Scaling Limit Formula for 2-Point Correlation Function of Random Matrices

Kazuhiko Aomoto

0.

In this article we give some results about 1 and 2 point correlation functions of the Gibbs measure of random matrices

$$
\begin{equation*}
\Phi d \tau=\Phi d x_{1} \wedge \cdots \wedge d x_{N} \tag{0.1}
\end{equation*}
$$

with the weight function $\Phi=\exp \left(-1 / 2\left(x_{1}^{2}+\cdots+x_{N}^{2}\right)\right) \prod_{1 \leq j<k \leq N}\left|x_{j}-x_{k}\right|^{2}$ for a constant $\lambda>0$. As in [A1] we use the notations $(j, k)=x_{j}-x_{k}$, $d \tau_{N, p}=d x_{p+1} \wedge \cdots \wedge d x_{N}$ (which means a differential ($N-p$)-form) for $0 \leq$ $p<N$. We put $n=N-p$. We consider more generally the density

$$
\begin{align*}
\Phi_{N, p}= & \exp \left(-\frac{1}{2}\left(x_{1}^{2}+\cdots+x_{N}^{2}\right)\right) \sum_{1 \leq \mu<\nu \leq n}\left|x_{p+\mu}-x_{p+\nu}\right|^{2} \tag{0.2}\\
& \cdot \prod_{j=1}^{p} \prod_{1 \leq \mu \leq n}\left|x_{p+\mu}-x_{j}\right|^{\alpha_{j}^{\prime}}
\end{align*}
$$

on the Euclidean space \boldsymbol{R}^{N-p} of the variables x_{p+1}, \cdots, x_{N}. Here $\lambda_{1}^{\prime}, \cdots, \lambda_{p}^{\prime}$ denote some positive constants. For $\varepsilon_{j}= \pm 1$ we denote by $\left\langle\left(i_{1}, j_{1}\right)^{\varepsilon_{1}} \ldots\right.$ $\left(i_{l}, j_{l}\right)^{\varepsilon_{l}}\left|\lambda_{1}^{\prime}, \cdots, \lambda_{p}^{\prime}\right\rangle$ the correlation functions

$$
\begin{equation*}
\int_{R^{n}}\left(i_{1}, j_{1}\right)^{\varepsilon_{1}} \cdots\left(i_{l}, j_{l}\right)^{\varepsilon} \Phi_{N, p} d \tau_{N, p} \tag{0.3}
\end{equation*}
$$

We abbreviate it by $\left\langle\left(i_{1}, j_{1}\right)^{\varepsilon_{1}} \cdots\left(i_{l}, j_{l}\right)^{\varepsilon_{l}}\right\rangle$ if $\lambda_{1}^{\prime}=\cdots=\lambda_{p}^{\prime}=0$. This is a $l-$ point correlation function for the density $\Phi d \tau$.

The reduced density of p points

$$
\begin{equation*}
F_{N, p}=\int_{\boldsymbol{R}^{n}} \Phi_{N, p} d \tau_{N, p} \tag{0.4}
\end{equation*}
$$

is known to be analytic in x_{1}, \cdots, x_{p} and $\lambda, \lambda_{1}^{\prime}, \cdots, \lambda_{p}^{\prime}$. However the following problem seems difficult and interesting:

Problem. p being fixed, is $F_{N, p}$, as a function of n, a restriction to the set of positive integers of an analytic function? If it is so, what kind of asymptotic nature has it for $n \rightarrow \infty$?

Our main purpose is to give an answer for the 2 points correlation functions, in case where $\lambda_{1}^{\prime}=\lambda_{2}^{\prime}=0$, and to give a limit formula when n tends to the infinity by using Bessel functions (Theorem in Section 3). This result extends the well-known formula obtained by M. L. Mehta as early as in 1960 (see [M1]).

1. One point correlation function (case where $\boldsymbol{p}=1$)

We fix $n(=N-1)$ positive integers f_{2}, \cdots, f_{N}. Consider the integral

$$
\begin{align*}
\exp & \left\{\frac{1}{2} x_{1}^{2}\right\}\left\langle(2,1)^{f_{2}} \cdots(p, 1)^{f_{p}}\right\rangle \tag{1.1}\\
& =\exp \left\{\frac{1}{2} x_{1}^{2}\right\} \int_{R^{n}} \Phi_{N, 1}(2,1)^{f_{2}} \cdots(p, 1)^{f_{p}} d \tau_{N, 1}
\end{align*}
$$

which is a polynomial of x_{1} of degree $f_{2}+\cdots+f_{N}$. We have shown in Part 1 (see [A1]) the following Lemma:

Lemma 1.1. For $0 \leq r \leq n$,

$$
\begin{equation*}
\varphi_{r}\left(x_{1}\right)=\langle(2,1) \cdots(r+1,1)\rangle \exp \left\{\frac{1}{2} x_{1}^{2}\right\} \tag{1.2}
\end{equation*}
$$

is equal to $M_{n}(-\sqrt{\lambda} / 2)^{r} H_{r}\left(x_{1} / \sqrt{\lambda}\right)$, where M_{n} and $H_{r}(x)$ denote the constant $(2 \pi)^{n / 2} \Gamma(1+\lambda / 2)^{-n} \prod_{j=1}^{n} \Gamma(1+\lambda j / 2)$ and the r-th Hermite polynomial $r!\sum_{\nu=0}^{[r / 2]}(-1)^{\nu}(2 x)^{r-2 \nu} / \nu!(r-2 \nu)!$ respectively. We call the system of polynomial $\left\{\varphi_{r}(x)\right\}_{r=1,2,3 \ldots}$ "basic polynomials".

We are interested in writing correlation functions in terms of the basic polynomials.

Proposition 1. For an arbitrary integer $l \geq 0$,

$$
\begin{align*}
&\left\langle(2,1)^{l} \cdots(N, 1)^{l}\right\rangle \tag{1.3}\\
&= \exp \left\{-\frac{1}{2} x_{1}^{2}\right\} M_{n}^{-l+1} \sum_{n \geq k_{2}, k_{2}+k_{3}, \cdots, k_{l-1}+k_{l}} \varphi_{n-k_{2}}\left(x_{1}\right) \varphi_{n-k_{2}-k_{3}}\left(x_{1}\right) \cdots \\
& \varphi_{n-k_{l-1}-k_{l}}(x) \varphi_{n-k_{l}}\left(x_{1}\right) \cdot(\lambda / 2)^{k_{2}+\cdots+k_{l}(2 / \lambda)_{k_{2}} \cdots\left(\frac{2(l-1)}{\lambda}\right)_{k_{l}}} \\
& \quad \times \frac{\left(n-k_{3}\right)!\cdots\left(n-k_{l}\right)!n!}{\left(n-k_{2}-k_{3}\right)!\cdots\left(n-k_{l-1}-k_{l}\right)!\left(n-k_{l}\right)!k_{2}!\cdots k_{l}!}
\end{align*}
$$

where $(a)_{k}$ denotes the product $a(a+1) \cdots(a+k-1)$.
Before proving the Proposition we need two Lemmas. For arbitrary $0 \leq r \leq s \leq n$ we abbreviate by $\left\langle r, s \mid \lambda_{1}^{\prime}\right\rangle$ the correlation function $\left\langle(2,1)^{2} \cdots(r+1,2)^{2}(r+2,1) \cdots(s+1,1) \mid \lambda_{1}^{\prime}\right\rangle$. First we prove the following recurrence equations:

Lemma 1.2.

$$
\begin{align*}
\left.\left\langle r, s \mid \lambda_{1}^{\prime}\right\rangle\right\rangle= & -x_{1}\left\langle\left\langle r-1, s \mid \lambda_{1}^{\prime}\right\rangle\right\rangle+\left\{1+\lambda_{1}^{\prime}+\lambda(n-s) / 2\right\}\left\langle\left\langle r-1, s-1 \mid \lambda_{1}^{\prime}\right\rangle\right\rangle \tag{1.4}\\
& -(r-1) \lambda / 2 \ll r-2, s \mid \lambda_{1}^{\prime} \gg .
\end{align*}
$$

Proof. This Lemma can be proved by using Stokes formula and symmetry property, due to the fact that an integral over \boldsymbol{R}^{n} vanishes if its integrand changes the sign by the transposition between i and j for $p+1$ $\leq i, j \leq N$. Since

$$
\begin{equation*}
d \log \Phi_{N, p}=\sum_{\mu=1}^{n} \sum_{j=1}^{p} \lambda_{j}^{\prime} d \log \left(x_{p+\mu}-x_{j}\right)+\sum_{1 \leq \mu<\nu \leq n} \lambda d \log \left(x_{p+\mu}-x_{p+\nu}\right), \tag{1.5}
\end{equation*}
$$

we have a formula of exterior differentiation:

$$
\begin{align*}
& d\left\{(2,1)(3,1)^{2} \cdots(r+1,1)^{2}(r+2,1) \cdots(s+1,1) \Phi d \tau_{N, 2}\right\} \tag{1.6}\\
&= \Phi\left\{-x_{2}(2,1)(3,1)^{2} \cdots(r+1,1)^{2}(r+2,1) \cdots(s+1,1)\right. \\
&+\left(1+\lambda_{1}^{\prime}\right)(3,1)^{2} \cdots(r+1,1)^{2}(r+2,1) \cdots(s+1,1) \\
&+\lambda \sum_{j=3}^{r+1} \frac{(2,1)(3,1)^{2} \cdots(r+1,1)^{2}(r+2,1) \cdots(s+1,1)}{(2, j)} \\
&+\lambda \sum_{j=r+2}^{s+1} \frac{(2,1)(3,1)^{2} \cdots(r+1,1)^{2}(r+2,1) \cdots(s+1,1)}{(2, j)} \\
&\left.+\lambda \sum_{j=s+2}^{N} \frac{(2,1)(3,1)^{2} \cdots(r+1,1)^{2}(r+2,1) \cdots(s+1,1)}{(2, j)}\right\} d \tau_{N, 1} .
\end{align*}
$$

By Stokes formula the integral over \boldsymbol{R}^{n} of the left hand side vanishes so does it for the right hand side.
i) The integration of the third term in the right hand side is transformed as follows:

$$
\begin{align*}
& \left\langle(2,1)(j, 1)\left\{-1+\frac{(2,1)}{(2, j)}\right\}(3,1)^{2} \cdots(j-1,1)^{2}(j+1,1)^{2} \cdots(r+1,1)^{2}\right. \tag{1.7}\\
& \quad \times(r+2,1) \cdots(s+1,1)\left|\lambda_{1}^{\prime}\right\rangle
\end{align*}
$$

$$
\begin{aligned}
= & -\left\langle(2,1)(j, 1)(3,1)^{2} \cdots(j-1,1)^{2}(j+1,1)^{2} \cdots\right. \\
& \times(r+1,1)^{2}(r+2,1) \cdots(s+1,1)\left|\lambda_{1}^{\prime}\right\rangle \\
& +\left\langle\frac{(2,1)^{2}(j, 1)}{(2, j)}(3,1)^{2} \cdots(j-1,1)^{2}(j+1,1)^{2} \cdots(r+1,1)^{2}\right. \\
& \times(r+2,1) \cdots(s+1,1)\left|\lambda_{1}^{\prime}\right\rangle
\end{aligned}
$$

By symmetry property the last term is equal to the minus of the left hand side. Hence the left hand side is equal to

$$
\begin{align*}
& -\frac{1}{2}\left\langle(2,1)(j, 1)(3,1)^{2} \cdots(j-1,1)^{2}(j+1,1)^{2} \cdots\right. \tag{1.8}\\
& \times(r+1,1)^{2}(r+2,1) \cdots(s+1,1)\left|\lambda_{1}^{\prime}\right\rangle \\
= & -\frac{1}{2}\left\langle r-2, s \mid \lambda_{1}^{\prime}\right\rangle
\end{align*}
$$

ii) For the fourth term in the right hand side, the integral vanishes, because $(2,1)(j, 1) /(2, j)$ changes the sign by the transposition between 2 and j.
iii) In the same manner, in case where $s+2 \leq j \leq n$, one has

$$
\begin{equation*}
\frac{(2,1)}{(2, j)}=1+\frac{(j, 1)}{(2, j)} \tag{1.9}
\end{equation*}
$$

and the corresponding integral is equal to

$$
\begin{equation*}
\frac{1}{2}\left\langle\left\langle r-1, s-1 \mid \lambda_{1}^{\prime}\right\rangle\right\rangle, \tag{1.10}
\end{equation*}
$$

whence (1.6) implies (1.4), because $x_{2}=-(2,1)-x_{1}$.

Lemma 1.3.

$$
\begin{align*}
& \left\langle r, s \mid \lambda_{1}^{\prime}\right\rangle \tag{1.11}\\
& =\frac{1}{M_{n}} \sum_{k=0}^{r} \varphi_{r-k}\left(x_{1}\right)(\lambda / 2)^{k}\left(\frac{2\left(\lambda_{1}^{\prime}+1\right)}{\lambda}+n-s\right)_{k} \frac{r!}{k!(r-k)!}\left\langle 0, s-k \mid \lambda_{1}^{\prime}\right\rangle .
\end{align*}
$$

Proof. We want to prove this by induction in r. When r is equal to 0 , nothing is to be proved because $\varphi_{0}\left(x_{1}\right)=M_{n}$. So we assume (1.11) holds for $r<r^{\prime}$ and prove it for $r=r^{\prime}$. (1.4) shows
(1.12) $\quad\left\langle r^{\prime}, s \mid \lambda_{1}^{\prime}\right\rangle$

$$
\begin{aligned}
= & -x_{1}\left\langle\left\langle r^{\prime}-1, s \mid \lambda_{1}^{\prime}\right\rangle\right\rangle-\frac{r^{\prime}-1}{2} \lambda\left\langle\left\langle r^{\prime}-2, s \mid \lambda_{1}^{\prime}\right\rangle\right\rangle \\
& \left.+\left\{\lambda_{1}^{\prime}+1+\lambda(n-s) / 2\right\}\left\langle r^{\prime}-1, s-1 \mid \lambda_{1}^{\prime}\right\rangle\right\rangle .
\end{aligned}
$$

By induction hypothesis the right hand side is expressed as

$$
\begin{align*}
& -x_{1} \sum_{k=0}^{r^{\prime}-1} \varphi_{r^{\prime}-k-1}\left(x_{1}\right)(\lambda / 2)^{k}\left(\frac{2\left(\lambda_{1}^{\prime}+1\right)}{\lambda}+n-s\right)_{k} \frac{\left(r^{\prime}-1\right)!}{k!\left(r^{\prime}-k-1\right)!} \tag{1.13}\\
& \left\langle 0, s-k \mid \lambda_{1}^{\prime}\right\rangle \\
& -\frac{r^{\prime}-1}{2} \lambda^{r^{\prime}-2} \sum_{k=0} \varphi_{r^{\prime}-k-2}\left(x_{1}\right)(\lambda / 2)^{k}\left\{\frac{2\left(\lambda_{1}^{\prime}+1\right)}{\lambda}+n-s\right)_{k} \cdot \frac{\left(r^{\prime}-2\right)!}{k!\left(r^{\prime}-k-2\right)!} \\
& \left\langle 0, s-k \mid \lambda_{1}^{\prime}\right\rangle \\
+ & \left\{\lambda_{1}^{\prime}+1+\lambda(n-s) / 2\right\}^{r^{\prime}-1} \sum_{k=0}^{1} \varphi_{r^{\prime}-k-1}\left(x_{1}\right)\left(\frac{\lambda}{2}\right)^{k}\left\{\frac{2\left(\lambda_{1}^{\prime}+1\right)}{\lambda}+n-s+1\right\}_{k} \\
& \times \frac{\left(r^{\prime}-1\right)!}{k!\left(r^{\prime}-k-1\right)!}\left\langle\| 0, s-k-1 \mid \lambda_{1}^{\prime}\right\rangle \\
= & \sum_{k=0}^{r^{\prime}}\left\{-x_{1} \varphi_{r^{\prime}-k-1}\left(x_{1}\right)(\lambda / 2)^{k}\left(\frac{2\left(\lambda_{1}^{\prime}+1\right)}{\lambda}+n-s\right)_{k} \frac{\left(r^{\prime}-1\right)!}{k!\left(r^{\prime}-k\right)!}\right. \\
& -\frac{r^{\prime}-1}{2} \lambda \varphi_{r^{\prime}-k-2}\left(x_{1}\right)(\lambda / 2)^{k}\left(\frac{2\left(\lambda_{1}^{\prime}+1\right)}{\lambda}+n-s\right)_{k} \frac{\left(r^{\prime}-2\right)!}{k!\left(r^{\prime}-k-2\right)!} \\
+ & \left\{\lambda_{1}^{\prime}+1+\lambda(n-s) / 2\right\} \varphi_{r^{\prime}-k}\left(x_{1}\right)\left(\frac{\lambda}{2}\right)^{k-1}\left(\frac{2\left(\lambda_{1}^{\prime}+1\right)}{\lambda}+n-s+1\right)_{k} \\
& \left.\times \frac{\left(r^{\prime}-1\right)}{(k-1)!\left(r^{\prime}-k\right)!}\left\langle 0, s-k \mid \lambda_{1}^{\prime}\right\rangle\right\}
\end{align*}
$$

Since $\varphi_{j}\left(x_{1}\right)$ satisfy the 3 -term recurrence relation (see [A1]):

$$
\begin{equation*}
\varphi_{j+1}\left(x_{1}\right)+\frac{\lambda j}{2} \varphi_{j-1}\left(x_{1}\right)+x_{1} \varphi_{j}\left(x_{1}\right)=0 \tag{1.14}
\end{equation*}
$$

we can eliminate the term $x_{1} \varphi_{r^{\prime}-k-1}\left(x_{1}\right)$ in the above and get the formula (1.11) for $r=r^{\prime}$. Lemma 1.3 has now been proved.

In particular when we put $\lambda_{1}^{\prime}=0$, Lemma 1.3 is simplified into

Corollary.

$$
\begin{align*}
& \left\langle(2,1)^{2} \cdots(r+1,1)^{2}(r+2,1) \cdots(s+1,1)\right\rangle \tag{1.15}\\
= & \left(1 / M_{n}\right) \exp \left(-\frac{x_{1}^{2}}{2}\right) \sum_{k=0}^{r} \varphi_{r-k}\left(x_{1}\right) \varphi_{s-k}\left(x_{1}\right)(\lambda / 2)^{k}\left(\frac{2}{\lambda}+n-s\right)_{k} \frac{r!}{k!(r-k)!} .
\end{align*}
$$

[^0]In fact by definition, $\left\langle\langle 0, s-k \mid 0\rangle\right.$ is equal to $\varphi_{s-k}\left(x_{1}\right) \exp \left(-\left(x_{1}^{2} / 2\right)\right)$.
Remark.*) When λ_{1}^{\prime} is equal to a non-negative integer, the recurrence relations (1.4) and (1.11) still hold, if $\left\langle\left\langle r, s \mid \lambda_{1}^{\prime}\right\rangle\right\rangle$ is replaced by $\left\langle\left\langle r, s \mid \lambda_{1}^{\prime}\right\rangle\right\rangle=$ $\left\langle(2,1)^{2} \cdots(r+1,1)^{2}(r+2,1) \cdots(s+1,1) \prod_{j=2}^{N}(j, 1)^{\lambda_{1}^{\prime}}\right\rangle$.

Proof of Proposition 1. The formula (1.12) and the above Remark enable us to give a recurrence relation for $\left\langle(2,1)^{l} \cdots(N, 1)^{l}\right\rangle=\langle\langle 0, n \mid l-1\rangle$ as follows: For arbitrary r such the $0 \leq r \leq n$, we apply (1.11) for $\overline{\langle 0, r|}$ $\underline{l-1}\rangle$. Then

$$
\begin{align*}
& \langle 0, r \underline{l-1}\rangle\rangle=\langle\langle r, n \mid \underline{l-2}\rangle \tag{1.16}\\
& =\left(1 / M_{n}\right) \sum_{k_{2}=0}^{r} \varphi_{r-k_{2}}(x)(\lambda / 2)^{k_{2}}(2(l-1) / \lambda)_{k_{2}} \cdot \frac{r!}{k_{2}!\left(r-k_{2}\right)!} \\
& \quad \times\left\langle\left\langle 0, n-k_{2} \mid \underline{l-2}\right\rangle=M_{n}^{-2} \sum_{r \geq k_{2}, n \geq k_{2}+k_{3}}(\lambda / 2)^{k_{2}+k_{3}}\left(\frac{2(l-1)}{\lambda}\right)_{k_{2}}\right. \\
& \quad \times\left(\frac{2(l-2)}{\lambda}\right)_{k_{3}} \frac{r!\left(n-k_{2}\right)!}{k_{2}!\left(r-k_{2}\right)!k_{3}!\left(n-k_{2}-k_{3}\right)!} \\
& \quad \times \varphi_{r-k_{2}}\left(x_{1}\right) \varphi_{n-k_{2}-k_{3}}\left(x_{1}\right)\left\langle 0, n-k_{3} \mid \underline{l-3}\right\rangle .
\end{align*}
$$

We can again apply (1.11) for $\left\langle\left\langle 0, n-k_{3} \mid l-3\right\rangle\right.$ and so on, and arrive at the Proposition by putting $r=n$ (Remark that $\left\langle 0, n-k_{l} \mid \underline{0}\right\rangle=\exp \left(-\left(x_{1}^{2} / 2\right)\right)$. $\varphi_{n-k_{l}}\left(x_{1}\right)$.)

2. 2 point correlation functions (case where $\boldsymbol{p}=\mathbf{2}$)

It is more difficult to evaluate 2 point correlation functions in terms of basic polynomials. For $0 \leq r \leq s \leq n$, we write simply $\varphi_{r, s}\left(x_{1}, x_{2}\right) \exp \left\{-\left(x_{1}^{2}+x_{2}^{2}\right) / 2\right\}$ in place of $\langle(3,1) \cdots(r+2,1)(3,2) \cdots$ $(s+2,2)\rangle$ in the sequel. Then $\varphi_{r, s}\left(x_{1}, x_{2}\right)$ is a polynomial of degree $r+s$.

The only result that we can give is the following:
Proposition 2. For $0 \leq r \leq s \leq n$ and $\lambda_{1}^{\prime}=\lambda_{2}^{\prime}=0$,

$$
\begin{equation*}
\varphi_{r, s}\left(x_{1}, x_{2}\right)=\frac{1}{M_{n}} \sum_{k=0}^{r} \varphi_{r-k}\left(x_{1}\right) \varphi_{s-k}\left(x_{2}\right)(\lambda / 2)^{k}\left(\frac{2}{\lambda}+n-s\right)_{k} \frac{r!}{k!(r-k)!} \tag{2.1}
\end{equation*}
$$

In particular when r and s coincide with n, we have

$$
\begin{equation*}
\varphi_{n, n}\left(x_{1}, x_{2}\right)=\frac{1}{M_{n}} \sum_{k=0}^{n} \varphi_{n-k}\left(x_{1}\right) \varphi_{n-k}\left(x_{1}\right)(\lambda / 2)^{k}\left(\frac{2}{\lambda}\right)_{k} \cdot \frac{n!}{k!(n-k)!} . \tag{2.2}
\end{equation*}
$$

Lemma 2.1.

$$
\begin{align*}
\varphi_{r, s}\left(x_{1}, x_{2}\right)= & -x_{1} \varphi_{r-1, s}\left(x_{1}, x_{2}\right)-(r-1) \frac{\lambda}{2} \varphi_{r-2, s}\left(x_{1}, x_{2}\right) \tag{2.3}\\
& +\left(1+\frac{\lambda(n-s)}{2}\right) \varphi_{r-1, s-1}\left(x_{1}, x_{2}\right) .
\end{align*}
$$

Proof. The proof is similar to the one of Lemma 1.2. We use the vanishing of the integral of the following exterior differentiation:

$$
\begin{align*}
& d\left\{\Phi(4,1) \cdots(r+2,1)(3,2) \cdots(s+2,2) d \tau_{N, 3}\right\} \tag{2.4}\\
&= \Phi\left\{-x_{3}(4,1) \cdots(r+2,1)(3,2) \cdots(s+2,2)\right. \\
&+(4.1) \cdots(r+2,1)(4,2) \cdots(s+2,2) \\
&+\lambda \sum_{4 \leq j \leq r+2} \frac{(4,1) \cdots(r+2,1)(3,2) \cdots(s+2,2)}{(3, j)} \\
&+\lambda \sum_{r+3 \leq j \leq s+2} \frac{(4,1) \cdots(r+2,1)(3,2) \cdots(s+2,2)}{(3, j)} \\
&\left.+\lambda \sum_{j=s+3}^{N} \frac{(4,1) \cdots(r+2,1)(3,2) \cdots(s+2,2)}{(3, j)}\right\} d \tau_{N, 2} .
\end{align*}
$$

In the same way as in the proof of Lemma 1.2 one can prove that the integrals of the third term, the fourth term and the last term are equal to $-\frac{1}{2} \varphi_{r-1, s-1}\left(x_{1}, x_{2}\right), 0$ and $\frac{1}{2} \varphi_{r-1, s-1}\left(x_{1}, x_{2}\right)$ respectively. As a consequence of it, we get

$$
\begin{align*}
0= & -\varphi_{r, s}\left(x_{1}, x_{2}\right)-x_{1} \varphi_{r-1, s}\left(x_{1}, x_{2}\right) \tag{2.5}\\
& +\{1+\lambda(n-s) / 2)\} \varphi_{r-1, s-1}\left(x_{1}, x_{2}\right) \\
& -(r-1) \frac{\lambda}{2} \varphi_{r-2, s}\left(x_{1}, x_{2}\right)
\end{align*}
$$

which is the same thing as (2.3).
We see that (2.3) has the same expression as (1.4) for $\lambda_{1}^{\prime}=0$. However one cannot expect that (2.3) can be generalized for arbitrary λ_{1}^{\prime} and λ_{2}^{\prime} for 2 point correlation functions.

Lemma 2.2.

$$
\begin{equation*}
\varphi_{r, s}\left(x_{1}, x_{2}\right)=\frac{1}{M_{n}} \sum_{k=0}^{r} \varphi_{r-k}\left(x_{1}\right) \varphi_{s-k}\left(x_{2}\right)\left(\frac{\lambda}{2}\right)^{k}\left(\frac{2}{\lambda}+n-s\right)_{k} \frac{r!}{k!(r-k)!} . \tag{2.6}
\end{equation*}
$$

$$
\begin{align*}
\varphi_{n, n}\left(x_{1}, x_{2}\right) & \left.=\langle(3,1) \cdots(N, 1)(3,2) \cdots(N, 2)\rangle \exp \left(\frac{x_{1}^{2}+x_{2}^{2}}{2}\right)\right\rangle \tag{2.7}\\
& =\frac{1}{M_{n}} \sum_{k=0}^{n} \varphi_{n-k}\left(x_{1}\right) \varphi_{n-k}\left(x_{2}\right)\left(\frac{\lambda}{2}\right)^{k}\left(\frac{2}{\lambda}\right)_{k} \frac{n!}{k!(n-k)!} .
\end{align*}
$$

Proof. We can prove it like Lemma 1.3 if we use Lemma 2.1 in place of Lemma 1.2.

Proof of the Proposition 2. We have only to put $r=s=n$ in Lemma 2.2.

Remark. When $\lambda=2$, the formula (2.2) coincides with the one for $K_{N}(x, y)$ in [M1] p. 76.
3. A new integral formula for $\langle(3,1) \cdots(N, 1)(3,2) \cdots(N, 2)\rangle$

We start from giving an integral representation for the basic polynomials:

Lemma 3.1.

$$
\begin{equation*}
\varphi_{n}(x)=\left(M_{n} / \sqrt{\lambda \pi}\right) \int_{-\infty}^{\infty} \exp \left[-\zeta^{2} / \lambda\right](i \zeta-x)^{n} d \zeta \tag{3.1}
\end{equation*}
$$

Proof. In fact the right hand side is equal to $M_{n}(-(\sqrt{\lambda} / 2))^{n}$ - $H_{n}(x / \sqrt{\lambda})$, which is nothing else than $\varphi_{n}(x)$.

Lemma 3.2. Suppose $0<R<2 / \lambda$. Then

$$
\begin{align*}
\varphi_{n, n}(& \left(x_{1}, x_{2}\right) \tag{3.2}\\
= & n!\frac{M_{n}}{\lambda \pi} \frac{1}{2 \pi i} \int_{|\zeta|=R} \int_{R^{2}} \exp \left\{-\left(\zeta_{1}^{2}+\zeta_{2}^{2}\right) / \lambda+\left(i \zeta_{1}-x_{1}\right)\left(i \zeta_{2}-x_{2}\right) \zeta\right\} \\
& \times(1-\lambda \zeta / 2)^{-2 / \lambda} \zeta^{-n-1} d \zeta d \zeta_{1} d \zeta_{2} .
\end{align*}
$$

Proof. A Taylor expansion of the integrand in the right hand side is equal to:

$$
\begin{align*}
& \frac{n!M_{n}}{\lambda \pi} \frac{1}{2 \pi i} \int_{|\zeta|=R} \int_{R^{2}} \exp \left\{-\left(\zeta_{1}^{2}+\zeta_{2}^{2}\right) / \lambda\right) \tag{3.3}\\
& \quad \times \sum_{\substack{n \geq k_{k}^{\prime} \geq-\infty \\
k>0}} \frac{\left(i \zeta_{1}-x_{1}\right)^{n-k^{\prime}}\left(i \zeta_{2}-x_{2}\right)^{n-k^{\prime}} \zeta^{n-k^{\prime}}}{\left(n-k^{\prime}\right)!k!} \\
& \quad \times(2 / \lambda)_{k}(\lambda / 2)^{k \zeta \zeta^{k-n-1} d \zeta d \zeta_{1} d \zeta_{2}}
\end{align*}
$$

$$
\begin{aligned}
= & \frac{n!M}{\lambda \pi} \int_{R^{2}} \exp \left\{-\left(\zeta_{1}^{2}+\zeta_{2}^{2}\right) / \lambda\right\} . \\
& \times \sum_{k=0}^{n} \frac{\left(i \zeta_{1}-x_{1}\right)^{n-k}\left(i \zeta_{2}-x_{2}\right)^{n-k}}{(n-k)!k!}(2 / \lambda)_{k}(\lambda / 2)^{k} d \zeta_{1} d \zeta_{2}
\end{aligned}
$$

which is equal to $\varphi_{n, n}\left(x_{1}, x_{2}\right)$ owing to (2.7) and (3.1).
It is more convenient to express (3.2) as follows.

Lemma 3.3.

$$
\begin{align*}
\varphi_{n, n}\left(x_{1}, x_{2}\right)= & \frac{n!M_{n}}{2 \pi i}(\lambda / 2)^{n} \int_{\left|\zeta^{\prime}\right|=R^{\prime}} \exp \left\{-\frac{\left(x_{1}^{2}+x_{2}^{2}\right) \zeta^{\prime 2}-2 x_{1} x_{2} \zeta^{\prime}}{\lambda\left(1-\zeta^{\prime 2}\right)}\right\} \tag{3.4}\\
& \times\left(1-\zeta^{\prime 2}\right)^{-1 / 2}\left(1-\zeta^{\prime}\right)^{-2 / \lambda \zeta} \zeta^{\prime-n-1} d \zeta^{\prime}
\end{align*}
$$

for $0<R^{\prime}<1$.
Proof. We first make the integration of the right hand side of (3.2) with respect to the variables ζ_{1} and ζ_{2} (This is easy because it is Gaussian) and next make the change of variable $\zeta^{\prime}=\lambda \zeta / 2$.

4. Asymptotic behaviour of the $\mathbf{2}$ point correlation function for $\boldsymbol{n} \rightarrow \boldsymbol{\infty}$

We put $\xi=\sqrt{2 n} \cdot x_{1}$ and $\sqrt{2 n} \cdot x_{2}$. We are interested in the asymptotic behaviour of $\varphi_{n, n}\left(x_{1}, x_{2}\right)$ for $n \rightarrow \infty$, under the condition that ξ_{1} and ξ_{2} are fixed, because otherwise it will have an oscillatory nature whose study is beyond the range of our approach.

Our purpose is to prove the following Theorem:
Theorem. For $n \rightarrow \infty$,

$$
\begin{align*}
\varphi_{n, n}\left(x_{1}, x_{2}\right)= & n!M_{n}(\lambda / 2)^{n} n^{(2 / \lambda)-(1 / 2)} 2^{(2 / \lambda)-1} J_{(2 / \lambda)-(1 / 2)}\left(\frac{\xi_{1}-\xi_{2}}{\sqrt{\lambda}}\right) \tag{4.1}\\
& \times\left(\frac{\xi_{1}-\xi_{2}}{\sqrt{\lambda}}\right)^{-(2 / \lambda)+(1 / 2)}\left\{1+0\left(\frac{1}{\sqrt[3]{n}}\right)\right\} .
\end{align*}
$$

where $J_{\lambda}(x)$ denotes the Bessel function of order λ :

$$
\begin{align*}
J_{\lambda}(x) & =(x / 2)^{2} \sum_{l=0}^{\infty} \frac{(-1)^{l}}{l!\Gamma(\lambda+l+1)}(x / 2)^{2 l} \tag{4.2}\\
& =\frac{x^{\lambda}}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \exp \left[\frac{1}{2}\left(t-\frac{x^{2}}{t}\right)\right] t^{-\lambda-1} d t
\end{align*}
$$

for a positive constant c.

When $\lambda=2, J_{(2 / \lambda)-(1 / 2)}(x)$ turns out to be $\sqrt{2 x / \pi}(\sin x / x)$. In this case the Theorem shows

$$
\begin{equation*}
\varphi_{n, n}\left(x_{1}, x_{2}\right) \sim n!M_{n} \sqrt{2 n / \pi} \sin \left(\frac{\xi_{1}-\xi_{2}}{\sqrt{2}}\right) / \frac{\xi_{1}-\xi_{2}}{\sqrt{2}} \tag{4.3}
\end{equation*}
$$

This formula coincides with the one (A9.2) in [M1] p. 198.
In this note we shall denote by $C_{1}, C_{2}, C_{3}, \ldots$
suitable positive constants.
By the Cauchy integral formula in the integral (3.4) the circle: $\left|\zeta^{\prime}\right|$ $=R^{\prime}$ can be replaced by two lines γ_{1} and γ_{2} :

$$
\begin{align*}
& \gamma_{1}: \operatorname{Re} \zeta^{\prime}=c_{1} \\
& \gamma_{2}: \operatorname{Re} \zeta^{\prime}=c_{2} \tag{4.4}
\end{align*}
$$

for constants c_{1} and c_{2} such that $0<c_{1}<1$ and $-1<c_{2}<0$ respectively.
In $\gamma_{1} \operatorname{Im} \zeta^{\prime}$ runs from $-\infty$ to $+\infty$ while in $\gamma_{2} \operatorname{Im} \zeta^{\prime}$ runs from $+\infty$ to $-\infty$. We denote the parts of integration over γ_{1} and γ_{2} by $\varphi_{n, n}^{\prime}$ and $\varphi_{n, n}^{\prime \prime}$ respectively:

$$
\begin{equation*}
\varphi_{n, n}=\varphi_{n, n}^{\prime}+\varphi_{n, n}^{\prime \prime} . \tag{4.5}
\end{equation*}
$$

The saddle point method for the function in the integrand (3.4)

$$
\begin{equation*}
\operatorname{Re}\left\{-\left(\frac{2}{\lambda}+\frac{1}{2}\right) d \log \left(1-\zeta^{\prime}\right)-\frac{1}{2} d \log \left(1+\zeta^{\prime}\right)-(n+1) d \log \zeta^{\prime}\right\} \tag{4.6}
\end{equation*}
$$

suggests that it is convenient to make the change of variable $\zeta^{\prime}=1-z / n$ in (3.4). Then

Lemma 4.1. $\varphi_{n, n}^{\prime}$ is expressed as

$$
\begin{align*}
& \varphi_{n, n}^{\prime}=n!M_{n} n^{-(1 / 2)+(2 / \lambda)}\left(\frac{\lambda}{2}\right)^{n} J, \tag{4.7}\\
& J= \\
& =\frac{1}{2 \pi i} \int_{\bar{r}_{1}}\left(2-\frac{z}{n}\right)^{-1 / 2} z^{-(1 / 2)-(2 / \lambda)}\left(1-\frac{z}{n}\right)^{-n-1} \\
& \quad \times \exp \left[-\frac{\left(\xi_{1}^{2}+\xi_{2}^{2}\right)(1-z / n)^{2}-2 \xi_{1} \xi_{2}(1-z / n)}{2 \lambda z(2-z / n)}\right] d z
\end{align*}
$$

where $\tilde{\gamma}_{1}$ can be chosen as follows:

We devide $\tilde{\gamma}_{1}$ into 3 parts; $\tilde{\gamma}_{1,1}+\tilde{\gamma}_{1,2}+\tilde{\gamma}_{1,3}$, where

$$
\begin{array}{ll}
\tilde{\gamma}_{1,1}: & |z| \leq \sqrt[3]{n} \tag{4.8}\\
\tilde{\gamma}_{1,2}: & \sqrt[3]{n} \leq|z| \leq \frac{n}{2} \\
\tilde{\gamma}_{1,3}: & \frac{n}{2} \leq|z|
\end{array}
$$

and denote by J_{1}, J_{2} and J_{3} the corresponding integrals over $\tilde{\gamma}_{1,1}, \tilde{\gamma}_{1,2}$ and $\tilde{\gamma}_{1,3}$ respectively:

$$
\begin{equation*}
J=J_{1}+J_{2}+J_{3} . \tag{4.9}
\end{equation*}
$$

Now we want to show the following:
Lemma 4.2.
i) $J_{1}=\frac{1}{2 \pi i} \int_{\tilde{f}_{1}} \frac{1}{\sqrt{2}} z^{-(1 / 2)-(2 / \lambda)} e^{z} \exp \left\{-\frac{\left(\xi_{1}-\xi_{2}\right)^{2}}{4 \lambda z}\right\} d z\left\{1+0\left(n^{-1 / 3}\right)\right\}$
(4.10) ii) $J_{2}=0\left(n^{-1 / 3}\right)$
iii) $J_{3}=0\left(n^{-1}\right)$.

Proof i). First remark that the length of $\tilde{\gamma}_{1,1}$ is of growth order $0(\sqrt[3]{n}) . \quad$ Since $|z| \leq \sqrt[3]{n}$ we have a bound

$$
\begin{align*}
\left|\left(1-\frac{z}{n}\right)^{-n} e^{-z}\right| & =\exp \operatorname{Re}\left\{\frac{z^{2}}{2 n}+\frac{z^{3}}{3 n^{2}}+\cdots\right\} \tag{4.11}\\
& =\exp \operatorname{Re}\left\{\frac{z^{2}}{2 n}\left(1+\frac{z}{3 n}+\cdots\right)\right\} \\
& \leq C_{1}|z|^{2} / n
\end{align*}
$$

namely

$$
\begin{equation*}
\left|\left(1-\frac{z}{n}\right)^{-n}\right| \leq C_{1}\left|e^{2}\right|\left|z^{2}\right| / n \tag{4.12}
\end{equation*}
$$

on $\tilde{\gamma}_{1,1}$, Now

$$
\begin{align*}
& \left\lvert\, \frac{1}{2 \pi i} \int_{\tilde{F}_{1}, 1}\left(1-\frac{z}{n}\right)^{-n-1}\left(2-\frac{z}{n}\right)^{-1 / 2} z^{-(1 / 2)-(2 / \lambda)} .\right. \tag{4.13}\\
& \quad \times \exp \left\{-\frac{\left(\xi_{1}^{2}+\xi_{2}^{2}\right)(1-z / n)^{2}-2 \xi_{1} \xi_{2}(1-z / n)}{2 \lambda z(2-z / n)}\right\} d z \\
& \left.\quad-\frac{1}{2 \pi i} \int_{\tilde{f}_{1}, 1} \frac{e^{z}}{\sqrt{2}} z^{-(1 / 2)-(2 / \lambda)} \exp \left\{-\frac{\left(\xi_{1}-\xi_{2}\right)^{2}}{4 \lambda z}\right\} d z \right\rvert\, \\
& \quad \leq A_{1}+A_{2},
\end{align*}
$$

where A_{1} and A_{2} denote

$$
\begin{align*}
A_{1}=\mid & \left|\frac{1}{2 \pi i} \int_{\tilde{r}_{1}, 1}\left[\left(1-\frac{z}{n}\right)^{-n}-e^{z}\right] \frac{z^{-(1 / 2)-(2 / \lambda)}}{\sqrt{2}} \exp \left\{-\frac{\left(\xi_{1}-\xi_{2}\right)^{2}}{4 \lambda z}\right\} d z\right| \tag{4.14}\\
A_{2}= & \left\lvert\, \frac{1}{2 \pi i} \int_{\tilde{F}_{1}, 1}\left(1-\frac{z}{n}\right)^{-n} z^{-(1 / 2)-(2 / \lambda)}\left\{\left(1-\frac{z}{n}\right)^{-1}\left(2-\frac{z}{n}\right)^{-1 / 2}\right.\right. \\
& \times \exp \left(-\frac{\left(\xi_{1}^{2}+\xi_{2}^{2}\right)(1-z / n)^{2}-2 \xi_{1} \xi_{2}(1-z / n)}{2 \lambda z(2-z / n)}\right. \\
& \left.-\frac{1}{\sqrt{2}} \exp \left(-\frac{\left(\xi_{1}-\xi_{2}\right)^{2}}{4 \lambda z}\right)\right\} d z \mid
\end{align*}
$$

Owing to the inequality (4.12),

$$
\begin{align*}
A_{1} & \leq \frac{C_{1}}{n \sqrt{2}} \int_{\tilde{\tilde{\gamma}} 1,1}\left|e^{z}\right|\left|z^{2}\right||z|^{-(1 / 2)-(2 / 2)}\left|\exp \left(-\frac{\left(\xi_{1}-\xi_{2}\right)^{2}}{4 \lambda z}\right)\right||d z| \tag{4.16}\\
& \leq C_{2} \max _{z \in \tilde{\tilde{I}}_{1}, 1}|z|^{2} / n \int_{\tilde{\tilde{f}} 1,1}|z|^{-(1 / 2)-(2 / \lambda)}\left|\exp \left(z-\frac{\left(\xi_{1}-\xi_{2}\right)^{2}}{4 \lambda z}\right)\right||d z| \\
& \leq C_{3} \max |z|^{2} / n \leq C_{4} \mid \sqrt[3]{n}
\end{align*}
$$

in view of $1 /|z| \leq \sqrt{2},\left|e^{z}\right| \leq e$. On may assume that z / n is near 0 , and therefore
(4.17) \mid The part $\{\quad\}$ in the integrand in (4.15) $\left|\leq C_{5}\right| z \mid / n \leq C_{5} n^{-2 / 3}$.

Moreover

$$
\begin{equation*}
\left|\left(1-\frac{z}{n}\right)^{-n}\right| \leq\left|e^{z}\right|\left(1+C_{1}|z|^{2} / n\right) \leq e\left(1+C_{1} / \sqrt[3]{n}\right) \tag{4.18}
\end{equation*}
$$

whence

$$
\begin{equation*}
A_{2} \leq C_{6} n^{-1 / 3} \tag{4.19}
\end{equation*}
$$

because the length of the path $\tilde{\gamma}_{1,1}$ is of growth order $0\left(n^{1 / 3}\right)$. This proves the first part of Lemma 4.2.

To prove the second part we need the following inequality:
Lemma 4.3. For $\operatorname{Re} z \leq 0$ and $|z| \leq n / 2$,

$$
\begin{equation*}
\left|\left(1-\frac{z}{n}\right)\right|^{-n} \leq e^{(2 / 3) \operatorname{Re} z} \tag{4.20}
\end{equation*}
$$

Proof. It can be seen that

$$
\begin{equation*}
-\log (1-x) \leq 2 x / 3 \tag{4.21}
\end{equation*}
$$

for $-1 / 2 \leq x \leq 0$. Hence

$$
\begin{equation*}
-\log \left(1-\frac{r}{n} \cos \theta\right) \leq \frac{2 r}{3 n} \cos \theta \tag{4.22}
\end{equation*}
$$

for $x=r \cos \theta$. Namely

$$
\begin{equation*}
\left(1-\frac{r}{n} \cos \theta\right)^{-n} \leq e^{(2 r / 3) \cos \theta} \tag{4.23}
\end{equation*}
$$

On the other hand we have for $z=r e^{i \theta}$,

$$
\begin{equation*}
\left|\left(1-\frac{z}{n}\right)\right| \geq 1-\frac{r}{n} \cos \theta \tag{4.24}
\end{equation*}
$$

which implies Lemma 4.3.
Proof ii) of Lemma 4.2. On $\tilde{\gamma}_{1,2}$ we have

$$
\begin{equation*}
2 \leq\left|2-\frac{z}{n}\right| \tag{4.25}
\end{equation*}
$$

$$
\begin{equation*}
n^{1 / 3} \leq|z| \tag{4.26}
\end{equation*}
$$

$$
\begin{equation*}
\left|1-\frac{z}{n}\right|^{-n} \leq e^{(2 / 3) \operatorname{Re} z} \quad \text { (Lemma 4.3) } \tag{4.27}
\end{equation*}
$$

$$
\begin{equation*}
\left|-\frac{\left(\xi_{1}^{2}+\xi_{2}^{2}\right)(1-z / n)^{2}-2 \xi_{1} \xi_{2}(1-z / n)}{4 \lambda z(2-z / n)}\right| \leq C_{7} . \tag{4.28}
\end{equation*}
$$

Hence the absolute value of the integrand in J is dominated by $C_{8} e^{(2 / 3) \mathrm{Re} z}$. ii) is now proved, for

$$
\begin{equation*}
\left|J_{2}\right| \leq C_{7} \int_{\tilde{y}_{1}, 2} e^{(2 / 3) \mathrm{Re} z}|d z|=0\left(n^{-1 / 3}\right) . \tag{4.29}
\end{equation*}
$$

iii) If $n \geq 4$, then

$$
\begin{equation*}
|1-z / n| \geq \frac{3}{4}+\frac{1}{(2 \sqrt{2})} \tag{4.30}
\end{equation*}
$$

for $|z| \geq n / 2$. Hence

$$
\begin{equation*}
|1-z / n|^{-n-1} \leq 1 /\left(\frac{3}{4}+\frac{1}{2 \sqrt{2}}\right)^{n+1} \tag{4.31}
\end{equation*}
$$

for $n / 2 \leq|z| \leq n$. Since for $k n \leq|z| \leq(k+1) n, k=1,2,3, \cdots$

$$
\begin{equation*}
|1-z / n| \geq k+1 \tag{4.32}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left|J_{3}\right| \leq C_{9}\left\{\sum_{k=1}^{\infty} n(1+k)^{-n-1}+n\left(\frac{3}{4}+\frac{1}{2 \sqrt{2}}\right)^{-n-1}\right\}=0\left(\frac{1}{n}\right) \tag{4.33}
\end{equation*}
$$

which proves iii).
Lemma 4.2 shows immediately the formula

$$
\begin{equation*}
J=\frac{1}{2 \pi i} \int_{\tilde{\gamma}_{1}} \frac{e^{z}}{\sqrt{2}} z^{-(1 / 2)-(2 / \lambda)} \exp \left\{-\frac{\left(\xi_{1}-\xi_{2}\right)^{2}}{4 \lambda z}\right\} d z\left\{1+0\left(n^{-1 / 3}\right)\right\} \tag{4.34}
\end{equation*}
$$

or equivalently

$$
\begin{align*}
\varphi_{n, n}^{\prime}= & n!M_{n}\left(\frac{\lambda}{2}\right)^{n} n^{-(1 / 2)+(2 / \lambda)} \frac{1}{2 \pi i} \int_{\tilde{\tau}_{1}} \frac{e^{z}}{\sqrt{2}} z^{-(1 / 2)-(2 / \lambda)} \tag{4.35}\\
& \times \exp \left\{-\frac{\left(\xi_{1}-\xi_{2}\right)^{2}}{4 \lambda z}\right\} d z\left\{1+0\left(n^{-1 / 3}\right)\right\} .
\end{align*}
$$

As to $\varphi_{n, n}^{\prime \prime}$ we make the change of variable $\zeta^{\prime}=-1+z / n$ as before (refer to this with Lemma 4.1) and get a similar integral representation

$$
\begin{align*}
& n!M_{n}\left(\frac{\lambda}{2}\right)^{n} \cdot \frac{(-1)^{n+1}}{2 \pi i} \int_{-\tilde{\gamma}_{1}}(2-z / n)^{-(2 / \lambda)-(1 / 2)}(z / n)^{-1 / 2}(1-z / n)^{-n-1} \tag{4.36}\\
& \quad \times \exp \left(-\frac{\left(\xi_{1}^{2}+\xi_{2}^{2}\right)(1-z / n)^{2}+2 \xi_{1} \xi_{2}(1-z / n)}{2 \lambda z(2-z / n)}\right) d z
\end{align*}
$$

A similar argument to the proof of Lemma 4.2 shows that for $n \rightarrow \infty \varphi_{n, n}^{\prime \prime}$ is approximately equal to

$$
\begin{align*}
& n!M_{n}\left(\frac{\lambda}{2}\right)^{n} \frac{(-1)^{n+1}}{2 \pi i} n^{-1 / 2} 2^{-(2 / \lambda)-(1 / 2)} \cdot \int_{-\tilde{\gamma}_{1}} z^{-1 / 2} e^{z} \tag{4.37}\\
& \quad \times \exp \left(-\frac{\left(\xi_{1}+\xi_{2}\right)^{2}}{4 \lambda z}\right)\left\{1+0\left(n^{-1 / 3}\right)\right\} .
\end{align*}
$$

Summing up (4.36) and (4.37), we have

$$
\begin{align*}
& \varphi_{n, n}=M_{n} n!\left(\frac{\lambda}{2}\right)^{n}\left\{n^{(2 / \lambda)-(1 / 2)} \cdot 2^{(2 / \lambda)-1} J_{(2 / \lambda)-(1 / 2)}\left(\frac{\xi_{1}-\xi_{2}}{\sqrt{\lambda}}\right)\left(\frac{\xi_{1}-\xi_{2}}{\sqrt{\lambda}}\right)^{-(2 / \lambda)+(1 / 2)}\right. \tag{4.38}\\
& \times\left[1+0\left(n^{-1 / 3}\right)\right]+(-1)^{n} n^{-1 / 2} 2^{-(2 / \lambda)-1} \\
&\left.\times J_{-1 / 2}\left(\frac{\xi_{1}+\xi_{2}}{\sqrt{\lambda}}\right)\left(\frac{\xi_{1}+\xi_{2}}{\sqrt{\lambda}}\right)^{1 / 2}\left[1+0\left(n^{-1 / 3}\right)\right]\right\} \\
&= n!M_{n}\left(\frac{\lambda}{2}\right)^{n} n^{(2 / \lambda)-(1 / 2)} 2^{(2 / \lambda)-1} J_{(2 / \lambda)-(1 / 2)}\left(\frac{\xi_{1}-\xi_{2}}{\sqrt{\lambda}}\right)\left(\frac{\xi_{1}-\xi_{2}}{\sqrt{\lambda}}\right)^{-(2 / \lambda)+(1 / 2)} \\
& \times\left\{1+0\left(n^{-1 / 3}\right)\right\}
\end{align*}
$$

which implies the Theorem.

References

[A1] K. Aomoto, On some properties of the Gauss ensemble of random matrices, Adv. in Appl. Math., 8, 147-153 (1987).
[A2] T. Arede, S. Johannesen and D. Merlini, On the thermodynamic limit of the Mehta-Dyson one dimensional plasma with long range interaction, J. Phys. A: Math. Gen., 17 (1984), 2505-2515.
[B] T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey and S. S. M. Wong, Random matrix physics: spectrum and strength fluctuations, Rev. Modern Phys., 53 (1981), No. 3, 385-479.
[D] F. J. Dyson, Unfashionable persuits, Symmetries in particle physics, ed. by I. Bars et al., Plenum Press, 1984, 265-285.
[M1] M. L. Mehta, Random matrices and the statistical theory of energy levels, Acad. Press, 1967.
[M2] M. L. Mehta, A method of integration over matrix variables, Comm. Math. Phys., 79 (1981), 1967.
[R] A. Regev, Asymptotic values for degrees associated with strips of Young diagrams, Adv. in Math., 41 (1981), 115-136.

Department of Mathematics

Faculty of Science
Nagoya University
Chikusa-ku, Nagoya 464
Japan

[^0]: *) This remark has been pointed out by Mr. T. Tomohisa.

