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Anderson-Ibara Theory: 
Gauss Sums and Circular Units 

R. F. Coleman 

Thrice the brinded cat hath mewed, 
Thrice and once the hedge pig whined, 
Harpier cries. 'tis time, 'tis time. 

The Three· Witches 
Macbeth, Act IV Scene 

Dedicated to Iwasawa on the occasion of his seventieth birthday 

A few years ago, Ihara, [I], discovered a new sort of power series 
connected with the action of Ga on the Tate-modules of Fermat curves of 
/-power degree. Since then Anderson, [A], refined and generalized these 
power series, interpreting them as analogues of the classical beta function. 
Moreover, once this analogy was made he naturally was forced to factor 
them into a product of three "gamma functions." 

The previous paragraph is purposely vague and oversimplified. In 
this article I will attempt to make some of it a little less vague and indi
cate how the theory of these "gamma" and "beta" functions may be con
nected with and applied to other aspects of cyclotomy. 

I. Ihara's "Beta" series 

Let Xn denote the projective plane curve over Q determined by the 
homogeneous equation: 

Let Jn denote the Jacobian of Xn. We have natural maps, Xn+i-Xn and 
corresponding maps on the Jacobians. Hence we may define the Ga
module 

T= lim Ti(Jn(Q)). 
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Now, let A denote the ring 

Zz[[(R- I), (S-1), (T- I)]]/(RST- l) 

Fix a generator (C:n) of Ti(Gm). We can now make A act on T, as follows: 
We first make R, Sand Tact on Xn for each n, by setting, 

R (C:nX, Y, Z) 

S: (X, Y, Z)f-----+(X, C:nY, Z) 

T (X, Y, C:nZ). 

We now use functoriality, linearity and continuity to make A act on T. 

Theorem A (Ihara). Tis a principal A-module. 

Moreover, if we fix an embedding of Q in C (which we will do for 
the rest of this article), there is a nice choice of basis for T, '1), coming 
from the Pochhammer contour. (See Whittaker and Watson, 12.43.) 

and the comparison theorem between singular and etale cohomology. 
(The Pochhammer contour is the commutator of the loops around O and 
1, so it lifts to the Fermat curves which are Abelian coverings of P 1 

branched at {O, 1, oo }.) Hence, for a e Ga, we may define an element 
Fu(R, S, T) of A, by the following formula: 

F,(R, S, T)7J=G7J. 

Remark. Already one sees relations between F, and the classical 
Beta function. To bring the two closer together Anderson first considers 
F, as an element of Z 1[[Zi(l)XZi(l)]], and so a function on Q1/Z 1X Qi/Zz, 
(which among other things eliminates the choice of (C:n)), and then re
places the Pochhammer contour with the unit interval {this requires the use 
of one-motives); recall that the classical beta function is really a function 
of Q/ZX Q/Z and is defined by integrating over the unit interval. This 
is about all I want to say about the analogies except to say that the clas
sical beta function is connected with complex de Rham cohomology, the 
Anderson-Ihara beta function is connected with etale cohomology and the 
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Morita beta-function is connected with crystalline cohomology. 

For simplicity, here and for the next few se;;tions we will suppose 
l==!=-2. As an immediate consequence of the definition and what one al
ready knows about the action of GQcc,.> on Ti(Jn), we have: 

Theorem B (Ihara). Suppose a+b+c=O. Let j:) be a prime of Q 
with residue characteristic p=/=l. Let u denote any element in the Frobenius 
coset at j:>. Let j:>,. denote the restriction of j:> to Q(C::,.) and p1" the order of 
F~ .. · Then 

where ( ~) = ( ~) ,. is the /"-th power residue symbol of x at t:>n· 
j:),. j:),. ! 

Note that the expression on the right is a Jacobi sum which equals 
the product of three Gauss sums divided by the norm of j:),. (see below). 
Since u,-,,F. is a one co-cycle we can also write the expression on the left 
as F, 1,.(C::~, c:;~, C::~). Moreover, u1" is a Frobenius element above j:),.. 

From the various symmetries involved, one can see that F. is sym
metric in R, Sand T. Using this and other elementary properties of F. 
one can show that if u e GQcµ,00 ), then 

F.(R, S, T)=exp :E bm(u)-----( um+vm+w"') 
m;;,a m! 
modd 

for some bm(u) e z,, where exp(U)=R, exp(V)=S and exp(W)=T. In 
particular, 

(1.1) F.(R-1, s-1, r-1)=F.(R, s, n-1. 
Ibara conjectured the following formula for these bm(u) when u e GQcµ,00 >: 

Theorem C. Suppose m > 3, then 

where 

J"bm(a)(l-1m-l) = c<•-1)/1" 
'-n n,m 

C _ n cr-a/2_)"a/2)a"'-1 
n,m- n '-n ~n • 

a 

Here and in the following, the subscript n indicates summation or 
product over indices from 1 to /" prime to /. We will prove this in § III. 
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Remarks. Ihara's conjecture now has at least two additional proofs 
together with generalizations; one due to Anderson [A] and one due to 
Ihara-Kaneko-Yukinari [IKY]. 

II. Stickelberger's and Iwasawa's Theorems 

Let 

G n = : Gal (Q(µ 1n)/ Q) 

G=: lim Gn 

A=: lim Z1[Gn]=Z1[[G]] 

X = : the /-adic cyclotomic character 

<la,=: x-1(a) 

0n=: I:n(:n-~)a~1 

We may extend X to a homomorphism from A to Z 1 by linearity and 
continuity. Let I denote the kernel of this homomorphism. We have the 
Stickel berger ideal: 

.7 =: l0CA. 

Also A acts naturally on the principal units, Un, in Z 1[µ1n]. For ,p a prime 
of Q(µ1n) of residue characteristic p=;t=l, and t: FP~µp(Q), set 

We extend the action of G to Q(µp1oo) by making G act trivially on µP. 
We have the following perverse formulation of: 

Stickelberger's Theorem (2.1). With notation as above, suppose (a)= 
pm, for some m e Z, a E Q(µ1,.) and w EI n Z[[G]]. Then after embedding 
in QiCµin) 

a"'8~=g(,p, tr"'xan fn-th root of unity. 

(Note: Npm equals the norm of a to Q so is a principal unit in Q1 and so 
its square root makes sense as a principal unit.) See Theorem 4.2 of [L]§ 4. 

To state Iwasawa's theorem we need more notation. 
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Un= : the principal units in Z1[µ1 .. ] 

V n = : the /-adic completion of Q1[µ1 .. ]* 
~ n = : the subgroup of Q(µ, .. )* generated by { 1-1;: C e µ, .. , C =I=-1} 

fj,. = : closure of the image of ~ .. in V,. 

U~=: lim U,. 

V~=: lim Vn 

~~== limfj,. 
Finally, we have the continuous automorphisms of A: 

a,f----+a,*, which is determined by O'! =0';;1 

and 

a,f----+a,(k), k e Z, which is determined by qa(k)=akO'a-

Also superscripts + or - will denote plus or minus parts. 
Now we may state, 

Iwasawa's Theorem (2.2). 

(V~f~ ~Y ~A+ /{Y*(-1))+. 

(See [11 Proposition 3] or [C3 Theorem 7].) 
We can rewrite the left hand side of the formula in Theorem B as 

(2.3) 

m. Ihara's series and the Hilbert norm residue symbol 

59 

Let (, )1 .. : Qi(µ,,,.)* X Qi(µ, .. )*-.µ 1 .. denote the Hilbert norm residue 
symbol defined by the formula 

(a, b)im=O'(a)Ja 

where O' e (Ga,<µ,,,.,)ab is the image of b under the Artin map and a is any 
/m-th root of a. (This is the same symbol as that discussed in [C2] and 
[CF] but the inverse of the symbol discussed in [12] (note, however that 
formula {**) on page 353 of [CF] is the inverse of the truth).) 

Theorem {3.1). Suppose O' e Ga<Pim>• a+b+c=O, (abc, l)= 1, a,=wa,b,c 
and e=(e,.) e (V~Y- Then 

{3.2) (F (/"O, !"b /"C) e ) -(e(GI0)*(-1))(•-l)/l"' 
" ":,m, ~m, '-='m , cm zm- wm • 
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The proof was inspired by the last argument of [G]. 

Proof First, by the Tchebotarev Density Theorem, it suffices to 
prove the theorem when a=Frobv for some prime 1:) of Q(µ 1m). For the 
moment we may let (I) be any element in In Z[[G]]. Let d and k be inte
gers such that (d, l)=l and 1:Jd1"=(a) for some a e Q(µ 1m)- Second, let 
dn=e~woJ*<-1J. Then, by Iwasawa's Theorem, (dn) e '?/=. Hence, we can 
find an element ( en) e fun '?? n such that cm+ k differs from dm + k by an 
[m+k_th power. In particular, the right hand side of (3.2) equals 

which is a global formula. Then by formal properties of the power and 
norm residue symbols, together with Artin reciprocity (See [CF] Exe. 1 & 
2), after passing to the field Q(µimH), the above equals: 

( cm+k )lid _ 1/d _( _)_ -(a, cm+k)lm+k 
a im+k 

where a=Ni,-d 1"12 e Zr and p is a root of unity by Stickelberger's 
theorem. Since e e V;;;, this equals, finally, 

and when (l)=O'-a+a-b+a-c-O+a_ 1), this is the left hand side of(3.2) 
by (2.3). D 

Corollary (3.3). 

Sketch of proof Use Iwasawa's Theorem, the definition of Ihara's 
series and the non-degeneracy of the Hilbert Symbol. I.e., Iwasawa's 
Theorem tells you that you get all real circular units on the right hand 
side of the formula in the theorem and Ihara's definition of F, tells you 
that the left hand side governs all torsion points of !-power order on the 
Jacobians of Fermat curves of !-power degree. D 

We will now deduce Ihara's conjecture. We will need to use the 
explicit reciprocity law to get a formula for the coefficients of F, from 
Theorem 3.1. 
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IV. Proof of Ihara's conjecture 

Our notation will be as above and as in [C2]. In particular, we make 
A act on Z 1[[T-1]] and also on Z 1[[T-1]] 0 by setting ra = rx<~> for q e G, 
and extending by linearity and continuity. We set 

Af =Logf(T)- Logf(Ti) e Zi[[T-1]] 
I 

for f e Zi[[T-1]]*. We let .9' and % denote the trace and norm opera
tors as in [C2] and 'i'" ={g e Zi[[T-1]]: Yg=O}. We set 

f g=f-n ~ g(()=f-ng,n(g)(l). 
n ,eµ,,. 

Let D=Td/dT. We have the following formulas and congruences for 
this integral (see [C2]). Let h e Z 1[[T-1]]. 

(4.1) 

(4.2) 

(4.3) f n Dh=O mod tn 

If flies in 'i'", and k>O lies in Z then 

(4.4) 

and 

(4.5) 

where D-kh is the unique element in 'i'" satisfying Dk(D-1ch)=h. (This 
element exists by the corollary to Theorem 3 of [C3].) These facts follow 
easily from [C2] (1)-(8) ((4.5) follows from (4.3) by integration by parts). 

Lemma (4.6). Suppose/ and g e 'i'". Then 

L wn(k)f ·g=(-l?D-kf(l)-D1cg(l) mod In. 

Proof. This will follow by (4.1) and (4.5) from 
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which we will now prove. Set 

, .. 
h..(T)= I; f(T°·). 

a=l 

Then 

wnf(T)=h.,(T)-h.,_i(T 1) 

and if O<m<n and ( generates µ 1.,. then 

h,.(()=[n-m I; f(e)=[n-m(f/mf)(l) 
,eµ,m 

which equals zero if m>O as/ e "f'" and equals [nf(l) if m=O. 
Now 

L Wnf ·g= L hn •g (by 4.4) 

=[-n I; hn(()g(()=f(l)g(l) 
t€µzn 

as required. 0 

We let .,It denote the group of fixed points, f, of .Ar such that /(1)= 
1 mod/. 

Lemma (4.7). There exists a unique lo E .,11+ such that 

T+T- 1 

Alo=---. 
2 

Proof. This follows from Theorem 4 of [C3]. 
We will now recall the special cases needed below of the explicit for

mulas for the Hilbert norm residue symbol given in [C2]. Suppose 
f(T) e 1 +(T- l)Z 1[[T-1]] and g(T) e Zi((T-1))* satisfies 

N ... ig(( .. ))=g((t) 

for l<k<n. Then by Theorem 1 of[C2] 

(4.7.1) 

where (f, g)n is an error term which vanishes when D/(1)=0 or when 
N..(g((.,)) e (/)CQf_ When g is a fixed point of the norm operator 
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(which means that (g(i:;m)) is a coherent sequence under the norm) and 
a E Zi[µin]* then the above formula implies lwasawa's formula, [12] 

(4.7.2) 

(see Corollary 15 of [C2]). 

Proposition (4.8). Suppose g e .A and 

where W = Log (T). Then for m odd 

(4.9) 

Proof By (4.7.1), the left hand side of (4.9) equals i:;n raised to the 
exponent 

L wnCm-l)Afo-D Logg= L wn(m-l)Afo-DAg 

by (4.4) since Aloe "f/'. But by Lemma 4.6, this equals, modulo In, 

which equals O when m is even and 

when mis odd. 

Proposition ( 4.10). Suppose w e I, then for m odd 

modulo /n-th powers. 

Proof 

DA((fo(T)"'n(m-l))'w0)*(-1)) 

=(w0)*wnCm) - =wn(m)w* -----( T T- 1) ( T TL ) 
2 T-1 TL-1 

=DA(T-1/2_ Tl/2)(.,n(m)w*)(-I) 

D 

using Proposition 5 of [C3]. Now Jll'(T- 112-T 112)=(T- 112_T 112) and 
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(r- 112 - r 112y- 1 = -(r- 112 - T 112). It follows easily from this that 
(T- 112- 1'112) 01*<-1> lies in .,I{+. Since (fo(T)°'"<m-1>)<•9>*<-1> also lies in .,//+, 
Theorem 4 of [C3] implies 

for some (l-1)-st root of unity e. Now, 

mod/" 

which gives us what we want. D 

Now finally we can finish the proof of Ihara's conjecture. Let a+ 
b+c=O, (abc, l)= 1. First, by Theorem 3.1, Proposition 4.10 and the 
fact that form odd X"'(w-a,-b,-c)= -(a"'+b"'+c"') 

(F ("(1, ?'b f'C) fo(" )<»n(m-1)) -(c<l-•)fl")a'"+bm+cm a~n,"'n,"an, o',n zn- n,m • 

On the other hand, 

and it follows from A~derson's theory of the hyperadelic gamma function 
(Corollary 5.5 below) that F.(T~, Tb, P}e .,// so by Proposition 4.8, and 
the skew symmetry of the Hilbert norm residue symbol, 

(F (f'a, f'b f'C) fo(" )°'n(m-1)) -1"-bm(•)(l-!m-l)(a'"+b'"+c'") 
u ',n, ,n, l.::,n, o i.::,n zn-1.::,n • 

Ihara's conjecture would follow immediately if we could cancel the ex
ponents a"'+h"'+c"'. We can't quite since they may have positive valua
tion at l (we may choose a, b and c so that these exponents are not zero). 
However, by allowing n to increase and using the easy fact that cn,mfcn',m 
is an /"-th power for n'>1J, we can ultimately cancel these exponents. D 

V. Anderson's "Gamma" series 

We now remove the restriction I =/=2. We will discuss Anderson's 
theory of the hyperadelic gamma function which is developed in [A]. 

Notation. 

Q = : the algebraic closure of Q in the complex numbers C. 

W = : the Witt vectors of i\. 
· (/) = : the Frobenius automorphism of W. 
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Q = : an element of W such that Qfb = Q + 1. 

K=: the fraction field of W. 

K = : an algebraic closure of K. 

e(x)=: exp (2rrix) (x e Q). 

65 

Definition (5.1). For each a e G(Q), let e(a) E Z 1 be defined by the 
system of congruences 

where [11ln is the positive (lnyh root of l. 

In [A],§ 7, (see 7.5.1) a series G0 (T) e W[[T-1]] is constructed which 
satisfies the following properties (see § 8 of [A]): 

Formulary (5.2). 

(I) 

(II) 

G0 (T) E I-e(a)Q(T- l)+(T-1)2W[[T- l]] (a e GQ)

G:(T) E 1 +(T- l) 2Z 1[[T- l]] (w E /). 

(III) G0 (T)G.(Tx<•l)=G 0 ,(T) (a, -r-e GQ)-

(IV) Gp(T)= 1 where pis complex conjugation. 

(V) (s~l-s) G0 (T)G 0 (T- 1)=X(a)S.(T) (a e GQ) 

where 
y112_y-112 

S(T)=: -----• yx<o)/2 _ r- x(o)/2 

=(T- l)r<x<•l- 1l12(rx<•l- I)- 1 E Z 1[[T- l]]*. 

(VI) G!(T) = y-e(o)G,(T) 

where G! is the power series obtained from G,(T) by applying r[J to all the 
Taylor coefficients. 

(VII) (Gauss multiplication) 

rr G.(7))=G!(}.) n G.(,) 
~'=i C'=l 

It follows from (I), (V) and (VII) that 

(VIII) .Al'G.=G: for a e GQ<µ,oo) 

(even when l =2, as e(a)=O (2) if a E GQ(µ200 i)-
Moreover, these series are related to Gauss sums in the way Ihara's 

series are related to Jacobi-sums. I will just state the special case I will 
need in the following. Fix an embedding -r-: Q-'>-Kz. Set ,n=-r-(e(-/-n)). 
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Theorem (5.3). For each rational prime p distinct from l there exists 
a non-trivial character ,/Fp: Fp-+Q such that for all n:;?:O and all primes 'p of 
Q((n) of residue characteristic p 

where a is any 'p-Frobenius element. 

Remark. Using the cocycle condition 5.2(III) one can factor the left 
hand side of the above formula and make this theorem look more like 
Theorem B. 

These series are closely related to Ihara's series above, for example, 

Theorem (5.4). Suppose a E GQCµ,oo)• then 

G,(R)G.(S)G.(T)=F.(R, S, T), (RST=l). 

It follows from this and (5.2)VIII that 

Corollary (5.5). Suppose a E GQ<µ,oo), a+b+c=O and (abc, l)= 1, 
then 

TI F.((aR, (bS, (CT)=F.(Rl, si, Tl) 
,'=l 

and in particular, F,(Ta, Tb, T°) e .,,It. 

Remark. The formula relating G. to F. looks much more like the 
classical formula relating the gamma function to the beta function if one 
improves the definitions in the way indicated in § 1. Also I should point 
out that the foregoing is only the l-adic case of Anderson's "hyperadelic 
gamma function". 

When a does not lie in GQcµ,oo) the relationship is much more compli
cated (see § 13 of [A]). 

One can show that 

(5.6) 

where Wand bm(a) for m> 3 are defined as in § 1 and Ma) is such that 

(5.7) 

VI. Local components of Jacobi sum Hecke characters 

This section will be a preview of joint work with Greg Anderson. 
Another application of the Anderson-Ihara Theory is a new proof of (at 
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least the wild part of) the formula proven with McCallum [CM] for the 
local components of Jacobi sum Hecke characters coming from Fermat 
curves. This approach also provides the answers when the prime 2 is 
involved and should, in principle, allow one to compute the conductors 
of the most general Jacobi sum Hecke characters. 

Let me InZ[[G]]. Fix n for now and set K=QC,n). Then for each 
prime j:J of K, not dividing /, the correspondence 

j:J~g(J:J,t)"' 

gives rise, in the standard way, to a continuous Serre-Tate character 
Pn: Ik-Ik, from the ideles of K into itself such that 

(pnCs)).=g(j:J, i/F)"' EK';, 

pn(a)=l 

where s is an idele which is a local uniformizing parameter at j:J in the j:J-th 
place and ones elsewhere, v is a place different from j:J and a e K* SJ x· 

Moreover, if J is a prime of K and b e Of Sc.Ix, considered as an idele in 
the natural way, then 

(pn(b))).b"'8"= a root of unity in Kf 

(m0~ is the infinity type). The determination of this root of unity is the 
determination of the local component of Pn at J. It is trivial unless J is 
the prime above / and so we will suppose this from now on. 

When m=a-a+a-b+a_,-(1+a_ 1), where a+b+c=O, (abc, l)=l, 
then s '"'PnCs )s.,8" is a Jacobi sum Hecke character attached to the Fermat 
curve of degree zn mentioned above (but not all such characters are of 
this form because of the condition (abc, l)= 1). 

Proposition (6.-1). Suppose s e Ix. Let a e GQ whose restriction to 
(GQ(µzoo))ab is the image of sunder the Artin map. Then 

Proof This follows from Theorem 5.3 and the Tchebotarev Density 
Theorem. 

Corollary (6.0). With notation as before, if b=(bm) E Uoo, and we 
identify b with its image in (GQcµ100 i)ab under the Artin map, then G;(,m)= 
Pm(bm)for all m>O. 

Now by Theorem A of [Cl], there exists an fb e Zz[[T-1]]* such that 
fb(,n)=bn. Therefore, 
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( Gf,fi/)((.n) = pn(bnM:0 = an /"-th root of unity, 

for all n (since b:" = 1 ). 

Lemma (6.1). Suppose H(T) e Z 1[[T-1]]*, is such that H((.n) is an 
I-power root of unity for all n. Then 

H(T)=H(l)T(DH/H)(I) 

Proof The series AH lies in Z 1[[T -1]] and vanishes on r.n for all n. 
It follows that AH =0. The result now follows from Theorem 1 of [C3]. 

D 

Applying this to H = Gi,f f,8 and using 5.2(II), and the fact that w0 e 
A- we have 

where 

k = (D/ 1,° //'; 0)(1) = X(w0) · (Df,,/1,,)(1 ). 

Now one can evaluate this in terms of w. 

Lemma (6.2) (Iwasawa [13]). 

X((l-a- 10-a)O)= /-l -Log a. 
I 

Proof 

On the other hand 

where 

Taking logarithms we have 
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Log (a)+Log (b)=Log (b')+Log (1 +b'- 1etr) 
=Log (b')+(ab)- 1et] mod t2n;2. 

Now summing over O<b<tn, (b, l)=l, we deduce that 

/- l -Log (a)= l:n (ab)- 1[ab] mod tn/2. 
I tn 

From this the lemma follows easily. 
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D 

Suppose now that a1+a 2 +-··+an=O, (a1a2 ···an,l)=l and cv= 
a-a,+<1-a,+ ... +a-an then as 

cv= I; all-(-ai)- 1a _ai) 

the above lemma implies 

(6.3) 

But now (! can be interpreted by means of Iwasawa's explicit reciprocity 
law: 

Theorem (6.4). Let f3 e U~. Then, with notation as above, if l is odd 
or 1=2 and Nnf3= 1 mod 2n+2 

(6.5) 

Proof First, it follows from (6.3) and Iwasawa's explicit reciprocity 
law, (4.7.2) above, that this is true if Nnf3=1 since then f3=bn for some 
sequence (bn) E U°oo. Set a(f3)=pn(f3}if3"8~. Then if a E G, it is easy to see 
that a(/3") = a(/3)". So if f3 E 1 + / Z 1, we must have a(/3) = 1 if / is odd and 
a(/3) = ± 1 if l = 2. Suppose for the moment that l is odd. Then if 
f3 e 1 +tz 1 then the right hand side of (6.5) is 1 also and as the elements 
of norm 1 and the elements in zt generate U~, this establishes the the
orem in this case. Similarly, when 1=2, both sides of (6.5) are one when 
/3 E 1 + 8Z2 and 1 + 8Z2 together with the elements of norm 1 to Q2 

generate the group of units whose norm is congruent to 1 modulo 2n+2• D 

Remarks. (1) When 1=2, the subgroup of U~ consisting of units 
whose norm is congruent to 1 modulo 2n+z is of index 4. 

(2) To deduce the corresponding result for the remaining Jacobi 
sum Hecke characters attached to Fermat curves from this one, one must 
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make use of the Hasse~Davenport relation for Gauss sums, which trans
lates, in this context, into the Gauss multiplication formula for Anderson's 
gamma function. More precisely, using the Hasse-Davenport relation as 
in [CM] § 7, .one can show that when l is odd the above Hecke-characters 

and the Hecke-character j.h·~( ~) generate a group of Hecke characters 

containing all those attached to Fermat curves and when l = 2 these to
gether with one more generate such a group. 

(3) This result, when / is odd, is a special case of a more general 
result obtained previously with McCallum, by a totally different method. 
In fact, one might say the two approaches come from different sides of 
the explicit reciprocity law. Together they give a new proof of the special 
case of the explicit reciprocity law just used. 

vn. G. for a in inertia and Vandiver's conjectur,e 

In this section, we will give a formula without proof for G. when the 
restriction of a to (Ga<Pz=l)ab lies in the inertia group above land explain 
how one can re-express Vandiver's conjecture in terms of Anderson's 
gamma function. 

Let "f/" and .,It be as in § 4. Then .,It~ U =• via the map f .-.(J(Cn)). 
By Theorem 3 of [C3] "f/" is a principal A-module and the map J.-.AJ 
takes .,It onto I"f/" (the kernel is generated by T). This means we can 
make sense of eAJfor fin .,It. Indeed, write AJ=wi for we J and g e "f/" 
and set OAJ=(wO)g. This is well defined. We extend A to W[[T-1]]* 
by setting 

AJ(T)=Logf(T)- Logr(TI) 
l 

for Je W[[T-1]]*. Now let Qe W be as in §5 (recall, Q"=tJ+l). 
Define 

E: "f/" ~W[[T-1]]* 

by 

E(g)=: exp (- 1--g{l)+Dg(l)·T(T)+ f: g*(Tln)) 
1-1 -o r 

for g e "Y, where 

= (Tin ) r(T)=~
0 

y,;--Log(T) -QLog{T) 

and 
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g*(T)=g(T)-(g(l)+Dg(l)T). 

Then an easy computation reveals 

Lemma (7.1). 

For f e .,II we set 

A(E(g))=g. 

f 0 =E(0Af). 
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Now suppose <1 E GQ(µ,oo) such that the restriction of <1 to (GQ(µioo>)°'b 
lies in the wild part of the inertia group above !. Then a corresponds to 
an element of U 00 which in turn corresponds to an element fu of vii as 
explained above. We have 

Theorem (7.2). For all a e GQ(µzoo) whose image in (GQ(µioo>)"'b lies in 

inertia 

Gu=f:. 

Sketch of proof for l odd. Let Bu(R, S, T)=f:(R)f:(s)f:(T), (RST 
= 1). Then it is easy to see that Bu(R, S, T) e A, that Bu(R-1, s-1, r- 1)= 
Bu(R S, T)- 1 and if a+b+c=O, (abc, l)= 1 that 

From this and Theorem 3.1, it follows that Bu(R S, T) =Fu(R, S, T). 
The result eventually follows from this, Theorem 5.4 and (5.2)I. D 

It follows from (5.2)V and (5.2)VII that AGu e ny-. 

Theorem (7.3). Suppose l is odd. Then the map I': Gacµ,00 )----+"Y-, 
a>--+AGu, is surjective iff Vandiver's conjecture is true. 

Proof Since "Y is a principal A module (4.1) implies I' is surjective 
iff for each odd integer 0<i<(l-1) there exists a a e Gacµ,00 > such that 
DiAGu(l) is an l-adic unit. First recall, by (5.6) and (5.7), 

Hence, since l has no /-th root in Q(µ 1oo) there exists a a such that DAG.(I) 
is a unit. Next suppose i is odd and greater than 1. Then, it follows 
from Theorem C and (5.6) that 
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As Vandiver's conjecture is equivalent to the elements c1,, not being /-th 
powers in Q(µ 1,,,) for odd i, 1 <i <l-1, the theorem follows. D 
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Errata to "Local Units Modulo Circular Units" 

In the fifth displayed equation on page 3, [a] ( T) should be replaced by T ![a] ( T). 
In the seventh displayed equation page 3, Ua should be replaced by ua-1, 

In the sixth line on page 5, A1c should be replaced by A,,,. 
In the eleventh line on page 5, Corollary 3.6 should be replaced by Corollary 13.6. 
In the fourth displayed equation on page 6, x e L should be replaced by x e z. 
In Theorem 10, pn+1 should be replaced by pn. 
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