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is finite. 
Step 2. ff is constant: This is an immediate consequence of Step 1. 
Step 3. ffl U=O for a nonempty open subset U of Spec(o®): Let 

h: Z-.Spec(o®) be the closed immersion of the complement Z := 
Spec (o®) \ U which is a finite set of closed points. We then have ff= 
h*h*ff and therefore H 1(o®, ff)=H 1(Z, h*ff). But from the fact that 
the residue class fields of o® are either p-closed or finite we easily conclude 
that H 1(Z, h* ff) is a finite direct sum of groups of the form H 1(1e, M) 
where ,c is a finite field of characteristic p and M is a finite p-torsion 
Galois module. Such groups obviously are finite. 

Step 4. If the assertion holds true for ff then also for any subsheaf 
of ff: This is a trivial consequence of the long exact cohomology 
sequence and the fact that the group of global sections of a constructible 
sheaf on Spec (o®)et it finite. 

Step 5. ff arbitrary: First we find a nonempty open subset f: U 
-.Spec (o~) such that/* ff is locally constant. Since the cokemel of the 
injective map of sheaves 

is of the type considered in Step 3 it suffices to prove the assertion for 
sheaves of the form /j2 with a constructible locally constant p-torsion 
sheaf 2 on Uet· There is a finite extension of k~ with ring of integers R 
and structure morphism ;r: Spec (R)-.Spec (o~) such that 

fj :=;r- 1(U)~U is etale and ;r*2 is constant on Uet· 

If j: 0-.Spec (R) denotes the corresponding open immersion we have an 
injective map of sheaves 

fj2~fi it'*n-* 2= n-*ii(;r* 2). 

By Step 4 we thus are reduced to show the assertion for ;r*j1(n-* 2). But 
the finiteness of ;r implies 

Simplifying notation again it therefore remains to consider a sheaf of the 
form/j2 with a constructible constant p-torsion sheaf 2 on u.t· This 
case finally is established by combining Step 2 and Step 4. q.e.d. 

At this point it is convenient to adjust our notation in the following 
way: M :=Ht(X) is our basic motive, n e Z is an integer, and 
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'§p(M(n)) :=r.Rg*Hi(X, Qp/Zp(n)) 

with a=a(Hi(X, QP/Zp(n)); F/J:::n) are the complexes Greenberg's ap­
proach provides us with. 

Proposition. If (I) holds true then we have 
i) H 2(ooo, '§p(M(n)))=Ofor n>min (i, dimX); 

ii) H1(ooo, '§p(M(n)))* is .finitely generated over ZPfor n<max (0, i­
dim X). 

Proof For n > min (i, dim X) we have F/J:::n = Hi(X, QP/ZP(n)) 
which implies '§P(M(n))=Ra*(g~Hi(X, QP/Zp(n))) and therefore 

H2(o=, '§p(M(n)))=H 2(o:, g~Hi(X, Qp/Zp(n)))=O. 

Let us now assume that n<max(O, i-dimX). This implies F/~:::n=O 
and therefore that '§p(M(n)) is quasi-isomorphic to g*Hi(X, QP/Zp(n)). 

Since kernel and cokernel of the multiplication by p on the sheaf 
g*Hi(X, QP/Zp(n)) certainly are constructible p-torsion sheaves it is easily 
derived from the above Lemma that the kernel of the multiplication by p 
on H 1(000 , g*Hi(X, QP/Zp(n))) is finite. 

We now want to propose a conjecture which will enable us to compute 
the lindividual ranks for arbitrary n. But at the moment we only will 
consider the case where 

X has ordinary good reduction at all +J \p 

which we assume from now on in this paragraph. The reason for this is 
that, as we will see, in the "nonordinary" case our two approaches seem 
to lead to different Zp[[I']]-modules. So any more general conjecture has 
to be postponed till the relation between the complexes '§ P and :If' P has 
been clarified. 

Conjecture. We have (for any base field k): 
a) Jfi is odd then H 2(000 , '§p(M((i+l)/2)))* is ZP[[I']]-torsion; 
b) if i is even then H 1(000 , '§p(M(i/2)))* and H 2(000 , '§p(M((i/2) + I)))* 

are Zp[[I']]-torsion. 

For i= I this Conjecture, as was explained at the beginning, comes 
down to Mazur's conjecture about the "well-behavior" of his ZP[[I']]­
module. We also should remark that, presumably, the duality theory for 
H*(o 00 , • ) which does not exist yet will show that the two assertions in 
part b. of the Conjecture are equivalent. 



446 P. Schneider 

Proposition. If the above Conjecture holds true then H•(o 00 , C§p(M(n)))* 
is Zv[[I']]-torsionfor v= I and n<i/2 and for v=2 and n>(i+ 1)/2. 

Proof Let {;v be a primitive p-th root of unity. Since the degree of 
k([;v)f k is prime to p an easy descent argument shows that it suffices to 
prove the assertion for the base field k(l;v). Therefore let us assume 
that {;v e k. But then the formation of the cohomology H*(o 00 , ·) com­
mutes with Tate twist. By the results of the previous paragraph the long 
exact cohomology sequences consequently induce a commutative exact 
diagram 

where L.(.) : = H 0(Zv, H 1(k;;,:v, . )). From that we obviously get an 
injection 

and a surjection 

Since we have proved that p(H 1(X)((i + 1 )/2)) = 0 for odd i the assertion 
is immediate from these maps and our assumption. 

Corollary. If the above Conjecture holds true then we have 
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if i+ 1 
1 n=~-

2 

and, provided (A) holds true, 

i 
or -+1, 

2 
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1
ords=nLoo(M, s) if i i+l i 

z n=/=-2, ~2-, 2+1, 

- ords=n Loo(M, s)-ords=n+I Loo(M, s) 
\ 

§ 5. p-adic L-functions in the ordinary case 

if i 
1 n=-. 

2 

Let H be a finitely generated ZP[[I']]-torsion module. Iwasawa's 
structure theory of such modules tells us that 

H ® QP is of finite dimension over QP 
Zp 

and that there is a Zp[[I']]-homomorphism 

with finite kernel and cokernel; 

µ(H) :=I:µi 
i 

is called the µ-invariant of H. The characteristic polynomial of H then, 
by definition, is 

P(T; H) :=pµ<Hl.det(l-r-'T; H@ Qp) 
Zp 

where r is our fixed topological generator of I'. (Warning: In the liter­
ature usually <let (-r)-P(T+l; H)=pµ<Hl.det(T-(7-1); H®zpQP) is 
called the characteristic polynomial of H.) We assume in this paragraph 
again that 

X has ordinary good reduction at all j:) \p. 

We say that the integer n e Z is p-critical for the motive M = Hi(X) if the 
modules 

H•(o 00 , ';9'p(M(i+l-n)))*, for v=l and 2, are ZP[[I']]-torsion. 

In this case we define the p-adic L-function of the motive M(n) (by abuse 
of language) to be 
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2 

Lp(M(n), s) := CT P(tc(r)-•; H•(o 00 , ~p(M(i+l-n)))*)'- 1i•+ 1 

11=0 

where tc: r-z; is the cyclotomic character. Since, in the moment, the 
nature of the µ-invariants 

µ(M(. )) : = µ(H 1(o,,,, ~ p(M(. )))*)- µ(H 2(o,,,, ~ /M(. )))*) 

is quite unclear it is convenient also to introduce the reduced p-adic L­
functions 

Lp(M(n), s) :=Lp(M(n), s)-p-µ<M<H1-n>>. 

Remarks. 1) We will see later on that the reducedp-adic £-function 
most probably is independent of the particular choice of the reductions 
YP for j:I IP-

2) It was Greenberg's marvellous idea that the notion of being p­
critical should coincide with Deligne's notion (in [5]) of being critical. We 
have seen in the previous paragraph that this is exactly what would follow 
from our rank conjecture. 

There are four major questions about these p-adic £-functions which 
we will at least begin to discuss in this paper: 

-dependence on the twist 
-location of poles and zeros 
-functional equation 
-p-adic regulators. 

The dependence on the twist 

Let t;P be a primitive p-th root of unity and put o : = [k(l;p): k]. 

Theorem. If m and n are p-critical for M with m= n mod o then we 
have 

Lp(M(m), s)=Lp(M(n), m-n+s). 

Proof The first assumption, in particular, says that p(M(i + 1-m)) 
=p(M(i+l-n)). By the formula which we have established for these 
invariants in our first Theorem this amounts to 

I: dim Ht(Xp(C), Q)<-1>'-"' 
Pl® 

-I: corankHi(X, QP/Zp(i+l-m))/F~> -[kp: QPl 
PIP 

= I: dimHi(Xp(C), Q)<-1>1-" 

Pl® 
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-1: corankHi(X, Qp/Zp(i+l-n))/Fi.vdkv: Qp]. 
PIP 

We claim that the left hand terms in this identity are equal. This is 
obvious by our second assumption if o is even. But if o is odd then the 
field k is totally imaginary so that we have 

for any ,p j oo. 

If m'?_n, say, the above identity therefore implies that 

Fi.v)Hi(X, Qp/Zp( · ))/F7'v)Hi(X, Qp/Zp(. )) is finite for ,p jp. 

The kernel C of the natural map 

EB Lv(Hi(X, Qp/Zp(i+ l-m))/F7'v))(m-n) 
VIPIP 

~ EB Lv(Hi(X, Qp/Zp(i+l-n))/Fi.v) 
VIPIP 

where Lv(. )=H 0(Zv, H 1(k!:v,.)) consequently is annihilated by some 
power of p. Note that the formation of Lv( · ),resp. of H*(o=,.), commutes 
with the (m-n)-th Tate twist since m=.n mod o. The long exact coho­
mology sequences induce an exact sequence (compare the big diagram 
in the last paragraph) 

O~H 1(000 , <§ p(M(i + l -m)))(m -n)~H1(0 00 , <§ p(M(i + l -n)))~C 

~H 2(o=, <§ p(M(i + l -m)))(m -n)~H 2(000 , <§ p(M(i + l -n)))~O 

which translates into our assertion by the general fact that 

P(,c(r)-nT; H)=P(T; H(n)). 

Remark. This result suggests to extend the definition of the reduced 
p-adic L-function to any twist M(m) such that there is a n=.m mod o 
which is p-critical for M by 

Lp(M(m), s) :=Lp(M(n), m-n+s). 

In case there is an n which is p-critical for M 1kcc ) this procedure would even 
- p 

allow to define Lp(M(m), s) for any me Z. Note that, as a consequence 
of our rank conjecture, n = (i + 1 )/2, for odd i, always should be p-critical 
for M 1kCCp)· Since it seems artificial to make into a definition what should 
be a result we will not pursue this point of view. 

At this point it is quite illustrative to discuss the case X = Spec (k) 



450 P. Schneider 

reformulating thereby Iwasawa's original definitions in our context: Let 
k be totally real and M :=H 0(Spec (k)). Denote by K, resp. L, the 
maximal unramified outside p, resp. unramified, abelian p-extension of 
k®(r.p) and put 

Since o is prime top we have canonical decompositions of Zp[[I']]-modules 

.,II= E8 e J.,/1 and f!l" = E8 e Jf!l" 
Jmoda jmoda 

where 

e k) : = maximal submodule of · on which Gal (k(r_p)/k) acts via the 
j-th power of the cyclotomic character. 

Our complexes are given by 

We consequently get 

Fact 1. H'(o (§ (M(n)))*= {(envlt)(-n) 
®' P (enf!l")(-n) 

Fact 2. a) H 2(0®, (§p(M(n)))=O for n>O; 

ifn>0, 
if n<O. 

if n>O, 

if n<O. 

b) for n<O, the Zp[[I']]-torsion submodule of H 2(o®, (§p(M(n)))* is 
Zp(l -n) if n-=-I mod o and 0 otherwise. 

Proof (sketch). We have 

ifn>O, 

ifn<0. 

It is well-known that H 2(o'o,,(r_p), QP/Zp)=O (compare [16] §3 Proof of 
Proposition 8 iii). On the other hand, by global duality and Kummer 
theory, we get 

where km runs through the finite intermediate layers of k®/k. But the 
Zp[[I']]-torsion submodule of the right hand side is known to be Zp(I) 
( compare [24] Theorem 8.17). 
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Fact 3. HD(o~, ~iM(n)))*= {ip(-n) if n:=Omodo, 
otherwise. 

451 

According to [9] Theorem 5 the module fl' is Zp[[I']]-torsion. 
Therefore our rank conjecture is fulfilled and we know that n e z is p­
critical (for M) if and only if n is critical in the sense of Deligne if and 
only if n is positive and even or negative and odd. If we combine all these 
facts we get the following more explicit expression for the p-adic £­
function: 

Lp(M(n), 1-n+s)= 

P(K(r)-•; e1-nfl') 
l-1,;(r)-l-• 

P(1,;(r)-•; e1-n.,lt) 

P(1,;(r)-•; e1-n.,lt) 
l-1,;(rt• 

if n>O even, 
n:;1'.:0modo, 

if n>O even, 
n=O modo, 

if n<O odd, 
n:;1'.: 1 modo, 

if n<O odd, 
n=l modo. 

The characteristic polynomials on the right hand side are exactly those 
which lwasawa suggested to view as p-adic £-functions of the field k. 
Furthermore, using Kummer theory, Iwasawa has proved (compare [4]) 
that, for even j, 

(e J.,//)(-1) is quasi-isomorphic to (e1_ Jfl')" 

where the dot indicates that the action of I' has been inverted. Because 
of the general identity 

P(T; H)=det(-rT)·P( ~ ; n) 
we easily deduce from that, for any p-critical n, the functional equation 

Lp(M(n), s):a:un · v~ -Lp(M(l-n), -s) 

with appropriate units Un, v,. e z;. 
Remark. This already indicates the general form of the functional 

equation. Let us call the motive M : = Ht(X)(n) p-critical if n is p-critical 
for Ht(X) and let M=H 2a-t(X)(d-'-n) with d=dim X denote the dual 
motive. Later on we will show: Mis p-critical if and only if M(l) is p­
critical; in this case we have a functional equation 

Lp(M,s)=U·V' ·Lp(M(I), -s) 
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with appropriate units u, v e Z;. This is completely analogous to the 
conjectured functional equation for L=(M, s) (see [5] 1.2.3) besides the 
fact that there one always can write L=(.M(l), -s)=L=(M, 1-s) which 
we can do only if o= I. 

Remark. Accepting the artificial procedure in our previous Remark 
we can define the p-adic L-function of any Artin motive over k which can 
be written as a direct sum of twists of p-critical motives. (The Conjecture 
(I) says that in this context the relevant µ-invariants always vanish.) A 
typical example of such a motive is the following: Let K/k be a totally 
imaginary quadratic extension of the totally real field k and put M 0 : = 
H 0 (Spec (K)); then the restriction of scalars M of M 0 to k is of this type. 
In addition, it seems reasonable to put 

This would define the p-adic L-function Lp(H 0 (Spec (K)), s) for any CM­
field K. Almost by construction these p-adic L-functions have factoriza­
tions of the same form as those which in [6] are given for the automorphic 
p-adic L-functions of certain Hecke characters. 

The denominator 

We first discuss the polynomials P(T; H 0(o=, ';§p(M(n)))*) where 
M=Hi(X) and n e Z is arbitrary. (Here our results are valid without any 
assumption about the reductions of X at l:J Ip.) It is clear that the ZP­
modules 

are finitely generated. 

Theorem. i) lf i is odd then H 0(k=, Hi(X, Qp/Zp(n))) is finite; 
ii) if i is even then there is,for an appropriate open subgroup I''r:;;.I', 

a quasi-isomorphism of I'' -modules 

Proof. We have to show that 

{ 
= 0 for odd i, resp. 

V :=H 0(k=, Hi(){, Qp(n))) ( ( . )) 
~ EB QP n -f , as I''-modules, for even i. 
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Faltings [(27)] has recently proved that H'(X, Qp(n)) and therefore also V 
have a Hodge-Tate decomposition at each p Jp. By a theorem of Tate 
(see [20] III-7 complemented by [22] p. 171) V consequently is a locally 
algebraic Galois representation. This means (compare [10] p. 127) that 
there is an algebraic homomorphism h: GmtQp--+GLv such that an appro­
priate open subgroup I'' r;;;_ I' acts semisimply on V via h o IC (where IC, as 
always, denotes the cyclotomic character). By extending the base field 
we can assume without loss of generality that I''=I'. Let now p'f-p be 
any finite prime at which X has good reduction and let <pp e I' be the 
(arithmetic) Frobenius for p. Then the eigenvalues of <pp on Vare integral 
powers of 1C(<pp)-But Deligne's proof of the Weil conjecture implies that 
these eigenvalues have absolute value INpln-112• Since the <pp are dense 
in I' we see that the semisimple action of I' on V has to be via ICn- <•12> if 
i is even whereas V = 0 if i is odd. 

Corollary. i) If i is odd then P(T; H 0(o,,,, r;p(M(n)))*)= 1; 
ii) if i is even then the only possible zero of P(!C(r)-•; H 0(o,,,, 

r;p(M(n)))*) at an integer point occurs at s=n-(i/2). 

As part of our proof of the functional equation we will later on 
establish the following 

Fact. If n is p-critical for M=H'(X) then 

with an appropriate u e ZP and a :=corankH 0(o,,,, r;p(M(n))). 
The combination of these two results gives strong limitations to the 

possible poles of the p-adic £-functions. 

Proposition. If n is p-critical for M then we have: 
i) If i is odd then there is a polynomial P(T) e Qp[T] such that 

ii) if i is even then the only possible poles of Lp(M(n), s) at integer 
points occur at s=(i/2)-n and s=(i/2)+1-n. 

Let N*(X) denote the graded group of algebraic cycles on X modulo 
numerical equivalence. Tate's conjecture says that the cycle map induces 
an isomorphism 

-
(T) N*(X)@ QP~H2*(X, Qp{*))discrete 
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where the right hand side is that part of H 2*(X, Qp(*)) on which the 
absolute Galois group of k acts discretely. Let N*, resp. N'!, be the 
graded subgroup of cycle classes which contain a cycle defined over k(t;p), 
resp. k""(t;p). 

Proposition. Let ( be even and n be p-critical for M. If (T) holds true 
the multip/fcity of the_ pole of Lp(M(n), s) at s=(i/2)-n, resp. s=(i/2)+ 1 
-n, is <dime<ttzi-~(Nt 12@Qp), resp. <dime<tt 2i+i-nCNt12@QP). 

Proof. It is a straightforward consequence of (T) and the above 
Theorem that 

holds true for any m e z. By the nondegeneracy of the intersection pair­
ing and by the hard Lefschetz theorem we have 

HomQ.P (e(i/2)-m(Nif,2 @ Qp), Qp)~em-(i/ 2i(Nif,2 @ Qp). 

We therefore get 

and, using the above Fact, 

with some u e ZP. The assertion is immediate from these formulas since 
the involved I'-actions are semisimple. 

In the assertion of the above Proposition the equality sign occurs if 
and only if P(,c(r)-•; H 1(0 00 , ~p(M(i+l-n)))*) does not vanish at s= 
(i/2)-n and s = (i/2) + 1-n. Unfortunately this vanishing can happen 
due to the so-called "trivial zero" phenomenon which we will discuss later 
on. In any case the above result shows a behavior of the p-adic L­
functions which is very similar to the behavior which, by another con­
jecture of Tate, one expects for 

a) the complex L-function L""(M(n), s): the only possible pole at 
an integer point occurs for even i at s= (i/2) + 1-n and its multiplicity is 
rank N 112(X) (there is a different kind of "trivial zero" phenomenon 
caused by the nature of the expected functional equation which allows to 
explain what happens at s=(i/2)-n); 

b) the L-function L(M(n), s) for a motive M=Hi(X) over a global 
function field: the only possible poles at integer points occur for even i 
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at s=(i/2)-n and s=(i/2)+ 1-n and both their multiplicities are equal 
to rank Nt 12(X). 
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