lim _{t \rightarrow+\infty} \theta_{t}\left(a_{t}, a_{-t}\right)=\pi
$$

This shows that for any $s, u \in(0, \infty)$, we have

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \theta_{t}(s, u)=\pi \tag{2.9}
\end{equation*}
$$

If we take a divergent sequence $\{t(i)\}$ such that $\sigma_{t(i)}$ (resp. $\sigma_{-t(i)}$) converges to a ray $\sigma_{\infty}:[0, \infty) \rightarrow M$ (resp., a ray $\dot{\sigma}_{-\infty}:[0, \infty) \rightarrow M$) starting at x, and if we define a curve $\xi: \mathbf{R} \rightarrow M$ by $\xi(t)=\sigma_{\infty}(t)$ for $t \geq 0$ and $\xi(t)=\sigma_{-\infty}(-t)$ for $t \leq 0$, then it turns out from (2.9) that ξ is a line, namely, ξ is a distance minimizing geodesic defined on \mathbf{R}. Thus it follows from the Toponogov splitting theorem that M is isometric to $\xi(\mathbf{R}) \times M^{\prime}$. Now it is clear from Lemma 2.1 and the above construction of the line ξ that for some constant $c, h\left(\left(t, x^{\prime}\right)\right)=t+c$ on $M=\xi(\mathbf{R}) \times M^{\prime}$. This completes the proof of Lemma 2.2.

Finally we need the following
Lemma 2.3. Let M and ω be as in Theorem B. Then $|\omega|(x)$ tends to a constant $c_{1}>0$ and $r(x)|\nabla \omega|(x)$ converges to zero, as $x \in M$ goes to infinity, where $r(x)$ denotes the distance to a fixed point, say o of M.

Proof. We first observe that $|\omega|^{2}$ is subharmonic on M, by the Weitzenböck's formula:

$$
\begin{equation*}
\Delta|\omega|^{2}=2|\nabla \omega|^{2}+2 \operatorname{Ric}_{M}\left(\omega^{\#}, \omega^{\#}\right) \tag{2.10}
\end{equation*}
$$

($\omega^{\#}:=$ the dual vector field of ω). Set $m(t):=$ the maximum of $|\omega|$ on the metric sphere S_{t} around o with radius t. Then it follows from the maximum principle for subharmonic functions that $m(t)$ is nondecreasing, and hence $m(t)$ converges to a positive constant c_{2} as t goes to infinity. For the sake of simplicity, we assume that $c_{2}=1$. Let us here take points $\left\{x_{t}\right\}$ of M such that $x_{t} \in S_{t}$ and $|\omega|\left(x_{t}\right)$ converges to 1 as $t \rightarrow \infty$. Choosing an orthonormal basis of the tangent space $T_{x_{t}} M$ of M at each x_{t}, we identify $T_{x_{t}} M$ with Euclidean space \mathbf{R}^{m}, and write \mathbf{B}_{R} for the ball of \mathbf{R}^{m} around the origin with radius R. Then by the assumption (H.2) in Theorem B, we can fix a sufficienty small constant $a>0$ so that for each x_{t}, the restriction Ψ_{t} of the exponential map $\exp _{x_{t}}: \mathbf{R}^{m}\left(=T_{x_{t}} M\right) \rightarrow M$ to $\mathbf{B}_{a t}$ induces a smooth map of maximal rank from $\mathbf{B}_{a t}$ onto the metric ball $B_{a t}\left(x_{t}\right)$ of M around x_{t} with radius at. Define a family of Riemannian metrics $\left\{g_{t}\right\}$ on \mathbf{B}_{a} by
$g_{t}:=\frac{1}{t^{2}} \Psi_{t}^{*} g_{M}$, where g_{M} denotes the Riemannian metric on M. Then (H.2) implies that the sectional curvature of g_{t} is bounded uniformly in t. Hence, choosing a smaller constant a if necessarily and taking harmonic coordinates appropriately around the origin with respect to g_{t}, we can see that the coefficients of g_{t} (with respect to the harmonic coordinates) have $C^{1, \alpha}$-Hölder norms $(0<\alpha<1)$ and $W^{2, p}$-Sobolev norms bounded uniformly in t (cf. e.g., [14], [20]). Thus we can assert that
:for any divergent sequence $\{t(i)\}$, there exists a subsequence $\{t(j)\}$ of $\{t(i)\}$ such that $g_{t(j)}$ converges to $C^{1, \alpha}$ Riemannian metric g_{∞} on \mathbf{B}_{a} in the $C^{1, \alpha}$-norm with respect to the harmonic coordinates. Moreover the coefficients of g_{∞} belong to the Sobolev space $W^{2, p}(p \geq 1)$.

Let us now define a family of 1-forms ω_{t} on \mathbf{B}_{a} by $\omega_{t}:=\frac{1}{t} \Psi_{t}^{*} \omega$. Then ω_{t} is a d-closed harmonic 1 -form such that the length $\left|\omega_{t}\right|$ (with respect to g_{t}) satisfies: $\left|\omega_{t}\right|<1$ and $\left|\omega_{t}(o)\right| \rightarrow 1$ as $t \rightarrow \infty$. Since \mathbf{B}_{a} is simply connected, there exists a smooth function h_{t} on \mathbf{B}_{a} with $\omega_{t}=d h_{t}$. Here we may assume that $h_{t}(o)=0$. Hence $\left|h_{t}\right|$ is bounded uniformly in t. Moreover since the coefficients of g_{t} (with respect to the harmonic coordinates) have bounded $C^{1, \alpha}$-norms uniformly in t, it follows from the a priori estimates that the $C^{2, \alpha}$-norms of h_{t} is bounded uniformly in t. Thus by (2.11), we see that for any divergent sequence $\{t(i)\}$, there exists a subsequence $\{t(j)\}$ such that in the $C^{2, \alpha}$-norm (with respect to the harmonic coordinates), $h_{t(j)}$ converges to a $C^{2, \alpha}$ function h_{∞} which is harmonic with respect to g_{∞}. We put here $\omega_{\infty}:=d h_{\infty}$. Then the length $\left|\omega_{\infty}\right|$ (with respect to g_{∞}) satisfies: $\left|\omega_{\infty}\right| \leq 1$ and $\left|\omega_{\infty}\right|(o)=1$. Since $\left|\omega_{t}\right|^{2}$ is subharmonic (with respect to g_{t}), so is $\left|\omega_{\infty}\right|^{2}$ (with respect to g_{∞}). Hence applying the maximum principle to $\left|\omega_{\infty}\right|^{2}$, we see that $\left|\omega_{\infty}\right|$ is constantly equal to 1 . Noting that (2.10) holds for each ω_{t}, and $\omega_{t(j)}$ (resp. $g_{t(j)}$) converges to ω_{∞} (resp. g_{∞}) in the $C^{1, \alpha}$-norm as $t(j) \rightarrow \infty$, we have the identity (2.10) for ω_{∞} in a weak sense. Namely, for any smooth function η with compact support in \mathbf{B}_{a},

$$
\begin{align*}
& \int g_{\infty}\left(d\left|\omega_{\infty}\right|^{2}, d \eta\right) \operatorname{dvol}\left(g_{\infty}\right) \tag{2.12}\\
& \quad=-2 \int\left\{\left|\nabla_{\infty} \omega_{\infty}\right|^{2}+\operatorname{Ric}_{\infty}\left(\omega_{\infty}^{\#}, \omega_{\infty}^{\#}\right)\right\} \eta \operatorname{dvol}\left(g_{\infty}\right)
\end{align*}
$$

Here we have used the fact that g_{∞} has the Ricci tensor Ric m $_{\infty}$ in the L^{p}-sense $(p \geq 1)$ and the Ricci tensor $\operatorname{Ric}_{t(j)}$ of $g_{t(j)}$ converges weakly
to $\operatorname{Ric}_{\infty}$ as $t(j) \rightarrow \infty$. Since the left-hand side of (2.12) vanishes, we see that $\left|\nabla_{\infty} \omega_{\infty}\right|^{2}+\operatorname{Ric}_{\infty}\left(\omega_{\infty}^{\#}, \omega_{\infty}^{\#}\right)=0$ almost everywehre and hence ω_{∞} is parallel. Thus we have shown that if we take points $x_{t} \in S_{t}$ with $\lim _{t \rightarrow \infty}|\omega|\left(x_{t}\right)=1$, then

$$
\begin{align*}
& \max \left\{1-|\omega|(x): x \in B_{a t}\left(x_{t}\right)\right\} \longrightarrow 0 \\
& \max \left\{r(x)|\nabla \omega|(x): x \in B_{a t}\left(x_{t}\right)\right\} \longrightarrow 0 \tag{2.13}
\end{align*}
$$

as t goes to infinity. Since the diameter of S_{t} with respect to the inner distance on S_{t} is bounded by $b t$ for some constant $b,(2.13)$ proves Lemma 2.3. //

We are now in a position to complete the proof of Theorem B. Let M and ω be as in Theorem B, and let $\Pi: \widetilde{M} \rightarrow M$ be the universal covering of M. Set $\widetilde{\omega}:=\Pi^{*} \omega$. Then there is a harmonic function h on \widetilde{M} which satisfies: $\widetilde{\omega}=d h$. Therefore if the fundamental group $\pi_{1}(M)$ of M is finite, then \widetilde{M} also satisfies assumption (H.2), and hence by Lemmas 2.2 and $2.3, \nabla d h$ vanishes identically and \widetilde{M} splits isometrically into $\mathbf{R} \times M^{\prime}$ along the gradient ∇h of h. Moreover in this case, M^{\prime} is flat, because the sectional curvature of M decays to zero. We shall now consider the case that $\pi_{1}(M)$ is infinite. Let Σ be a soul of M (i.e., a compact, totally geodesic and totally convex submanifold of M). Then by Theorem 9.1 in [7], $\widetilde{\Sigma}:=\Pi^{-1}(\Sigma)$ splits isometrically into $\mathbf{R}^{k} \times \widetilde{\Sigma}_{o}$, where $\widetilde{\Sigma}_{o}$ is a compact simply connected manifold of nonnegative curvature and furthermore $k \geq 1$, because $\pi_{1}(M)=\pi_{1}(\Sigma)$ is infinite. Hence \widetilde{M} is isometric to the Riemannian product $\mathbf{R}^{k} \times \widetilde{M}_{o}$ of Euclidean space \mathbf{R}^{k} and a complete, noncompact simply connected manifold \widetilde{M}_{o} with nonnegative sectional curvature. We observe here that the sectional curvature of \widetilde{M}_{o} decays in quadratic order, since \widetilde{M}_{o} is compact. Now it follows from Lemma 2.1 that the restriction \tilde{h} of h to $\{0\} \times \widetilde{M}_{o}$ is constant or it gives a nonconstant harmonic function on \widetilde{M}_{o}, the gradient of which has bounded length. If the former case occurs, then it is clear that h is totally geodesic. When the latter case occurs, we can apply Lemmas 2.2 and 2.3 and show that h is totally geodesic. This completes the proof of Theorem B. //

Corollary. Let M be as in Theorem B. Suppose that the Ricci curvature of M is positive somewhere. Then any d-closed harmonic 1form with bounded length must be zero.

Proof. This is clear from the above proof of Theorem B. //

§3. Some other results

Let M be a manifold of asymptoticallty nonnegative curvature. In this section, we shall make some observations on the asymptotic behavior of harmonic functions on M with finite growth and then that of the Green function on M, under certain additional conditions. Throughout this section, the dimension m of M is assumed to be greater than two. First we recall the following

Fact 3.1 (cf. [20: Lemma 2.3]). Let M be as above and δ an end of M. Suppose that the sectional curvature K_{M} of M decays in quadratic order on the end δ, i.e.,

$$
\begin{align*}
& K_{M} \leq \frac{c}{r^{2}} \text { on } \delta, \quad \text { and } \tag{3.1}\\
& \mathcal{V} \circ \ell\left(M_{\delta}(\infty)\right)>0 \tag{3.2}
\end{align*}
$$

where c is a positive constant and r denotes the distance to a fixed point of M. Then :
(i) $M_{\delta}(\infty)$ is a compact, connected smooth manifold with $C^{1, \alpha}$ Riemannian metric $g_{\infty}(0<\alpha<1)$.
(ii) Fix two positive numbers a, b with $a>b$, and set $A_{t}(a, b):=$ $\{x \in M: b<r(x) / t<a\}$ for $t>0$. If t is sufficienty large, then there exists a $C^{2, \alpha}$ diffeomorphism Π_{t} from $A_{t}(a, b) \cap \delta$ into the cone $\mathcal{C}\left(M_{\delta}(\infty)\right)$ over $M_{\delta}(\infty)$ (i.e., $\left.\mathcal{C}\left(M_{\delta}(\infty)\right):=(0, \infty) \times_{t^{2}} M_{\delta}(\infty)\right)$ which has the following properties: as t goes to infinity, $\Pi_{t}\left(A_{t}(a, b) \cap \delta\right)$ converges to $(b, a) \times M_{\delta}(\infty)$ and $\frac{1}{t^{2}} \Pi_{t *} g_{M}$ also converges to the metric $d t^{2}+t^{2} g_{\infty}$ in $C^{1, \alpha^{\prime}}$ topology $\left(0<\alpha^{\prime}<\alpha<1\right)$. Here g_{M} stands for the Riemannian metric of M.

Let us now prove the following
Proposition C. Let M be a manifold of asymptotically nonnegative curvature and δ an end of M. Suppose (3.1) and (3.2) hold for the end δ. Then if there exists a harmonic function h defined on δ such that $0<\lim _{X \in \delta \rightarrow \infty} \sup _{X}|h(x)| / r(x)^{p}<+\infty$ for some positive constant p, then $p(p+m-2)(m:=\operatorname{dim} M \geq 3)$ is an eigenvalue of $M_{\delta}(\infty)$. Moreover $p \geq 1$ and if $p=1$, then $M_{\delta}(\infty)$ is isometric to the $(m-1)$-sphere $S^{m-1}(1)$ of constant curvature 1.

To prove Proposition C, we need the following
Fact 3.2. Let h be a nonconstant harmonic function on the cone $\mathcal{C}\left(M_{\delta}(\infty)\right)\left(=(0, \infty) \times t^{2} M_{\delta}(\infty)\right)$ over $M_{\delta}(\infty)$ such that $|h(t, \theta)| / t^{p}$ is
bounded on $\mathcal{C}\left(M_{\delta}(\infty)\right)$ for some $p>0$. Then $\lambda:=p(p+m-2)$ is equal to an eigenvalue of $M_{\delta}(\infty)$ and $h(t, \theta) / t^{p}$ defines an eigenfunction of $M_{\delta}(\infty)$ with eigenvalue λ.

Proof. For the convenience of the reader, we shall give a proof of the fact. Let $\phi(s, \theta)(s=\log t)$ be a function on $\mathbf{R} \times M_{\delta}(\infty)$ defined by $\phi(s, \theta):=\mathrm{e}^{-p s} h\left(\mathrm{e}^{s}, \theta\right)$. Then ϕ satisfies:

$$
\frac{\partial^{2} \phi}{\partial s^{2}}+(2 p+m-2) \frac{\partial \phi}{\partial s}+p(p+m-2) \phi+\triangle_{\infty} \phi=0
$$

where Δ_{∞} denotes the Laplacian on $M_{\delta}(\infty)$. Let $\left\{\mu_{i}\right\}_{i=1,2, \ldots}: \mu_{1} \leq$ $\mu_{2} \leq \ldots$ be the eigenvalues of $M_{\delta}(\infty)$ and $\left\{E_{i}(\theta)\right\}_{i=12, \ldots .}$ an orthonormal system of eigenfunctions on $M_{\delta}(\infty)$ corresponding to $\left\{\mu_{i}\right\}$. Set $\phi_{i}(s):=$ $\int_{M_{\delta}(\infty)} \phi(s, \theta) E_{i}(\theta) \operatorname{dvol}\left(g_{\infty}\right)(i=1,2, \ldots)$. Then ϕ_{i} obeys the following ordinary differential equation on \mathbf{R} :

$$
\phi_{i}^{\prime \prime}+(2 p+m-2) \phi_{i}^{\prime}+\left(p(p+m-2)-\mu_{i}\right) \phi_{i}=0
$$

Since $|h(s, \theta)| / t^{p}$ is bounded, so is $|\phi(s, \theta)|$. Hence each ϕ_{i} is also bounded. Then it turns out that ϕ_{i} is equal to a constant a_{i} which is zero unless $\mu_{i}=p(p+m-2)$, so that $\phi(s, \theta)=\sum_{i} a_{i} E_{i}(\theta)$, where the summation is taken over the indices i 's with $\mu_{i}=p(p+m-2)$. This proves Fact 3.2. //

Proof of Proposition C. Let M, h and p be as in the proposition. Let us first fix a positive integer n and a sufficiently large R for a while, and define a function h_{R} on $\Pi_{R}\left(A_{R}\left(n, n^{-1}\right)\right)\left(\subset \mathcal{C}\left(M_{\delta}(\infty)\right)\right.$ by $h_{R}:=h \circ \Pi_{R}^{-1} / R^{p}$, where Π_{R} and A_{R} are as in Fact 3.1. Then h_{R} is harmonic with respect to the metric $\frac{1}{R^{2}} \Pi_{R *} g_{M}$. Moreover since $\mu:=$ $\lim \sup |h|(x) / r^{p}(x)$ is finite $\left|h_{R}\right|$ is bounded from above by $c n^{p}$ for some $x \in \delta \rightarrow \infty$
positive constant c independent of R and n. Thus it follows from Fact 3.1 and the a priori estimates that the $C^{2, \alpha}$-Hölder norm of h_{R} is bounded uniformly in R. Let us take here a divergence sequence $\{R(i)\}$ such that $\max \left\{|h(x)|: x \in S_{R(i)} \cap \delta\right\} / R(i)^{p}$ converges to $\mu>0$ as $R(i)$ goes to infinity. Then we can take inductively a subsequence $\{R(n, j)\}$ of $\{R(i)\}$ so that $\{R(n+1, j)\} \subset\{R(n, j)\}$ and as $j \rightarrow \infty, h_{R(n, j)}$ converges to a harmonic function h_{n} on $A_{\infty}\left(n, n^{-1}\right):=\left\{(t, \theta) \in \mathcal{C}\left(M_{\delta}(\infty)\right): n^{-1}<t<n\right\}$ in the $C^{2, \alpha}$-Hölder norm. Note that h_{n} satisfies: $\left|h_{n}(t, \theta)\right| \leq c t^{p}$ on $A_{\infty}\left(n, n^{-1}\right)$. Hence if we set $h_{\infty}:=h_{n}$ on $A_{\infty}\left(n, n^{-1}\right)$, then we get a harmonic function h_{∞} on $\mathcal{C}\left(M_{\delta}(\infty)\right)$ such that $\left|h_{\infty}(t, \theta)\right| \leq c t^{p}$. By the choice of $\{R(i)\}$, we see that h_{∞} does not vanish identically. Thus it
turns out from Fact 3.2 that $\lambda:=p(p+m-2)$ must be an eigenvalue of $M_{\delta}(\infty)$ and $h_{\infty}(t, \theta) / t^{p}$ gives an eigenfunction on $M_{\delta}(\infty)$ with the eigenvalue λ. Finally the remaining assertion of Proposition C follows from Lemma 3.3 below. //

Lemma 3.3. The first eigenvalue μ_{1} of $M_{\delta}(\infty)$ is greater than or equal to $m-1$. Moreover if $\mu_{1}=m-1$, then $M_{\delta}(\infty)$ is isometric to the ($m-1$)-sphere $S^{m-1}(1)$ of constant curvature 1 .

Proof. Let $\Pi_{t}: A_{t}(a, b) \rightarrow \mathcal{C}\left(M_{\delta}(\infty)\right)$ be as in Fact 3.1. Set $M_{t}:=$ $\Pi_{t}^{-1}\left(\{1\} \times M_{\delta}(\infty)\right)$. Then we observe that the sectional curvature K_{t} of M_{t} satisfies: $1-\varepsilon_{1}(t) \leq K_{t} \leq 1+\varepsilon_{1}(t)+\kappa_{\delta}$, where $\varepsilon_{1}(t)>0$ goes to zero as $t \rightarrow \infty$ and $\kappa_{\delta}:=\lim _{x \in \delta \rightarrow \infty} \sup r(x)^{2} K_{M}(x)$. Let $\mu_{t, 1}$ be the first eigenvalue of M_{t}. Then applying the Lichnerowicz' theorem (cf. [10]) to M_{t}, we see that $\mu_{t, 1} \geq(m-1)-\varepsilon_{2}(t)$, where $\varepsilon_{2}(t)>0$ tends to zero as $t \rightarrow \infty$. This implies that $\mu_{1} \geq(m-1)$. Suppose that $\mu_{1}=(m-1)$. Then the diameter of $M_{\delta}(\infty)$ must take the maximum value π. In fact if the diameter is less than π, then the diameter of M_{t} is less than $\pi-\varepsilon_{3}$ for large t and some positive constant ε_{3}. It follows now from [10] that $\mu_{t, 1} \geq(m-1)+\varepsilon_{4}$ for large t and some positive constant ε_{4}. This is a contradiction. Thus $M_{\delta}(\infty)$ has the maximum diameter π, so that the volume of $M_{\delta}(\infty)$ must be equal to the volume of $S^{m-1}(1)$ (cf. [18: Theorem 4.1] or [5]). Then it turns out from a theorem by Katsuda [22] that the Hausdorff distance between $M_{\delta}(\infty)$ and $S^{m-1}(1)$ is equal to zero, namely, $M_{\delta}(\infty)$ is isometric to $S^{m-1}(1)$. This completes the proof of Lemma 3.3. //

Let us now show a proposition on the minimal positive Green function $G(x, y)$ on $M \times M$. According to Li-Tam [24], we call an end δ of M large (resp., small) if the integral $\int^{\infty} t V_{\delta}(t)^{-1} d t$ is finite (resp., infinite), where $V_{\delta}(t):=\operatorname{Vol}_{m}\left(B_{t} \cap \delta\right)$. Suppose that M has at least one large end δ. Then based on some of the results in [19] and the arguments in [24;25], we have shown in [21] the following results:
(3.3) There exists a unique positive harmonic function h_{δ} on M such that $\lim _{x \in \delta \rightarrow \infty} h_{\delta}(x)=1$ and $\lim _{y \in \delta^{\prime} \rightarrow \infty} h_{\delta^{\prime}}(y)=0$ for another large end δ^{\prime} (if any).
(3.4) There exists a unique minimal positive Green function $G(x, y)$ on $M \times M$ such that

$$
G(x, y) \leq c(x) \int_{\operatorname{dis}_{M}(x, y)}^{\infty} \frac{t}{V_{\delta}(t)} d t
$$

for all $y \in \delta-B_{R(x)}$, and $G(x, y) \longrightarrow c(x, \mathcal{D})$ as $y \in \mathcal{D} \longrightarrow+\infty$ for a small end \mathcal{D} (if any). Here the constants $R(x), C(x)$ and $C(x, \mathcal{D})$ are positive constants depending on the quantities in parentheses.

We remark that the value $h_{\delta}(x)$ of the function h_{δ} at a point x is equal to the hitting probability of the paths starting at x to the large end δ. Moreover as we mentioned in [21], we see that if $G(x, y)$ $/ \int_{\operatorname{dis}_{M}(x, y)}^{\infty} m^{-1} t V_{\delta}(t)^{-1} d t$ converges to $h_{\delta}(x)$ as $y \in \delta$ goes to infinity for some x, then this holds for all $x \in M$. It is unclear whether the limit should exist and be equal to $h_{\delta}(x)$ for some x. The following proposition answers this question partially.

Proposition D. Let M be an m-dimensional manifold of asymptotically nonnegative curvature which has at least one large end δ. Suppose (3.1) and (3.2) hold for δ. Then for any point x of M, one has

$$
\frac{G(x . y)}{\int_{\operatorname{dis}_{M}(x, y)} \frac{t}{m V_{\delta}(t)} d t} \longrightarrow h_{\delta}(x)
$$

as $y \in \delta$ goes to infinity. In particular, in this case, one has

$$
G(x, y) \operatorname{dis}_{M}(x, y)^{m-2} \longrightarrow \frac{h_{\delta}(x)}{(m-2) \operatorname{Vol}\left(M_{\delta}(\infty)\right)}
$$

as $y \in \delta$ goes to infinity.
Proof. We fix a point x of M. We first observe that for some positive constants c_{1} and c_{2},

$$
\begin{equation*}
c_{1} \leq G(x, y) \operatorname{dis}_{M}(x, y)^{m-2} \leq c_{2} \tag{3.5}
\end{equation*}
$$

on δ. The first inequality is a consequence of the assumption that M has asymptotically nonnegative curvature (cf. [17: Theorem 4.3]) and the second one follows from (3.4). Set $G_{R}(y):=R^{m-2} G(x, y)$. Then by the same argument as in the proof of Proposition C, we see that given a divergent sequence $\{R(i)\}$, there exists a subsequence $\{R(j)\}$ for which $G_{R(j)}$ converges as $j \rightarrow \infty$ to a harmonic function G_{∞} on compact sets of the cone $\mathcal{C}\left(M_{\delta}(\infty)\right)=(0, \infty) \times{ }_{t^{2}} M_{\delta}(\infty)$ in the $C^{2, \alpha}$ Hörder norm. By (3.5), we have

$$
c_{1} \leq G_{\infty}(t, \theta) t^{m-2} \leq c_{2}
$$

for any $(t, \theta) \in \mathcal{C}\left(M_{\delta}(\infty)\right)$. Moreover it turns out from the same argument as in Lemma 3.2 that $G_{\infty}(t, \theta) t^{m-2}$ is in fact a constant, say c_{3}. Then it is not hard to see that the constant c_{3} is given by
$c_{3}(m-2) \mathcal{V}_{o} \ell\left(M_{\delta}(\infty)\right)=h_{\delta}(x)$. Thus the constant c_{3} is independent of the choice of a divergent sequence $\{R(i)\}$. This shows that

$$
G(x, y) \operatorname{dis}_{M}(x, y)^{m-2} \longrightarrow \frac{h_{\delta}(x)}{(m-2) \mathcal{V}_{o} \ell\left(M_{\delta}(\infty)\right)}
$$

as $y \in \delta$ goes to infinity. Since

$$
\operatorname{dis}_{M}(x, y)^{m-2} \int_{\operatorname{dis}_{M}(x, y)}^{\infty} \frac{t}{V_{\delta}(t)} d t \longrightarrow \frac{m}{(m-2) \mathcal{V} o \ell\left(M_{\delta}(\infty)\right)}
$$

as $y \in \delta$ goes to infinity, we have proven Proposition D. //
Remark. Let M and δ be as in Proposition D. Define a function $F_{\delta}(y)$ on M by $F_{\delta}(y):=c_{4} G(o, y)^{1 /(2-m)}$, where o is a fixed point of M and $c_{4}:=\left(h_{\delta}(o) /\left((m-2) \mathcal{V} \circ \ell\left(M_{\delta}(\infty)\right)\right)\right)^{1 /(m-2)}$. Then we can prove by using the same argument as in the proof of Proposition D that as $y \in \delta$ goes to infinity,

$$
\begin{gather*}
\frac{F_{\delta}(y)}{\operatorname{dis}_{M}(o, y)} \longrightarrow 1, \tag{i}\\
\left|\nabla F_{\delta}\right|(y) \longrightarrow 1, \tag{ii}
\end{gather*}
$$

$$
\begin{equation*}
\left|\frac{1}{2} \nabla d F_{\delta}^{2}-g_{M}\right| \longrightarrow 0 \tag{iii}
\end{equation*}
$$

where g_{M} denotes the Riemannian metric of M. Thus F_{δ} gives a nice smooth approximation for the distance function $r=\operatorname{dis}_{M}(o, *)$ on the end δ.

Added in proof. Theorem B does not hold for a complete, noncompact Riemannian manifold of nonnegative Ricci curvature (even if the sectional curvature decays quadratically).

References

[1] U. Abresch, Lower curvature bound, Toponogov's theorem, and bounded topology, Ann. Sci. Ecole Norm. Sup., Paris, 28 (1985), 651-670.
[2] L.H. Ahlfors - L. Sario, "Riemann Surfaces", Princeton University Press, 1960.
[3] S. Bando - A. Kasue - H. Nakajima, On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, to appear in Invent. Math.
[4] R. Bartnik, The mass of an asymptotically flat manifold, Comm. Pure Appl. Math., 34 (1986), 661-693.
[5] D.L.Brittain, A diameter pinching theorem for positive Ricci curvature, preprint.
[6] J. Cheeger - D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geom., 6 (1971), 119-128.
[7] \longrightarrow On the structure of complete manifolds of nonnegative curvature, Ann. of Math., 96 (1972), 413-443.
[8] S.-Y. Cheng, Liouville theorem for harmonic maps, Proc. Symp. Pure Math., 36 A.M.S. 1980, 147-151.
[9] S.-Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math., 28 (1975), 333-354.
[10] C. Croke, An eigenvalue pinching theorem, Invent. Math., 68 (1982), 253-256.
[11] J. Eells and L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc., 20 (1988), 387-524.
[12] R. Finn, On a class of conformal metrics, with applications to differential geometry in the large, Comment. Math. Helv., 40 (1965), 1-30.
[13] R.E. Greene and H. Wu, Embedding of open Riemannian manifolds by harmonic functions, Ann. Inst. Fourier (Gronoble), 25 (1975), 215-235.
[14] \longrightarrow Lipschitz convergence of Riemannian manifolds, Pacific J. Math., 131 (1989), 119-141.
[15] A. Huber, On subharmonic functions and differential geometry in the large, Comment. Math. Helv., 32 (1957), 13-72.
[16] \longrightarrow, Mètrique conformes complètes et singularités de fonctions sousharmoniques, C. R. Acad. Sci., Paris, 260 (1965), 6267-6268.
[17] A. Kasue, A Laplacian comparison theorem and function theoretic properties of a complete Riemannian manifold, Japan. J. Math., 8 (1982), 309-341.
[18] \longrightarrow Application of Laplacian and Hessian comparison theorems, Advanced Studies in Pure Math., 3. 1984, Geometry of Geodesics and Related Topics, 333-386.
[19] \longrightarrow A compactification of a manifold with asymptotically nonnegative curvature, Ann. Sci. Ecole Norm, Sup. Paris, 21 (1988), 593-622.
[20] \longrightarrow A convergence theorem for Riemannian manifolds and some applications, to appear in Nagoya Math. J., 114 (1989).
[21] \longrightarrow, Harmonic functions with growth conditions on a manifold of asymptotically nonnegative curvature I, Geometry and Analysis on Manifolds (Ed. by T. Sunada), Lecture Notes in Math., 1339, Springer-Verlag (1988), 158-181.
[22] A. Katsuda, Gromov's convergence theorem and its application, Nagoya Math. J., 100 (1985), 11-48.
[23] J.L. Kazdan, "Parabolicity and the Liouville property on complete Riemannian manifolds", Seminar on New Results in Nonlinear Partial

Differential Equations, A Publication of the Max-Plank-Inst. für Math., Bonn, 1987, pp. 153-166.
[24] P. Li and L.-F. Tam, Positive harmonic functions on complete manifolds with non-negative curvature outside a compact set, Ann. of Math., 125 (1987), 171-207.
[25] \longrightarrow, Symmetric Green's functions on complete manifolds, Amer. J. Math., 109 (1987), 1129-1154.
[26] K. Shiohama, Total curvature and minimal areas of complete open surfaces, Proc. Amer. Math. Soc., 94 (1985), 310-316.
[27] V.A. Toponogov, Riemannian spaces which contains straight lines, Amer. Math. Soc. Transl. Ser., 37 (1964), 287-290.
[28] , Riemannian spaces having their curvature bounded below by a positive number, Amer. Math. Soc. Transl. Ser., 37 (1964), 291-336.
[29] H. Wu, "The Bochner Technique in Differential Geometry", Math. Reports, Horwood Acad. Publ., London, 1987.
[30] \longrightarrow "Some open problems in the study of noncompact Kähler manifolds", Lecture presented at the Kyoto Conference on Geometric Function Theory, September 8, 1978.
[31] S.-T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math., 28 (1975), 201-228.

Department of Mathematics
Osaka University
Toyonaka, Osaka 560
Japan

