Advanced Studies in Pure Mathematics 17, 1989
Algebraic Number Theory - in honor of K. Iwasawa pp. 457-462

On Sinnott's Proof of the Vanishing of the Iwasawa Invariant μ_{p}

Lawrence C. Washington

To my teacher, Professor Iwasawa, on his seventieth birthday

In [3], W. Sinnott gave a new proof of the result of B. Ferrero and the present author [1] that the Iwasawa invariant μ_{p} vanishes for cyclotomic \mathbb{Z}_{p}-extensions of abelian number fields. The original proof was based on Iwasawa's construction of p-adic L-functions [2] and also used the concept of p-adic normal numbers. Sinnott replaced the results on normal numbers with a purely algebraic independence result (Lemma 2 below), which enabled him to work in the context of p-adic measures and distributions and to prove that (approximately) the μ-invariant of a rational function equals the μ-invariant of its Γ-transform. In the present note, we show that Sinnott's proof can be translated back into the language of Iwasawa power series. It is amusing to note that the step involving the Γ-transform, while not very difficult to begin with, is now replaced by the even simpler observation that if a prime divides the coefficients of a polynomial then it still divides them after a permutation of the exponents.

We first introduce the standard notation (see [4, p. 386] for more details) : p is a prime; $q=4$ if $p=2$ and $q=p$ if p is odd; χ is an odd Dirichlet character of conductor f, where f is assumed to be of the form d or $q d$ with $(d, p)=1$ (i.e., χ is a character of the first kind); $q_{n}=d q p^{n}$; $i(a)=-\log _{p}(a) / \log _{p}\left(1+q_{0}\right)$ for $a \in \mathbb{Z}_{p}$, where $\log _{p}$ is the p-adic logarithm; $\mathcal{O}=\mathbb{Z}_{p}[\chi(1), \chi(2), \cdots] ;(\pi)$ is the prime of $\left.\mathcal{O} ; \Lambda=\mathcal{O} \llbracket T\right] ; K=$ field of fractions of $\mathcal{O} ; \alpha$ runs through the $\phi(q)$-th (2nd or $(p-1)$-st) roots of unity in $\mathbb{Z}_{p} ;\langle a\rangle$ is defined for $a \in \mathbb{Z}_{p}^{\times}$by $a=\omega(a)\langle a\rangle$, where ω is the Teichmüller character; $\{y\}$ is the fractional part of $y \in \mathbb{Q} ; \omega_{n}(T)=(1+T)^{p^{n}}-1$; and

$$
B(y)=\left(1+q_{0}\right)\{\mathrm{y}\}-\left\{\left(1+q_{0}\right) y\right\}-\frac{q_{0}}{2} .
$$

Received December 24, 1987.
Revised April 25, 1988.
Research supported in part by N.S.F. and the Max-Planck-Institut für Mathematik, Bonn.

Note that

$$
\sum_{p y \equiv z(\bmod Z)} B(y)=B(z)
$$

for any z. Let

$$
f_{a}^{n}(T)=\sum_{\substack{a \equiv \alpha(q) \\ a\left(\bmod q_{n}\right)}} B\left(\frac{a}{q_{n}}\right) \chi(a)(1+T)^{a\left(1+q_{0}\right)} \quad\left(\bmod \omega_{n}(T)\right) .
$$

Since $f_{\alpha}^{n+1}(T) \equiv f_{\alpha}^{n}(T)\left(\bmod \omega_{n}(T)\right)$, there exists a power series $f_{\alpha}(T) \in \Lambda$ with $f_{\alpha}(T) \equiv f_{\alpha}^{n}(T)\left(\bmod \omega_{n}(T)\right)$ for all $n \geq 0$.

Lemma 1.

$$
f_{\alpha}(T)=\frac{\left(1+q_{0}\right) \sum_{\substack{0<a<q_{0} \\ a \equiv \alpha(q)}} \chi(a)(1+T)^{a\left(1+q_{0}\right)}-\sum_{\substack{0<a<q_{0}\left(1+q_{0}\right) \\ a \equiv \alpha(q)}} \chi(a)(1+T)^{a}}{(1+T)^{q_{0}\left(1+q_{0}\right)}-1} .
$$

We postpone the proof until the end. Note that $f_{\alpha}(T)$ is a rational function and $\left.f_{\alpha}(T)=f_{-\alpha}\left((1+T)^{-1}-1\right)\right)$. Let

$$
h_{\alpha}^{n}(T)=\sum_{\substack{a=\alpha(q) \\ a\left(\bmod q_{n}\right)}} B\left(\frac{a}{q_{n}}\right) \chi(a)(1+T)^{(\alpha-1 a-1)\left(1+q_{0}\right) / q} \quad\left(\bmod \omega_{n}(T)\right)
$$

Then, just as with $f_{\alpha}(T)$, there exists $h_{\alpha}(T) \in \Lambda$ with $h_{\alpha}(T) \equiv h_{\alpha}^{n}(T)$ $\left(\bmod \omega_{n}(T)\right)$ for all $n \geq 0$. It is easy to see that

$$
(1+T)^{1+q_{0}} h_{\alpha}\left((1+T)^{q}-1\right)=f_{\alpha}\left((1+T)^{\alpha-1}-1\right)
$$

Finally, we state the crucial result of Sinnott.
Lemma 2 (Sinnott [3]). For each $\phi(q)$-th root of unity α, let $F_{\alpha}(T)$ $\in \Lambda \cap K(T)$. Suppose

$$
\sum_{\alpha} F_{\alpha}\left((1+T)^{\alpha}-1\right) \in \pi \Lambda
$$

Then there exist constants $c_{\alpha} \in \mathcal{O}$ such that

$$
F_{\alpha}(T)+F_{-\alpha}\left((1+T)^{-1}-1\right) \equiv c_{\alpha} \quad(\bmod \pi \Lambda)
$$

for all α (see the appendix for a proof).
We can now give the proof that $\mu_{p}=0$. It is well known [4, p. 131] that $\mu_{p}=0$ for all abelian number fields if and only if $\mu_{\chi_{\omega}}=0$ for all odd Dirichlet characters $\chi \neq \omega^{-1}$ of the first kind, where $\mu_{\chi_{\omega}}$ is defined as
follows. Let $\frac{1}{2} f(T, x \omega) \in \Lambda$ be the Iwasawa power series attached to the p-adic L-function $L_{p}(s, \chi \omega)$. Then $\mu_{\chi_{\omega}}$ is the largest μ (possibly fractional) such that $p^{-\mu} \frac{1}{2} f(T, \chi \omega)$ is p-integral (with coefficients in some extension of \mathcal{O}). It is possible [4, p. 122] to write

$$
f\left(T, \chi_{\omega}\right)=\frac{g\left(T, \chi_{\omega}\right)}{h\left(T, \chi_{\omega}\right)}
$$

where

$$
h\left(T, \chi_{\omega}\right)=1-\frac{1+q_{0}}{1+T} \quad \text { and } \quad \frac{1}{2} g\left(T, \chi_{\omega}\right) \in \Lambda
$$

Since the μ-invariant of h is 0 , it follows that $\frac{1}{2} f$ and $\frac{1}{2} g$ have the same μ-invariant. Iwasawa's construction of g [4, pp. 119-123] shows that

$$
\begin{array}{r}
\frac{1}{2} g\left(T, \chi_{\omega}\right) \equiv \frac{1}{2} \sum_{a\left(\bmod q_{n}\right)}\left(\left(1+q_{0}\right)\left\{\frac{a}{q_{n}}\right\}-\left\{\frac{\left(1+q_{0}\right) a}{q_{n}}\right\}\right) \chi(a)(1+T)^{i(a)-1} \\
\bmod \left(\pi, \omega_{n}(T)\right)
\end{array}
$$

for all $n \geq 0$. Since χ is odd we may insert a term $q_{0} / 2$ and multiply by $1+T$ to obtain

$$
(1+T) \frac{1}{2} g\left(T, \chi_{\omega}\right) \equiv \frac{1}{2} \sum_{a\left(\bmod q_{n}\right)} B\left(\frac{a}{q_{n}}\right) \chi(a)(1+T)^{i(a)} \bmod \left(\pi, \omega_{n}(T)\right)
$$

Since $\omega_{n}(T) \equiv T^{p^{n}}(\bmod p)$, we find that

$$
\begin{array}{r}
\mu_{x_{\omega}}>0 \Rightarrow \frac{1}{2} \sum_{a\left(\bmod q_{n}\right)} B\left(\frac{a}{q_{n}}\right) \chi(a)(1+T)^{i(a)} \equiv 0 \quad\left(\bmod \left(\pi, \omega_{n}(T)\right)\right) \\
\text { for all } n \geq 0 .
\end{array}
$$

Note that $i(a) \equiv i(b)\left(\bmod p^{n}\right) \Leftrightarrow\langle a\rangle \equiv\langle b\rangle\left(\bmod q p^{n}\right) \Leftrightarrow(\langle a\rangle-1) / q \equiv$ $(\langle b\rangle-1) / q\left(\bmod p^{n}\right)$. Therefore, changing $i(a)$ to $(\langle a\rangle-1)\left(1+q_{0}\right) / q$ (this is essentially the Γ-transform) permutes exponents $\bmod p^{n}$ and does not affect divisibility by π. Consequently,

$$
\begin{aligned}
& \mu_{x_{\omega}}>0 \Rightarrow \frac{1}{2} \sum_{a\left(\bmod q_{n}\right)} B\left(\frac{a}{q_{n}}\right) \chi(a)(1+T)^{(\langle a\rangle-1)\left(1+q_{0}\right) / q} \equiv 0 \\
& \Rightarrow \quad\left(\bmod \left(\pi, \omega_{n}(T)\right)\right) \text { for all } n \\
& \Rightarrow \sum_{\alpha} h_{\alpha}(T) \equiv 0 \quad(\bmod \pi) \\
& \frac{1}{2} \sum_{\alpha} h_{\alpha}\left((1+T)^{q}-1\right) \equiv 0 \quad(\bmod \pi) \\
& \quad\left(\text { since }(1+T)^{q}-1 \equiv T^{q}(\bmod p)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{1}{2} \sum_{\alpha} f_{\alpha}\left((1+T)^{\alpha-1}-1\right) \equiv 0 \quad(\bmod \pi) \\
& \Rightarrow f_{\alpha}(T)=\frac{1}{2} f_{\alpha}(T)+\frac{1}{2} f_{-\alpha}\left((1+T)^{-1}-1\right) \equiv b_{\alpha} \quad(\bmod \pi)
\end{aligned}
$$

for some constant $b_{\alpha} \in \mathcal{O}$, for all α. Let $\alpha=1$. The coefficient of $1+T$ in the numerator of $f_{1}(T)$ is $-\chi(1)=-1 \neq 0(\bmod \pi)$. If $f_{1}(T) \equiv b_{1}$ $(\bmod \pi)$ then

$$
\left((1+T)^{q_{0}\left(1+q_{0}\right)}-1\right) b_{1} \equiv(\text { numerator }) \quad(\bmod \pi),
$$

which is impossible, since the left side does not have $1+T$ to the first power. This contradiction proves that $\mu_{\chi_{\omega}}=0$ for all χ, hence that $\mu_{p}=0$, as claimed.

We now prove Lemma 1. We have

$$
\begin{array}{r}
\left((1+T)^{q_{0}\left(1+q_{0}\right)}-1\right) f_{\alpha}^{n}(T) \equiv \sum_{\alpha}\left(B\left(\frac{a-q_{0}}{q_{n}}\right)-B\left(\frac{a}{q_{n}}\right)\right) \chi(a)(1+T)^{a\left(1+q_{0}\right)} \\
\left(\bmod \omega_{n}(T)\right) .
\end{array}
$$

Working temporarily in $K[T] \bmod \omega_{n}(T)$, we have

$$
\begin{aligned}
& \sum_{a \equiv \alpha}\left(\left\{\frac{a-q_{0}}{q_{n}}\right\}-\left\{\frac{a}{q_{n}}\right\}\right) \chi(a)(1+T)^{a\left(1+q_{0}\right)} \\
& \quad=\sum_{\substack{0<a<q_{0} \\
a \equiv(q)}} \chi(a)(1+T)^{a\left(1+q_{0}\right)}-\sum_{\substack{0<a<q_{n} \\
a \equiv \alpha(q)}} \frac{q_{0}}{q_{n}} \chi(a)(1+T)^{a\left(1+q_{0}\right)} \\
& \quad \equiv \sum_{\substack{0<a<q_{0} \\
a \equiv \alpha(q)}} \chi(a)(1+T)^{a\left(1+q_{0}\right)}-\sum_{\substack{0<a<q_{n} \\
a \equiv \alpha(q)}} \frac{q_{0}}{q_{n}} \chi(a)(1+T)^{a}
\end{aligned}
$$

(change a to $a\left(1+q_{0}\right)^{-1}\left(\bmod q_{n}\right)$ in the second sum). Also

$$
\begin{aligned}
& \sum_{a \equiv \alpha}\left(\left\{\frac{a\left(1+q_{0}\right)-q_{0}\left(1+q_{0}\right)}{q_{n}}\right\}-\left\{\frac{a\left(1+q_{0}\right)}{q_{n}}\right\}\right) \chi(a)(1+T)^{a\left(1+q_{0}\right)} \\
& \equiv \sum_{a}\left(\left\{\frac{a-q_{0}\left(1+q_{0}\right)}{q_{n}}\right\}-\left\{\frac{a}{q_{n}}\right\}\right) \chi(a)(1+T)^{a} \\
& \equiv \sum_{\substack{0<a<q_{0}\left(1+q_{0}\right) \\
a \equiv \alpha(q)}} \chi(a)(1+T)^{a}-\left(1+q_{0}\right) \sum_{\substack{0<a<q_{n} \\
a \equiv \alpha(q)}} \frac{q_{0}}{q_{n}} \chi(a)(1+T)^{a}
\end{aligned}
$$

(we assume $q_{n}>q_{0}\left(1+q_{0}\right)$). Therefore

$$
\begin{aligned}
&\left((1+T)^{q_{0}\left(1+q_{0}\right)}-1\right) f_{\alpha}^{n}(T) \equiv\left(1+q_{0}\right) \\
&-\sum_{\substack{0<a<q_{0} \\
0 \leqslant a<\alpha(q)}} \chi(a)(1+T)^{a\left(1+q_{0}\right)} \\
& a \equiv \alpha\left(1+q_{0}\right) \\
&a \equiv \alpha)
\end{aligned} \chi(a)(1+T)^{a} .
$$

This congruence is in $K[T] \bmod \omega_{n}(T)$. By Gauss's Lemma, it is actually a congruence in $\Lambda \bmod \omega_{n}(T)$. Letting $n \rightarrow \infty$, we obtain Lemma 1.

Appendix. Proof of Lemma 2

For completeness, we include a proof of Lemma 2, following Sinnott [3].

Lemma A. Let p be prime and let \mathbb{F} be a field of characteristic p. Let $a_{1}, \cdots, a_{n} \in \mathbb{Z}_{p}$ be linearly independent over \mathbb{Q}. Then $(1+T)^{a_{1}}, \cdots$, $(1+T)^{a_{n}}$ are algebraically independent over \mathbb{F} in $\mathbb{F}((T))$.

Proof. Suppose we have a relation

$$
\sum b_{D}(1+T)^{d_{1} a_{1}+\cdots+d_{n} a_{n}}=0, \quad b_{D} \in \mathbb{F},
$$

where the sum is over n-tuples of nonnegative integers and $b_{D}=0$ for almost all D. Changing $(1+T)$ to $(1+T)^{x}$, with $x \in \mathbb{Z}_{p}$ yields the relation

$$
\sum b_{D}(1+T)^{\left(d_{1} a_{1}+\cdots+d_{n} a_{n}\right) x}=0 \quad \text { for all } x \in \mathbb{Z}_{p}
$$

Since the exponents $d_{1} a_{1}+\cdots+d_{n} a_{n}$ are all distinct by hypothesis, we may apply Artin's theorem on linear independence of characters to conclude that $b_{D}=0$ for all D.

Lemma B. Let \mathbb{F} be any field, let X_{1}, \cdots, X_{n}, Z be independent indeterminates over \mathbb{F}, and let Y_{1}, \cdots, Y_{m} be nontrivial elements of the subgroup of $\mathbb{F}\left(X_{1}, \cdots, X_{n}\right)^{\times}$generated by X_{1}, \cdots, X_{n}. Assume in addition that $Y_{i}^{a}=Y_{j}^{b}$ with $i \neq j$ and $a, b \in \mathbb{Z}$ occurs only when $a=b=0$. Then a relation of the form

$$
r_{1}\left(Y_{1}\right)+\cdots+r_{m}\left(Y_{m}\right)=0 \quad \text { with } r_{j}(Z) \in \mathbb{F}(Z)
$$

can only happen when $r_{j}(Z) \in \mathbb{E}$ for all j.
Proof. We may enlarge \mathbb{F} if necessary so that \mathbb{F}^{\times}has an element t of infinite order. Suppose we have a relation in which not all r_{j} are constant and suppose m is chosen to be minimal. Then no r_{j} can be constant, otherwise we could shorten the relation. Since the X 's are algebraically independent and the Y 's are nontrivial, Y_{1} is transcendental over \mathbb{F}. Therefore $m \geq 2$. We may write

$$
Y_{j}=\prod_{i} X^{a_{i j}} \quad \text { with } a_{i j} \in \mathbb{Z}
$$

Since Y_{1} and Y_{2} are multiplicatively independent, there exist integers
b_{1}, \cdots, b_{n} such that

$$
\sum_{i} a_{i 1} b_{i}=0, \quad \sum_{i} a_{i 2} b_{i} \neq 0 .
$$

In general, let $c_{j}=\sum a_{i j} b_{i}$. Changing X_{i} to $X_{i} t^{b_{i}}$ in the relation, then subtracting, yields

$$
\sum_{j=2}^{m} r_{j}\left(Y_{j}\right)-r_{j}\left(Y_{j} t^{c_{j}}\right)=0 .
$$

Since t has infinite order, $c_{2} \neq 0$, and r_{2} is not constant, it follows easily that $r_{2}(Z)-r_{2}\left(Z t^{c_{2}}\right) \notin \mathbb{F}$. Therefore we have a relation of length $m-1$, contradicting the minimality of m. This proves Lemma B.

We can now prove Lemma 2. Let $\mathbb{E}=\mathcal{O} / \pi \mathcal{O}$ and regard F_{α} as an element of $\mathbb{F}(T)$. Let A be the additive subgroup of \mathbb{Z}_{p} generated by the set V of $\phi(q)$-th roots of unity. Let a_{1}, \cdots, a_{n} be a \mathbb{Z}-basis for A and let $\eta_{1}, \cdots, \eta_{m}\left(m=\frac{1}{2} \phi(q)\right)$ be a set of representatives for V modulo ± 1. Let

$$
X_{i}=(1+T)^{a_{i}}, i=1, \cdots, n ; \quad Y_{j}=(1+T)^{n j}, j=1, \cdots, m,
$$

and let

$$
r_{j}(Z)=F_{\eta_{j}}(Z-1)+F_{-\eta_{j}}\left(Z^{-1}-1\right)
$$

Lemma A implies that the X 's are algebraically independent, and it is clear that the r 's, X 's, and Y 's satisfy the hypotheses of Lemma B. Therefore Lemma 2 follows.

Remark. The proof of Lemma 2 given above and the proofs of the results on normal numbers used in [1] have certain formal similarities. It would be interesting to be able to deduce one from the other.

References

[1] B. Ferrero and L. Washington, The Iwasawa invariant μ_{p} vanishes for abelian number fields, Ann. of Math., 109 (1979), pp. 377-395.
[2] K. Iwasawa, Lectures on p-adic L-functions, Annals of Math. Studies, Princeton Univ. Press, Princeton, N.J., 1972.
[3] W. Sinnott, On the μ-invariant of the Γ-transform of a rational function, Invent. math., 75 (1984), pp. 273-282.
[4] L. Washington, Introduction to Cyclotomic Fields, Springer-Verlag, New York-Heidelberg-Berlin, 1982.

Department of Mathematics

University of Maryland
College Park, MD 20742
U.S.A.

