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Harmonic Functions with Growth Conditions 
on a Manifold of Asymptotically 

Nonnegative Curvature II 

Atsushi Kasue 

§0. Introduction 

According to a theorem due to Greene-Wu [13], a complete con
nected noncompact Riemannian manifold M abounds harmonic func
tions so that M can be imbedded properly into some Euclidean space 
by them. However various problems on harmonic functions on M with 
specific conditions ( e.g., boundedness, positivity, LP integrability, etc.) 
arise in connection with the geometry of M and in fact they have been 
investigated by many authors (cf. e.g., [11: Section 11], [231, [29: Sec
tion 4,6.4] and the references therein). In the previous paper [21], we 
have discussed bounded or positive harmonic functions on a manifold of 
asymptotically nonnegative curvature (which will be defined later), and 
extended all of the results by Li-Tam [24;25] to such manifolds. The 
purpose of the present paper is to study harmonic functions with finite 
growth on a manifold of asymptotically nonnegative curvature and then 
to verify the results stated in [21] without proofs. To state the main 
results of the paper, we need some definitions. For a harmonic function 
h on a complete connected noncompact Riemannian manifold M, we de
note by m.,(h, t) the maximum of I h I on the metric sphere St(x) around 
a point x with radius t. In this note, h is said to be of finite growth, 
if lim sup m.,(h, t)/tP is finite for some constant p > 0. After Abresch 

t-+oo , 

[1], we call M a manifold of asymptotically nonnegative curvature, if the 
sectional curvature KM of M satisfies: 

(H.1) 

where r denotes the distance to a fixed point, say o, of M and k(t) is 
a nonnegative, monotone nonincreasing continuous function on [O, oo) 
such that the integral f 00 tk(t)dt is finite. In [19], we have constructed 
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a metric space M(oo) associated with a manifold M of asymptotically 
nonnegative curvature. Let us here explain it briefly (see [19] for details). 
We say two rays u and, of M equivalent if disM(u(t),,(t))/t, goes to 
zero as t - oo. Define a distance 5= on the equivalence classes by 
500 ([u], [,]) := lim dt(<T n St(o),'Y n St(o))/t, where dt stands for the 

t--+CXJ 

inner (or intrinsic) distance on St(o) induced from the distance disM(,) 
on M. Then we have a metric space M(oo) of the equivalence classes 
of rays with distance 5= which is independent of the choice of the fixed 
point o and to which a family of scaled metric spheres {¼St(o)} converges 
with respect to the Hausdorff distance as t goes to infinity. We note that 
the complement M - BR( o) of a metric ball BR( o) centered at o with 
large radius R is homeomorphic to SR(o) x(R, oo ). For simplicity, we call 
a connected component of M - BR(o) (for large R) an end 5 of M. We 
write M0 ( oo) for the connected component of M( oo) corresponding to 5, 
so that { ¼ St( o) n 5} converges to M 0( oo) with respect to the Hausdorff 
distance as t - oo, and then M 0 ( oo) turns out to be a compact inner 
metric space. Since Volm-i(St(o) n 5)/tm-l (m := dim M) tends to a 
nonnegative constant as t - oo, let us denote the limit by Vol (Mo( oo )). 

In Euclidean space Rm, the harmonic functions of finite growth 
(harmonic polynomials) form an important subclass which is closely con
nected to the eigenfunctions of the unit sphere sm- 1 (1) (= Rm(oo)). 
Moreover if we equip Rm with a complete metric g which is written in 
the polar coordinates (r, 0) as g = dr 2 + r 2°'d02 (0 :s; a< 1) for larger, 
then (Rm, g) admits no nonconstant harmonic functions of finite growth. 
In this case, (Rm, g) ( oo) consists of only one point. We are interested 
in relationships (if any) between the space of harmonic functions of fi
nite growth on a manifold M of asymptotically nonnegative curvature 
and the geometry of M( oo ). At this stage, we have rather satisfactory 
results for the case of dim M = 2 and for the case that the sectional 
curvature of M decays rapidly and the metric balls of M have maximal 
volume growth (see [3], [4] and the references therein), but for cases 
without such conditions, little is known. In this paper, we shall prove 
the following 

Theorem A. Let M be a manifold of asymptotically nonnegative 
curvature. Suppose that M has one end, i.e., M ( oo) is connected. Then: 

(i) For a nonconstant harmonic function h on M, one has 

li . f logm(h,t) 1 [(expc(m)diam(M(oo)) + 1] 
m m > og ( ( ) ( ( )) > 0, t--+= log t - exp c m diam M oo - 1 

where c(m) is a positive constant depending only on m := dim M. In 
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particular, M has no nonconstant harmonic functions of finite growth if 
M ( oo) consists of only one point. 

(ii) Suppose that m = 2 and diam{M{oo)) > 0. Then for a noncon~ 
stant harmonic function h of finite growth, log m( h, t) / log t converges 
to a constant, say ord{h), as t -+ oo, and ord{h) is given by ord{h) = 
mr/ diam{M{oo)) for some positive integer n. Moreover the dimension 
of the space of harmonic functions h with ord{ h) ::::; mr / diam{ M ( oo)) is 
equal to 2n + 1. 

It is conjectual that for a manifold of asymptotically nonnegative 
curvature, the space 11.p of harmonic functions h with lim sup m(h, t)/tP 

t--+oo 

< +oo would be of finite dimension for any p > 0. In Section 3, we 
shall show a result related to this question. We remark that Kazdan 
[23] shows an example of a complete, noncompact Riemannian manifold 
such that it possesses no nonconstant positive harmonic functions, but 
the dimension of 11.p is infinite for any p > 0. The sectional curvature of 
his example behaves like -1/r 2 logr for larger. 

In case of a complete, connected noncompact Riemannian manifold 
M with nonnegative Ricci curvature, a theorem due to Cheng [8] says 
that for a harmonic function hon M, any point x of M, and every t > 0, 
ldhl(x) ::::; c(m) m.,(h,t)/t, where c{m) is a constant depending only on 
m = dim M, and hence h must be constant if h is of sublinear growth, 
i.e., lim inf m(h, t)/t = 0 (see also [29: Section 6.4]). Moreover the 

t--+oo 

Cheeger-Gromoll splitting theorem [6] asserts that Mas above contains 
a distance minimizing geodesic u : R -+ M ( which is called a line 
of M) if and only if M splits isometrically into R x M'. The latter 
condition is obviously equivalent to saying that M admits a nonconstant 
totally geodesic function (i.e., a function of vanishing second derivatives). 
Motivated by these results, we are led to ask whether a nonconstant 
harmonic function h of linear growth (i.e., lim sup m(h, t)/t < +oo) on 

t--+oo 

such M would be totally geodesic ( or equivalently a nonzero d-closed 
harmonic I-form on such M with bounded length would be parallel). It 
is easy to see that the above question is affirmative in case of dim M = 
2. In fact, since the Gaussian curvature is nonnegative, lwl2 satisfies: 
.ti.iwl2 ~ 21Vwl2 ~ 0. This implies that lwl2 is a bounded subharmonic 
function on M, so that lwl2 must be constant, because M possesses no 
nonconstant bounded subharmonic functions. Thus w must be parallel 
and moreover Mis flat. In this paper, we shall answer the above question 
under stronger conditions. Actually we prove the following 

Theorem B. Let M be a complete, connected noncompact Rie-
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mannian manifold of nonnegative sectional curvature: KM 2: 0. Sup
pose that KM decays in quadratic order, i.e., 

(H.2) 

for some positive constant c, where r stands for the distance to a fixed 
point of M .. Then a nonzero d-closed harmonic 1-form on M with 
bounded length must be parallel. In particular, if M admits a noncon
stant harmonic function h of linear growth, then h is totally geodesic 
and M splits isometrically into RxM' along the gradient of h. 

Theorem A and Theorem B are, respectively, proved in Section 1 
and Section 2. In Section ·3, other related results are given. 

The author would like to thank Prof. H. Wu for drawing his at
tention to the lecture [30] in which some open problems related to this 
paper were proposed. 

§1. Proof of Theorem A 

We shall begin with proving the first assertion of Theorem A. Let h 
be a nonconstant harmonic function on M. Set m(h, t) := max{h(x) : 
x E St} and m(h, t) := min{h(x) : x E St}, where St denotes the metric 
sphere around a fixed point o of M with radius t. Since M has only 
one end, St is connected for large t. Hence for large t, we can take two 
points Pt and qt of St such that h(pt) = m(h,t) and h(qt) = m(h,t), 
and then join qt to Pt by an arc-length parametrized Lipschitz curve 
Tt : [O, at] -t St whose length at is equal to the inner distance dt(Pt, qt) 
between Pt and qt in St, Let us fix here a positive integer n which is 
greater than diam(M(oo)) and let Pt,i := Tt(iat/3n) (i = 0,1,· .. ,3n). 
Then we observe that 

(1.1) 

lim sup at ~ diam(M(oo)) 
t-+oo t 

. 1 . diam(M(oo)) 1 
bm sup - dis M (Pt,i, Pt,i+l) ~ 3 < -3 . t-+oo t n 

Since m(h, t) is monotone increasing, m(h, 3t/2) - h is a positive har
monic function on the metric ball Bt;a(Pt,i) around Pt,i with radius t/2 
(tis assumed to be sufficiently large). Applying a theorem due to Cheng
Yau [9: Theorem 6] to m(h, 3t/2) - h, we have 

m(h, ~t)- h(Pt,i+i) ~ exp{cm(l +t,r,;ill )f.:t}{m(h, ½)-h(Pt,i)} 
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where k(t) is as in (H.1) and Cm is a constant depending only on m := 

dim M. Note here that ty'k(t/2) goes to zero as t--+ oo (cf. [1: p.667]). 
This implies that 

(1.2) m(h, ~t)-m(h, t)::::; exp{cm(l+tftili )-'7 }{m(h, ½t)-m(h, t)}. 

Moreover since m(h, t) is monotone decreasing, h-m(h, ½t) is a positive 
harmonic function on Bt; 2 (Pt,i)- Hence by the same reason as above, we 
have 

(1.3) m(h, t)-m(h, it)::::; exp{cm(l+tftili )-'7 }{m(h, t)-m(h, ft)}. 

If we set µ(t) := m(h, t) - m(h, t), then it follows from (1.2) and (1.3) 
that 

µ(~t) + µ(t)::::; exp{cm(l + tftili) -'7 }{µ(ft) - µ(t)}, 

which shows 

( ) exp{cm(l + ty'k(t/2)) at/t} - 1 3 
(l. 4) µ t ::::; exp{cm(l + t~) atft} + 1 µ( 2t). 

Thus it turns out from (1.1), (1.4) and the standard iteration argument 
that 

1. .nf log µ(t) 1 [exp{cm diam(M(oo))} + 1] 
1m 1 > og { . ( ( ))} . 
t-+oo log t exp Cm diam M 00 - 1 

This proves the first assertion of Theorem A. 
Let us now prove the second assertion of Theorem A. Since M has 

finite total curvature: J M KM dvol(gM) < +oo (cf. [20:Proposition 
4.1]), we can apply some of the results by Finn [12] and Huber [15;16] 
to our manifold M. In fact, it follows from [15] that the end of M is 
conformally equivalent to the end of C, to be precise, there is a conformal 
diffeomorphism '1!' : M - K --+ C - DR from the complement M - K of a 
compact set K onto the one of a disk DR:= {z E C: jzj ::::; R}. Through 
the conformal diffeomorphism '1!', we identify M - K with C - DR which 
has the metric G := '1!'.gM = e2udzdz. Without loss of generality, we 
may assume that G defines a complete metric on C with finite total 
curvature: Jc Ka dvol( G) < +oo. Denote here by p the distance in C 
to the origin with respect to G. Then applying Theorems 11 and 13 in 
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[12] and Theoreme 1 in [16] to (C, G), we get 

lim 
{1.5) 

zEM--+oo 
log r(x) = lim log p(z) 

log IW(x)I zEC-+oo log lzl 

= 1 - 2_ f Ka dvol(G). 
21r Jc 

We note that 

(1.6) 

1- 2_ f Ka dvol(G) = lim Length (St)2 

21r Jc t--+oo 411" Area( Bt) 

= lim Area(Bt) 
t--+oo 1rt2 

= lim Length(St) 
t--+oo 21rt 

= ~ diam(M(oo)) 
1r 

= x(M) - 2_ f KM dvol(gM) 
27r jM 

(cf. [20: Proposition 4.1], [26]). Let h be a nonconstant harmonic 
function on M. Since the flux of the restriction of h to M-K (= C-DR) 
vanishes, there exists a harmonic function Hon C such that IH - hi is 
bounded on C - DR (cf. [2: Chap.III]). Hence if his of finite growth, 
then we have by (1.5) and (1.6) 

log lh(x)I _ n1r 
log r(x) - diam(M(oo))' 

(1.7) ord(h) = lim 
zEM--+oo 

where n := 1im log IH(z)I/ log lzl E {1, 2, · · ·}. Moreover, for any 
lzl-+oo 

harmonic function J on M - K the flux of which vanishes, there exists a 
harmonic function Fon M such that IF - JI is bounded on M - K (cf. 
[2: Chap.III)). Thus it follows. from (1. 7) that the dimension of harmonic 
functions h with ord(h) :$ n1r/ diam(M(oo)) is equal to 2n + 1. This 
completes the proof of the second assertion of Theorem A. / / 

Remark. As we have seen in the above proof for Theorem A(ii), the 
same assertion holds for a complete Riemannian manifold of dimension 2 
with finite total curvature and one end, if we replace diam( M( oo)) in the 
theorem with lim Length(St) 2 /(4 Area(Bt)) (= lim Area(Bt)/t 2 = 

t-+oo t-+oo 

lim Length(St)/2t = x(M) - -21 JM KM)-
t~oo 11" 
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Let us now conclude this section with a corollary and a remark on 
it. 

Corollary. Let M be a complete connected noncom pact Rieman
nian manifold such that the sectional curvature is bounded from below 
by c/r 2 log r outside a compact set, where c is a positive constant and 
r is the distance to a fixed point of M. Then M has no nonconstant 
harmonic functions of finite growth, if M has only one end. 

Proof. This follows immediately from Theorem A(i), because 
M(oo) consists of only one point (cf. [19: Proposition 5.2]). 

Remark. In the above corollary, if M has more than one end, then 
M may admit nonconstant bounded harmonic functions. Actually, it is 
easy to construct such manifolds. 

§2. Proof of Theorem B 

The purpose of this section is to show Theorem B. To begin with, 
we shall prove the following 

Lemma 2.1. Let N be a complete connected Riemannian manifold 
of nonnegative sectional curvature. Let h be a nonconstant harmonic 
function on the Riemannian product Rx N with sup ldhl < +oo, and let 
t be the projection : R x N -+ R. Then (dt, dh) is constant on Rx N 
and the restriction of h to { t} x N is harmonic on { t} x N. In particular, 
if N is compact, then h = ct for some constant c. 

Proof. Since (dt, dh) is a bounded harmonic function on RxN, 
(dt, dh) must be constant (cf.Yau (31]), so that, in particular, the deriva
tive of (dt, dh) in the direction of grad t vanishes identically. This shows 
that the restriction of h to {t} x N is harmonic. This completes the 
proof of Lemma 2.1. / / 

Lemma 2.2. Let M. be a complete, connected noncompact Rie
mannian manifold of nonnegative sectional curvature. Suppose M ad
mits a nonconstant harmonic function h which satisfies: 

(2.1) 

(2.2) 

ldhl(x) -+ c1, 

r(x) IVdhl(x)-+ 0 

as x E M goes to infinity, where c1 is a positive constant and r(x) 
denotes as usual the distance to a fixed point of M. Then the second 
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derivative 'vdh of h vanishes identically and moreover M splits isomet
rically into R x M' along the gradient vector 'vh of h. 

Proof. According to the splitting theorem by Toponogov (27], M 
has one end ( namely, M is connected at infinity) or M is isometric to 
Rx M', where M' is compact. If the latter case occurs, then Lemma 2.2 
is obvious ( cf. Lemma 2.1 ). Hence in what follows, we assume that M has 
one end, and further that c1 is equal to 1 for simplicity. Define a vector 
field A on the open set U := {x E M : 'vh(x) -IO} by A := 'vh/l'vhl 2 , 

and for a point x E U, denote by .X.,(t) (-oo ::::; :r.,,, < t < f"., ::::; +oo) the 
maximal integral curve of A such that .X.,(0) = x. Then by (2.1), it is 
not hard to see that for some point x E U, the integral curve .X., ( t) is 
defined for all t and the length is bounded away from zero. We fix such 
a point x. Now we claim first that 

(2.3) lim -
1
1

1 
disM(x, .X.,(t)) = 1. 

t-+±oo t 

In fact, let <Tt : (0, at] -t M be a distance minimizing geodesic joining 
x = <Tt(0) with .X.,(t) = <Tt(at) (at:= disM(x, .X.,(t))). Consider the case: 
t > 0. Then we have 

t = h(.X.,(t)) - h(x) = h(ut(at)) - h(ut(0)) 

=la,< 'vh,&t(s) > ds < at, 

since i'vhl2 is subharmonic (i.e., ~i'vhl 2 = 2l'vdhl 2 + 2 RicM('vh, 'vh) 2:: 
0) and so i'vhi < sup i'vhi = 1. On the other hand, we get 

at :::; the length of Azl[O,t] 

rt 1 
= lo l'vhl(.X.,(s)) ds. 

Therefore we have 

1 <lim . f ar 1. at m - < rm sup - < 
- t-+oo t - t-+oo t -

r 1t 1 d r 1 1 
11:1-~P t lo l'vhl(.X.,(s)) 8 :::; 1r;1_:!1Pi'vh!(.X.,(t)) = · 

Thus we have shown (2.3) in case: t > 0. The same argument can be 
applied to the case: t < 0. 

Let us next claim 

(2.4) lim ! disM(A.,(t), A.,(-t)) = 2. 
t-+oo t 
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In fact, let 'f/t : [O, bt] --+ M be a distance minimizing geodesic joining 
'f/t(O) = .X.,(-t) with 1/t(bt) = .X.,(t). Then by (2.3), we have 

(2.5) lim sup bt ::;lim sup!{disM(x,.X.,(t))+disM(x,.X.,(-t))}=2. 
t-+oo t t-+oo t 

On the other hand, if disM(X,'f/t([O,bt]))/t = disM(X,'f/t(ct))/t tends to 
zero as t --+ +oo, then we have 

lim inf bt ~lim inf! {disM(x, .X.,(t)) - disM(x, 'f/t(Ct))}+ 
t-++oo t t-++oo t 

(2.6) lim inf! {disM(x, .X.,(-t)) - disM(X,'f/t(Ct))} 
t-++oo t 

=2. 

Moreover if disM(x, 'f/t(i)(Ct(i)))/t(i) > d > 0 for some divergent sequence 
{t(i)} and a positive constant d, then by the assumption (2.2), we have 

(2.7) 
. . o(dt(i)) 

lvdh(TJt(i) ( s ), 1/t(i)( s ))I ::; dt( i) (o ::; s ::; bt(il ), 

where o(u) goes to zero as u--+ +oo. Hence we get 

1 t•(i) d 
2 = t(i) Jo ds h('f/t(i)(s)) ds 

= t(~) (1b,(i)1~ 'vdh(1Jt(i)(u),17t(i)(u)) duds+ bt(i)('vh,11t(i)(O))) 

< o(dt(i)) (bt(i))2 + (bt(i)) (by (2.7) andl'vhl < 1). 
- 2d t(i) t(i) 

This shows that 

(2.8) lim . f bt( i) > 2 
lil ( ") • t(i)-++oo t 2 -

Thus (2.4) follows from (2.5), (2.6) and (2.8). 
We are now in a position to complete the proof of Lemma 2.2. Let 

Ut : [O, at] --+ M, <1'-t : (O.a-t] --+ M, and 1/t : (0, bt] --+ M be as above. 
For each (8,u) (0::; s::; at, 0::; u::; a_t), let .6.t(s,u) be the triangle 
sketched on R 2 whose edge lengths ares, u, and disM(ut(s), <1'-t(u)), and 
denote by Ot(s,u) the angle of .6.t(s,u) opposite to the edge of length 
disM(ut(s), <1'-t(u)). Then by a theorem due to Toponogov (28: Lemma 
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19], we see that Ot(s,u):::; Ot(s',u') ifs' s; sand u':::; u. Note that by 
{2.4) 

This shows that.for any s,u E {O,oo), we have 

{2.9) lim 0t(s,u)=7r. 
t->+oo 

If we take a divergent sequence {t{i)} such that Ut(i) (resp. u-t(i)) 
converges to a ray u00 : [O,oo)-+ M {resp., a ray u_00 : [O,oo)-+ M) 
starting at x, and if we define a curve e : R -+ M by ((t) = Uoo(t) 
fort~ 0 and ((t) = u_ 00 (-t) fort::; 0, then it turns out from {2.9) 
that e is a line, namely, e is a distance minimizing geodesic defined on 
R. Thus it follows from the Toponogov splitting theorem that M is 
isometric to ({R) x M'. Now it is clear from Lemma 2.1 and the above 
construction of the line ( that for some constant C, h((t, x 1)) = t + C On 
M = ((R) x M'. This completes the proof of Lemma 2.2. 

Finally we need the following 

Lemma 2.3. Let Mand w be as in Theorem B. Then \w\(x) tends 
to a constant c1 > 0 and r(x)\'vw\(x) converges to zero, as x EM goes 
to infinity, where r(x) denotes the distance to a fixed point, say o of M. 

Proof. We first observe that jw\2 is subharmonic on M, by the 
Weitzenbock's formula: 

(2.10) 

(w# := the dual vector field of w). Set m(t) := the maximum of \wl 
on the metric sphere St around o with radius t. Then it follows from 
the maximum principle for subharmonic functions that m(t) is nonde
creasing, and hence m(t) converges to a positive constant c2 as t goes 
to infinity. For the sake of simplicity, we assume that c2 = 1. Let us 
here take points {xt} of M such that Xt E St and \w\(xt) converges 
to 1 as t -+ oo. Choosing an orthonormal basis of the tangent space 
T.,, M of M at each Xt, we identify T.,, M with Euclidean space Rm, and 
write BR for the ball of Rm around the origin with radius R. Then 
by the assumption (H.2) in Theorem B, we can fix a suflicienty small 
constant a > 0 so that for each Xt, the restriction Wt of the exponen
tial map exp.,, : Rm ( = T.,, M) -+ M to Bat induces a smooth map of 
maximal rank from Bat onto the metric ball Bat(Xt) of M around Xt 
with radius at. Define a family of Riemannian metrics {gt} on Ba. by 
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9t := -b iI!;9M, where 9M denotes the Riemannian metric on M. Then 
(H.2) implies that the sectional curvature of 9t is bounded uniformly int. 
Hence, choosing a smaller constant a if necessarily and taking harmonic 
coordinates appropriately around the origin with respect to 9t, we can 
see that the coefficients of 9t ( with respect to the harmonic coordinates) 
have c 1,a-Holder norms (0 < o: < 1) and W 2,P-Sobolev norms bounded 
uniformly int (cf. e.g., [14], [20]). Thus we can assert that 

(2.11) : for any divergent sequence { t( i)}, there exists a subsequence 
{t(j)} of {t(i)} such that 9t(j) converges to c 1,a Riemannian 
metric 900 on Ba in the c 1,a-norm with respect to the har
monic coordinates. Moreover the coefficients of 900 belong to 
the Sobolev space w2 ,P (p:::,: 1). 

Let us now define a family of I-forms Wt on B 0 by Wt := ½iI!;w. Then 
Wt is ad-closed harmonic 1-form such that the length lwtl (with respect 
to 9t) satisfies: lwtl < 1 and lwt(o)I -+ 1 as t-+ oo. Since Ba is simply 
connected, there exists a smooth function ht on Ba with Wt = dht. Here 
we may assume that ht(o) = 0. Hence lhtl is bounded uniformly in 
t. Moreover since the coefficients of 9t (with respect to the harmonic 
coordinates) have bounded c 1,a-norms uniformly in t, it follows from 
the a priori estimates that the c 2,<>-norms of ht is bounded uniformly in 
t. Thus by (2.11), we see that for any divergent sequence {t(i)}, there 
exists a subsequence {t(j)} such that in the c 2,<>-norm (with respect to 
the harmonic coordinates), ht(j) converges to a c2 ,a function h 00 which 
is harmonic with respect to 900 • We put here w00 := dh 00 • Then the 
length lwool (with respect to 900) satisfies: lw00I ~ 1 and lw00l(o) = 1. 
Since lwtl2 is subharmonic (with respect to 9t), so is lw00l2 (with respect 
to 900 ). Hence applying the maximum principle to lw00l2, we see that 
lw00I is constantly equal to 1. Noting that (2.10) holds for each Wt, 

and Wt(j) (resp. 9t(j)) converges to w00 (resp. 900 ) in the C 1•"-norm as 
t(j) -+ oo, we have the identity (2.10) for w00 in a weak sense. Namely, 
for any smooth function 1/ with compact support in Ba, 

(2.12) 

J 9oo(dlwool2 , d11) dvol(900) 

= -2 J {IV 00 Wool2 + Ric 00(w!, w!)}TJ dvol(900). 

Here we have used the fact that 900 has the Ricci tensor Ric 00 in the 
V'-sense (p 2: 1) and the Ricci tensor Rict(j) of 9t(j) converges weakly 
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to Ric 00 as t(j) ----, oo. Since the left-hand side of (2.12) vanishes, we 
see that IV 00 w00 12 + Ric 00 (wf, wf) = 0 almost everywehre and hence 
w00 is parallel. Thus we have shown that if we take points Xt E St with 
lim lwl(xt) = 1, then 

t---->oo 

(2.13) 
max{l - lwl(x) : x E Bat(Xt)} ----. 0, 

max{r(x)IVwl(x): x E Bat(Xt)}----. 0, 

as t goes to infinity. Since the diameter of St with respect to the inner 
distance on St is bounded by bt for some constant b, (2.13) proves Lemma 
2.3. I I 

We are now in a position to complete the proof of Theorem B. Let M 

and w be as in Theorem B, and let II: M----, M be the universal covering 

of M. Set w := II*w. Then there is a harmonic function hon M which 
satisfies: w = dh. Therefore if the fundamental group 71'1 (M) of M is 

finite, then M also satisfies assumption (H.2), and hence by Lemmas 2.2 

and 2.3, Vdh vanishes identically and M splits isometrically into Rx M' 
along the gradient Vh of h. Moreover in this case, M' is flat, because 
the sectional curvature of M decays to zero. We shall now consider the 
case that 71'1 (M) is infinite. Let~ be a soul of M (i.e., a compact, totally 
geodesic and totally convex submanifold of M). Then by Theorem 9.1 in 

[7], ~ := rr- 1 (~) splits isometrically into R k x ~ 0 , where ~ 0 is a compact 
simply connected manifold of nonnegative curvature and furthermore 

k 2:: 1, because 71'1 (M) = 71'1 (~) is infinite. Hence M is isometric to the 

Riemannian product Rk x M 0 of Euclidean space Rk and a complete, 

noncompact simply connected manifold M 0 with nonnegative sectional 

curvature. We observe here that the sectional curvature of M 0 decays in 
quadratic order, since M 0 is compact. Now it follows from Lemma 2.1 
that the restriction h of h to { o} x M 0 is constant or it gives a nonconstant 

harmonic function on M 0 , the gradient of which has bounded length. If 
the former case occurs, then it is clear that h is totally geodesic. When 
the latter case occurs, we can apply Lemmas 2.2 and 2.3 and show that 
h is totally geodesic. This completes the proof of Theorem B. I I 

Corollary. Let M be as in Theorem B. Suppose that the Ricci 
curvature of M is positive somewhere. Then any d-closed harmonic I
form with bounded length must be zero. 

Proof. This is clear from the above proof of Theorem B. I I 
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§3. Some other results 

Let M be a manifold of asymptoticallty nonnegative curvature. In 
this section, we shall make some observations on the asymptotic behavior 
of harmonic functions on M with finite growth and then that of the 
Green function on M, under certain additional conditions. Throughout 
this section, the dimension m of M is assumed to be greater than two. 
First we recall the following 

Fact 3.1 (cf. [20: Lemma 2.3]). Let M be as above and 8 an 
end of M. Suppose that the sectional curvature KM of M decays in 
quadratic order on the end 8, i.e., 

(3.1) 

(3.2) 

C 
KM ::; 2 on 8, and 

r 
Vol(M 0(00)) > 0 

where c is a positive constant and r denotes the distance to a fixed point 
of M. Then: 

(i) M 5 (oo) is a compact, connected smooth manifold with C 1•" Rie
mannian metric 900 (0 < a: < 1). 

(ii) Fix two positive numbers a, b with a > b, and set At(a, b) := 
{x E M : b <-r(x)/t < a} for t > 0. If t is sufficienty large, then 
there exists a G2•" diffeomorphism Ilt from At(a, b) n 8 into the cone 
C(M0(00)) over M0(00) (i.e., C(M0(00)) := (0, oo) Xt2M0(00)) which has 
the following properties: as t goes to infinity, Ilt(At( a, b) n 8) converges 
to (b,a) x M0 (00) and frllt.9M also converges to the metric dt2 +t 2 g00 

in c 1,a' topology (0 < a:' < a:< 1). Here 9M stands for the Riemannian 
metric of M. 

Let us now prove the following 

Proposition C. Let M be a manifold of asymptotically nonneg
ative curvature and 8 an end of M. Suppose (3.1) and (3.2) hold for 
the end 8. Then if there exists a harmonic function h defined on 8 such 
that 0 < lim suplh(x)l/r(x)P < +oo for some positive constant p, then 

XEli-+oo 

p(p + m - 2) (m := dim M 2: 3) is an eigenvalue of M 0(00). Moreover 
p 2: 1 and if p = 1, then M 0 (00) is isometric to the (m - 1)-sphere 
sm-1 (1) of constant curvature 1. 

To prove Proposition C, we need the following 

Fact 3.2. Let h be a nonconstant harmonic function on the cone 
C(Mti(oo)) (= (O,oo) x t2M0(00)) over M 0 (00) such that lh(t,8)1/tP is 
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bounded on C(M6(oo)) for some p > 0. Then >. := p(p + m - 2) is 
equal to an eigenvalue of M6 ( oo) and h(t, 0)/tP defines an eigenfunction 
of M 6 ( oo) with eigenvalue >.. 

Proof. For the convenience of the reader, we shall give a proof of 
the fact. Let ¢( s, 0) ( s = log t) be a function on R x M.s ( oo) defined by 
</)(s,0) := e-ps h(e8,0). Then¢ satisfies: 

82¢ 8¢ 
882 + (2p + m - 2) 88 + p(p + m - 2)¢ + .6.00 ¢ = 0, 

where .6.00 denotes the Laplacian on M0(00). Let {µih=1,2, ... : µ1 ::; 
µ2 ::; ••• be the eigenvalues of M.s( oo) and { Ei( 0) h=12, ... an orthonormal 
system of eigenfunctions on M.s( oo) corresponding to {µi}- Set </Ji( s) := 

JM6 (oo) </)(s, 0)Ei(0) dvol(g00 ) (i = 1, 2, ... ). Then fPi obeys the following 
ordinary differential equation on R : 

¢? + (2p + m - 2)¢~ + (p(p + m - 2) - µi)fPi = 0. 

Since lh(s, 0)1/tP is bounded, so is l</J(s, 0)1- Hence each fPi is also 
bounded. Then it turns out that fPi is equal to a constant ai which 
is zero unless µi = p(p + m - 2), so that </)(s, 0) = ~ aiEi(0), where the 

• 
summation is taken over the indices i's with µi = p(p + m - 2). This 
proves Fact 3.2. / / 

Proof of Proposition C. Let M, h and p be as in the proposition. 
Let us first fix a positive integer n and a sufficiently large R for a 
while, and define a function hR on IIR(AR(n,n- 1 )) (c C(M0(00)) by 
hR := h o IIR 1 /RP, where IIR and AR are as in Fact 3.1. Then hR 
is harmonic with respect to the metric J2 IlR•9M· Moreover sinceµ:= 
lim suplhl(x)/rP(x) is finite lhRI is bounded from above by cnP for some 
zEc5-+oo 

positive constant c independent of Rand n. Thus it follows from Fact 3.1 
and the a priori estimates that the c2,a-Holder norm of hR is bounded 
uniformly in R. Let us take here a divergence sequence { R( i)} such that 
max{lh(x)I : x E SR(i) n 6}/ R(i)P converges toµ> 0 as R(i) goes to in
finity. Then we can take inductively a subsequence { R( n, j)} of { R( i)} so 
that {R(n+ 1,j)} C {R(n,j)} and as j -too, hR(n,i) converges to a har
monic function hn on A 00 (n,n- 1 ) := {(t,0) E C(M.s(oo)): n- 1 < t < n} 
in the c2,a-Holder norm. Note that hn satisfies: lhn(t, 0)1 ::; ctP on 
A 00 (n,n- 1 ). Hence if we set h00 := hn on A 00 (n,n- 1 ), then we get a 
harmonic function h00 on C(M.s( oo )) such that lh00 (t, 0)1 ::; ctP. By the 
choice of {R(i)}, we see that h00 does not vanish identically. Thus it 
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turns out from Fact 3.2 that >.. := p(p + m - 2) must be an eigenvalue 
of M.5(00) and h=(t,0)/tP gives an eigenfunction on M6(oo) with the 
eigenvalue >... Finally the remaining assertion of Proposition C follows 
from Lemma 3.3 below. / / 

Lemma 3.3. The first eigenvalue µ 1 of M.5( oo) is greater than or 
equal tom -1. Moreover if µ 1 = m -1, then M 6 ( oo) is isometric to the 
(m -1)-sphere sm- 1(1) of constant curvature 1. 

Proof. Let Ilt: At(a,b)-+ C(M.5(00)) be as in Fact 3.1. Set Mt:= 
rr;-1 ({1} x M6 (oo)). Then we observe that the sectional curvature Kt 
of Mt satisfies: 1 - c1(t) :::; Kt :::; 1 + c1(t) + 1,,.5, where c1(t) > 0 goes 
to zero as t-+ oo and 1,,.5 := lim sup r(x) 2 KM(x). Let µt,l be the first 

:tE.5--+= 
eigenvalue of Mt. Then applying the Lichnerowicz' theorem ( cf. [10]) to 
Mt, we see that µt, 1 ~ (m - 1) - c2 (t), where c2 (t) > 0 tends to zero as 
t -+ oo. This implies that µ 1 ~ (m - 1). Suppose that µ 1 = (m - 1). 
Then the diameter of M 6 ( oo) must take the maximum value 7r. In fact 
if the diameter is less than 7r, then the diameter of Mt is less than 
7r - c3 for large t and some positive constant c3 . It follows now from 
[10] that µt,l ~ (m - 1) + c4 for large t and some positive constant c4 • 

This is a contradiction. Thus M 6 (oo) has the maximum diameter 71', 

so that the volume of M6 (oo) must be equal to the volume of sm- 1(1) 
(cf. [18: Theorem 4.1] or [5]). Then it turns out from a theorem by 
Katsuda [22] that the Hausdorff distance between M 6 ( oo) and sm-l (1) 
is equal to zero, namely, M6 (oo) is isometric to sm- 1(1). This completes 
the proof of Lemma 3.3. / / 

Let us now show a proposition on the minimal positive Green func
tion G(x, y) on M x M. According to Li-Tam [24], we call an end {j of M 
large (resp., smal0 if the integral J= tV6 (t)- 1 dt is finite (resp., infinite), 
where Vi(t) := Volm(Bt n 8). Suppose that M has at least one large 
end 8. Then based on some of the results in [19] and the arguments in 
[24;25], we have shown in [21] the following results: 
(3.3) There exists a unique positive harmonic function h.5 on M such 
that lim h6 ( x) = 1 and lim h6, (y) = 0 for another large end 8' (if 

:tEb'--+= yE.5'--+= 
any). 
(3.4) There exists a unique minimal positive Green function G(x, y) on 
M x M such that 

1= t 
G(x,y) 5 c(x) V, () dt 

disM(:t,y) D t 
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for ally E 8- BR(x), and G(x,y)--+ c(x,'D) as y E 'D--+ +oo for a 
small end 1) ( if any). Here the constants R( x), C ( x) and C ( x, 'D) are 
positive constants depending on the quantities in parentheses. 

We remark that the value h6 ( x) of the function h6 at a point x 
is equal to the hitting probability of the paths starting at x to the 
large end 8. Moreover as we mentioned in [21], we see that if G(x, y) 
/ Jd7'.M(x,y) m- 1tVi(t)- 1dt converges to h,5(x) as y E 8 goes to infinity 
for some x, then this holds for all x E M. It is unclear whether the limit 
should exist and be equal to h6 (x) for some x. The following proposition 
answers this question partially. 

Proposition D. Let M be an m-dimensional manifold of asymp
totically nonnegative curvature which has at least one large end 8. Sup
pose (3.1) and (3.2) hold for 8. Then for any point x of M, one has 

G(x.y) h ( ) 
J. t --+ ,5X 

--dt disM(x,y) mV.(t) 

as y E 8 goes to infinity. In particular, in this case, one has 

( ) . ( )m-2 h,5(x) 
G x,y d1sM x,y --+ (m-2)Vol(M,5(00)) 

as y E 8 goes to infinity. 

Proof. We fix a point x of M. We first observe that for some 
positive constants c1 and c2 , 

(3.5) 

on 8. The first inequality is a consequence of the assumption that M 
has asymptotically nonnegative curvature ( cf. [17: Theorem 4.3]) and 
the second one follows from (3.4). Set GR(Y) := Rm- 2 G(x,y). Then by 
the same argument as in the proof of Proposition C, we see that given a 
divergent sequence { R( i)}, there exists a subsequence { R(j)} for which 
G R(j) converges as j -+ oo to a harmonic function G 00 on compact sets 
of the cone C(M6 (oo)) = (O,oo) x t2M6 (00) in the c 2,a Harder norm. 
By (3.5), we have 

C1 :S G00 (t,0)tm- 2 :S C2 

for any (t,0) E C(M6 (oo)). Moreover it turns out from the same argu
ment as in Lemma 3.2 that G 00 (t, 0)tm- 2 is in fact a constant, say c3 • 

Then it is not hard to see that the constant c3 is given by 
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c3(m - 2)Vol(M 0(00)) = h0(x). Thus the constant c3 is independent 
of the choice of a divergent sequence {R(i)}. This shows that 

G( ) d' ( )m-2 ho(x) 
x,y lSM x,y __. (m - 2)Vol(M 0 (00)) 

as y E 8 goes to infinity. Since 

disM(x,yr- 2 foo _t_ dt--> m 
JdisM("',Y) Vo(t) (m - 2)Vol(M 0(00)) 

as y E 8 goes to infinity, we have proven Proposition D. // 

Remark. Let M and 8 be as in Proposition D. Define a function 
F0(y) on M by F0(y) := c4G(o,y) 1!( 2-m), where o is a fixed point of M 

andc4 := (h0(0)/((m-2)Vol(M 0(00))))11(m- 2). Thenwecanproveby 
using the same argument as in the proof of Proposition D that as y E 8 
goes to infinity, 

(i) 

(ii) 

(iii) 

Fo(Y) -----1, 
disM(o, y) 

IVFol(y)--> 1, 

I~ 'vdF; -gMI--> 0, 

where 9M denotes the Riemannian metric of M. Thus F0 gives a nice 
smooth approximation for the distance function r = disM( o, *) on the 
end 8. 

Added in proof. Theorem B does not hold for a complete, noncom
pact Riemannian manifold of nonnegative Ricci curvature ( even if the 
sectional curvature decays quadratically). 
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