Advanced Studies in Pure Mathematics 17, 1989 Algebraic Number Theory — in honor of K. Iwasawa pp. 457-462

On Sinnott's Proof of the Vanishing of the Iwasawa Invariant μ_p

Lawrence C. Washington

To my teacher, Professor Iwasawa, on his seventieth birthday

In [3], W. Sinnott gave a new proof of the result of B. Ferrero and the present author [1] that the Iwasawa invariant μ_p vanishes for cyclotomic \mathbb{Z}_p -extensions of abelian number fields. The original proof was based on Iwasawa's construction of *p*-adic *L*-functions [2] and also used the concept of *p*-adic normal numbers. Sinnott replaced the results on normal numbers with a purely algebraic independence result (Lemma 2 below), which enabled him to work in the context of *p*-adic measures and distributions and to prove that (approximately) the μ -invariant of a rational function equals the μ -invariant of its Γ -transform. In the present note, we show that Sinnott's proof can be translated back into the language of Iwasawa power series. It is amusing to note that the step involving the Γ -transform, while not very difficult to begin with, is now replaced by the even simpler observation that if a prime divides the coefficients of a polynomial then it still divides them after a permutation of the exponents.

We first introduce the standard notation (see [4, p. 386] for more details): p is a prime; q = 4 if p = 2 and q = p if p is odd; χ is an odd Dirichlet character of conductor f, where f is assumed to be of the form d or qd with (d, p) = 1 (i.e., χ is a character of the first kind); $q_n = dqp^n$; $i(a) = -\log_p(a)/\log_p(1+q_0)$ for $a \in \mathbb{Z}_p$, where \log_p is the p-adic logarithm; $\mathcal{O} = \mathbb{Z}_p[\chi(1), \chi(2), \cdots]$; (π) is the prime of \mathcal{O} ; $\Lambda = \mathcal{O}[T]$; K = field of fractions of \mathcal{O} ; α runs through the $\phi(q)$ -th (2nd or (p-1)-st) roots of unity in \mathbb{Z}_p ; $\langle a \rangle$ is defined for $a \in \mathbb{Z}_p^{\times}$ by $a = \omega(a) \langle a \rangle$, where ω is the Teichmüller character; $\{y\}$ is the fractional part of $y \in \mathbb{Q}$; $\omega_n(T) = (1+T)^{p^n} - 1$; and

$$B(y) = (1+q_0)\{y\} - \{(1+q_0)y\} - \frac{q_0}{2}.$$

Received December 24, 1987.

Revised April 25, 1988.

Research supported in part by N.S.F. and the Max-Planck-Institut für Mathematik, Bonn.

L. C. Washington

Note that

$$\sum_{py\equiv z \pmod{Z}} B(y) = B(z)$$

for any z. Let

$$f_{\alpha}^{n}(T) = \sum_{\substack{a \equiv a(q) \\ a \pmod{q_{n}}}} B\left(\frac{a}{q_{n}}\right) \chi(a)(1+T)^{a(1+q_{0})} \pmod{\omega_{n}(T)}.$$

Since $f_{\alpha}^{n+1}(T) \equiv f_{\alpha}^{n}(T) \pmod{\omega_{n}(T)}$, there exists a power series $f_{\alpha}(T) \in \Lambda$ with $f_{\alpha}(T) \equiv f_{\alpha}^{n}(T) \pmod{\omega_{n}(T)}$ for all $n \ge 0$.

Lemma 1.

$$f_{\alpha}(T) = \frac{(1+q_0)\sum_{\substack{0 < \alpha < q_0 \\ \alpha \equiv \alpha(q)}} \chi(a)(1+T)^{\alpha(1+q_0)} - \sum_{\substack{0 < \alpha < q_0(1+q_0) \\ \alpha \equiv \alpha(q)}} \chi(a)(1+T)^{\alpha}}{(1+T)^{q_0(1+q_0)} - 1}.$$

We postpone the proof until the end. Note that $f_{\alpha}(T)$ is a rational function and $f_{\alpha}(T) = f_{-\alpha}((1+T)^{-1}-1))$. Let

$$h_{\alpha}^{n}(T) = \sum_{\substack{a \equiv a(q) \\ a \pmod{q_{n}}}} B\left(\frac{a}{q_{n}}\right) \chi(a)(1+T)^{(a-1a-1)(1+q_{0})/q} \pmod{\omega_{n}(T)}.$$

Then, just as with $f_{\alpha}(T)$, there exists $h_{\alpha}(T) \in \Lambda$ with $h_{\alpha}(T) \equiv h_{\alpha}^{n}(T)$ (mod $\omega_{n}(T)$) for all $n \geq 0$. It is easy to see that

$$(1+T)^{1+q_0}h_{\alpha}((1+T)^{q}-1) = f_{\alpha}((1+T)^{\alpha-1}-1).$$

Finally, we state the crucial result of Sinnott.

Lemma 2 (Sinnott [3]). For each $\phi(q)$ -th root of unity α , let $F_{\alpha}(T) \in \Lambda \cap K(T)$. Suppose

$$\sum_{\alpha} F_{\alpha}((1+T)^{\alpha}-1) \in \pi \Lambda.$$

Then there exist constants $c_{\alpha} \in \mathcal{O}$ such that

$$F_{a}(T) + F_{-a}((1+T)^{-1}-1) \equiv c_{a} \pmod{\pi \Lambda}$$

for all α (see the appendix for a proof).

We can now give the proof that $\mu_p = 0$. It is well known [4, p. 131] that $\mu_p = 0$ for all abelian number fields if and only if $\mu_{xw} = 0$ for all odd Dirichlet characters $\chi \neq \omega^{-1}$ of the first kind, where μ_{xw} is defined as

458

follows. Let $\frac{1}{2}f(T, x\omega) \in \Lambda$ be the Iwasawa power series attached to the *p*-adic *L*-function $L_p(s, \chi\omega)$. Then $\mu_{\chi\omega}$ is the largest μ (possibly fractional) such that $p^{-\mu}\frac{1}{2}f(T, \chi\omega)$ is *p*-integral (with coefficients in some extension of \mathcal{O}). It is possible [4, p. 122] to write

$$f(T, \chi \omega) = \frac{g(T, \chi \omega)}{h(T, \chi \omega)}$$

where

$$h(T, \chi_{\omega}) = 1 - \frac{1+q_0}{1+T}$$
 and $\frac{1}{2}g(T, \chi_{\omega}) \in \Lambda$.

Since the μ -invariant of h is 0, it follows that $\frac{1}{2}f$ and $\frac{1}{2}g$ have the same μ -invariant. Iwasawa's construction of g [4, pp. 119–123] shows that

$$\frac{1}{2}g(T, \chi_{\omega}) \equiv \frac{1}{2} \sum_{a \pmod{q_n}} \left((1+q_0) \left\{ \frac{a}{q_n} \right\} - \left\{ \frac{(1+q_0)a}{q_n} \right\} \right) \chi(a) (1+T)^{i(a)-1} \mod(\pi, \omega_n(T))$$

for all $n \ge 0$. Since χ is odd we may insert a term $q_0/2$ and multiply by 1+T to obtain

$$(1+T)\frac{1}{2}g(T, \chi\omega) \equiv \frac{1}{2} \sum_{a \pmod{q_n}} B\left(\frac{a}{q_n}\right) \chi(a)(1+T)^{i(a)} \mod(\pi, \omega_n(T)).$$

Since $\omega_n(T) \equiv T^{p^n} \pmod{p}$, we find that

$$\mu_{\chi_{\omega}} > 0 \Rightarrow \frac{1}{2} \sum_{a \pmod{q_n}} B\left(\frac{a}{q_n}\right) \chi(a)(1+T)^{i(a)} \equiv 0 \pmod{(\pi, \omega_n(T))}$$
for all $n \ge 0$.

Note that $i(a) \equiv i(b) \pmod{p^n} \Leftrightarrow \langle a \rangle \equiv \langle b \rangle \pmod{qp^n} \Leftrightarrow (\langle a \rangle - 1)/q \equiv (\langle b \rangle - 1)/q \pmod{p^n}$. Therefore, changing i(a) to $(\langle a \rangle - 1)(1+q_0)/q$ (this is essentially the Γ -transform) permutes exponents mod p^n and does not affect divisibility by π . Consequently,

$$\begin{aligned} \mu_{\chi_{\omega}} > 0 \Rightarrow \frac{1}{2} \sum_{a \pmod{q_n}} B\left(\frac{a}{q_n}\right) \chi(a)(1+T)^{\langle\langle a\rangle - 1\rangle(1+q_0)/q} \equiv 0 \\ (\mod(\pi, \omega_n(T))) \text{ for all } n \end{aligned}$$
$$\Rightarrow \frac{1}{2} \sum_{\alpha} h_{\alpha}(T) \equiv 0 \pmod{\pi}$$
$$\Rightarrow \frac{1}{2} \sum_{\alpha} h_{\alpha}((1+T)^q - 1) \equiv 0 \pmod{\pi}$$
$$(\operatorname{since}(1+T)^q - 1 \equiv T^q \pmod{p})$$

L. C. Washington

$$\Rightarrow \frac{1}{2} \sum_{\alpha} f_{\alpha}((1+T)^{\alpha-1}-1) \equiv 0 \pmod{\pi}$$
$$\Rightarrow f_{\alpha}(T) = \frac{1}{2} f_{\alpha}(T) + \frac{1}{2} f_{-\alpha}((1+T)^{-1}-1) \equiv b_{\alpha} \pmod{\pi}$$

for some constant $b_{\alpha} \in \mathcal{O}$, for all α . Let $\alpha = 1$. The coefficient of 1+Tin the numerator of $f_1(T)$ is $-\chi(1) = -1 \neq 0 \pmod{\pi}$. If $f_1(T) \equiv b_1 \pmod{\pi}$ then

$$((1+T)^{q_0(1+q_0)}-1)b_1 \equiv (\text{numerator}) \pmod{\pi},$$

which is impossible, since the left side does not have 1+T to the first power. This contradiction proves that $\mu_{\chi_{\omega}}=0$ for all χ , hence that $\mu_p=0$, as claimed.

We now prove Lemma 1. We have

$$((1+T)^{q_0(1+q_0)}-1)f_{\alpha}^n(T) \equiv \sum_{\alpha} \left(B\left(\frac{a-q_0}{q_n}\right) - B\left(\frac{a}{q_n}\right) \right) \chi(a)(1+T)^{a(1+q_0)} \pmod{\omega_n(T)}.$$

Working temporarily in $K[T] \mod \omega_n(T)$, we have

$$\begin{split} \sum_{a \equiv a} \left(\left\{ \frac{a - q_0}{q_n} \right\} - \left\{ \frac{a}{q_n} \right\} \right) \chi(a) (1 + T)^{a (1 + q_0)} \\ &= \sum_{\substack{0 < a < q_0 \\ a \equiv a (q)}} \chi(a) (1 + T)^{a (1 + q_0)} - \sum_{\substack{0 < a < q_n \\ a \equiv a (q)}} \frac{q_0}{q_n} \chi(a) (1 + T)^{a (1 + q_0)} \\ &\equiv \sum_{\substack{0 < a < q_0 \\ a \equiv a (q)}} \chi(a) (1 + T)^{a (1 + q_0)} - \sum_{\substack{0 < a < q_n \\ a \equiv a (q)}} \frac{q_0}{q_n} \chi(a) (1 + T)^a \\ \end{split}$$

(change a to $a(1+q_0)^{-1} \pmod{q_n}$ in the second sum). Also

$$\begin{split} \sum_{a \equiv a} \left(\left\{ \frac{a(1+q_0) - q_0(1+q_0)}{q_n} \right\} - \left\{ \frac{a(1+q_0)}{q_n} \right\} \right) \chi(a)(1+T)^{a(1+q_0)} \\ \equiv \sum_{a} \left(\left\{ \frac{a - q_0(1+q_0)}{q_n} \right\} - \left\{ \frac{a}{q_n} \right\} \right) \chi(a)(1+T)^a \\ \equiv \sum_{\substack{0 < a < q_0(1+q_0)\\a \equiv a < q_0}} \chi(a)(1+T)^a - (1+q_0) \sum_{\substack{0 < a < q_n\\a \equiv a < q_0}} \frac{q_0}{q_n} \chi(a)(1+T)^a \end{split}$$

(we assume $q_n > q_0(1+q_0)$). Therefore

$$((1+T)^{q_0(1+q_0)}-1)f_{a}^{n}(T) \equiv (1+q_0) \sum_{\substack{0 \le a \le q_0 \\ a \equiv a(q)}} \chi(a)(1+T)^{a(1+q_0)} - \sum_{\substack{0 \le a \le q_0 \\ a \equiv a(q)}} \chi(a)(1+T)^{a}.$$

460

This congruence is in $K[T] \mod \omega_n(T)$. By Gauss's Lemma, it is actually a congruence in $\Lambda \mod \omega_n(T)$. Letting $n \to \infty$, we obtain Lemma 1.

Appendix. Proof of Lemma 2

For completeness, we include a proof of Lemma 2, following Sinnott [3].

Lemma A. Let p be prime and let \mathbb{F} be a field of characteristic p. Let $a_1, \dots, a_n \in \mathbb{Z}_p$ be linearly independent over \mathbb{Q} . Then $(1+T)^{a_1}, \dots, (1+T)^{a_n}$ are algebraically independent over \mathbb{F} in $\mathbb{F}((T))$.

Proof. Suppose we have a relation

 $\sum b_D (1+T)^{d_1 a_1 + \dots + d_n a_n} = 0, \quad b_D \in \mathbb{F},$

where the sum is over *n*-tuples of nonnegative integers and $b_D = 0$ for almost all *D*. Changing (1+T) to $(1+T)^x$, with $x \in \mathbb{Z}_p$ yields the relation

$$\sum b_n (1+T)^{(d_1a_1+\cdots+d_na_n)x} = 0 \quad \text{for all } x \in \mathbb{Z}_n.$$

Since the exponents $d_1a_1 + \cdots + d_na_n$ are all distinct by hypothesis, we may apply Artin's theorem on linear independence of characters to conclude that $b_D = 0$ for all D.

Lemma B. Let \mathbb{F} be any field, let X_1, \dots, X_n , Z be independent indeterminates over \mathbb{F} , and let Y_1, \dots, Y_m be nontrivial elements of the subgroup of $\mathbb{F}(X_1, \dots, X_n)^{\times}$ generated by X_1, \dots, X_n . Assume in addition that $Y_i^a = Y_j^b$ with $i \neq j$ and $a, b \in \mathbb{Z}$ occurs only when a = b = 0. Then a relation of the form

$$r_1(Y_1) + \cdots + r_m(Y_m) = 0$$
 with $r_1(Z) \in \mathbb{F}(Z)$

can only happen when $r_i(Z) \in \mathbb{F}$ for all j.

Proof. We may enlarge \mathbb{F} if necessary so that \mathbb{F}^{\times} has an element t of infinite order. Suppose we have a relation in which not all r_j are constant and suppose m is chosen to be minimal. Then no r_j can be constant, otherwise we could shorten the relation. Since the X's are algebraically independent and the Y's are nontrivial, Y_1 is transcendental over \mathbb{F} . Therefore $m \geq 2$. We may write

$$Y_j = \prod_i X^{a_{ij}}$$
 with $a_{ij} \in \mathbb{Z}$.

Since Y_1 and Y_2 are multiplicatively independent, there exist integers

 b_1, \dots, b_n such that

$$\sum_i a_{i1}b_i = 0, \qquad \sum_i a_{i2}b_i \neq 0.$$

In general, let $c_i = \sum a_{i,i}b_i$. Changing X_i to $X_i t^{b_i}$ in the relation, then subtracting, vields

$$\sum_{j=2}^{m} r_{j}(Y_{j}) - r_{j}(Y_{j}t^{c_{j}}) = 0.$$

Since t has infinite order, $c_2 \neq 0$, and r_2 is not constant, it follows easily that $r_2(Z) - r_2(Zt^{c_2}) \notin \mathbb{F}$. Therefore we have a relation of length m-1, contradicting the minimality of m. This proves Lemma B.

We can now prove Lemma 2. Let $\mathbb{F} = \mathcal{O}/\pi \mathcal{O}$ and regard F_a as an element of $\mathbb{F}(T)$. Let A be the additive subgroup of \mathbb{Z}_p generated by the set V of $\phi(q)$ -th roots of unity. Let a_1, \dots, a_n be a Z-basis for A and let η_1, \dots, η_m $(m = \frac{1}{2}\phi(q))$ be a set of representatives for V modulo ± 1 . Let

$$X_i = (1+T)^{a_i}, i = 1, \dots, n;$$
 $Y_i = (1+T)^{n_j}, j = 1, \dots, m,$

and let

$$r_i(Z) = F_{n_i}(Z-1) + F_{-n_i}(Z^{-1}-1).$$

Lemma A implies that the X's are algebraically independent, and it is clear that the r's, X's, and Y's satisfy the hypotheses of Lemma B. Therefore Lemma 2 follows.

Remark. The proof of Lemma 2 given above and the proofs of the results on normal numbers used in [1] have certain formal similarities. It would be interesting to be able to deduce one from the other.

References

- [1] B. Ferrero and L. Washington, The Iwasawa invariant μ_p vanishes for abelian number fields, Ann. of Math., 109 (1979), pp. 377-395.
- [2] K. Iwasawa, Lectures on p-adic L-functions, Annals of Math. Studies,
- [3] K. Iwasawa, Locures on p-adic L-functions, Annals of Math. Studies, Princeton Univ. Press, Princeton, N.J., 1972.
 [3] W. Sinnott, On the μ-invariant of the Γ-transform of a rational function, Invent. math., 75 (1984), pp. 273-282.
 [4] L. Washington, Introduction to Cyclotomic Fields, Springer-Verlag, New York-Heidelberg-Berlin, 1982.

Department of Mathematics University of Maryland College Park, MD 20742 U.S.A.

462