Multi-Tensors of Differential Forms on the Hilbert Modular Variety and on Its Subvarieties, II

Shigeaki Tsuyumine

Dedicated to Prof. Ichiro Satake and Prof. Friedrich Hirzebruch on their sixtieth birthdays

Let Γ_{K} denote the Hilbert modular group associated with a totally real algebraic number field K of degree $n>1$. Let X_{K} be the Hilbert modular variety H^{n} / Γ_{K}. The present paper is the continuation of a study [8], and our purpose is to extend the known range of K for which an assertion ($\underset{\sim}{ }$) holds where
($\underset{\sim}{ }$) any subvariety in X_{K} of codimension one is of general type.
We show that if $n \geq 3$, then ($\hat{\xi}$) holds only with finite exceptions. It was shown in our previous paper [8] that if the dimension $n \geqq 3$ is fixed, then $(\dot{\Sigma})$ holds with finite exceptions. The main theorem of the present paper is as follows:

Theorem. ($\dot{3}$) holds if $n>26$, or if $n>14$ and the ideal in the maximal order of K generated by 2 is unramified at any prime of degree one.

As stated in [8], ($\hat{\boldsymbol{z}}$) has the consequent on the property of X_{K} which we restate here for reader's convenience.
(I) Let X_{K}° denote the smooth locus of X_{K}, and let $\tilde{X}_{K}{ }^{1)}$ be any smooth variety having X_{K}° as an open subset. Then for any birational morphism φ of \tilde{X}_{K} to a smooth variety, $\left.\varphi\right|_{X_{K}^{\circ}}$ gives rise to an open embedding.
(II) The birational automorphism group of X_{K} (or equivalently, the automorphism group of the Hilbert modular function field over C) is equal to the automorphism group of X_{K}, which is canonically isomorphic to a semidirect product $H_{K}^{(2)} \rtimes \operatorname{Aut}(K / \boldsymbol{Q})$ where $H_{K}^{(2)}=\left\{x \in H_{K} \mid x^{2}=1\right\}, H_{K}$ denoting the ideal class group of K in the narrow sense.

As we see in $\S 2$, in order to prove Theorem we need to show

[^0]existence of a Hilbert modular form g for every irreducible divisor D of X_{K} such that (i) $g \neq 0$ on D and that (ii) the quotient by weight (g), of the vanishing order of g at the cusps is at least $n / 2(n-1)$. By the dimension formula by Shimizu it follows that there exist modular forms f satisfying the condition (ii), or better one as well, except for a finite number of K. In [8], under a certain condition we have got a modular form g satisfying (i) as well as (ii) by differentiating an "irreducible" factor of f vanishing on D, where non-existence of automorphy factors of very low weight plays an important role, which has been shown by Gundlach [3]. The basic idea of the present paper is to consider a "shifted" modular form $f(\alpha z)$ for α totally positive. Namely, if α will be taken suitably, then $f(\alpha z)$ will still have zeros of large order at cusps and it will not vanish identically on D. $f(\alpha z)$ is generally a modular form for a congruence subgroup, not for Γ_{K}, and so we must construct desired modular forms from those of congruence subgroups. Combining this method with our previous method, we can find a modular form g satisfying both (i) and (ii) in the case of $\operatorname{dim} K \geq 3$ with finite exceptions, where the proof is served by some refinement [9] of [3].

The author completed the present work while staying at Göttingen. He wishes to express his heartfelt gratitude to the Sonderforschungsbereich 170 "Geometrie und Analysis" and especially to Professor U. Christian for hospitality and support during the author's visit.

§ 1. Preliminaries

Let K be a totally real algebraic number field of degree $n>1$. $S L_{2}(K)$ acts on the product H^{n} of n copies of the upper half plane $H=$ $\left\{z_{1} \in C \mid \operatorname{Im} z_{1}>0\right\}$ by the usual modular substitution

$$
z=\left(z_{1}, \cdots, z_{n}\right) \longrightarrow M z=\left(\frac{\alpha^{(1)} z_{1}+\beta^{(1)}}{\gamma^{(1)} z_{1}+\delta^{(1)}}, \cdots, \frac{\alpha^{(n)} z_{n}+\beta^{(n)}}{\gamma^{(n)} z_{n}+\delta^{(n)}}\right)
$$

for $M=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in S L_{2}(K)$, where $\alpha^{(1)}, \cdots, \alpha^{(n)}$ denote the conjugates of $\alpha \in K$. Let O_{K} be the maximal order of K. We put $\Gamma_{K}=S L_{2}\left(O_{K}\right)$, which is called the Hilbert modular group associated with K and which acts properly discontinuously on H^{n}. Let $\hat{K}=K \cup\{\infty\}$. We define an equivalence relation in \hat{K} in terms of $\Gamma_{K} ; \lambda_{1}, \lambda_{2} \in \hat{K}$ are equivalent if $\lambda_{1}=M \lambda_{2}=$ $\left(\alpha \lambda_{2}+\beta\right) /\left(\gamma \lambda_{2}+\delta\right)$ for some $M=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \Gamma_{K}$ where $\zeta / 0=\infty$ for $\zeta \in K, \neq 0$, and $\zeta / \infty=0, \infty+\zeta=\infty$ for any $\zeta \in K$. Let $\mathfrak{a}=(\rho, \sigma), \rho, \sigma \in K$, be a nonzero fractional ideal. We associate with \mathfrak{a}, an element λ of \hat{K} given by $\lambda=\rho / \sigma$. Then if we denote by $C(K)$ the (fractional) ideal class group of
K, then we have a well-defined bijective map of $C(K)$ onto \hat{K} / Γ_{K} by sending a to λ (see for instance, Siegel [6, Chap. III, Sect. 2]). \hat{K} / Γ_{K} can be regarded as the set of inequivalent cusps of Γ_{K}, and so Γ_{K} has h inequivalent cusps where h denotes the class number of K.

Let $\mathfrak{a}=(\rho, \sigma)$ be a non-zero fractional ideal, and let $\lambda=\rho / \sigma$. We can take the generators ξ, η of an ideal \mathfrak{a}^{-1} for which $\rho \eta-\sigma \xi=1$. Let us put

$$
M_{\lambda}=\left(\begin{array}{ll}
\rho & \xi \tag{1}\\
\sigma & \eta
\end{array}\right) \in S L_{2}(K) .
$$

The modular substitution corresponding to M_{λ} maps a cusp λ to ∞, and $M_{\lambda}^{-1} \Gamma_{K} M_{\lambda}$ equals $\left\{\left.\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in S L_{2}(K) \right\rvert\, \alpha, \delta \in O_{K}, \gamma \in \mathfrak{a}^{2}, \beta \in \mathfrak{a}^{-2}\right\}$.

Let us fix a subgroup Γ in $S L_{2}(K)$ commensurable with Γ_{K}. Let J be the automorphy factor for Γ which is of the form

$$
J(M, z)=v(M) \prod_{i=1}^{n}\left(\gamma^{(i)} z_{i}+\delta^{(i)}\right)^{k_{i}}, \quad M=\left(\begin{array}{ll}
\alpha & \beta \tag{2}\\
\gamma & \delta
\end{array}\right) \in \Gamma,
$$

where $k_{1}, \cdots, k_{n} \in \boldsymbol{Q}$, and v is the multiplier whose value for $M \in \Gamma$ is a root of unity. v is, of course, depending on the choice of the branches of $\left(\gamma^{(i)} z_{i}+\delta^{(i)}\right)^{k_{i}}$ if $k_{i} \in \boldsymbol{Q}-\boldsymbol{Z}(i=1, \cdots, n)$. A holomorphic function f on H^{n} is called a (Hilbert) modular form for Γ associated with J if it satisfies

$$
f(M z)=J(M, z) f(z) \quad \text { for any } M \in \Gamma .
$$

f is said to be of vector weight $\left(k_{1}, \cdots, k_{n}\right)$, and conversely $\left(k_{1}, \cdots, k_{n}\right)$ is called the weight vector of f. If all the k_{i} 's are equal to k, then f is said to be of scalar weight k, and in notation $k=$ weight (f). A map $\beta \rightarrow$ $v\left(\begin{array}{ll}1 & \beta \\ 0 & 1\end{array}\right)$ gives a finite character of an additive group $\left\{\beta \in K \left\lvert\,\left(\begin{array}{ll}1 & \beta \\ 0 & 1\end{array}\right) \in \Gamma\right.\right\}$, and moreover it is true also for the unipotent subgroup of the stabilizer subgroup in Γ at every cusp $\lambda \in K$ (for the references, see [8, p. 665]). So a modular form f for Γ has a Fourier expansion centered at λ. Let $\lambda=$ $\rho / \sigma, \mathfrak{a}=(\rho, \sigma), M_{\lambda}$ be as above, and let

$$
\begin{equation*}
w=M_{\lambda}^{-1} z, \quad w_{i}=\left(M_{\lambda}^{-1}\right)^{(i)} z_{i} \quad(1 \leq i \leq n) \tag{3}
\end{equation*}
$$

Then

$$
f_{\lambda}(w)=\prod_{i=1}^{n}\left(-\sigma^{(i)} z_{i}+\rho^{(i)}\right)^{k_{i}} f(z)
$$

is a modular form in w for $M_{\lambda}^{-1} \Gamma M_{\lambda}$, and it has a Fourier expansion

$$
\begin{equation*}
f_{\lambda}(w)=\sum_{\nu} c_{\nu} \exp (2 \pi \sqrt{-1} \operatorname{tr}(\nu w)) \tag{4}
\end{equation*}
$$

where $\operatorname{tr}(\nu w)=\nu^{(1)} w_{1}+\cdots+\nu^{(n)} w_{n}$, and ν runs over the set composed of 0 and totally positive numbers contained in some lattice in $K . \quad f_{\lambda}$ is defined independently of $\rho, \sigma \in K$ with $\lambda=\rho / \sigma$, up to a constant multiple. Now we define the vanishing order $\operatorname{ord}_{\lambda}(f)$ of f at λ to be the minimum of the set of non-negative rational numbers

$$
\left\{\operatorname{tr}(\nu \zeta) \mid \text { totally positive } \zeta \in a^{-2}, \nu \text { with } c_{\nu} \neq 0\right\}
$$

It is easy to see that the above definition is independent of $\rho, \sigma \in K$ for which $\lambda=\rho / \sigma$, and further that it is independent of the choice of λ in one equivalence class of cusps of Γ.

Remark. We give a comment about the vanishing order. For simplicity we suppose that a multiplier v is trivial and $k_{1}=\cdots=k_{n} \in 2 Z$ in (2). Let U be a neighborhood at a cusp λ in the analytic space given by compactifying H^{n} / Γ. If U is small enough, then $f_{2}(w)$ can be regarded as a function on U. Let $\varphi: \widetilde{U} \rightarrow U$ be a desinguralization, and $\left\{E_{i}\right\}$, the exceptional divisors. Then $\operatorname{ord}_{\lambda}(f)$ has a geometric meaning, namely, it equals the minimum of the vanishing orders of $\varphi^{*} f$ at the E_{i} 's, provided that $\Gamma=\Gamma_{K}$. But this is not necessarily true for general Γ. To make general definition, the "width" of cusps of Γ must be taken into account. However as far as we focus only on modular forms for Γ_{K}, the above definition works well.

Let f, g be modular forms for Γ. The inequalities $\operatorname{ord}_{\lambda}(f g) \geqq \operatorname{ord}_{\lambda}(f)$ $+\operatorname{ord}_{\lambda}(g), \operatorname{ord}_{\lambda}(f+g) \geqq \min \left\{\operatorname{ord}_{\lambda}(f), \operatorname{ord}_{\lambda}(g)\right\}$ holds ${ }^{2)}$. In the Fourier expansion (4), we call ν minimal if $c_{\nu} \neq 0$ and if ν cannot be written as $\nu=$ $\nu^{\prime}+\nu^{\prime \prime}$ with $c_{\nu^{\prime}} \neq 0, c_{\nu^{\prime \prime}} \neq 0$. We write

$$
g \preccurlyeq f
$$

if at every cusp the following holds; for any minimal ν in the Fourier expansion of f, there is a minimal ν^{\prime} in that of g for which $\nu^{\prime(i)} \leq \nu^{(i)}$ $(i=1, \cdots, n)$. In such a case $\operatorname{ord}_{\lambda}(f h) \geq \operatorname{ord}_{\lambda}(g h)$ holds for any modular form h^{3}. Finally in this section we define the vanishing order ord (f) of f at cusps by

$$
\operatorname{ord}(f)=\min _{\lambda \in \hat{\mathbb{R}}}\left\{\operatorname{ord}_{\lambda}(f)\right\}
$$

where λ may actually run over a finite set of representatives of cusps with respect to the equivalence under Γ.

[^1]
§ 2. Résumé of [8]

We put

$$
\omega_{i}=(-1)^{i} d z_{1} \wedge \cdots \wedge d \check{z}_{i} \wedge \cdots \wedge d z_{n} \in \Omega_{H n}^{n-1} \quad(1 \leq i \leq n),
$$

and

$$
\omega=\omega_{1} \otimes \cdots \otimes \omega_{n} \in\left(\Omega_{H^{n}}^{n-1}\right)^{\otimes n} .
$$

Then

$$
M \cdot \omega=\prod_{i=1}^{n}\left(\gamma^{(i)} z_{i}+\delta^{(i)}\right)^{-2(n-1)} \omega \quad \text { for } M=\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in S L_{2}(K) .
$$

If f is a Hilbert modular form for Γ_{K} of scalar weight $2 r(n-1)$, then $f \omega^{\otimes r}$ is Γ-invariant, and it may be regarded as a multi-tensor of differential forms on the smooth locus X_{K}° of X_{K}. It is extendable over all elliptic fixed points except for the cases listed in [8, Lemma 3], and it is always so in particular for $n>6$. It is extendable to a projective non-singular model of X_{K}, then its restriction to D gives a multi-tensor of canonical differential forms on D. The restriction is not zero unless f vanishes at D.

Proposition 1. Let $n>6$. Let D be a subvariety in X_{K} of codimension one. If there is a modular form for Γ_{K} of scalar weight satisfying that (i) $\left.f\right|_{D} \not \equiv 0$ and that (ii) ord $(f) /$ weight $(f)>n / 2(n-1)$, then D is of general type.

Proof. The proposition was essentially proved in [8, Sect. 6]. Here we give only a sketch. We may assume that weight $(f)=2 r(n-1), r \in Z$, replacing f by its power if necessary. Let g_{1}, \cdots, g_{t} be modular forms for Γ_{K} of weight $2 r^{\prime}(n-1), r^{\prime} \in Z$, by which X_{K} is embedded into a projective space. If $m \in Z$ is large enough, then ord $\left(f^{m} g_{j}\right) /$ weight $\left(f^{m} g_{j}\right)$, $1 \leq j \leq t$, are at least $n / 2(n-1)$, and hence $f^{m} g_{j} \omega^{\otimes\left(m r+r^{\prime}\right)}, 1 \leq j \leq t$, are extendable to a projective non-singular model of X_{K}. Since $\left.f\right|_{D} \not \equiv 0, D$ is of general type.

The proof of Theorem is reduced to find the modular form satisfying the condition in Proposition 1 for any fixed D, which in substance, we carry out in the present paper.

§ 3. Vanishing order

Let μ be a totally positive integer in O_{K}. Let m be a positive rational integer such that

$$
\begin{equation*}
m \mu^{-1} \in O_{K} \tag{5}
\end{equation*}
$$

Let $f(z)$ be a modular form of weight $\left(k_{1}, \cdots, k_{n}\right)$ for some subgroup in $S L_{2}(K)$ commensurable with Γ_{K}. Then such is $f(\mu z)=f\left(\mu^{(1)} z_{1}, \cdots, \mu^{(n)} z_{n}\right)$. Let $M=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \Gamma_{K}$. Then

$$
g(z):=\prod_{i=1}^{n}\left(\gamma^{(i)} z_{i}+\delta^{(i)}\right)^{-k_{i}} f(\mu M z)
$$

is also such a modular form. We estimate ord (g) in terms of ord (f) and m in (5).

Lemma 1. Let the notation be as above. Then ord $(g) \geq m^{-1}$ ord (f).
Proof. Let $\lambda=\rho / \sigma$ be a cusp. Let us put $\lambda^{\prime}=\mu M(\lambda)$ and $M_{\lambda^{\prime}}=$ $\left(\begin{array}{cc}\sqrt{\mu} & 0 \\ 0 & \sqrt{\mu^{-1}}\end{array}\right) M M_{\lambda}\left(\begin{array}{cc}\sqrt{\mu^{-1}} & 0 \\ 0 & \sqrt{\mu}\end{array}\right)=\left(\begin{array}{ll}\rho^{\prime} & * \\ \sigma^{\prime} & *\end{array}\right), M_{\lambda}$ being as in (1). We have the equalities $\lambda^{\prime}=M_{\lambda^{\prime}}(\infty)=\rho^{\prime} / \sigma^{\prime}$ and $\rho^{\prime}=\alpha \rho+\beta \sigma, \sigma^{\prime}=\mu^{-1}(\gamma \rho+\delta \sigma) . \quad f(z)$ has a Fourier expansion centered at λ^{\prime}

$$
\prod_{i=1}^{n}\left(-\sigma^{\prime(i)} z_{i}+\rho^{\prime(i)}\right)^{k_{i}} f(z)=\sum_{\nu} c_{\nu} \exp \left(2 \pi \sqrt{-1} \operatorname{tr}\left(\nu M_{\lambda^{\prime}}^{-1} z\right)\right)
$$

Here $\operatorname{ord}_{\lambda^{\prime}}(f)=\min \left\{\operatorname{tr}(\nu \zeta) \mid\right.$ totally positive $\zeta \in\left(\rho^{\prime}, \sigma^{\prime}\right)^{-2}, \nu$ with $\left.c_{\nu} \neq 0\right\} \geq$ ord (f). We replace z by $\mu M z$ in the above identity. Then a simple calculation leads to

$$
\prod_{i=1}^{n}\left(-\sigma^{(i)} z_{i}+\rho^{(i)}\right)^{k_{i}} g(z)=\sum_{\nu} c_{\nu} \exp (2 \pi \sqrt{-1} \operatorname{tr}(\nu \mu w))
$$

w being as in (3). Then ord ${ }_{\lambda}(g)=\min \left\{\operatorname{tr}(\zeta \mu \nu) \mid\right.$ totally positive $\zeta \in(\rho, \sigma)^{-2}$, ν with $\left.c_{\nu} \neq 0\right\}=\min \left\{\operatorname{tr}(\zeta \nu) \mid\right.$ totally positive $\zeta \in \mu(\rho, \sigma)^{-2}, \nu$ with $\left.c_{\nu} \neq 0\right\}$. Since $m^{-1}\left(\rho^{\prime}, \sigma^{\prime}\right)=m^{-1} \mu^{2}(\mu(\alpha \rho+\beta \sigma), \gamma \rho+\delta \sigma)^{-2} \supset m^{-1} \mu^{2}(\alpha \rho+\beta \sigma, \gamma \rho+\delta \sigma)^{-2}$ $\supset m^{-1} \mu^{2}(\rho, \sigma)^{-2} \supset \mu(\rho, \sigma)^{-2}, \operatorname{ord}_{\lambda}(g)$ is at least $m^{-1} \operatorname{ord}_{2^{\prime}}(f) \geq m^{-1} \operatorname{ord}(f)$.
q.e.d.

Let us construct a modular form for Γ_{K} from f;

$$
\begin{equation*}
f_{\mu, r}(z):=\sum_{M}\left\{\prod_{i}\left(\gamma^{(i)} z_{i}+\delta^{(i)}\right)^{-k_{i}} f(\mu M z)\right\}^{r} \tag{6}
\end{equation*}
$$

where r is a positive rational integer, and $M=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \Gamma_{K}$ runs through a system of right representatives of $\Gamma_{K} \bmod \Gamma \cap \Gamma_{K}, \Gamma$ denoting the subgroup in $S L_{2}(K)$ commensurable with Γ_{K} for which $f(\mu z)$ is modular form.

Corollary. Let f be a modular form for a subgroup $S L_{2}(K)$ commensurable with Γ_{K}, and let μ be a totally positive integer in O_{K}. Then $f_{\mu, r}$ is
a modular form for Γ_{K} whose weight vector is an r times the weight vector of f, and $\operatorname{ord}\left(f_{\mu, r}\right)$ is at least $m^{-1} r$ ord (f) where m is as in (5).

The common zero of $f_{\mu, r}, r=1,2, \cdots$, is equal to the common zero of $f(\mu M z)$'s, M being as above. In particular $f_{\mu, r}$ does not vanish identically for infinitely many r unless f vanishes identically.

§ 4. Modular groups

First we introduce several congruence subgroups of Γ_{K}. Let \mathfrak{b} be a non-zero integral ideal of O_{K}. We define subgroups of Γ_{K} associated with \mathfrak{b};

$$
\begin{aligned}
\Gamma(\mathfrak{b}) & :=\left\{M \in \Gamma_{K} \left\lvert\, M \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \bmod \mathfrak{b}\right.\right\}, \\
\Gamma_{0}(\mathfrak{b}) & :=\left\{\left.\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in \Gamma_{K} \right\rvert\, \gamma \equiv 0 \bmod \mathfrak{b}\right\}, \\
\Gamma^{1}(\mathfrak{b}) & :=\left\{\left.\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in \Gamma_{K} \right\rvert\, \alpha \equiv \delta \equiv 1 \bmod \mathfrak{b}, \beta \in \mathfrak{b}^{2}\right\} .
\end{aligned}
$$

Let μ be a totally positive integer in O_{K}. A simple calculation shows that $M(\mu z)=\mu M_{(\mu)} z$ with

$$
M_{(\mu)}=\left(\begin{array}{cc}
\sqrt{\mu}^{-1} & 0 \\
0 & \sqrt{\mu}
\end{array}\right) M\left(\begin{array}{cc}
\sqrt{\mu} & 0 \\
0 & \sqrt{\mu^{-1}}
\end{array}\right)=\left(\begin{array}{cc}
\alpha & \mu^{-1} \beta \\
\mu \gamma & \delta
\end{array}\right) \quad \text { for } M=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) .
$$

We note that

$$
\Gamma_{K} \cap\left(\begin{array}{cc}
\sqrt{\mu}^{-1} & 0 \\
0 & \sqrt{\mu}
\end{array}\right) \Gamma_{K}\left(\begin{array}{cc}
\sqrt{\mu} & 0 \\
0 & \sqrt{\mu^{-1}}
\end{array}\right)=\Gamma_{0}(\mu)
$$

and

$$
\left(\begin{array}{cc}
\sqrt{\mu}^{-1} & 0 \\
0 & \sqrt{\mu}
\end{array}\right) \Gamma^{1}(\mu)\left(\begin{array}{cc}
\sqrt{\mu} & 0 \\
0 & \sqrt{\mu}-1
\end{array}\right)=\Gamma(\mu) .
$$

Let f be a modular form. We denote by Γ_{f}, the maximal subgroup of $S L_{2}(K)$ for which f is a modular form, namely,

$$
\Gamma_{f}=\left\{M \in S L_{2}(K) \mid f(M z) / f(z) \text { is holomorphic }\right\} .
$$

Then $\Gamma_{f(\mu z)}=\left(\begin{array}{cc}\mu^{-1} & 0 \\ 0 & \sqrt{\mu}\end{array}\right) \Gamma_{f}\left(\begin{array}{cc}\sqrt{\mu} & 0 \\ 0 & \sqrt{\mu^{-1}}\end{array}\right)$.
Lemma 2. Let $f(z)$ be a non-constant modular form for Γ_{K}. Then $\Gamma_{f(\mu z)} \cap \Gamma_{K}=\Gamma_{0}(\mu)$ for a totally positive integer μ in O_{K}.

Proof. By the above fact it is enough to show that $\Gamma_{f}=\Gamma_{K}$, where $\Gamma_{f} \supset \Gamma_{K}$ is our assumption. By Maass [5] it was shown that Hurwitz's extension $\tilde{\Gamma}_{K}$ of Γ_{K} is the unique maximal extension acting properly discontinuously on H^{n} except for an extension by a group acting trivially on $H^{n} . \quad \tilde{\Gamma}_{K}$ is consisting of matrices

$$
\left[\begin{array}{ll}
\alpha / \sqrt{\omega} & \beta / \sqrt{\omega} \\
\gamma / \sqrt{\omega} & \delta / \sqrt{\omega}
\end{array}\right]
$$

where $\alpha, \beta, \gamma, \delta \in K$, and $\omega=\alpha \delta-\beta \gamma$ is totally positive, and $\alpha / \sqrt{\omega}, \beta / \sqrt{\omega}$, $\gamma / \sqrt{\omega}, \delta / \sqrt{\omega}$ are integral over $O_{K} . \quad \tilde{\Gamma}_{K} \cap S L_{2}(K)$ equals Γ_{K}, which implies $\Gamma_{f}=\Gamma_{K}$. q.e.d.

Let \mathfrak{p} be a prime ideal of O_{K}. It is easy to check that the set $\Gamma_{0}\left(\mathfrak{p}^{e}\right) \backslash \Gamma_{K}$ is naturally isomorphic to

$$
\left\{\left.\left(\begin{array}{rr}
0 & 1 \\
-1 & \delta
\end{array}\right) \right\rvert\, \delta \in \mathfrak{p} \bmod \mathfrak{p}^{e}\right\} \cup\left\{\left.\left(\begin{array}{ll}
1 & 0 \\
\gamma & 1
\end{array}\right) \right\rvert\, \gamma \in O_{K} \bmod \mathfrak{p}^{e}\right\} .
$$

In particular the index $\left[\Gamma_{K}:\left(\mathfrak{p}^{e}\right)\right]$ equals $\mathrm{Nm}\left(\mathfrak{p}^{e}\right)\left(1+\mathrm{Nm}(\mathfrak{p})^{-1}\right)$ where Nm denotes the norm of K over \boldsymbol{Q}. The general case is reduced to the prime power case by the Chinese remainder theorem. We have the following:

Lemma 3. Let \mathfrak{b} be a non-zero integral ideal of O_{K}. Then the index $\left[\Gamma_{K}: \Gamma_{0}(\mathfrak{b})\right]$ equals $\operatorname{Nm}(\mathfrak{b}) \Pi_{p}\left(1+\mathrm{Nm}(\mathfrak{p})^{-1}\right)$ where \mathfrak{p} runs through prime ideals dividing \mathfrak{b}.

§ 5. Irreducibility

We assume $n \geq 3$ in what follows. Let Γ be a subgroup in $S L_{2}(K)$ commensurable with Γ_{K}. Then any holomorphic automorphy factor for Γ is, up to trivial automorphy factors, of the form (2) (Freitag [2]). If there is a non-constant modular form associated with J in (2), then the entries of the weight vector are all positive (Freitag [1, Sect. 2]). A modular form f for Γ is said to be irreducible in Γ if its divisor corresponds to an irreducible divisor of the modular variety H^{n} / Γ. Then any modular form f has a unique irreducible decomposition up to a constant factor;

$$
f=f_{1}^{r_{1}} \cdots f_{t}^{r_{t}}
$$

where $f_{i}(1 \leq i \leq t)$ are irreducible in Γ.
Let us suppose that $\Gamma \subset \Gamma_{K}$. Let g be a modular form for Γ, and let $\operatorname{div}(g)$ be the divisor of g on H^{n}. Then $\operatorname{div}(g)$ is written as

$$
\sum_{j=1}^{t} m_{j}\left(\sum_{M} M \cdot D_{j}\right), \quad m_{j} \in Z,>0
$$

where D_{1}, \cdots, D_{t} are a finite number of irreducible divisors on H^{n} inequivalent under Γ and where M runs over a system of left representatives of $\Gamma \bmod$ the stabilizer subgroup in Γ at D_{j}. We note that D_{j} 's may be equivalent under Γ_{K}. Suppose that in the equivalence relation under Γ_{K}, D_{j} 's are divided into several classes $\left\{D_{1}, \cdots, D_{j_{1}}\right\},\left\{D_{j_{1}+1}, \cdots, D_{j_{2}}\right\}, \cdots$, $\left\{D_{j_{s}+1}, \cdots, D_{j}\right\}$. We define a new divisor invariant under Γ_{K} by

$$
\begin{equation*}
\sum_{k=0}^{s} \max \left\{m_{j_{k+1}}, \cdots, m_{j_{k+1}}\right\}\left(\sum_{k} M \cdot D_{j_{k+1}}\right) \tag{7}
\end{equation*}
$$

where $j_{0}=0, j_{s+1}=j$, and where M runs over a system of left representatives of $\Gamma_{K} \bmod$ the stabilizer subgroup in Γ_{K} at $D_{j_{k}+1}$. We denote by $N(g)$ the modular form for Γ_{K} whose divisor equals (7). $N(g)$ is divisible by g as modular forms for Γ, and moreover it is minimal in the sense that it divides any such modular form for Γ_{K}. We do not mind the ambiguity in the definition of $N(g)$ up to a constant multiple, which will never cause a trouble in the present paper.

Lemma 4. Let $n \geq 3$, and let Γ be a normal subgroup of Γ_{K}. Let g be a modular form for Γ of weight $\left(k_{1}, \cdots, k_{n}\right)$ which is irreducible in Γ. Then $N(g)$ is given as

$$
\prod_{M} \prod_{i}\left(\gamma^{(i)} z_{i}+\delta^{(i)}\right)^{-k_{i}} g(M z)
$$

where $M=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ runs through a system of right representatives of $\Gamma_{K} \bmod$ $\Gamma_{K} \cap \Gamma_{g}$. In particular the weight vector of $N(g)$ is $a\left[\Gamma_{K}: \Gamma_{K} \cap \Gamma_{g}\right]$ times the weight vector of g.

Proof. Since (8) is a modular form for Γ_{K}, it is divisible by $N(g)$. We prove the contrary. Since Γ is normal in Γ_{K}, for each $M=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \epsilon$ $\Gamma_{K} \prod_{i}\left(\gamma^{(i)} z_{i}+\delta^{(i)}\right)^{-k_{i}} g(M z)$ is a modular form for Γ which is also irreducible in Γ, and which divides $N(g)$. If M runs through a system of right representatives of $\Gamma_{K} \bmod \Gamma_{K} \cap \Gamma_{g}$, then any two of them have no common divisor of zero. This shows our assertion.
q.e.d.

Lemma 5. Let $n \geq 3$, and let Γ be a subgroup of $S L_{2}(K)$ commensurable with Γ_{K}. Let g be a modular form for Γ of weight $\left(k_{1}, \cdots, k_{n}\right)$ irreducible in Γ. Suppose that g is not irreducible in some subgroup in Γ of finite index. Then for any i within $1 \leq i \leq n$ and for any positive even r,
there is a modular form h for Γ of weight $r\left(k_{1}, \cdots, k_{i-1}, k_{i}+2, k_{i+1}, \cdots\right.$, k_{n}) satisfying that (i) $g^{r} \preccurlyeq h$ and that (ii) g, h have no common divisors.

Proof. By assumption, there is a subgroup Γ^{\prime} of Γ in which g is not irreducible. Replacing Γ^{\prime} by a smaller one if necessary, we may assume that Γ^{\prime} is normal in Γ. Let $g=g_{1} \cdots g_{t}, t \geq 2$, be an irreducible decomposition in Γ^{\prime}. Let k, l be distinct integers in $\{1, \cdots, t\}$. Because of the irreducibility of g in Γ, g_{k}, g_{l} are transformed into each other for any k, l, more precisely, for some $M=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \Gamma, \prod_{i}\left(\gamma^{(i)} z_{i}+\delta^{(i)}\right)^{-e_{i}} g_{k}(M z)$ equals $g_{l}(z)$ up to a constant factor, $\left(e_{1}, \cdots, e_{n}\right)$ being the weight vector of g_{k}. Hence, in particular, g_{j} 's have the same vector weight, namely, $(1 / t)\left(k_{1}\right.$, $\left.\cdots, k_{n}\right)$. The irreducibility of g in Γ implies also that the multiplicity of each factor is one namely, any two of the g_{j} 's have no common divisors.

$$
\begin{equation*}
g_{l}^{2} \frac{\partial}{\partial z_{i}}\left(g_{k} / g_{l}\right)=g_{l} \frac{\partial}{\partial z_{i}} g_{k}-g_{k} \frac{\partial}{\partial z_{i}} g_{l} \tag{9}
\end{equation*}
$$

is modular form for Γ^{\prime} of weight $\left(2 k_{1} / t, \cdots, 2 k_{i-1} / t, 2+2 k_{i} / t, 2 k_{i+1} / t\right.$, $\left.\cdots, 2 k_{n} / t\right)$. By a matrix M in $\Gamma,(9)$ is transformed into a similar one. So

$$
\begin{equation*}
h:=\sum_{k<l}\left(g_{l} \frac{\partial}{\partial z_{i}} g_{k}-g_{k} \frac{\partial}{\partial z_{i}} g_{l}\right)^{r} \prod_{j \neq k, l} g_{j}^{r} \tag{10}
\end{equation*}
$$

is a modular form for Γ of weight $r\left(k_{1}, \cdots, k_{i-1}, k_{i}+2, k_{i+1}, \cdots, k_{n}\right)$. A function (9) is $\geqslant g_{k} g_{l}$ (see [8, Proof of Proposition 3]), and so each term of (10) is $\succcurlyeq g^{r}$. This implies that (i) $g^{r} \preccurlyeq h$. Finally we show that h is not divisible by g, which implies (ii). If otherwise, h is divisible by g_{1} in $\Gamma^{\prime} . \quad\left(\partial / \partial z_{i}\right) g_{1}$ does not vanish identically on any component of $\operatorname{div}\left(g_{1}\right)$ on H^{n} by [8, Lemma 5] where the proof is given only for Γ_{K}, but it is easy to observe validity in general. Expanding (10), we get only one term $\left(\left(\partial / \partial z_{i}\right) g_{1}\right)^{r} \prod_{j \neq 1} g_{j}^{r}$ that does not contain g_{1}. This implies that h is not divisible by g_{1}, a contradiction.
q.e.d.

Corollary. Let g be as in Lemma 5. Then there is a modular form h for Γ such that (i) the weight vector is $2 r(1, \cdots, 1)+n r\left(k_{1}, \cdots, k_{n}\right), r$ being any positive integer, and that (ii) $g^{n r} \preccurlyeq h$, and that (iii) g, h have no common divisors.

Proof. We take a product for $j=1, \cdots, n$ of modular forms given in the lemma.
q.e.d.

§ 6. Key proposition

There is a positive rational number k_{0} depending only on K for which
$\sum k_{i} / k_{0}$ is integral if $\left(k_{1}, \cdots, k_{n}\right)$ is the weight vector of any automorphy factor for Γ_{K}. Gundlach [3] (see also [8, p. 666]) shows that $k_{0} \geq 1 / 2$ if n is even. By [9] it was shown that $k_{0} \geq 1 / 2$ for any $n>1$, and that $k_{0} \geq 2$ particularly if the ideal in O_{K} generated by 2 is unramified at any prime ideal of degree one. We note that if f is a non-constant modular form for Γ_{K} of scalar weight, then n weight $(f) \geq k_{0}$.

Now we state the key proposition of the paper, which gives a refinement of [8, Proposition 3].

Proposition 2. Let $n \geq 3$. Let l be a non-negative real number for which there is a non-constant modular form f for Γ_{K} of scalar weight such that $\operatorname{ord}(f) /$ weight $(f)>l$. Let D be any effective divisor on H^{n} invariant under Γ_{K} which corresponds to an irreducible divisor of the modular variety H^{n} / Γ_{K}. Then there exists a modular form g for Γ_{K} of scalar weight such that (i) $\left.g\right|_{D} \not \equiv 0$, and that (ii) ord $(g) /$ weight $(g)>\min \left\{l /\left(2+1 / 2^{n-2} k_{0}\right)\right.$, $\left.\max \left\{3 l / 4\left(1+1 / k_{0}\right), l /\left(1+2 / k_{0}\right)\right\}\right\}$, which is at least $l / 4$ and which is at least $l /\left(2+2^{-n+1}\right)$ particularly if the ideal in O_{K} generated by 2 is unramified at any prime ideal of degree one.

Let F denote the modular form for Γ_{K} defining D, which is obviously irreducible in Γ_{K}. Let $\left(k_{1}, \cdots, k_{n}\right)$ be the weight vector of F. If F is not a factor of f, then there is nothing to prove. So we assume that F is a factor of f in what follows.

Suppose that $F(2 z)$ does not divide $f(z)$ (in $\Gamma(2)$), or equivalently that $F(z)$ does not divide $f\left(\frac{1}{2} z\right)$ (in $\Gamma(2)$). Then $F(z)$ does not divide $f(2 z)$ since $f(2 z)($ resp. $F(z))$ is equal to $\Pi\left(2 z_{i}\right)^{- \text {weight }(f)} f\left(\frac{1}{2}\left(-z^{-1}\right)\right)\left(\right.$ resp. $\Pi\left(z_{i}\right)^{-k_{i}} \times$ $F\left(-z^{-1}\right)$)) up to a constant multiple and since $F\left(-z^{-1}\right)$ does not divide $f\left(\frac{1}{2}\left(-z^{-1}\right)\right)$. Then by the comment below Corollary to Lemma $1, F(z)$ is not a factor of $f_{2, r}$ in (6) for some positive integer r. Since

$$
\operatorname{ord}\left(f_{2, r}\right) / \text { weight }\left(f_{2, r}\right) \geq \frac{1}{2}(\operatorname{ord}(f) / \text { weight }(f))>\frac{l}{2}
$$

by Corollary to Lemma 1, our assertion follows. So the problem is reduced to the case that
(i) F is a factor of f, and
(ii) $F(2 z)$ is a factor of $f(z)$, or equivalently $N(F(2 z))$ divides f, N being as in the preceding section. We consider two cases;

I: F is not irreducible in $\Gamma^{1}(2)$,
II: F remains irreducible in $\Gamma^{1}(2)$.
The proof in the case I is given in the next section, and the case II, in the section after next.

§ 7. Proof in case I

Let $f=F^{s} G$ be the decomposition in Γ_{K} where G is not divisible by F. At first we assume that $\sum k_{i} \geq 2 k_{0}$ for the weight vector (k_{1}, \cdots, k_{n}) of F. Obviously n weight $(f) \geq s \sum k_{i} \geq 2 s k_{0}$. By Corollary to Lemma 5 there is a modular form h for Γ_{K} such that (i) the weight vector is $4(1, \cdots, 1)$ $+2 n\left(k_{1}, \cdots, k_{n}\right)$, and (ii) $F^{2 n} \preccurlyeq h$, and that (iii) $\left.h\right|_{D} \not \equiv 0$. Then we take as $g, h^{s} G^{2 n}$ which is a modular form for Γ_{K} of scalar weight $4 s+2 n$ weight (f), and which does not vanish identically on D. ord $(g) /$ weight $(g) \geq$ $2 n$ ord $(f) /(4 s+2 n$ weight $(f))>l /(1+2 s / n$ weight $(f)) \geq l\left(1+1 / k_{0}\right)$. So in this case our assertion follows, because $l /\left(1+1 / k_{0}\right)>\max \left\{3 l / 4\left(1+1 / k_{0}\right)\right.$, $\left.l /\left(1+2 / k_{0}\right)\right\}$.

Lemma 6. Let F be a non-constant modular form for Γ_{K} of weight $\left(k_{1}, \cdots, k_{n}\right)$ irreducible in Γ_{K}, and let μ be a totally positive integer in O_{K} other than units. Then $N(F(\mu z))$ has as a factor, at least one modular form for Γ_{K} different from $F(z)$. If $\sum k_{i}=k_{0}$, then it is not irreducible in $\Gamma(\mu)$.

We note that in the above lemma F is not assumed to be irreducible in a subgroup of Γ_{K}.

Proof. Let $F(\mu z)=F_{1}(z) \cdots F_{t}(z)$ be an irreducible decomposition in $\Gamma(\mu)$. By the irreducibility of $F(z)$ in Γ_{K}, any two of the $F_{j}(z)$'s have no common divisor. If $N(F(\mu z))$ has only $F(z)$ as a factor, then $F(z)$ is divisible by each of the $F_{j}(z)$, and hence by $F(\mu z)$. So $\Gamma_{F(z)}$ is properly larger than Γ_{K}, which contradicts to Maass [5] (see the proof of Lemma 2). This shows our first assertion. Now suppose that $\sum k_{i}=k_{0}$. If $t \geq 2$, then any of F_{1}, \cdots, F_{t} is not a modular form for Γ_{K} by the definition of k_{0}. The irreducible factor of $N\left(F(\mu z)\right.$) equals one of $N\left(F_{j}\right)$, up to a constant multiple, which is not irreducible in $\Gamma(\mu)$. If $t=1$, i.e., $F(\mu z)$ is irreducible in $\Gamma(\mu)$, then Lemma 4 together with Lemma 2 shows that $N(F(\mu z))$ is not irreducible in $\Gamma(\mu)$.

We continue to prove Proposition 2. We assume that $k_{0}=\sum k_{i}$. Let $f=F^{s} F^{\prime s} G$ be a decomposition in Γ_{K}, where F^{\prime} is an irreducible factor of $N(F(2 z))$ in Γ_{K} different from F, and G is divisible by neither F nor F^{\prime}. Let $\left(k_{1}^{\prime}, \cdots, k_{n}^{\prime}\right)$ be the weight vector of F^{\prime}, and let $k^{\prime}=\sum k_{i}^{\prime} \geq k_{0}$. Then obviously n weight $(f) \geq s k_{0}+s k^{\prime} \geq\left(s+s^{\prime}\right) k_{0}$. Suppose that $s^{\prime}\left(k^{\prime}+4\right)$ $\geq s\left(2-k_{0}\right)$. Let h be as in the beginning of this section. We take as g, $h^{s}\left(F^{\prime s^{\prime}} G\right)^{2 n}$ which is a modular form for Γ_{K} of scalar weight $4 s+2 n$ weight (f) with order at least $2 n$ ord (f) and which does not vanish identically on D. Then ord $(g) /$ weight $(g) \geq 2 n$ ord $(f) /(4 s+2 n$ weight $(f))>$ $l /(1+2 s / n$ weight $(f)) \geq \max \left\{3 l / 4\left(1+1 / k_{0}\right), l /\left(1+2 / k_{0}\right)\right\}$. Then our assertion follows. Now let us suppose that $s^{\prime}\left(k^{\prime}+4\right) \leq s\left(2-k_{0}\right)$, which implies
$k_{0}<2$. By Lemma $6, F^{\prime}$ is not irreducible in $\Gamma(2)$. Then by Corollary to Lemma 5, there is a modular form h^{\prime} for Γ_{K} such that (i) the weight vector is $4(1, \cdots, 1)+2 n\left(k_{1}^{\prime}, \cdots, k_{n}^{\prime}\right)$ and that (ii) $F^{\prime 2 n} \preccurlyeq h^{\prime}$, and that (iii) h^{\prime}, F^{\prime} have non common divisor. Let $g^{\prime}=h^{\prime s^{\prime}}\left(F^{s} G\right)^{2 n}$, which is a modular form for Γ_{K} of scalar weight $4 s^{\prime}+2 n$ weight (f). ord $\left(g^{\prime}\right)$ is at least $2 n$ ord (f). g^{\prime} is not divisible by $F(2 z)$, because if otherwise, g^{\prime} is divisible by F^{\prime} just as f, which is not the case. Then $g^{\prime}(2 z)$ is not divisible by $F(z)$ (see the argument in the preceding section). We take as g, $\left(g^{\prime}\right)_{2, r}$ in (6) where r is taken so that $\left(g^{\prime}\right)_{2, r}$ is not divisible by $F(z)$. Then by Corollary to Lemma 1 , ord $(g) /$ weight $(g) \geqq \frac{1}{2}$ (ord $\left(g^{\prime}\right) /$ weight $\left.\left(g^{\prime}\right)\right)>l /\left(2+4 s^{\prime} / n\right.$ weight $(f)) \geq l /\left(2+\left(-2 k_{0}+4\right) /\left(k^{\prime}+2 k_{0}\right)\right) \geq 3 l / 4\left(1+1 / k_{0}\right)=\max \left\{3 l / 4\left(1+1 / k_{0}\right)\right.$, $\left.l /\left(1+2 / k_{0}\right)\right\}$, since $k_{0}<2$. We are done.

§ 8. Proof in case II

By assumption $F(2 z)$ is irreducible in

$$
\Gamma(2)=\left(\begin{array}{cc}
\sqrt{2}^{-1} & 0 \\
0 & \sqrt{2}
\end{array}\right) \Gamma^{1}(2)\left(\begin{array}{cc}
\sqrt{2}^{2} & 0 \\
0 & \sqrt{2}^{-1}
\end{array}\right)
$$

and by Lemma $2 \Gamma_{F(2 z)} \cap \Gamma_{K}=\Gamma_{0}(2) . \quad$ By Lemma $4, F^{\prime}(z):=N(F(2 z))$ is irreducible in Γ_{K} and its weight vector is $\left[\Gamma_{K}: \Gamma_{0}(2)\right]\left(k_{1}, \cdots, k_{n}\right)$. Let $f=F^{s} F^{\prime s^{\prime}} G$ be a decomposition in Γ_{K}, where G is divisible neither F nor F^{\prime}. We give a similar proof as in the last part of the preceding section. By Corollary to Lemma 5, there is a modular form h^{\prime} for Γ_{K} such that (i) the weight vector is $4(1, \cdots, 1)+2 n\left[\Gamma_{K}: \Gamma_{0}(2)\right]\left(k_{1}, \cdots, k_{n}\right)$ and that (ii) $F^{\prime 2 n} \preccurlyeq h^{\prime}$, and that (iii) h^{\prime} is not divisible by F^{\prime}. Let $g^{\prime}=h^{\prime s^{\prime}}\left(F^{s} G\right)^{2 n}$, which is a modular form for Γ_{K} of scalar weight $4 s^{\prime}+2 n$ weight (f) and with order $\geq 2 n$ ord (f). $\quad g^{\prime}(z)$ is not divisible by $F(2 z)$, in other words, $g^{\prime}(2 z)$ is not divisible by $F(z)$. Then we take as $g,\left(g^{\prime}\right)_{2, r}$ in (6) which is not divisible by $F(z)$. Then by Corollary to Lemma 1 , ord $(g) /$ weight $(g) \geq$ $\frac{1}{2}\left(\operatorname{ord}\left(g^{\prime}\right) /\right.$ weight $\left.\left(g^{\prime}\right)\right)>l /\left(2+4 s^{\prime} /\left(s+s^{\prime}\left[\Gamma_{k}: \Gamma_{0}(2)\right] \sum k_{i}\right)\right)>l /\left(2+4 /\left[\Gamma_{K}\right.\right.$: $\left.\left.\Gamma_{0}(2)\right] k_{0}\right)>l /\left(2+1 / 2^{n-2} k_{0}\right)$ since $\left[\Gamma_{K}: \Gamma_{0}(2)\right]>2^{n}$ by Lemma 3. We have proved Proposition 2.

§ 9. Proof of Theorem

Let us recall the asymptotic dimension of the space of modular forms for Γ_{K} of scalar weight $k \in 2 Z$ with a trivial multiplier and with ord $(f) / k$ $>l$ ([8], see also [7]). It is

$$
\left\{2^{-2 n+1} \pi^{-2 n} d_{K}^{3 / 2} \zeta_{K}(2)-2^{n-1} l^{n} n^{-n} d_{K}^{1 / 2} n R\right\} k^{n}+O\left(k^{n-1}\right)
$$

where d_{K}, h, R denote the discriminant, the class number, the regulator of
K respectively. In particular, if

$$
l<2^{-3} \pi^{-2} n\left(\frac{4 d_{K} \zeta_{K}(2)}{h R}\right)^{1 / n}
$$

then there are such modular forms for sufficiently large even k.
Theorem 1. Let $n>6$. If

$$
\begin{equation*}
2^{-4} \pi^{-2}(n-1)\left(\frac{4 d_{K} \zeta_{K}(2)}{h R}\right)^{1 / n}>1 \tag{11}
\end{equation*}
$$

then (ξ) holds. If the ideal in O_{K} generated by 2 is unramified at any prime ideal of degree one and if

$$
\begin{equation*}
2^{-3}\left(1+2^{-n+1}\right)^{-1} \pi^{-2}(n-1)\left(\frac{4 d_{K} \zeta_{K}(2)}{h R}\right)^{1 / n}>1 \tag{12}
\end{equation*}
$$

then ($\}$) holds.
Proof. By Proposition 2, for any subvariety D in X_{K} of codimension one, there is a modular form g of scalar weight such that (i) $\left.g\right|_{D} \not \equiv 0$, and that (ii) ord $(g) /$ weight $(g)>\left\{2^{-3} \pi^{-2} n\left(4 d_{K} \zeta_{K}(2) / h R\right)^{1 / n}\right\} / 4$ which is larger than $n / 2(n-1)$ by the condition (11). By Proposition $1,(\hbar)$ holds. Also to the second assertion, the similar argument is applicable. q.e.d.
$d_{K} \zeta_{K}(2) / h R$ is at least $2^{n-2} \pi^{n}$ (cf. Lang [4, p. 261]). Hence (11) holds for $n>26$, and (12) holds for $n>14$. This proves our theorem.

References

[1] Freitag, E., Lokale und globale Invarianten der Hilbertschen Modulgruppe, Invent. Math., 17 (1972), 106-134.
[2] -, Automorphy factors of Hilbert's modular group. In: Discrete subgroups of Lie groups and applications to moduli, pp. 9-19, Tata Institute, 1975.
[3] Gundlach, K.-B., Multiplier systems for Hilbert's and Siegel's modular groups, Glasgow Math. J., 27 (1985), 57-80.
[4] Lang, S., Algebraic number theory. Reading, MA: Addison-Wesley, 1970.
[5] Maass, H., Uber die Erweiterungsfähigkeit der Hilbertschen Modulgruppe, Math. Z., 51 (1949), 255-261.
[6] Siegel, C. L., Lectures on advanced analytic number theory, Tata Institute, 1961.
[7] Tsuyumine, S., On the Kodaira dimensions of Hilbert modular varieties, Invent. Math., 80 (1985), 269-281.
[8] -, Multi-tensors of differential forms on the Hilbert modular variety and on its subvarieties, Math. Ann., 274 (1986), 659-670.
[9] - Automorphy factors for a Hilbert modular group, to appear in Glasgow Math. J.

Department of Mathematics
Mie University
Tsu 514
Japan

[^0]: Received February 10, 1987.
 ${ }^{1)}$ ~ is missing in [8], Cor. 1, p. 660.

[^1]: ${ }^{2)}$ Although a resulting inequality is true, there is inaccuracy at the last equality in the sequence of inequalities in [8, p668, line $1 \sim 2$.
 ${ }^{3)}$ This gives a correct proof of the above.

