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Introduction 

0.1. To evaluate special values of various kinds of zeta functions 
and L-functions and to interpret the meaning of them have been providing 
fruitful problems to number theory. 

Siegel [21], as an initiative work, established an ingenious method of 
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evaluating the special values at non-positive integers of partial zeta 
functions for totally real fields and Klingen-Siegel proved that they are 
rational numbers (cf. [8]). Shintani [16] presented a more direct method of 
evaluating them, giving remarkable expressions of partial zeta functions 
by integrals taken over complex contour paths. Following Shintani's 
method, Satake [14], introducing zeta functions of self-dual homogeneous 
cones, studied a general method of obtaining nice expressions of the zeta 
functions by integrals over contour paths. In some cases, he succeeded in 
representing the special values at non-positive integers of the zeta func
tions of cones as a finite sum of certain integrals over some compact Lie 
group. Kurihara [9], also following Shintani, evaluated the special values 
at non-positive integers of Siegel zeta functions of Q-anisotropic quadratic 
forms (non-zero forms) with signature (1, n-1) (n=3, 4). However, their 
methods are not applicable to the zeta functions of cones such that some 
of edge vectors of cones are contained in the boundary of the self-dual 
homogeneous cone Q (see Introduction of [14]). 

On the other hand, Hecke [6], [7], more than fifty years before, studied 
the decomposition into irreducible components of the representation µ of 
SLlFP) in a certain space of elliptic cusp forms and obtained remarkable 
relations among multiplicities of irreducible representations inµ. Recently, 
Yamazaki [24], Tsushima [22), Lee-Weintraub [11], and Hashimoto [5] 
studied similar problems in the case of the representation µk of Sp( 4, Fp) 
in a certain space of Siegel cusp forms of degree two and weight k. The 
former four authors employed algebro-geometric methods including the 
Hirzebruch-Riemann-Roch theorem, the holomorphic Lefschetz theorem, 
and Hashimoto used the Selberg trace formula. To attack the problems, 
they calculated the traces of µk for various elements of Sp( 4, Fv)· From 
the viewpoint of the Selberg trace formula, there appear special values of 
various kinds of zeta functions and £-functions in calculating the dimen
sions of the spaces of cusp forms and the traces of µla) (a e Sp(4, Fp)), as 
is observed in [16], [I], [13], [4], [5]. In his lecture at Kyoto in 1985, 
Hashimoto introduced an interesting £-function attached to the ternary 
zero form x1x2 -x~ 2 and expressed the traces of µia) for certain unipotent 
elements a e Sp(4, Fp) using the special value at s=3/2 of that £-function 
(see the identity (0.5) in 0.2). 

The Main purpose of the present paper is to evaluate special values at 
non-positive integers of two kinds of £-functions, one of which is the one 
introduced by Hashimoto, associated with the ternary zero form x1x2 -ri 2• 

We shall follow the method of Satake-Kurihara basically. However, since 
the quadratic form x1x2 -x~ 2 is a zero form (which represents zero non
trivially), we have to deal with partial zeta functions of cones whose edge 
vectors are not necessarily in the interior of f!I\, f!l'2 being the self-dual 
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homogeneous cone of positive definite symmetric matrices of size two. 
Because of this reason, Satake-Kurihara's method cannot be applied di
rectly to our situation. We need some original ideas to obtain useful 
integral representations of partial zeta functions (see Chap. II). The special 
values of our L-functions are expressed explicitly by (generalized) Bernoulli 
numbers and special values of Bernoulli polynomials. 

Moreover, V1-e shall introduce certain zeta functions with a kind of 
Gauss sums attached to the space of quadratic forms and express the 
values of a certain class of integrals appearing in the Selberg trace formula 
for the trace of µ,Ja) (a e Sp(2n, Fv)) by using special values at non
positive integers of such zeta functions, where µ/(, is the representation of 
Sp(2n, Fv) in the space of cusp forms of degree n, weight k. 

As an application of our results, in the case of n=2, we can obtain 
explicit formulae expressing the traces of µla) by the special values at 
s=O of our L-functions, which are explicitly evaluated as we stated above. 

0.2. We fix the notation and explain our results more precisely. 
Take an odd prime p and fix it. Let Ln (resp. L;) denote the lattice formed 
by integral symmetric (resp. half-integral symmetric) matrices of size n, 
and let Ln,+• L!,+ be the subsets consisting of all positive definite matrices 
of Ln, L;, respectively. Denote by L;,+fSLn(Z) (resp. Ln,+fSLn(Z)) the 
set of SLn(Z)-equivalence classes in L;,+ (resp. Ln,J. For an integral 
symmetric matrix S of size v (l::S::v<n) with det(S)$0 modp, let£''n(S) 
denote the subset of Ln consisting of all x e Ln such that x= 

u( g g) t U mod p with some U e GLn(Z/pZ). Define a kind of Gauss sum 

on L; by -r;s"l(TJ= I;.,, exp (21d tr (Tx/p)) (Te L;), x running over all 
residue classes of elements in ft' n(S) mod pLn. Set 

~;(s, -r~nl)= • I; -.t>(T)e(T)" 1 det(T)·•, 
TELn,+/SLn(Z) 

L;(s, Xdet)= I; X (det (T))e(T)· 1 det (T)·', 
TELl:,+ISL.,(Z) 

where e(T) is the order of the unit group { U e SLn(Z) I UTt U = T}, and 
Xis a Dirichlet character mod p. These Dirichlet series, which are typical 
examples of Hurwitz-type zeta functions and L-functions of prehomogene
ous vector spaces, are absolutely convergent for Re(s)>(n+l)/2. As for 
a general theory of L-functions of prehomogeneous vector spaces, we refer 
to Sato [15], in a part of which the functional equations of L-functions (in 
a general situation) are derived from the works of Gyoja-Kawanaka [3] on 
prehomogeneous vector spaces over finite fields. In the case of n=2, 
Hashimoto introduced the following L-functions Lt(s, tn,v), 4.(s, tn,v). 
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Lett be the unique non-trivial quadratic character mod p, and let te,p 
be a mapping from L"t to R given as follows; put t 9 ,p(T)=t(t) if T 

u(~ g)tumodp with some U e G~(Z/pZ), t e Z, and otherwise, put 

te,q(T)=0. Set 

L"t(s, 'V"e,p)= ~ ,y8 ,p(T)e(T)- 1 det (T)-•, 
TEL!,+ISL2(Z) 

Lh, ,Ye,p)= ~ ,y8 ,p{T)e(T)· 1 det(T)·•. 
TEL2,+/SL2(Z) 

The L-functions L"t(s, f e,p), Lz(s, te,p) are absolutely convergent for 
Re (s)> 3/2. The zeta functions and L-functions given above can be con
tinued analytically to meromorphic functions of s in the whole complex 
plane which are holomorphic at non-positive integers (see Prop. 1.10, 
Theorem 1.11 in this paper). The L-functions L-:(s, Xdet), L"t(s, te,p), 
Lls, t H,p) will be regarded as Siegel L-functions associated with the 
ternary zero form x 1x 2 -x~ 2 (cf. [20]). Let Bn (resp. Bn(x)) be the n-th 
Bernoulli number (resp. n-th Bernoulli polynomial). Denote by Bn,z the 
n-th generalized Bernoulli number attached to a Dirichlet character X. 
For a real number x, (x) denotes the number satisfying 0<(x)< 1 and 
x-(x) e Z. Set 

(0.1) d= - ~' B1(<(a?-2ar)/p))B 1(<2ar/p))B/<(r 2 -a.2)/p)) 
a,r 

where a, r run over all residue classes mod p satisfying a23;=2ar modp, 
ar~o mod p, a 2 ~r2 mod p, and op,a is the Kronecker symbol (op,3 = 1 if 
p=3, and otherwise, op,s=0). Moreover, set 

(0.2) f!4= _ _!_ ~" Bi<(a 2 -2ar)/p))Bi(((r 2 -a 2)/p)), 
3 a,T 

where a, r run over all residue classes modp satisfying a2~r 2 modp. 

Theorem 1. Let p be an odd prime. 
( i) The special values L"t(l-m, 'V"H,p)(m= 1, 2, ·. ·) are rational 

numbers. 
(ii) lf P=l mod 4, then L"t(0, 'V"H,p)=0. 
(iii) If p = 3 mod 4, then, 

L°t(0, fe,p)=d+f!4+ 3
1~ Bs,+- 2~p Bi,+· 
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We present a conjecture on the value L;(O, 'f'n,p). 

Conjecture I. If p=3 mod 4, Lt(O, 'f'n,p)= 2
1
4 B1,t· 
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(Note that h(-p)= -B 1,t for p>3 and p=.3 mod 4, where h(-p) is the 
class number of the quadratic field Q(./ -p).) 

Conjecture I is true for p<500 by the numerical calculation using a 
computer. 

Theorem 2. Let X be a primitive character mod p (p > 2). Then, for 
m=l, 2, .. ·, 

Theorems 1, 2 will be regarded as a kind of generalization of the well
known formula L(l-m, X)= -Bm,zlm for Dirichlet L-function L(s, X). 

Let I' 2n(p) be the principal congruence subgroup of I' 2n=Sp(2n, Z) 
with level 'p. The quotient group I' 2n/I' 2n(p) is isomorphic to the finite 
symplectic group Sp(2n, Fp) of degree 2n, and the surjection I' 2n ~ 

Sp(2n, FP) is denoted by a~a (a E I' 2n). Let &Jn be the Siegel upper 
half plane of degree n, on which the real symplectic group @2 n = Sp(2n, R) 

acts in a usual manner; for Z=X +iYe &Jn and for r= ( ~ i) E @2n, r<Z) 

=(AZ+B)(CZ+D)- 1• Set J(r, Z)=det (CZ+D), and 

H(r; Z)=J(r, Z)-k det ( r<Z~-Z )-k det(Y)", 

dZ=det (Y)-n-i J1 dXijdYij' 
1~-i~j~n 

For any subset II of I' 2n which is invariant by the conjugation of any ele
ments in I' 2n(P), set 

In(ll; k)=a(k)f ~ H(r; Z)dZ, 
I'2n(P)\f!n rEII 

where a(k) is a constant given by (3.1.3) in Chap. III. Denote by 
(?i;iI'2nCp)) the space of Siegel cusp forms of degree n, weight k with re
spect to I' 2n(p). The representation µk of the group Sp(2n, Fp) in the 
space (?i;iI'2n(p)) is given by µ/a- 1)/(Z)=J(a, Z)-kf(a<Z))(a E I' 2n,f E 
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6iI' 2n(p)), and see (3.1.2)). It is known by [2] that tr(µia- 1))= 
In{I' 2n(p)a; k) for k>2n. For a symmetric matrix x of size v, denote by 

tn.Jx)=(6n 1~), where x=(i ~) (see (3.1.4)). For a E I' 2n, let Ilr(a) 

(1 <r~n) be the set consisting of all elements in I' 2n(P)a that are con
jugate to some elements tnjx) with x E Ln det(x)::'i,:0 (Ilr(a) depends 
only on a). Following Shintani [16, Chap. 2], we will show that, if k?:_ 
2n+3, then, for each a= tn,JS) with SE L., det (S)~0 modp, 

ln(Ilr(a); k)=[I'a,p: I' 2n(p)]p-r<n-(r-l)/Zlb(n, k, r)Qn,r~;(r-n, -r<;"l) 

(v~r~n), 

where b(n, k, r), Q n.r are rational numbers given by (3.2.7), (3.2.8), respec
tively, and I' a,p = {r E I'2n I r- 1ar= Ci mod P} (a subgroup of I'2n), of which 
I' 2n(p) is a normal subgroup with index finite. If a= l 2n, the results above 
coincide with those of [16]. In the case of n=2, v= 1, put, for any integer 
µ prime top, aµ=t 2,i(µ) ( E I'J. It is essen1fally known by [13], [1], [4], [5], 
and can be proved in a similar manner that, if k';:;;_7, tr (µiaµ))= 
E;-Jz(Ilr(a_µ); k). It will be shown that, if k>7, 

(0.3) tr (µiaµ))= -2- 53- 1p2(p2 - l){t(- µ)T,,B2.,, +(p 2 - 1)/6}(2k-3) 

+2- 1p(p 2- 1){,JF(- l)pLf(0, fctet)+f(-µ)-r,,pL;(0, ·,JrH,p) 

+2- 43-1(p2 - l)}, 

where -r,, is the Gauss sum associated with f. 

Theorem 3. Let p be an odd prime and let ,c be a non-quadratic residue 
modp. Let k27. The difference of the two traces tr(µs(aµ)) (µ=l, ,c) is 
given by 

!-2- 43- 1p2(p2 - 1),vp Bu(2k-3) 

(0.4) tr(µia 1))-tr(µia,))= _ ·. ·P=lmod4, 

-p 2(p2 - l),v -pL;(0, tH,p). · p=:=3mod4. 

We present another conjecture, which is based on Conjecture I. 

Conjecture II. Ifp>3, P=3 mod 4, and k> 7, then, 

tr (µ/a1))-tr(µila,))=- 1-p 2(p? -1),v -ph(-p). 
24 

Tsushima calculated the traces of µiaµ) in his private notes, which 
are based on the results of [22]. Lee-Weintraub [11] announced the ex
plicit values of the imaginary parts of tr (µiaµ)) and presented a conjecture 
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analogous to our Conjecture IL Their methods are purely geometric and 
the results do not involve special values of L-functions. We are much 
concerned how the traces can be expressed by special values of L-functions 
and how they can be explicitly evaluated. 

In his lecture at Kyoto in 1985, Hashimoto announced that the dif
erence of the traces of µlaµ)(µ= I, K) is given as follows: 

(0.5) 

It follows from (0.4), (0.5) that 

(0.6) Lz(3/2, 'Vf'n,p)=41c2p-312L;(0, 'Vf'n,p)·. -if p=:::3 mod 4, 

which, together with (iii) of Theorem I, will be regarded as a Kronecker 
limit formula for Lz(s, 'Vf'n,p). It is guessed that L;(s, 'Vf'n,p), Lz(s, 'Vf'n,p) 
are related with each other by a functional equation under s-+3/2-s. 
The relation (0.6) will be derived from the functional equation. 

The author wishes to express his hearty gratitude to Professor K. 
Hashimoto for informing him of his precious unpublished results and to 
Professor F. Sato for several valuable comments. He is also very grateful 
to Professor A. Kurihara and Professor I. Makino for verifying Conjecture 
I numerically by computer. It is a pleasure for the author to mention that 
this paper is an answer to the problems presented by Professor Hashimoto 
at Kyoto, 1985. 

Notation 

Let N, Z, Q, R, and C denote the set of natural numbers, the ring 
of rational integers, the rational number field, the real number field, and 
the complex number field, respectively. For any commutative ring 
S, M(m, n; S), Mn(S), GLn(S), and SLn(S) denote the module of mxn 
matrices with entries in S, the ring of matrices of size n with entries in S, 
the group of invertible elements in Mn(S), and the group of elements in 
Mn(S) whose determinants are one, respectively. For any element A of 
Mn(S), let t A, tr (A), and det (A) denote the transposed matrix of A, the 
trace of A, and the determinant of A, respectively. We denote by In the 
unit matrix of Mn(S). Moreover, we put sx = GLi(S). 

For any element Z of Mn( C), we denote by Re (Z), Im (Z), and Z, 
the real part of Z, the imaginary part of Z, and the complex conjugate of 
Z, respectively. For real symmetric matrices A, B of the same size, A> B 
means that A-Bis positive definite. For any x e R, <x> denotes the real 
numberwithx-<x>eZ,O<<x)<I. Let I'(s) and ((s) be the gamma 
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function and the Riemann zeta function, respectively. Finally, the symbol 
e[w] (w E C) is used as an abbreviation for exp (21dw). 

Chapter I. L-functions of quadratic forms 

1.1. Definition of zeta functions and L-functions 

Following Shintani [16], we shall define certain zeta functions with 
Gauss sums and certain £-functions which are associated with the vector 
space of symmetric matrices. We shall not discuss a general theory of 
those functions but only some properties that will be needed in later 
chapters. 

Let G<;l be GLn(R), and let V<;l be the R-vector sapce of real sym
metric matrices of size n. Then, the group G<;l acts on V<;l in a usual 
manner; for g E G<;l, x E V.\f'l, we put p(g)x=gxtg. Let Ln be the lattice 
of V_\f'l consisting of all integral symmetric matrices of size n, and let L; 
be its dual with respect to the bilinear form (x, y) = tr (xy) (x, y E V}l'l). 
Namely, L; is the lattice consisting of half-integral symmetric matrices of 
size n. 

Let p be an odd prime and fix it once and for all. Denote by Zcz) 
the Z-module consisting of all rational numbers of the form 2-mx with 
m, x E Z. For a, be Z(2), a:=b mod p means that (a-b)/p is a p-adic 
integer. Let 1 :;=;;v::=:n and let SE L, with <let (S)3;:0 mod p. We set 

2'n(S)= {XE Ln IX:= u(g g) iumodp with some u E GLn(Z/pz)}, 

Z/pZ being the ring of residue classes mod p. Then, 2' n(S) is invariant 
under the action of SLn(Z); namely, U2'n(S)lU=2'n(S) for any U e 
SLn(Z). Moreover, 2'n(VStV)=2'n(S) for any Ve GLJZ/pZ). Ifv<n, 
this definition of 2' n(S) amounts to saying that 

2'n(S)= {XE LnlX= u(g g) iumodp with some u E SLn(Z)}-

We denote by 2' n(S)/pLn all residue classes of elements in 2' n(S) mod pLn
Define a subgroup I'8 , 00 of GLn(Z/pZ) by 

fs,oo={(j i) E GLn(Z;pZ)IAStA=Smodp, C=Omodp}. 

A complete set of representatives of 2' n(S)/pLn is given by the set 

(1.1.1) 
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A kind of Gauss sum r;.Pl(T) (TE L;) is defined as follows: 

(1.1.2) rtl(T)= I:; e[tr (Tx)/p], 
xE!?n(S)/PLn 

which depends only on Tmodp. Then we have rknl(UPU)=rtl(T) for 
any U E GLn(Z/pZ). Denote by L;,+ the subset of L; consisting of all 
positive definite symmetric matrices. For each Te L;,+, let c(T) be the 
order of the unit group { U E SLn(Z) I UT' U = T}. Two matrices T1, T2 of 
L; are called SLn(Z)-equivalent, if there exists some U e SLn(Z) with T2 

= UTf U. Denote by L;, +I SLn(Z) the set of SLn(Z)-equivalence classes 
in L'!t,+· We define a zeta function .;;(s, rtl) with the Gauss sum rtl 
as follows: 

For a primitive character X mod p, we also define an L-function L;(s, Xdet) 
by putting 

L;(s,Xdet)= I:; X(det(T))e:(T)-1 det(T)-s, 
TEL~.+/SLn(Z) 

where X is naturally extended over ZczJ· Moreover, set 

.;;(s)= I:: e:(T)-1 det cn-s. 
TEL1:,, +/SLn(Z) 

It is well-known that .;;(s) is absolutely convergent for Re (s)>(n + 1)/2, 
Therefore, .;;(s, rtl), L;(s, Xdet) also converge absolutely if Re(s)>(n+ 1)/2. 
The zeta function .;;(s) is one of the zeta functions intensively studied by 
Shintani in [16]. 

Denote by t the unique non-trivial quadratic character mod p, which 
is characterized by ,Jr(a)=(a/p) for any integer a prime top, (a/p) being the 
Legendre symbol. Let "Y'H,p be a mapping from Lt to R given by 

jt(t) ·. -if T== u_(~ ~) 'Umodp with some U e GLz(Z/pZ) and 

"Y'H,p(T)= t e Z pnme top, 

0 ..... otherwise. 

In the case of n=2, Hashimoto introduced the following L-function: 

Lt(s, "Y'H,p)= I:; "Y'H,p(T)c(T)-1 det (T)-s, 
TEL;, +/SL2(Z) 

which is absolutely convergent for Re (s) > 3/2. We have a relation among 
~;(s, r~l), L;(s, "Y'H,p), L;(s, "Y'ctet), and .;;(s), which is given in Proposition 
1.2. 



108 T. Arakawa 

Lemma 1.1. Let µ be any integer prime top and take µ as Sin (1.1.2) 
in the case ofn=2, v=l. Then,for Te Lt, we have 

( i) r~2>(T)={t(- l)t(det (T))p-1}/2- · · if det (T)~O modp, 
(ii) rt 2>(T)={t(µ)tH,p(T)pr,i--l}/2· · -ifdet(T)=Omodp, T~O 

modp, 
(iii) rt 2>(T)=(p 2 -1)/2· · -ifT=O modp, 

where r,i-is the ordinary Gauss sum associated with t: r,i-= I:as1aomodp t(a), 
e[a/p]. 

Proof Writing U = (f :) e GLz(Z/pZ), we have U ( b g) t U = 

µ(~~ ~I)-We set 

(1.1.3) ..4(p)={(a, r) e Z/pZXZ/pZl(a, r)~(O, 0) modp}. 

It is easy to see from (1.1.1) that, for each Te Lt, 

r~2>(T)=_!_ I: e[µtr((a 2 ~r) r)fp]. 
2 (a,T)E..r(p) ar r 

lfdet(T)~O modp, we may assume that T=(a ~) modpwith (t1,p)=1 

U= 1, ?). Then we get 

As is well-known, if (a,p)=l, then, I:umodp e[au2/p]=t(a)r.,,. Thus we 
have, with the help of the property r~=t(-l)p, 

Next let det(T)=Omodp and T~Omodp. We may assume that 

T=(~ g) modp with (t,p)=l. Then we get 

r; 2>(T)=_!_{t(µt)pr,i-- l}, 
2 

from which the assertion (ii) follows. The assertion (iii) is clear. 

Proposition 1.2. Let µ be any integer prime top. Then, 
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We omit the proof of Proposition 1.2, which is immediate from 
Lemma 1.1. 

Let ,c be a non-quadratic residue mod p. Taking 1, ,c as µ in Pro
position 1.2, we get the following corollary. 

Corollary to Proposition 1.2. We have 

Pr;,Lt(s, V'H,v)=~t(s, d 2l)-~;(s, r?l), 

t(- l)pL;(s, V'det)=~;(s, d 2l)+~;(s, r?l) +(l -p 2 - 2s)~;(s). 

1.2. Some properties of ~;(s, rknl), L;(s, V'det), and L;(s, V'H,p) (analytic 
continuations, poles, residues) 

We follow Section 2 of Chapter 2 in [16]. Let f!Jl n be the symmetric 
space formed by positive definite real symmetric matrices of size n. For 
each 2 e N, the functions fn(x, 2), f;(x, 2) (x e VWl) on VWl are defined as 
follows: 

fn(x, 2) = {det (x)'- <n+ !J/ 2 exp ( -2n- tr (x)) . .. if x e f!Jl n, 

0 • • · if X E VW\ X $ f!J! n, 

f;(x, 2)=det (ln-ix)-1_ 

An Euclidean measure dx on VWl is normalized by dx= [I 1;,;i;a;j;a;n dxi;
Put X(g)=det(g)2. Moreover, we set 

n-1 

r n(s) = [I I'(s + 1 + i/2), 
i=O 

and 

1 
~ ((2K(3) .•. ((n) 

Un= 1 

2 

Let p be an odd prime and fix it. 

(n~2) 

(n= 1). 

Lemma 1.3. Let I <v::;;n, and let Se L. with det (S)~O mod p. If 
2>n+I, then, 
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where g e G<;t>, and µn,i=(4tr)n<n-1>14pncn+1>12(2tr)-inril-(n+I)/2) (both 
sides are absolutely convergent). 

Proof. The Fourier transform offnCpeg- 1)x, l) on vi' is given by 

J fn(p('g- 1)x, l)e[tr(xy)]dx 
V)t 

=trncn-tJ/4{2tr)-lnr n(l-(n+ I)/2)X(g)<n+1,12f!(p(g)y, l) 

(g e ai>, ye vi>, and the integral converges absolutely). 

This identity is nothing but Hilfssatz 37 of [18]. Replacing y with u+py 
(u e vi>) and changing the variables by x-.x/p, we get 

f v,./n(p('g- 1)(x/p), l) e[tr(ux/p)] e[tr(xy)]dx 
1' 

=2-n(n-1)/2µn,lX(g)<n+l)/2f!(p(g)(u+py), l). 

By virtue of the Poisson summation formula (see (iii) of Lemma 19 in [16]), 
w(have 

(the both sides are absolutely convergent for l > n +I). 

If we let u run over 2' n(S)/pLn, we obtain the formula in Lemma 1.3. 

Let dng be a Haar measure on G<;t> normalized by 

Set:GW!+={g e ai> jdet(g)>O}. We put 

(1.2.1) Z*(s, T~n))=f X(g)• I; -z-';'(T)j~(p(g)(T/p), l)dng. 
a'fi!+/SLn(Z) TELt, 

We denote by Z!(s, -rt;>) the integral obtained by replacing the region of 
integration with the set {g e G'fi! +I SLn(Z) I X(g)> 1} in the right side of 
(1.2.1). As is shown in Lemma 21, (i) in [16], the integral Z*(s, -r's'') is 
absolutely convergent if Re (s)>(n+ 1)/2, Re O+s)>n, and then, 

(1.2.2) Z*(s, -rt;>) 

=pn•trn<n-1)/4(2tr)-<l+ •-<n+1i12in2-n-1cnr nO +s-n- I).;!(s, -r's''). 

We keep the conditions: Se L., det (S):3;=0 modp. Set, for re N (r<n), 

(1.2.3) ft'~rl(S)={x e 2' n(S) I rank (x)=r}. 
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We see immediately that, if !l';t>(S)~0, then, of necessity, 1J<r::;;;.n. 

Lemma 1.4. Let 1J<r<n. Each x e !l';t>(S) can be written as x= 

U (~ 1 g) tU with some x 1 E .;l'~rl(S), U E SLn(Z). 

Proof We assume that r<n, otherwise we have nothing to do. Take 
x e !l';t>(S). Then there exist U e SL,.(Z) and x 1 e Lr with det (x1)*0 

such that x = U ( ~1 g) t U. Since x e !l' ,.(S), the rank of x 1 mod p as a 

matrix of Mr(Z/pZ) is IJ. Thus there exist some W1 e GLlZ/pZ) and x2 

e L., det (x2)~0 mod p with the condition 

(1.2.4) x1= w1(~2 g)tw1 modp. 

Since x e !l'n(S), so is (~ 1 g). Hence we see easily from (1.2.4) that there 

exists some Ve GLnCZ/pZ) such that(~ 2 g)= v(g g) ty modp. Writing 

V = (~: ~:) with V1 e M,(Z/pZ), we have X 2 = V1St V1 mod p, which implies 

that V1 e GL.(Z/pZ). We get, again by (1.2.4), x 1= W ( g g) t W mod p 

with some w E GLr(Z/pZ). Thus, X1 E 2t>(S). q.e.d. 

Let P~ denote the subgroup of G1fi> formed by all matrices whose left 
lower (n-r)Xr blocks are zero. Denote by P~.+ the connected compo
nent of 1,. in P~. 

Lemma 1.5. The following decompositions hold. 
(i) !l'n(S)= U~=•!l'~r>(S) (disjoint union). 
(ii) For each r(1J<r::;;;.n), 

!l'~r>(S)= U {u(x 0)tu1xe2t>(s)} 
UESLn(Z)/SLn(Z) nP'r, Q Q 

(disjoint union). 

The proof is due to Lemma 1.4 and is immediate. 
We set 

(1.2.5) Z(f;(x, l), !l'n(S), s)=f X(g)' I: f;(p(g)x, l)d .. g. 
G'Jl,'+!SLn(Z) :,;e,z,j,n>(S) 

By virtue in Lemma 21, (ii) in [16] and Lemma 1.5 above, one has the 
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following proposition ( or one can prove it in the same manner). 

Proposition 1.6. Assume that A, s satisfy the foil owing inequalities: 

(1.2.6) {
.:t> 1, Re(s)<.:t 

.:t> Max(13/2, 2 Re(s)+ 7/2) 

.:t>n+ 7/2, Re (s)<.:t-(n-1)/2 

for n=l, 

for n=2, 

for n>3. 

In addition to (1.2.6), ifs satisfies Re (s)>(n-1)/2, then the integral 
Z(f;(x, 1), .ft' n(S), s) is absolutely convergent. 

We impose the following assumption on .:t: 

(1.2.7) l>l forn=l, .:t>B/2 forn=2, and .:t>n+7/2 forn>3. 

For 1 e N satisfying (1.2.7), we put 

(1.2.8) {
1-1 

a;= {A-13/2)/2 

1-n 

for n=l 

forn=2 

for n>3. 

We define the integral Z+(f;:(x, 1), .ft' /S), s) by restricting the region of 
integration to the set {gG e ii'!+fSLn(Z) I X(g)> 1} in the definition (1.2.5) 
of Z(f;(x, .:t), 2 n(S), s). We see easily from Proposition 1.6 that 
Z(f;(x, .:t), .ft'n(S), (n+l)/2-s) is absolutely convergent if -a;<Re(s) 
<I, and hence that Z+(f;(x, .:t), .ft'(S), (n+l)/2-s) is absolutely con
vergent for -a, <Re (s). 

Proposition 1.7. Assume that 1 satisfies the condition (1.2.7) . .lf Re(s) 
>(n+l)/2, then thefollowing identity holds: 

(1.2.9) Z*(s, -rt')=Z!(s, -rt')+µn,;{Z+Cf;(x, 1), .ft'/S), (n+l)/2-s) 

+ Ii" CnVn-r Z(f;(x, A), .ft',(S), n/2)}. 
r=• CrCn_,(s-(n+l-r)/2) 

Proposition 1. 7 can be proved quite in a similar manner as in the 
proof of Lemma 21, (iii) of [16]. For the convenience of the reader, we 
give a proof, which is based on Proposition 1.6. 

Proof of Proposition 1.7. First we notice that the integral Z(f;(x, 1), 
.ft',(S), n/2) is absolutely convergent by Proposition 1.6. Using Lemma 
1.3, we have, if Re (s)>(n+ 1)/2, 
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(1.2.10) Z*(s, T'kn>)=Z!(s, T'kn>) 

+µn,,J X{gyn+t)/Z-• I:; f;(p(g)x, J.)dng. 
G'Ji;+tSL,.(Z),z(g);;:.1 $E.51'n(S) 

We need the next lemma. For the proof, see [19] and also Lemma 17 in 
[16]. 

Lemma 1.8. -lfRe(s)>O and t>O, then 

Let dp be the right invariant measure on P~. + normalized by 

where p= (C1 0)(br 1 q ) with Pie G¼!+, p2 e Gr.;:,-;>, q e M(r, n-r; R), 
P2 n-r 

and dq= CT1:;;i:a,r,!:a,J:a,n-r dqtj" Let JJ<r<n-1. With the help of Lemma 
1.5, Lemma 18 in [16], and Lemma 1.8, we get, if Re (s)>(n+ 1)/2, 

J X(gr+ 1>12-• I:; f;(p(g)x, J.)d,,g 
G'Ji;+tSL,.(Z), z(g),:.1 .,,e.set> (8) 

=2-1J X(g)<n+1>12-, I:; f;(p(g)(~ 2), J.)d,.g 
G';,;+ISLn(Z) nPl;,+, z(g).:1 xe.sej!l(S) 

= C,, J X(g)<n+tJ/2-• I:; f;(p(Pt)X, J.)dp CrCn-r Pl;,+ISLn(Z)nPl'.,+ xe.se~"'(S) 
X (p1)x (po) .:I 

Thus we see from (1.2.10) that the expression (1.2.9) holds for Re (s) > 
(n+ 1)/2. We have completed the proof of Proposition 1.7. 

We notice that Z!(s, i-t>) is a holomorphic function of s in the 
whole complex plane and that Z+(f;(x, J.), .ft',,(S), (n+l)/2-s) is holo
morphic for Re (s)>-a,. Taking the identities (1.2.2), (1.2.9) into ac
count of, we see that ~;(s, i-1">) can be continued to a meromorphic 
function in the region Re (s)>-a •. Since J. can be taken sufficiently large, 
~;(s, i-t>) is extended to a meromorphic function in the whole complex 
plane. Moreover, we see that the poles of ~;(s, i-t>) are located only at 
s=(n+I-r)/2 (JJ::;;:r::;;:n) and that they are simple poles. 

The next Proposition 1.9 corresponds to Corollary to Lemma 21 in 
[16]. 
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Proposition 1.9. Let ). satisfy the condition (1.2.7). The following 
functional equation holds: 

Z(f;(x, ).), 2' ,JS), (n+ 1)/2-s) 
n-"<n+1i12pn<s-<n+1i12ic r (l+s-n- I) 

- n n ~*(s 'Z'(n)) 

- 2(2n-)"'r,.(l-(n+I)t2) " ' s 

(the left side is defined at least if -a.<Re(s)<I). 

Proof We start from the identity (1.2.9). If -a.<Re((s)<I, then 
we can get, similarly as in the proof of Proposition 1.7, 

~1 C,.v,._r Z(f*(x l) 2' (S) n/2) 
- µn,.! L.i C C ( ( 1 )/2) r ' ' r ' ' 

T=:ii T n-r S- n+ -r 

from which we obtain 

Z(s, dt>)=µ,.,,Z(f;(x, ).), 2',.(S), (n+I)/2-s). 

Thus, by (1.2.2), we get the functional equation in Proposition 1.9, 

Proposition 1.10. The zeta function .;;(s, -r1">) can be continued analy
tically to a meromorphic function in the whole complex plane which has 
simple poles only at s=(n+ 1-r)/2 (1J~r<n-I). The residue of the pole 
at s=(n+I-r)/2 is given by 

2<n-r)(n +r+l)/2 

C,._, Vn-r .;:((r+ l-n)/2, -rk'°l) (1J<r<n-I). 

Proof The former part of Proposition 1.10 has been verified. We 
have only to calculate the residues of the poles. We see easily from Pro
position 1.7, Proposition 1.9 that the residue of the pole at s=(n+I-r)/2 
(1J~r<n) is given by 

(2n-)"'12C,.v,._TrT(A-(r+ I +n)/2) ~*((r+ I-n)/2 -r<r>). 
21+r(r+1)flpnr/2rr(l-(r+I)/2) µ,.,. T ' s 

Thus, using the identity (1.2.2), we get the explicit residue at s=(n+ I-r)/2 
of .;;(s, -rt>) as in Proposition 1.10. 

For a primitive character X modp, Bk,z denotes the k-th generalized 
Bernoulli number given by 
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(1.2.11) 
p-1 

Bk,z=Pk-i I: X(a)B,.(a/p). 
a=l 

In the case of n=2, one can derive some information of L;(s, 'V/'H,p), 
Lf(s, 'V/'det) from Proposition 1.10. 

Theorem 1.11. Let p be an odd prime and let t be the unique non
trivial quadracic character mod p. The L-functions Lt(s, 'V/'H,p), Lf(s, 'Vl'det) 
are continued analytically to meromorphic functions in the whole complex 
plane which are holomorphic except at s=3/2, I. Then, Lf(s, 'V/'H,p) has the 
unique simple poles at s= I with residue -B 1,.,,/P, and Lt(s, 'V/'det) has simple 
poles at s=3/2, I. The residue of Lt(s, 'V/'det) at s=3/2 (resp. s= I) is given 
by t(-1)3- 1p- 2(p-l),r (resp. -t(-1)2- 1p- 1(p- l)). 

Proof The former part is clear from Corollary to Proposition 1.2 
and Proposition 1.10. Let µ e Z with (µ, p) = I. An elementary compu
tation shows that, in the case of n = I, 

(1.2.12) 

where L(s, t) is the Dirichlet L-function associated with ,fP. Since L(0, t) 
= -B 1,.,,, i:(O)= - 1/2. We have 

,;t{O,-r11>)=- ~ ,fP(µ)-r.,,B1,,i,+ ! O-p). 

We see immediately from Proposition 1.10 that the residue of .;;(s, -r12>) at 
the poles= I is given by .;t(O, -rt1>). It is known by [16, Theorem 2 or 
Corollary to Lemma 21] that .;f(s) has simple poles only at s=3/2, 1 with 
residues ,r/3, -1 respectively. Since .;t(s, -rt2l) is holomorphic at s= 3/2, 
so is L;(s, 'V/'H,p). Thus we get, by Corollary to Proposition 1.2, the asser
tion of Theorem 1.11. 

Chapter II. Evaluation of special values of £-functions 
(the cases of degree two) 

2.1. £-functions, and partial zeta functions 

Let af!IJ2 denote the boundary of the domain f!IJ2 in v~i, that is, af!IJ2 
is the set of positive semi-definite symmetric matrices of size two. Let 
{ Wu W2, ••• , WT} be an r-tuple of elements in f!IJ2 U af!IJ2 such that W1, w;, 
•.. , WT are linearly independent over R. Then, necessarily, r:::::: 3. For 
any r-tuple c;=(,; 1, ••• , ,;T) of positive numbers, we define a partial zeta 
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function ((s; {W 1, • •• , Wr}, g) as follows (see (2.2) of[14] and (1.4) of[9]): 

(2.1.1) [;(s; {W1, ••• , Wr}, g)=m,, .. tr-o <let (t1 (gi+mi)W 1 r·. 
Let C = C( W1, • • • , Wr) be a simplicial cone spanned by W1, • • • , Wr: 

We assume that the cone C(W 1, • • ·, Wr) is contained in IY2• Then it is 
easily shown that the zeta functions ((s; {W 1, • •• , Wr}, .;) is absolutely 
convergent for Re (s) > r/2. For any subset M of V~l, the zeta function 
((s; C, M), if it converges absolutely, is defined by 

(2.1.2) ((s; C,M)= I; det(T)-•. 
TEGnM 

It is well-known that, as a fundamental domain of fY n under the usual 
action of the group GLn(Z), one can take the so-called Minkowski domain 
f!/1,n of reduced matrices (see, for instance,§ 9 of [12]). In the case of n=2, 
the domain f!/1,2 has a simple form: 

f!/1,2= { G:2 ;: 2) J0<2Y12~Yi~Y2, O<Yi }· 

We fix three special elements V1, Vi, Vs in IY2 U cilY2 throughout Chapter 
II; put 

We set, for simplicity, 

(2.1.3) 
C123= C(V 1, Vi, Vs), Ci1= C(Vi, Vi) (1 ~i<j<3), 

C1= C(V 1) (j= 1, 2), 

which are simplicial cones contained in IY2• Then the domain f!/1,2 has the 
decomposition 

(2.1.4) (disjoint union). 

For each cone C in (2.1.3) and any Ye C, the order s*( Y) of the group 
{ U e GLz(Z) I uyi U = Y} takes the same value independent of Y belonging 
to C, and one can put 

e*(C)=e*(Y) (Ye C). 
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It is easily verified that 

For a real number x, we denote by <x) the unique real number which 
satisfies O<<x)~l and x-<x) e Z. Letp be an odd prime. 

The aim of this section is to represent the L-functions Lt(s, tu,p), 
Lt(s, Xdet) and the zeta function ,;t(s) as a finite linear combination of 
partial zeta functions (2.1.1 ). 

First we shall discuss the L-function Lt(s, tu,p). Let vlt(p) be the 
set given by (1.1.3). For each integerµ prime top, let L*(µ) be the set 
consisting of all elements Te Lt satisfying tu,iT)=,JJ,(µ). Then it im
mediately follows that 

L*(µ)={Te Lt IT=µ(~~ ~r) modp for some (a, r) E Jt(p)} 

and that L*(µl2) =L*(µ) for any integer/ prime to p. For each (a, .1) e 
vlt(p) and for each integerµ prime top, we put 

(2.1.6) <;a,r,µ=(<µ(a2 -2ar)/p), <2µar/p), <µ(r2 -a 2)/p)). 

Let Bu,µ be the set of all triples <;.rµ: Bu,µ={,;a,r,µ I (a, r) E vlt(p)}. Then, 
Jt(p)/{± 1} corresponds to Bu,µ bijectively by ± (a, r)-+,;.,r,µ( =,; -a, -r,µ). 
For any integers i,j with 1 ~i<j~3, we set 

BJJ;tl={,;=(,;1, <;2, <;3) E Bu,µl,;k=l}, 

where k is the unique integer of 1, 2, 3 satisfying {i,j, k}={l, 2, 3}. We 
notice that 

(2.1.7) {
B.l:};~ ={,;.,r,µ I (a, r) E Jl(p), a 2=r 2 mod p}, 

BJJ;!) ={,;a,r,µ I (a, r) E Jt(p), ar=O modp}, 

B;;;~ ={,;.,r,µ I (a, r) E Jt(p), a2=2ar mod p}. 

For each cone C of the form (2.1.3), the zeta function C(s; C, L*(µ)) given 
by (2.1.2) is absolutely convergent at least for Re (s) > 3/2. 

Proposition 2.1. The following expressions for the zeta functions 
~(s; C, L*(µ)) hold: 

~(s; C123, L*(µ))=P- 2' I; C(s; {Vi, Vi, Va},,;), 
!;ESH,µ 

~(s; Cij• L*(µ))=P- 2' I; _ ((s; {Vi> Vj}, (,;i, ,;j)) 
(h,!2,ea) es};:~' 
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(;(s; Ci, L*(µ))=0, 

r(s· c L*( ))-{o ···if p>3, 
.,, ' 2' µ - P- 28((s;{Vi},<µfp)) .. ,ifp=3. 

Proof Take Te C123 n L *(µ) and write T = z=; =1 m J VJ with all mi e 
N. If we take a pair (a, r) E .,//(p) such that 

(2.1.8) (a2 ar) T=-µ ar 72 mod p, 

then, m /s satisfy the congruences: 

{m1=.µ(a 2 -2ar) modp, 
m3=.µ(r 2 -a 2) modp. 

Therefore, there exists a triple / = (/1, / 2 , / 3), 11 being nonnegative integers, 
such that (m1, m2, m3)=p(f;a,r,µ+l). Each TE C123 n L*(µ) determines a 
triple/ uniquely and also (a, r) E .,//(p) uniquely up to(± !)-multiplication. 
Thus the first identity of Proposition 2.1 follows. Next, for instance, 
let Te C12 n L*(µ) and write T= z=;= 1 mi V1 (mJ e N). A pair (a, r) can 
be so taken as in (2.1.8). Then the congruences m1 =-µ(a 2 - 2ar) mod p, m2 

=-2µar mod p follow, and necessarily, the relation a 2 =-r2 mod p has to 
hold. Therefore, the identity for ((s; Cw L*(µ)) immediately follows. 
Other identities left are quite similarly verified. So the proof is omitted. 

q.e.d. 

Let K be a non-quadratic residue mod p as in Chapter I. 

Proposition 2.2. Let ,Jr be the unique non-trivial quadratic character 
mod p. Then we have 

L;(s, 'Y'H,p)= z=t(µ){((s; C123, L*(µ)) + 21 r;_ ((s; Ci1, L*(µ)) 
µ i<J 

+ ! op,3((s; C2, L*(µ) }, 

where µ is taken over I and K, and the summation z=i<J indicates that i, j 
run over all integers with I ~i<j~3. Moreover, oP,3 =0 if p=/=3, and op,s 
= 1 if p=3. 

Proof Only in this proof, we introduce the L-function M;(s, '\fH,p) 
which is quite similar to L;(s, 'Y'H,p). We set 

M;(s, 'Y'H,p)= 'f'H,p(T)s*(T)-l det (T)-s 
TELf, +IGL2(Z) 
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where Tis taken over GLlZ)-equivalence classes of positive definite half
integral symmetric matrices of size two, and s*(T) is the order of the unit 
group {Ue GLlZJI UTtU=T} of T. Then an elementary observation 
shows that L;(s, "f'H,p)=2M;(s, "f'H,p). In view of the decomposition 
(2.1.4) of &?2, we may take a disjoint union U O ( C n L;), C varying all 
simplicial cones in (2.1.3), as a complete set of GLlZ)-equivalence classes 
of all elements in Lt,+. Thus we get, with the help of the decomposition 
L'ff =L*(l) UL*(K) (disjoint union), 

L;(s, "f'H,p)=2 I; s*(C)- 1 I; ,fr(µ)((s; C, L*(µ)), 
a µ 

which, together with (2.1.5) and Proposition 2.1, completes the proof of 
Proposition 2.2. 

Let X be a primitive character mod p. Secondly, we treat the L
function L;(s, Xdet). For each integer o prime to p, we set 

M*(o)={T e L; I <let (T)=o mod p}. 

For each T= G:
2 
!:2) e L;, a triple ~r is defined by 

which depends only on T mod p. Let B. be the set of all triples ~ r, T 
varying all elements of L;/pL; with det(T)=omodp: B.={~rlTe 
L; modpL;, <let (T)=o modp}. For integers i,j (l:::=::i<I~3), we set 

/:?(i,JJ_{c-(c c c) E i=i' I c -1} 
L..JQ - C:,- ':i·1, ':i2, ':i3 -'O ':ik- , 

k being the the unique integer of 1, 2, 3 with {i,j, k}={l, 2, 3}. 
For any cone C of the form (2.1.3), the zeta function{; (s; C, M*(o)), 

which is absolutely convergent for Re (s)> 3/2, has the following expres
sion. 

Proposition 2.3. Let o be any integer prime top. Then, 

[;(s; C123, M*(o))=P- 28 L [;(s; {V1, v;, Vs},~), 
!iEBii 

[;(s; cij, M*(o))=P- 28 L .. C(s; {Vi, Vj}, (~i, ~j)) 
(~1,-;"2,,;'3) E.E~1,,JJ 

(I:=:=::i<j~3). 

For the cone Ci U= 1, 2), we have 

L X(o){;(s; C1, M*(o))= L X(ti)[;(s; {V1}, <tJp)), 
,,;!;Omodp t1,;!;0modp 
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L X(o)(:(s; C2, M*(o))= L X(3ti2K(s; {V2}, <2t,2/P)) 
o$Omodp t12$0modp 

(note that, if p=3, then, the right side of the last equality coincides identically 
with zero). 

Proposition 2.4. Let X be a primitive character mod p. Then, 

Lt(s, Xdet)= L X(oJ{{;;(s: C,23, M*(o))+ __!__ L {;;(s; cij, M*(o)) 
o$0rood p 2 i<j 

+1-r;;(s; C1, M*(o))+l_ r;;(s; C2, M*(o))}. 
4 6 

We omit the proofs of Proposition 2.3 and Proposition 2.4, which are 
quite similar to those of Proposition 2.1 and Proposition 2.2. 

Finally, we obtain Proposition 2.5, which asserts that the zeta func
tion ;t(s) can be represented as a finite linear combination of partial zeta 
functions. 

Proposition 2.5. We have 

1 ;t(s)={;;(s; {V1, Vi, Vi}, (1, 1, 1))+- I: {;;(s; {Vi, V1}, (I, 1)) 
2 i<J 

1 1 +-((s; {V1}, l)+-((s; {Vi}, 1). 
4 6 

The proof of Proposition 2.5 is omitted as well. 

2.2. Integral representations of partial zeta functions I 

The aim of subsequent two sections is to obtain convenient expres
sions of partial zeta functions as integrals over contour paths, and then to 
evaluate special values of them at non-positive integers. 

Let {;;(s; { W1, • • ·, Wr }, ;) be a partial zeta function as is defined in 
(2.1.1). We assume that the cone C(W 1, •• ·, Wr) is contained in f!J12• The 
following formula is well-known (see for instance [12] and also Lemma 1 
of[14]): 

(2.2.1) det(T)-·=~ 1-f det(Y)•e-trCTYJdv(Y) (Tef!J12,Re(s)>l/2), 
I'z(s) "'• 

where we put 

I'z(s)=rc 112I'(s)I'(s-1/2) and dv(Y)=det{Y)- 312 CT dYiJ· 
1.;;;;;i;:;;;;j;;;:2 
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We set, forte C, x e R, 

et"' 
<jJ(t; x)=--, 

et-I 

121 

which is the generating function of Bernoulli polynomials Blx). Namely, 
the Laurent expansion at t=O of <jJ(t; x) is given by 

(2.2.2) <jJ(t; x)= f; Bix) tk-1 
k=D k! 

Cl ti <21r). 

By a usual argument which uses the formula (2.2.1), we get an expression 
of ,(s; {W1, • • ·, Wr}, ,;) for Re(s)>r/2 by the integral taken over gJ 2 : 

( cos 0 sin0) 
We set, for 0 e R, k 8= -sin 0 cos0 . 

Following Satake [14, 2.2], we make a change of variables Y-+(t, u, 0) 

with Y=tk,(~ ?)tk, (O<t, O<u~l, O<0<1r). We thus obtain, using 

the relation dv(Y)=t- 1u- 312(1-u)dtdud0, 

(2.2.3) ,(s;{W1, · · ·, Wr},.;)=- 1 -
I'z(s) 

X f dt J:du f d0-t 2•- 1u•- 3l 2(I-u)(J)((t, u, 0); {W 1, • • ·, Wr}, ~), 

where we put 

r 
(J)((t, u, 0), {W1, • • ·, Wr}, ~)= CT <jJ(t'J.((u, 0), W1); 1-.; 1) 

j=l 

and 

'J.((u, 0), W)=tr ( Wk 8 (~ ?) tk,) 

The following condition (2.2.4) on vectors W1 ; 

(2.2.4) all W1 (I <j<r) are contained in gJ 2, 

being imposed, then, the integral (2.2.3) has been studied in a full generality 
by Satake [14] and by Kurihra [9] in a special but significant case. 
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However, for our aim to evaluate special values of L-functions discussed 
in 2.1, it is indispensable to get rid of the condition (2.2.4). In view of 
Proposition 2.1, Proposition 2.3, and Proposition 2.5, we have only to 
consider the cases in which, with respect to an r-tuple { W1, ••• , W, }, the 
vectors Wi, .. ·, W,_ 1 are all in 9 2, and W, coincides with the special 
vector Va in 092. 

Now we set 

1 
,JF(t; x)=<ji(t; x)--, 

t 

which is a holomorphic function oft in the region It I <2ir. Let { W1, • • ·, 

W,_i, Va}(r=2or3)be an r-tuple of vectors in fYJ2 Uo9 2 such that W1, 

· · ·, W,_ 1 are all in 9 2• We set, for an r-tuple .;=(.; 1, • • ·,.;,)of positive 
numbers, 

r-1 

=TI <ji(tl((u,0), W1); 1-.;J)f(tl((u,0), V3); 1-.; 3), 

j-1 

and, for an (r-1)-tuple .;'=(.; 1, • • ·, .;,_i), 

([Js((t, u, 0); {W1, • • ·, W,-1, Va}, n 
1 r-1 

=~~~ TI <ji(tl((u, 0), Wj); 1-.;j). 
l((u, 0), V3) H 

Moreover, we set 

(2.2.5) (p(s;{W1, ···, W,-1, V3},.;) 

=~1-s= dtfl du fnd0. t2s-lus-3/2(1-u) 
I'z(s) 0 0 0 

x!J)p((t, u, 0); {W1, ... , w,-1, v3}, .;), 

(2.2.6) (s(s; {W1, · · ·, W,-1, V3}, .;') 

=-1-s= dtfl dufn d0- t2•-lus-a/2(1-u) 
I'z(s) o o o 

x!J)s((t, u,0); {Wi, · · ·, W,_ 1, Va},.;') 

(the letter P (resp. S) is used to intend that the function given in (2.2.5) 
(resp. in (2.2.6)) is a principal (resp. singular) part of ((s; { W1, • • ·, W,_1, 

Va}, rn. 
The integrals in (2.2.5), (2.2.6) are absolutely convergent at least for Re (s) 
> 3/2. Obviously, 
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For our later use, we prepare some symbols. For a positive number e, let 
I,( oo) (resp. /,(1)) be the contour path consisting of the oriented half line 
( + oo, e) (resp. (1, e)), a counterclockwise circle of radius e around the 
origin, and the oriented half line (e, + oo) (resp. (e, 1)). We would like to 
modify the integral in (2.2.3) directly into the integral taken over contour 
paths/,( oo) and /,(1) (for a small e) with respect to t and u, respectively. 
However, the function <ft(t).((u, 0), Vs); 1-~s) has serious singularities as 
a function of t and u on the paths I, ( oo ), I, ( 1 ), because of the form of 
).((u, 0), V3)=u sin2 0+cos 2 0, and therefore such a modification cannot 
be done easily. To avoid the difficulties derived from such singularities, 
we divide zeta function l;(s; W1, • • ·, W,_1, Vs},~) into two parts as above. 
In the rest of this section, we shall mainly discuss the function 
{;p(s: {W1, - • ·, W,_ 1, Vs}, ~) and its expression by an integral over contour 
paths. The singular part l;s(s; { W1, • • • , W, _ 1, V3}, ~) will be dealed with 
in the next section. 

For a positive number o, we denote by Da( oo) and Da(l) the regions 
given as follows: 

Dioo)={z e Cl\z\<o} U{z e C\Re(z)>O and I lm(z)\ <a}, 
Da(l)=Da(oo)n {z e C\\z\S l}. 

If Wis in fl/\, we can take a positive constant a, b satisfying 

(2.2.7) 

We may write ).((u, 0), W)=a 1u+a 2 with a<ai, a2 <b. It then follows 
that 

(2.2.8) \).((u, 0), W) I <b(l +\ul), 

Re ().((u, 0), W))>a-bo if Re (u)>-o (a>O). 

We need some analytic properties of the functions <ft(t).((u, 0), W); 1-~) 
and ,fr(t).((u, 0), Vs); 1-~) (~>O). 

Lemma 2.6. Suppose that We fJ12 satisfies the condition (2.2.7). Let 
~>O and O<a<a/b. 

(i) lf\t\<1r/2b, and u e Dll), then, t<ft(t).((u, 0), W); 1-.;), which is 
a holomorphic function of (t, u) for each 0 in that region of V, u), has the 
power series expansion with respect to t: 
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(ii) Jft>O andO~u~I, then, 

te-t,a 
t<jJ(tJ.((u, 0), W); 1-~)<~~ 

I-e-ta 

Proof If It\ <n-/2b, u E D.(1), then, we get, by (2.2.8), 

ltJ.((u,0), W)\<n-(l+lul)/2<2n-. 

Therefore, the Laurent expansion (2.2.2) implies the assertion (i). The 
assertion (ii) is immediately derived from the inequality ).( ( u, 0), W) > a 
(O~u<I). 

Lemma 2.7. Let ~>O and O<a<I. Then t(tJ.((u, 0), V3); 1-~) is 
a holomorphic function of t, u for each 0 in the region {(t, u) 11 t I <2n-, u E 

D.(I)}, and has a Taylor expansion with respect to t: 

Proof Recalling that J.((u, 0), V3) = u sin2 0+cos 2 0, and moreover 
that I t).((u, 0), V3) I <2n- if I t1<2n-, u E Da(l), we immediately get the as
sertion of Lemma 2. 7. 

The function t(t; 1- ~) has a preferable property which will be used 
in the proof of Proposition 2.9. 

Lemma 2.8. Let ~>O. There exist positive constants Mk (k= I, 2, 
.. ·) independent oft such that, if O < t < + oo, 

where t<kl(t; I-~) denotes the k-th derivative of ,[F(t; 1-~) as a function 
oft. 

We omit the proof of Lemma 2.8, which is an easy exercise of differ
ential calculus. 

It is easy to see from (2.2.8) and Lemma 2.6 that, if o is taken 
sufficiently small, then, t<j>UJ.((u, 0), W); 1-~) (WE f!J12, ~> 0) is holo
morphic as a function oft, u for each 0 ER in the region D.(oo)XD.(1). 
Moreover, taking (2.2.8), Lemma 2.6, and Lemma 2.7 into account, we 
see without difficulty that the integral 
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indicates a holomorphic function oft, u in the region Da(l)XDll) for a 
sufficiently small o. We notice here that the range oft is the region Da(l) 
(not Da(oo)). 

To define the function t' = e• 1og t, we take the branch of log t with 
O<arg t<21r. 

Proposition 2.9. The function (p(s; {Wi, ·. ·, W,_ 1, Vs},~) is analyt
ically continued to a meromorphic function in the whole complex plane which 
is holomorphic at s= I-m (m= 1, 2, .. · ). Moreover, the special value at 
s = 1- m is given by 

(p(l-m; {W1, • • ·, W,-1, Va},~) 

= C(m)f dtf dufr d0t1-2mu-m-1/2(I -u) 
r, r,c~J o 

x~A(t, u, 0); {Wi, .. ·, W,-1, Vs},~), 

where C(m)=(2m-I)!/2 2m+ 21r2i and r. denotes a circle of radius e around 
the origin oriented counterclockwise, e being taken sufficiently small. 

Proof We set, only in the proof of this proposition, 

f(t, u, 0)=<Pp((t, u, 0); {W1, · · ·, W,-1, Vs},~). 

We divide the integral in (2.2. 5) into two parts by the range of the variable 
t. We set 

where 

Ii(s)= S: dt S: du t d0 · t 2•- 1u•-s12(I-u)f(t, u, 0), 

Jz(s)= r dt S:du t d0-t 2•- 1u•- 312(I-u)f(t, u, 0). 

It is easy to see from the remark just before the statement of Proposition 
2.9 that J1(s) has the following expression by an integral over contour paths: 

(2.2.9) I1(s)=-------- dt du d0 1 J J Jr 
(e[2s]- l)(e[s-3/2]-1) r,c1J r,c1J o 

X t2•-Ius-s12(I-u)f(t, u, 0), 

where e is taken sufficiently small. Since the integral in (2.2.9) indicates 
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an entire function of s, the function li(s) can be continued analytically to 
a meromorphic function in the whole complex plane. Thus we easily 
obtain 

(2.2.10) lim /i{s) =C(m)f dtf dufnd(},1 1- 2mu-m-112(1-u)f(t, u, (}) 
s-1-m I'z{s) I's I,(1) 0 

(m=l,2, ···). 

On the one hand, we see easily from Lemma 2.8 and so on that the func
tion/(t, u, O) is a C 00 -function of (t, u, 0) in the region (0, +=)X [0, l]X 
[O, tr], and especially that the partial derivatives (akf!auk)(t, u, 0) (k=O, 1, 
2, .. ) are bounded in the region [1, + oo] X [O, 1] X [O, tr] of {t, u, O). We 
set, for Re (s)>O, 

F(s; (t, O))= J: u•- 1/(t, u, O)du. 

Then we have 

(2.2.11) Ih)= r dt Id(}, t 2•- 1 {F(s-1/2; (t, 0))-F(s+l/2; (t, O))}. 

Using the integration by parts recurrently, we obtain 

(2.2.12) F(s; (t, O))=Y! (- l)J . aJJ (t, 1, O) 
J-os(s+l)···(s+1) au1 

+ (-l)m ft us+m-1 amt (t, u, O)du 
. s(s+l)···(s+m-1) 0 aum 

(Re(s)>-m). 

Since any me N can be taken, it follows from (2.2.11), (2.2.12) that Iz(s) 
can be continued to an entire function of s. Thus we get 

(2.2.13) [ fz(s)] _ 0 
I'z(s) s-1-m - • 

The analytic continuation of {;p(s; { W1, • • • , Wr -1> V3}, ~) immediately 
follows from those of / 1(s), Ih). The last assertion of Proposition 2.9 is 
derived from (2.2.10), (2.2.13). q.e.d. 

The following proposition which deals with partial zeta functions 
whose edge vectors are all in [lJ12 is only a small part of the results obtained 
by Satake in [14]. 
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Proposition 2.10. Let all vectors W1 (1 ~j<r), which are linearly 
independent over R, be in f!l\. Then the zeta function t;;(s; { W1, ••• , W, }, ~) 
has the analytic continuation to a meromorphic function of s in the whole 
complex plane, which is holomorphic at s = 1- m (m= 1, 2, ... ). The 
special value at s = 1- m is then given by 

t;;(l-m; {W1, • • ·, W,}, ~)=C(m)f dtf duf 0 d{)-t 1- 2mu-m-112(I-u) 
I', I,(l) 0 

X W{(t, u, 8); {W1, • • ·, W,}, ~)-

Proof For the completeness, we give a proof. Lemma 2.6 implies 
that the integral 

indicates a holomorphic function of (t, u) in some region Do( oo) X D.(l). 
Thus one obtains, for a sufficiently small s, 

t;;(s; {W1, ••• , W,}, ~) = 1 f dtf duf" d{) 
I'ls)(e[2s]- l)(e[s-3/2]- l) I,Coo) I,<1) o 

X t2s-lus-3/2(1-u)([J((t, U, {)); {W1, ... ' W,}, ~). 

Since the integral in the right side of the equality is absolutely convergent, 
this identity gives the analytic continuation of t;;(s; { W1, ••• , W, }, ~) to a 
meromorphic function of s in the whole complex plane. Substituting s= 
1-m, we get the identity in Proposition 2.10. 

In view of Proposition 2.1, Proposition 2.3, and Proposition 2.5, we 
need only partial zeta functions of the form 

t;;(s; {V1, V2, Vi}, (~1, ~2, ~s)), t;;(s; {Vi, V1}, (~i, ~1)) (1 <i<j<3) 

t;;(s; {V1}, ~) U= l, 2, and ~>O). 

Now we discuss the evaluation of /;;p(l-m; {V1, V2, V3}, (~ 1, ~ 2, ~3)) 

(m EN) and so on as a continuation of Proposition 2.9, Proposition 2.10. 
For each triple (k1, k2 , k 3) of integers such that k1, k2>- l, k3 >0, and 
k1 +k 2 +k 3 =2(m-1), we define a number A<k,,k.,ks) by putting 

(2.2.14) A<k,,k.,ks) =f duf" de-u-m- 112(1-u) (I J.((u, 8), vy1, 
1,(1) 0 j-1 

where the integral in the right side is independent of the choice of a small 
positive number s. 
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Remark. The numbers Ack,,k,,ksl essentially coincide with N(l-m; 
k 1 + 1, k2 + 1, k3 + 1; v1, v2, v3) in Kurihara [9], though his definition is dif
ferent from ours. 

Proposition 2.11. Let e= (e1, e2, e3) be a triple of positive numbers, 
and m E N. Then we have 

where k 1, k2, k 3 run over all integers satisfying the conditions k,, k2?; -1, 
k 3 ?;0, and k, +k 2 +k 3 =2(m-1). 

Proof We take o sufficiently small so that Lemma 2.6 for V1 

(j= 1, 2) and Lemma 2.7 hold. Then we get the following power series 
expansion, if\t\<o, ue D.(l), 

(f) ((tu 0)· {V V V} e)="' 131 {Bk;+iCl-e;) J.((u 0) V)k;}-tk,+kz+ks 
p ' ' ' ,, 2, 3 ' ',, L.J . (k 1)' ' ' j ' 

k; J~l j+ . 

where k 1, k 2, k3 run over all integers satisfying k 1, k 2 >--1 and k3 >-0. 
Applying Proposition 2.9, we obtain the expression for (p(l-m; {V,, V2, 

V3}, e) in Proposition 2.11. 

Quite in the same manner as in the proof of Proposition 2.11, one 
can evaluate special values at s = 1- m of the functions (p(s; { VJ, V3}, 

(er es)) U= 1, 2), ((s; {V1, Vi}, (e1, e2)) and ((s; {Vj}, e) U= I, 2, e>o). So 
we omit the proof of the following proposition. 

Proposition 2.12. Let e, e JU= 1, 2, 3) be positive numbers and me 
N. Then the following expressions hold. 

( a) ( (1 m · {V V} (e e ))-2niC(m) .._,, Bk,+1(e1)Bk,+i(e3) A 
P - , 1, 3, 1, 3 - L.J (k l)l(k l)I (k1,0,ks)' 

k1,k3 l + . 3+ . 

where k1, k3 run over all integers with k 1?; -1, k3?::.0, k1 +k 3=2(m- l). 

( b) ,,. (1-m· {V V} (e e))=2iriC(m) .._,, Bk,+i<e2)Bks+le3) A 
'-,,p , 2, 3, 'i2, ',3 L.J (k l)l(k l)I (O,k2,k3), kz, ka 2 + . 3 + . 

where k 2, k 3 run over all integers with k2?;- I, k3?::.0, k2 +k 3 =2(m-l). 

where ki, k2 run over all integers with k 1, k2>--1, k 1 +k 2=2(m- l). 
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( d) C(l-m; {Vi},~)= -21dC(m) (~;;;:~]! Ac2m-2,o,o)• 

( e) C(l-m; {Vi},~)= -2rriC(m) ~;;;:(;j! Aco,2m-2,o). 

To complete the evaluation of special values of zeta functions above, 
we have to study some properties of the numbers Ack,,k.,k,>· 

Proposition 2.13. Let k1, k2, k8 be integers with ki, k2?:::. - I, k3>0, 
and k 1 +k 2+k 8 =2(m-1) (me N). If k 1, k2, k 3 satisfy one of the following 
three conditions, then, (1/rr)Ack,,k.,k,> is a rational number. 

( i) ki, k2, k3 are non-negative integers, 
(ii) k 1 = -1 and k2 is a positive odd integer, 
(iii) k2 = - 1 and k1, k.1 are non-negative integers. 

Proof A straightforward computation shows that 

(2.2_ 15) {J.((u, 0), V1)= I ~u; J.((u,/), V2)= 1 +u+ (1-u) sin 0 cos 0, 
J.((u, 0), V.)=u sm 0+cos O. 

Changing the variable by cot 0=x in (2.2.14), we obtain 

(2.2.16) 

where e is a sufficiently small number and 

(2.2.17) Pk,,k.,k.(u) 

=-1 (1 +u)k'f {1 +u+(l-u)-x-}k'(x2+u)k" ~-
2rr R l+x 2 l+x 2 l+x 2 

The computation of the integral in (2.2.17) easily shows that, if k1, k2, k3 

satisfy either of the conditions (i), (ii), then, Pk,,k.,k.(u) is a polynomial of 
u with rational coefficients. On the one hand, 

(2.2.18) f uk-tf2du= - 4 
I,(l) 2k+l 

for any k e z. 

Therefore, according to (2.2.16), the value (1/2rr)Ack,.k,,ksl is a rational 
number, if each triple (k1, k2, k3) satisfies either of the conditions (i), (ii). 

Suppose that k 2= -1 and ki, k3>0. Set 
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and 

w(u)= -(1-u)+i-JQ(u) 
2(1 +u) 

(O~u<l). 

Then, w(u), w(u) (the complex conjugate of w(u)) are the distinct roots of 
the quadratic equation: (1 +u)x 2 +(l-u)x+ 1 +u=O. We write simply 
w for w(u). Applying the residue theorem in computing the integral in 
(2.2.17), we obtain 

. (1 +u)k' ( 1-u )ks (2.2.19) Pk,,-,,k,(u)=l-~--- 1--- 2 +Rki,k,(u), 
(1 +u)(w-w) 1 +w 

where we put 

Since the residue at x = i of the function 

{(l+u)x 2 +(l-u)x+l+u}- 1( l-u)z 
l+x 2 

(/ E Z, l>O), 

is a polynomial of u with coefficients in the Gaussian field Q(i), so is 
Rk,,k,(u). Therefore, the real part of Rki,k,(u) is a polynomial of u with 
rational coefficients. An elementary calculation shows that 

(1 +u)(w-w)=i-V Q(u), 2 1-u l+w =---w, ww=l, and 
l+u 

1 1-u _ l+u-i,JQ(u) 
l+w 2 2 · 

Then, we get, by (2.2.19), 

The function u-m+'(I +u) 2m- 2 - 2jQ(u)j (O~j-:5:_m-1) is invariant under the 
transformation U-+1/u, and consequently, is a polynomial of (u+ 1/u) with 
degree m-1. Thus one can write 

m-1 

(2.2.21) u-m+l(l +u) 2m- 2 - 2j Q(u)j = I; bj,m,.(uk +u-k) (O~j~m-1) 
k-0 

with some b1,m,k E Q. We set, for a sufficiently small c:>O, 
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g(s)=f u•-112Q(u)-112au, 
I,(1) 

where the branch of Q(u)111 is so taken that Q(u)112>0, if u e R. The 
integral in the right side is independent of the choice of e and converges 
for arbitrary s e C. Accordingly, g(s) stands for an entire function of s. 
We define a sequence {an} by putting 

an=g(n)-g(-n) (n=O, 1, 2, · .. ). 

Lemma 2.14. The sequence {an} satisfies the recursive formula 

3(n-1/2)an+ lO(n- l)an-i +3(n-3/2)an_ 2= -16 

with a 0=0, a 1 = -16/3. Consequently, all an are rational numbers. 

Proof We begin with, if Re (s)> -1/2. 

3g(s+ 1)+5g(s) =f u•- 112(3u+5)Q(u)- 112du 
I 1 (1) 

=(e[s-1/2)-1) u•- 112-Q(u) 112du. fl d 

o du 

The integration by parts then implies that, if Re (s)> 1/2, 

3g(s+ 1)+5g(s)= -4(1 +e[s])-(s-1/2)f u•- 3l2Q(u)112du. 
I,(l) 

Writing Q(u)112= Q(u)- Q(u)- 112, we get the following functional equation: 

(2.2.22) 3(s+l/2)g(s+ 1)+ 10sg(s)+3(s-1/2)g(s-1)= -4(1 +e[s]), 

which is valid for arbitrary s e C by the analytic continuation. Putting 
s=O, one gets a 1=g(l)-g(-1)= -16/3. Moreover, ifwe substitutes= 
m-1 and S= 1-m, respectively in (2.2.22), and add the both equalities 
so obtained, then we have the recursive formula in Lemma 2.14. 

We continue the proof of Proposition 2.13. We see from (2.2.17) 
that Pki,-t,k,(u) is real valued, if O<u<l, and hence from (2.2.20) that 
Pk1o-i,k,(u) is a polynomial of u with rational coefficients plus a Q-linear 
sum of the functions (1 +u) 2m-1- 21Q(u)1- 112 (O<j<m-1). Moreover, we 
find from (2.2.21) that 

f u-m-1/2(1-u)(l +u)2m-1-2JQ(u)1-1/2du 
I,(1) 

m-1 
= -2bj,m,oa1 + l: bj,m,iak-1-ak+!) (O<j~m-l), 

k=l 



132 T. Arakawa 

which is a rational number owing to Lemma 2.14. Thus, taking (2.2.16), 
(2.2.18) into account of, we can conclude that (1/2ir)Ack,,-,,k.i(k1, k3>0) is 
a rational number. q.e.d. 

Remark For triples (k1, k2 , k3) not satisfying the conditions of Pro
position 2.13, it will be hard to compute Ack,,k.,k,l in an elementary 
manner. However we do not need the explicit values of them (see 2.4, 2.5 
of this paper). 

To evaluate the special values at s=O of L-functions, we need the 
following explicit values of Ack,,k.,k,)· 

Proposition 2.15. We have 

Proof The first two identities are straightforward. Then, the 
identity (2.2.20) implies that P1, _1,0(u)=2P 0, _ 1,i(u)=(l +u)Q(u)- 112. There
fore, we get 

A<1.-1,o) =2A<o,-i,i) =2ir(g(- l)-g(l))= -2ira 1 = 32ir/3. 

2.3. Integral representations of partial zeta functions II 

We keep the notation used in 2.2. We shall study the analytic con
tinuations of the functions Cs(s, {V 1, fl;, V3}, (g" g2)), (s(s: {V1, V3}, g) 
(j= 1, 2), and determine the first and, if possible, the second term of the 
Laurent expansions at s = l -m (m e N) of them. 

For simplicity we write J1 for J((u, 0), V1) U= 1, 2, 3), if there is no 
fear of confusion. We see easily from (2.2.6) that, for positive numbers 
g1, g2, g, and for Re (s) > 3/2, 

(2.3.1) 

1 
Cs(s; {V 1, V2, V3}, (g1, g2))= I'z(s)(e[2s]-l) l(s; (gi, $2)) 

Cs(s; {V 1, V3}, $)= I'z(s)(et 2s]- l) Iis; g) U= 1, 2), 

where we put 

l(s; ($,, g2)) =f dtf' dufr d{}- t2s-2us-s12(l -u) _!__ 11 <p(t A1; l -g 1)' 
J,(oo) 0 0 Ag J=I 

lis; g)=f dtf 1 dufr d(). t 2'- 2u'- 312(1-u) _!__ ef>(tJ1; 1-g) (j= 1, 2), 
J,(oo) 0 0 /43 
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e being taken sufficiently small. The absolutely convergence for Re (s)> 
3/2 of the integrals above is easily verified by Lemma 2.6. We shall first 
integrate with respect to 0. Changing the variable by cot O=x (- oo < 
x<+oo), we get, by (2.2.15), 

(2.3.2) 

As is easily seen, for each positive number f3 < 1, there exists a small 
positive number o=o(/3) such that p(t(l+z); 1-g) (g>O), as a function 
oft, z, is holomorphic in the region {(t, z) e C 2 J {t e Da( oo ), t=";=O, JzJ< /3}. 
Then, p(t(l+z); 1-g), as a function of z, has the power series expansion 

(2.3.3) p(t(l +z); 1-e)= f; p(kl(t; 1-e)tk .zk 
k=O kl 

(t e Dioo), t=";=O, izi<f3). 

It follows from (2.3.3) that, if t e Da(oo), t=";=O, and O<u~l, 

(2.3.4) p(tJ.2; 1-e)=i: p<kl(t(l+u); 1-g)tk(l-u)k . (-x-)k, 
k=O kl l+X 2 

where o is taken sufficiently small. We then define a function .?lt\(u) for 
each non-negative integer k: 

(2.3.5) .Yl\(u)=(l-u)kf - 1-(-x-)k dx 
R x 2 +u l+x 2 

(u>O). 

Obviously, we have .n"iu)=O for any odd k. Applying the residue 
theorem in calculating the integral in (2.3.5), one can divide .n"2iu) 
(k e z, k>O) into two parts as follows: 

(2.3.6) 

where 

An elementary computation shows that do(u) = 0, d 2(u) = (1 + u)/2. 
Moreover, we observe that each .sit2t(u) is a polynomial of u with rational 
coefficients. We set, for g>O, 

F(t u· 1-e)=~ p<2kl(t(l+u); 1-e) .t2k(-u)k 
I ' ' ~ f.:'o (2k)I ' 
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F.(t u· 1-c)=~ ef/2kl(t(l+u); l-~) .t2k.91 (u). 
2 ' ' 'i f:'o (2k) ! 2k 

We shall discuss the convergence and the regularity of Fj (t, u; 1-~) 
(j= 1, 2) as functions oft, u. For that purpose, some preparations will 
be needed. We put, for a e R, andj e N, 

<fa/t; a) 

Lemma 2.16. Let n e Nanda< 1. If we write, in a unique way, 

n 

(2.3.7) <fa<nl(t; a)=E Aj,n(a)<faj+i(t; a) with some J.J,n(a) ER, 
j=0 

then, we have (- 1r2j,n(a)>0 for eachj (O~j~n). 

Proof Differentiating the both sides of (2.3.7) with respect to t, and 
using the identity <fa;Jt; a)=(a-j-l)<faj+h; a)-(j+l)<faj+it; a), we get 
recursive relations: 

(2.3.8) (
Ao,n+iCa)=(a- l)J.0,n(a), 

J.j,n+la)=~- j-,l)J.;,nCa)-j).j-1,n(a) 

An+l,n+i(a)- -(n, l)An,nCa). 

(I <j~n), 

In the case of n= I, we have, trivially, (- l)J.J,i(a)>O (j=O, 1). Thus the 
assertion follows by induction on n from (2.3.8). 

Taking the k-th derivative of (2.2.2), one gets, if It\ <2rr, 

(2.3.9) 

For x e R, [x] denotes the largest integer less than or equal to x. 

Lemma 2.17. Let O<p<I and a ER. JfjtJ~rr/2, Jwj~p, then, 

(2.3.10) t £ <p<Zkl(t; a)t2k · Wk =-1 ~+ f; Bn(a) (f; (n- I)wk)tn, 
k=o (2k)! 1-w n=I n! k=0 2k 

where we put Kn= [(n-1 )/2], and the infinite series of both sides are 
absolutely convergent. Moreover, the function defined by the infinite series 
(2.3.10) indicates a holomorphic function oft, w in the region {(t, w)j i tj~ 
rr/2, jwj~p}. 
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Proof By virtue of the fact that t</)(t; a)= I:;;= 0 (B/(,(a)/k!)tk is abso
lutely convergent for It I <2,r, there exists a positive constant C1 independent 
of k which satisfies 

(k= 1, 2, · · · ). 

Using (2.3.9), we get 

f I </Jc2kJ(t;a)t2k+1 ,wkj~f lwlk+c1f: f (n-l)lwlk(~)n 
k=0 (2k) ! k=0 k=0 n=2k+1 2k 3,r 

< 1 + cj~; (i= (n - l)fik) (M)n 
- 1-1 wl n=l /(,=0 2k 3,r 

< i +cf; (M)n 
- 1- lwl 1n=1 3,r ' 

where the last infinite series is convergent for It I< ;r/2. Thus the infinite 
series in the both sides of(2.3.1O) are absolutely and uniformly convergent 
for iti<;r/2, JwJ<fi. In a similar manner, the identity (2.3.10) is easily 
shown to hold. 

Proposition 2.18. If we take iJ sufficiently small, then, the infinite 
series tFlt, u; 1-,;) (,;>O,j= l, 2) are absolutely and uniformly convergent 
in the region Da(oo)XDa(l). Consequently, tFit,u;I-,;)(j=I,2) are 
holomorphic in the same region. Moreover, tFit, u; I-e), as functions of 
t, have the following power series expansions; if It I <o, u e Da(l ), then, we 
have 

(2.3.11) 

(2.3.12) tFlt, u; 1-,;)= f; d 2n(u) + f Bn(I-~) •l)n(u)t11, 

n=0 {I+ U)2n+l n=l n ! 

where we put 

Proof First we consider the infinite series tF1(t, u; 1-,;). We put 
t'=t(I+u), w=-u/(I+u)2. Obviously, 
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t' = <j/2k)(t'· 1-,;)tl2k 
tFi(t, u; 1-,;)=--I; ' ·Wk. 

l+u k=O (2k)! 

By the inequality 1-u/(1 +u) 2 l::S:: 1/4 for O::S:u~ 1, there exists a small 
positive constant 01 such that 1-u/(1 +u)21:S 1/2 for u e D01(l). If \t\<1C/4, 
u e D.,(1), then we get it'i<rr/2,lwi<l/2. It follows easily from Lemma 
2.17 that tFi(t, u; 1-,;) converges absolutely and is holomorphic in the 
region {(t, u) I It I <rr/4, u e D.,(l)}, and moreover that the power series 
expansion (2.3.11) holds in the same region. We take o sufficiently small, 
comparing with 01, Let \tl~1C/4, t e D.(oo), and moreover, u e D.(l). Set 
r'=Re(t'). Then we may haver'>it'l/fl, o being taken sufficiently 
small. An ele,mentary observation shows that 

l<ft/t'; a)I ::S::<ft/r'; a) (a e R,j=O, 1, 2, · · · ), 

from which, in addition to Lemma 2.16, we get 

(k=O, 1, 2, · · · ). 

Hence we see from Lemma 2.16 and the expansion (2.3.4) that 

Thus, Fi(t, u; 1-,;) is absolutely convergent in the region {(t, u)I \tj>rr/4, 
t e D.(oo),u e D.(l)}. Moreover, we see from the observation above that 
F1(t, u; 1- ,;) is uniformly convergent in some small neighbourhood of 
(t, u) contained in the region above. Consequently, F1(t, u; 1- ,;) is holo
morphic in that region. 

Next we consider the series tFz(t, u; 1-,;). We have to estimate 
d 2iu) from the above. The definition of d 2iu) implies that 

1Cd2k(u)=(l-u) -- -- . - -------cc dx. Zkf 1 .{( X )Zk ( -U )k} 
R x2+u 1 +x 2 (1-u) 2 

Putting s(x)=(x/l+x 2)2 for simplicity, we getthe expression 

(2.3.14) 
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which holds for any u e C. We take a positive number o2 in such a 
manner that, if lul<o 2, then, j-u/(1-u) 21<1/16. Accordingly, o2<9-
4,J5" =0.0557 · · ·. Using the inequalities s(x)< 1(4, we see easily from 
(2.3.14) that, iflul<o2, ' 

I 

I 
d2iu) I <(l/ 4?-1 I l-ul 2<k-lJ ~ 1

1 -4u Ii 
(1 +u)2k I 1 +ul2k J=o (l-u)2 

< 1 2(1/4t-1(1+02)2(k-1) -~. 
(l-02) l-02 3 

Since we have the inequality (1 +0 2)/2(1-0 2)<3/5, there exists a positive 
constant C2 independent of k such that 

(2.3.15) I d 2iu) I <C (3/5)2k if lul<o (k=0, 1, 2, ... ). (1 +u)2k 2 z 

We put o3 =o 2/2. On the other hand, if lul:2::02, and u e D60(1), then, 

11 +uJ> 1 +Re (u)> 1 +os, 11-ul< 1, and juj:S:: 1. 

Thus the inequalities just above and (2.3.14) imply that, for any non
negative integer k, 

(2.3.16) I d2iu) I < 4 ( 1 ) 2k 
(1 +u)2k 3 1 +oa 

Putting t(l +u)= t', we get, formally, 

(2.3.17) tFit, u; 1-e)=-t_' -f <f>C2k>(t'; l-,;)t'2k . d2iu) . 
l+u k=o (2k)! (l+u) 2k 

With the help of (2.3.15), (2.3.16), we can prove that the right side of 
(2.3.17) is absolutely convergent if ltl<n/4, u e D60(1), and we obtain, 
similarly as in the proof of (2.3.11), the identity (2.3.12). Since d 2iu) is 
a polynomial of u, we see easily from the expression (2.3.12) that tFlt, u; 
1-,;) is holomorphic in the region {t e Cl I ti <n-/4}XD 61(1). The rest of 
assertions for tFlt, u; 1-,;) can be verified in the same manner as in the 
case of tFi(t, u; 1-~) by using the inequlities (2.3.15), (2.3.16). q.e.d. 

We take o sufficiently small so that the identity (2.3.4) and Proposi
tion 2.18 simultaneously hold. Then, taking the identities (2.3.4), (2.3.5), 
(2.3.6) and the inequality lx/(l+x 2)j<l/2 into account of, we obtain 
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(2.3.18) f% .lp(tl 2 ; l-$)d8=1eu- 112Fi(t, u; l-$)+1eFz(t, u; 1-$) 
o 13 

(t e Dioo), 0<u<l). 

We set, for positive numbers $1, $2, $, 

(2.3.19) 

(2.3.20) 

{
@<0l(t, u; ,;1, $2)=p(t(l +u); 1-,; 1)Fi(t,u; l-,;2), 

(lj<1l(t, u; ,;)=p(t(l+u); 1-,;), 

(lj<2l(t, u; ,;)=Fi(t, u; 1-,;), 

{
1Jf<0l(t, u; ,;1, ,; 2) = p(t(l + u); 1- ,;1)Fz(t, u; 1-,; 2), 

1J!<1l(t, u; ,;)=0, 

1Jf<2l(t, u; $)=Fz(t, u; 1-$). 

Let @(t, u) (resp. 1/f(t, u)) be one of the three functions given in (2.3.19) 
(resp. in (2.3.20)). We set 

(2.3.21) 
J(s; @)=f dtf du- t 2•- 2u•- 2(l-u)@(t, u), 

1'(00) 1,(1) 

K(s; 1/f)=f dtf du-t 2•- 2u•- 3t2(1-u)1/f(t, u), 
l,(oo) 1,(1) 

where e is taken sufficiently small with e<o, o being the same as in 
(2.3.18). Then, by virtue of Proposition 2.18 and its proof, the integrals 
J(s; @), K(s; 1/f) are independent of the choice of e and absolutely conver
gent for arbitrary s e C. Moreover, they indicate entire functions of s. 
We write, for convenience, 

(2.3.22) {

J(s; (,;i, ,;2))=J(s; @<0l(t, u; ,;1, ,; 2)), 

Jis; $)=J(s; (l)Ul(t, u; ,;)) (j= 1, 2), 

K(s; ($i, $2))= K(s; 1J!(Dl(t, u; e1, $2)), 

Kis; $)=K(s; 1Jf<1l(t, u; ,;)) (j= 1, 2). 

Trivially, Ki(s; ,;)=0. Thus, using (2.3.18), we obtain convenient expres
sions for l(s; (,;1, $2)), l;(s; ,;) U= 1, 2) by the integrals (2.3.22) over contour 
paths /,(oo), /,(1). 

Proposition 2.19. Let ,;1, ,; 2, $ bepositive numbers. We have 
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I(s· t:)- rr J(s· t:)+ rr K(s· 1::) 
1 ''" - (e[s]-1) 1 '" (e[s-3/2]- I) 1 '" 

(j=l, 2), 

which give the analytic continuation to meromorphic functions of s in the 
whole complex plane. 

Corollary to Proposition 2.19. The functions [;s(s; { V1, V2, Va}, (ei, e2)), 
[;s(s; {V 1, Va}, e) (j= 1, 2) can be continued analytically to meromorphic 
functions of s in the whole complex plane. 

The corollary is an immediate consequence of Proposition 2.19 and 
(2.3.1). 

Proposition 2.19 shows us that the Laurent expansions at s= 1-m 
(m EN) of I(s; (e,, e2)), I/s; e) U= 1, 2) are given as follows: 

(2.3.23) l(s· (e n)= J(l-m; (e,, ez)) +__!._{J'(l-m· (e n) 
' 1' 2 2i(s+m-1) 2i ' '' 2 

(2.3.24) 

-rriJ(l-m; (e,, e2))-rriK(l-m; (e,, e2))} 

+higher terms of (s+m-1), 

I(s·e)= J/l-m;e) +__!._{J'(l-m· e:)-rriJ.(1-m· t:) 
1 ' 2i(s+m-1) 2i 1 '" 1 ''" 

-rriK/1-m; e)}+higher terms of (s+m-1) 

(j=l, 2). 

Let C(m) (me N) be the constant given in Proposition 2.9. Then, as a 
Taylor expansion at s= 1-m (me N), we have 

1 = -2C(m)+fim(s+m- l)+higher terms of (s+m-1) 
I'h)(e[2s]-1) 

with some constant fim EC. Thus, by (2.3.1), (2,3.23), we get the Laurent 
expansion at s= 1-m of [;s(s; {V 1, V2, Va}, (e,, e2)): 

(2.3.25) [;s(s; { V1, Vi, Va},(e,, e2)) 

= iC(m)i~-:i~ i~'' e2)) + ~i {(fim +2rriC(m))J(l-m; (e,, e2)) 

-2C(m)J'(l-m; (e,, e2))+2rriC(m)K(l-m; (e,, e2))} 

+higher terms of (s+m-1). 

At this stage we have to evaluate J(l-m; (e,, e2)), J'(l-m; (e,, e2)), 
K(l-m; (e,, e2)) and so on. 
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We consider the integral J(s, (f)) in (2.3.21). Putting s= I-m, we get 

(2.3.26) J(I-m; W)=f dtf du-t- 2mu-m-1(I-u)(/)(t, u) 
I's re 

(for the path I'., see Proposition 2.9). 

Furthermore, derivating the integrand of J(s; (f)) with respect to s, we 
obtain 

(2.3.27) J'(I-m; (f)) 

=f dtf du-1- 2mu-m-1(I-u)(21ogt+logu)(/)(t, u), 
I,(=) /,(1) 

where the integral is absolutely convergent again by Proposition 2.18. 
For non-negative integers n, the functions (f)n(t), according to the choice of 
(f)(t, u), are defined as follows; We set 

(/) (t)= p(t; l-,;'1)<p(2n)(t; l-,;'2)(- l)n 
n (2n)! 

(f)o(t)=</;(t; I-,;=), Wn(t)=O (n~l) 

¢<2nl(t; 1-,;=)(-Ir 
(f)n(t)= (2n)! 

if(/)(t, u)=(/)<1l(t, u; ,;=), 

if W(t, u)=(/)<2l(t, u; ,;=). 

Moreover, we see from Proposition 2.18 that W(t, u) has a Laurent expan
sion with respect to t: 

= 
(2.3.28) W(t, u)= I; bn(u; (/))tn if \t\<o, u E D.(1). 

n=-2 

Proposition 2.20. Let m e N. We have, for a sufficiently small e, 

(i) J(I-m; W)=21rif (/)m(t)dt, 
r, 

(ii) J'(I-m; W)=41rif log f.(/)m(t)dt-4rri~ 1 
( 2m- 2!- ~)! 

1,<=l i-o {(m- 1)!} 

xf t 2<j-m)<J)/t)dt+21rif u-m- 1(I-u)logu-b 2m_1(u; (f))du. 
r, 1,(1) 

Proof The function (/)(t, u), which is holomorphic if t e D.( oo ), t¾O, 
and \ u \ < o, can be expanded in a power series of u as follows: 

(2.3.29) 
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On the other hand, it is easy to see from the definition of (f)n(t) that 

00 

(2.3.30) t 2(f)(t, u)= t2 I:; (fJ n(t(I + u))t 2nun (t E D.(co), u E D.i(l)). 
n=O 

Since the infinite series in the right side of (2.3.30) is uniformly convergent 
inD.(co)XD.(l)byProposition2.18, and each term t 2(f)n(t(I+u))t 2nun is 
a holomorphic function of t, u, we can differentiate it termwise. Thus, 
taking the k-th derivative of (2.3.30) with respect to u, we get 

Therefore, 

(2.3.31) 

It follows from (2.3.29), (2.3.31) that 

(2.3.32) f u-m- 1(1-u)(f)(t, u)du 
I,(1) 

=2rri{-l_. am(JJ (t, 0)- 1 . am-l(JJ (t, o)} 
ml aum (m-1)! aum-l 

tm-1+j. (f)r-1-J>(t)})· 
(m-1-J)! 

With the use of the integration by parts, the identity 

(2.3.33) -sf t•- 1(f) pn-1-il(t)dt =f t•(f) Jm-n(t)dt 
fs(oo) fs(oo) 

holds for each j (0 < j s. m - 1 ). Putting s = j- m, we get 

(2.3.34) (m- j)f 1J-m-1(f)r- 1-n(t)dt=f 1J-m(JJ;m-J)(t)dt. 
fs(oo) fs(oo) 

Differentiating the both sides of (2.3.33) with respect to s and then, putting 
s=j-m, we have 

(2.3.35) (m- j) f log/• tJ-m-l(JJ ;m-l-Jl(t)dt -f ti-m-l(JJ r-1-J>(t)dt 
fs(oo) I,(oo) 

=f log t. ti-m(fJ r-n(t)dt (0;;;;_j~m-1). 
fs(oo) 
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Therefore, the identities (2.3.26), (2.3.32), and (2.3.34) imply the assertion 
(i). The recurrent use of the integration by parts yields 

(2.3.36) f 1J-m-1<!) r-1-Jl(t)dt 
Is(oo) 

(2m-2j-l)! f t2<J-m)<lJit)dt. 
(m- j)! rs 

It is easy to see from (2.3.32), (2.3.35), and (2.3.36) that 

(2.3.37) 2f dtf du- 1-2mu-m- 1(I-u) log t-<lJ(t, u) 
Is(oo) Is(l) 

=41df 1ogt·<lJm(t)dt-41d~ 1
( 2m- 2j_-~)! f t 2<J-m><lJlt)dt. 

Is(oo) J-0 {(m-]) !} I's 

Moreover, we get, using the expansion (2.3.28), 

f dtf du-1- 2mu-m-1(I-u)logu.</)(t, u) 
Is(oo) Is(I) 

=211:if u-m- 1(1-u) log u-b 2m_1(u; <lJ)du, 
Is(l) 

which, in addition to (2.3.27), (2.3.37), completes the proof. 

Let me N. For integers k, n with k, n>O, k+n=2m+ 1, we define 
the numbers dtct-i,n-t> by putting 

(2.3.38) dtct-i,n-ii=J log u-u-m- 1(1-u)(l +u)t- 1µn(u)du, 
I,(1) 

where µn(u) (n> 1) is a polynomial of u given by (2.3.13), and 

l+u 
µo(u)= 1+3u+u2 

The numbers J/ct-i,n-t> are independent of the choice of small e. 

Lemma 2.21. If k, n> 1 with k+n=2m+ 1, then (1/21d)Jtct-i,n-i> 
are rational numbers. 

Proof It follows from (2.3.13) that 

(1-u)(l +u)k- 1µn(u)= f: (n 2-: 1)(1-u) 2<m-J>-1(-u)J. 
J-0 J 

By the conditions k> 1 and k+n=2m+ 1, we have m> j for each j 
(O<j< tcn = [(n-1)/21). As is easily shown, the coefficient of the term u'"' 
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of the polynomial (1-u)(l +u) 2<m-J)-1 (-u) 1 vanishes. Therefore, the 
assertion of Lemma 2.21 is reduced to the formula 

(2.3.39) log u- uPdu =_!!!___ f 2 . 

1sc1) p+l 
for p E Z, p~ -1, 

(i) 

In the case of <!)(t, u) = <!)<0l (t, u; e1, e2), Proposition 2.20 yields 

Proposition 2.22. Let e1, ,; 2 be positive numbers and m e N. Then, 

4;r2(-l)m 
J(l-m; (.;1, <;2))= (2m+ 1)! {Bzm+1Ce1)+B2m+1Ce2)}, 

(ii) J'(l-m; (e1, e2))= 4~~) ~)mf log t-cp(t; l-,; 1)cp<2m>(t; l-e 2)dt 
m . I,(oo) 

_ 8;r2 ~ 1 (2m-2j- l) !(- l)i 
J=O {(m-j)!}2 

Proof In the proof we have <!)(t, u) = <!)<0l(t, u; ,;1, ,; 2), and 

(n=O, 1, 2, ... ). 

The expansions (2.2.2), (2.3.9) show that the coefficient of the term t- 1 in 
the Laurent expansion at t=O of <!)m(t) is given by 

Thus, by (i) of Proposition 2.18, the assertion (i) follows. In view of the 
expansions (2.2.2), (2.3.11) of Proposition 2.18, the coefficient b2m_i(u; <!)) 
in (2.3.28) is given as follows: 

b2m_i(u; <!))=B2m+iCI-e1)(l +u) 2m+i + 2~ 1 B2m+i-nCl-,; 1)Bn(l-,; 2) 
(2m+l)!(l+3u+u 2) n=1 (2m+l-n)!n! 

x(I+u)2m-nµn(u). 

Therefore, we see from (2.3.38) that 
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Computing the coefficient of the term t 2<m-JJ- 1 (0<j<m- I) in the 
Laurent expansion at t = 0 of if) it), we have 

f t 2<J-m)i/) .(t)dt 
r, J 

=2rri(- I)1{ B2m+1O-~1) + 2:+i B2m+1-il-~1)Bn(l-~2) . (u-1)}· 
(2m+l)! n-21+1 (2m+l-n)!n! 2j 

Summing up the results above, we obtain the assertion (ii). 

In another two cases of if)(t, u), we obtain the following 

Proposition 2.23. Let me N and ~>0. Then, 

(i) Jil-m; ~)=0 (j=l, 2), 

(iii) In particular, Jf(I-m; .;) e rr2Q (j= 1, 2). 

Proof If W(t, u)=<ji(t(l +u); 1-~), then, we have if)o(t)=<ji(t; l-,-i;), 
if)n(t)=0 (n>I), and b2m_i(u; W)=B 2m(l-c;)(l+u)2m- 1/(2m)!. Hence, we 
see immediately from Proposition 2.20 that Ji(I-m; .;)=0, and that 

Ji(I-m; ~)=- 4rri7m,)2 I)! f 1-2m<ji(t; I-~)dt 
m. r, 

+ 2rriB2mO-~) f log u-u-m-l(I-u)(l+u)2m-1du, 
(2m)! Ia(oo) 

from which we get the expression for Ji(l-m; .;) in the assertion (ii) (note 
that µ1(u)= 1). In the case of if)(t, u)=Fi(t, u; I-~), we have 

B2,,,(l-~) () 
(2m)! · µ2m U • 
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Since the integration by parts implies that 

-sf t•· 1<j><2m-ll(t; l-~)dt=f t•<j><2ml(t; l-~)dt, 
Is(=) I,(=) 

we get 

(2.3.40) f logt-<j><2m>(t; l-~)dt=-f t· 1<J>(Zm-ll(t; l-~)dt 
I,(=) I,(=) 

1riB2m(l-~) =---~-. 
m 

Thus, 

4rrif Iogt·<Pm(t)dt= 41r2(-lrB2m(e) 
le(=) m(2m) ! 

Moreover, we have, by a usual argument, 

f t2<J-m)(Jj i(t)dt = 2rri(-1)1 B2m(l-~) . (2m-1). 
r. (2m)! 2j 

Hence, the assertion (ii) of Proposition 2.20 implies the expression for 
J;(l-m; ~) in (ii). The equality Jz(l-m; ~)=0 is clear. 

Finally, we evaluate the special values at s= 1-m of K(s; (~i, ~2)) 

Kz(s; ~) (for the definition, see (2.3.22)). 
Let JJn(u) (n> 1) be the polynomials of u defined by (2.3.13). For 

instance, JJ1(u)=JJz(u)=0, JJ8(u)=(l +u)/2. We put, for convenience, 

= .sit (u) JJ (u)- '°' e1 
o - fj (1 +u)2J+1 

for I u I sufficiently small. 

For any pairs (k, n) of non-negative integers with k+n=2m+l (me N), 
we define the numbers Af'ct- 1,,..., 1> by putting 

(2.3.41) 

where e is taken sufficiently small. The integral in the right side of (2.3.41) 
is independent of the choice of small e. Then the identity (2.2.18) implies 
that 

(2.3.42) fork, n> 1. 

Proposition 2.2.4. Let ~1, e2, e>O and me N. Then, 

(i) K(l-m· (1:: 1:: ))= -21r/'~1 B2m+1-nC~1)BnC~2). % 
, '-1•'-2 L...J (2 +l )I I (2m-n,n-1)> 

11=0 m -n .n. 
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(ii) 

Proof Let 'l/!(t, u) be one of the functions given in (2.3.20). Recall
ing the definition (2.3.21) of K(s; 'If!), we have by the Fubini theorem, 

K(l-m; 'lf!)=f u-m- 112(1-u)duf dt-t- 2m'l/!(t, u). 
I,(1) I', 

If ,fr(t, u)=,[r<0l(t, u; .;i, .;2), then, observing the expansions (2.2.2), (2.3.13), 
we get 

Thus we obtain the assertion (i). The assertion (ii) is similarly verified. 

As is observed in (2.3.25), the function (s(s; {V 1, Vi, Vs}, (.;1, .; 2)) has 
a possible simple pole at s= 1-m (me N). On the other hand, it is easy 
to see from (2.3.1), Proposition 2.19, and (i) of Proposition 2.23 that the 
functions (s(s; {VJ, Vs}, .;) U= 1, 2) are holomorphic at s= l-m. The 
special values at s= 1-m of them can be given explicitly by applying 
Proposition 2.23, Proposition 2.24. 

Proposition 2.25. Let me N and .;>O. Then, 
(i) (s(l-m; {VJ, Vs},.;) E Q U= 1, 2). 
(ii) In particular, 

Proof Proposition 2.19 and (i) of Proposition 2.23 show that 

Ip-m; .;)= ;i J;(l-m; .;)- ; Kil-m; ~) 

We observe from (2.3.1) that 

U= 1, 2), 

(j=l, 2). 

Thus the assertion (i) follows from Proposition 2.23, Lemma 2.21, Pro
position 2.24, and (2.3.42) (for the explicit value of C(m), see Proposition 
2.9). Let m= 1. We have, by (2.3.39), 
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(2.3.43) .,//c1,oi =.,//co,1i=J log u-u- 2(1-u 2)du= -4;ri. 
I,(1) 

Therefore, we find from {ii) of Proposition 2.23 that Jf{O; ~)=8;r 2BM) and 
J~(O; ~)=6;r 2Bz(~). Since fco,1)=0 and accordingly, Kz(O; ~)=0, we get 
the assertion (ii) (notice that Ki(s; ~) is identically zero). 

2.4. Evaluation of special values of Lt(s, ifra,p) 

The aim of the subsequent two sections is to prove the rationality of 
special values of L-functions at non-positive integers and in particular to 
obtain the explicit special values at s=O of them. We keep the notation 
used in the previous sections. 

Suppose that p is an odd prime. For any integers µ, o prime to p, 
let L*(µ), M*(o) be the same as in 2.1. Corresponding to M=L*(µ), 
M*(o), we shall define the principal part l;p(s; C, M) and the singular part 
1;8(s; C, M) of the zeta function l;(s; C, M), C being the simplicial cones 
C123, CJs (j = I, 2). In view of Proposition 2.1, Proposition 2.3, we set, for 
M=L*(µ) or M* (o), 

(2.4.1) 

Cp(s; C.1s, M)=P- 2' I; Cp(s; {Vj Va}, (~j, ~s)), 
EEB',i'"' 

1;8 (s; Cja, M)=p- 2• I; l;s(s; {V.1, Va}, ~j) U= I, 2), 
EEB'Ji'"' 

(~ being denoted by (~1, ~2, ~a)), 

where we set BM=Ba,µ, B';J·3'=BJl;;' (resp. BM=Ba, B~·8'=B~J,s>), if 
M=L*(µ) (resp. if M=M*(o)). Proposition 2.2 then makes it possible 
to define the principal and singular parts of the £-function Lt(s, ,Jra,p). 
We set 

(2.4.2) Lt,p(S, i/ra,p)= ~ ,fr(µ) {{i:p(s; C12s, L*(µ))+ ; ti Cp(s; cj3> L*(µ)) 

+; l;(s; C12, L*(µ))+ 0t C(s; C2, L*(µ))}, 

Lt,s(s, ,Jra,p)= ~ ,fr(µ) { l;s(s; C123, L*(µ))+ ; ti Cs(s; Cta, L*(µ)) }· 

whereµ runs over 1 and "' (tc being a non-quadratic residue mod p). Let 
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X be a primitive character mod p. Viewing Proposition 2.4, Proposition 
2.5, we define P- nad S-parts of Lt(s, Xdet), ~t(s) as follows; we set 

(2.4.3) Lt,p(s, Xdet). 

{
' 1 2 . 

= I; X(o) Cp(s; C123, M*(o))+- I; Cp(s; C18, M*(o)) 
o;;!,O modp 2 J=l 

+; C(s; C12,M*(o))+ ! C(s; C1, M*(o))+ ! C(s; C2, M*(o))}, 

Lt,s(s, Xi!et) 

= I; X(o){Cs(s; C123, M*(o))+l. ± Cs(s; CJs, M*(o))}, 
6;;!,0modp 2 j=l · 

1 2 
~t,p(s)=Cp(s; {Vi, Vi, V8}, (1, 1, 1))+- I; Cp(s; {VJ, V8}, (1, 1)) 

. 2 j=l 

+; C(s; {V1, V2}, (1, 1))+ ! C(s; {V1}, 1)+ ! C(s; {Vi}, 1), 

The following obvious identities hold: 

(2.4.4) {
L't(s, ,Jtn,p)=L't ,P(s, i/tn,p)+Lt,s(s; ,Jtn,p) 

Lf(s, Xdet)=Lt,p(s, Xdet)+Lt,s(s, Xdet) 

~'t(s)=~t,p(s)+~t,s(s). 

It is easy to see from Proposition 2.9, Proposition 2.10 and Corollary to 
Proposition 2.19 that Lt,p(s, ,Jtn,p), Lt,s(s, ,Jtn,p), Lt,p(s, Xdet), Lt,s(s, Xdet), 
~t,p(s), and ~;,s(s) can be continued analytically to meromorphic functions 
of s in the whole complex plane. 

In the rest of this section we shall discuss the evaluation of special 
values at s= 1-m (me N) of L't(s, ,Jtn,p). First of all, we need two 
lemmas related to the Bernoulli polynomials. 

Lemma 2.26. Let m e N. Then, 

I; B2m+MJ)=O 
!ieSH,p 

where ~ J is the j-component of~ e B n ,,,. 

U= 1, 2, 3), 

Proof The proof is based on the distribution property of Bix): 

(2.4.5) (see for instance [10, p. 35]). 
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Moreover, ifwe note that B2,,,+i(O)=B2,,,+i{1)=0, then, the assertion im
mediately follows. 

Lemma 2.27. Let m e N and let k2, k3 be non-negative integers with 
k 2 +k 8 =2m-I. 

(i) If k2 is an even positive integer, then, 

(ii) If k2 = 0, then, 

where ,;=(<;°1, <;2, <;s) runs over all triples of EH,µ withe2=1=I. 

Proof Let k2 be an even positive integer. We note that 

(2.4.6) (x)+(-x)=l if xe R-Z. 

The identity Bko+i((x))=-Bko+i((-x)) (x e R-Z) shows that 

I:; Bk,+1((2µa7/p))Bks+l (µ(7 2-a 2)/p)) 
(a,r) E.4'(p) 

' Then, (a, r) being replaced with (-a, 7), the assertion (i) follows. The 
proof of the assertion (ii) is quite similar to that of (i). 

Let me N. In the below, let k 1, k 2, k 3 be integers satisfying k 1, k 2 > 
-1, k3>0 and k 1+k 2 +k 8 =2(m-I) . . For any triple e=(,;1, ~ 2, ,; 3) of 
positive numbers, we write, for convenience, 

(2.4.7) 

Letµ be any integer prime top. Viewing Proposition 2.11, Proposition 
2.12, we define the numbers d(k,,k.,k.i(µ) as follows; 

( i) If k 1k2k8 ¾-0, we set 

(ii) Let r be an integer with 1 <r<3. If kr=O and other k/s 
(j¾-r) are non-zero, we set 

d(k,,k.,k.i(µ)= -2iriC(m)A(ki,ko,ks) . I:; B(k1, k2, ks;,;). 
<ESH,µ, o,0,1 
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(iii) Let r, n be integers with 1 <r<n<3. If k,=kn=0, and the 
rest of k/s is non-zero (then, necessarily, m> 1), we set 

where 

d(ki,k,,k,)(µ)= -2triC(m)A(k,.k,,ka){ I; B(k,, k2, ks;~) 
,esn,µ,<r,<n",l 

-s(k 1, k2, ks;µ)}, 

0 

(k1, k2, k8)=(0, 0, 2m-2), 

(k 1, k2, ks)=(0, 2m-2, 0), 

(k 1, k2, ks)=(2m-2, 0, 0), 

g,,,(µ) (de z, d>0) being I:a~Omodp BaC<µcx2/p))/d!. 
(iv) In the case of (k1, k2, ks)=(0, 0, 0), we set 

dco,o,oiCµ)= -2triC(l)Aco,o,o){ I; . B(O, 0, 0; ~) 
< 6 Sn ,µ,<J~l (J-1,2,3) 

1 1 } -8gi(µ)-24op,sg,(µ) . 

Note that, if d is prime to p, then, d<k,,k,,k.i(µd 2) = dck,,k,,k.i(µ). The 
special values at S= 1-m (me N) of Lt,p(s, 'o/H,p) can be evaluated with 
the use of the numbers defined above. 

Proposition 2.28. Let m e N. Then, 

where µ is over 1 and tc, and (k 1, k2, k3) runs over all triples of integers with 
ki, k2>-l, k3>0, and k1+k 2+k 3 =2(m-l). 

(ii) Accordingly, Lt,p(l-m, 'o/H,p) e Q. 
(iii) Jfp=l mod 4, then, Lt,p(l-m, 'o/H,p)=0, 

Ifp=3 mod 4, then, in particular, 

where d, !!,Bare the constants given by (0.1), (0.2) in the introduction. 

Proof Let ~a.r,µ be the triple of BH,µ given by (2.1.6). We notice 
that Bi(l)= 1/2, and moreover that 
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(2.4.8) 1
Ec2,3lnEc 1, 3l={e: ia=Omodp r~omodp} H,µ R,µ 'ia,T,µ , ~ , 

sc2,s) n ~<1,2) -{<1> 
H,u '-'H,p - {~a,r,plr=-amodp, a~Omodp} 

BJ;;!) n B)i;!) ==<p. 
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(p>3), 
(p=3), 

Taking very carefully (2.4.1), (2.4.2), Proposition 2.11, Proposition 2.12, 
and (2.4.8) into account of, we obtain the expression (i) for L;,p(I-m, 
"Y' H,p)• 

If a triple (k1, k 2, ks) satisfies any of the conditions (i), (ii), (iii) in 
Proposition 2.13, then, (1/n)A<k,,k,,k,J is a rational number. Therefore, 
d<k,,k,,k,i(µ) is also a rational number. If k 1 =k 2 = -1 (resp. If k 1 = -1 
and k2 is even), then, Lemma 2.26 (resp. Lemma 2.27) shows that 
d<-1,-1,zmlµ)=O (resp. d<-i,k,,k,i(µ)=O). Therefore, the assertion (ii) 
follows from (i). 

For convenience, we write ~a,r,µ=(~i:~,"' .;i:~'"' ~i~~.µ). Exchangingµ 
for - µ, we observe from (2.1.6), (2.4.6) that 

(2.4.9) {
e;(j) = 1- e;(j) 
'i"" a,r, -µ ~ a,r,µ 
e:ul = 1 
':,a,r,-µ 

if ei~;."="t=l, 
if~~~;,"= 1 U= 1, 2, 3) 

Further, we note that Bil)=(-l)kBil) for k="t=l. Then we see easily 
from (2.4.9) that, for any triple (k1, k 2 , ks), 

(2.4.10) 

If P= 1 mod 4, then, -1 is a quadratic residue mod p. Hence, 
d<k,,k,,k.l- µ)=d<k,,k,,kJµ), which implies that d<k,,k,,k,i(µ)=O. Thus 
the first assertion of (iii) follows. 

Suppose that p = 3 mod 4. Then we may take -1 as ,c. The asser
tion (i), together with (2.4.10) and the property ,fr( -1) = -1, show, that 

L;,p(O, "Y'H,p)=2{d<-1,1,oll)+do, -1,oll)+d<o, -1,1)(1)+ d(o,o,oi(l)}. 
We have, by Proposition 2.15, 

(2.4.11) d<-1, 1,0i(l)= -4 l ~ Bz((2aT/p))Bi(<(r 2 -a 2)/p)), 
(a,r) E.A(p), 
a2:;i:r2 mod p 

d(l,-1,0)(1)=~, 

d<o,-1,1)(1)= -l ~ Bi(<(a2 -2ar)/p))Bz((r 2 -a 2)/p)), 
6 (a,r) E,<(p), 

a2$:2armodp 

d(o,o,0/1 )= d /2, 

where, to show the last equality, we used the fact that B1,,i,=gi(l). In the 
first equality of (2.4.11), if we replace (a, r) with (r, a), then, we get, with 
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the help of (2.4.6), d<-i,i,oJ(l)=O. In the third .equality of (2.4.11), 
replacing (a, r) with (a-r, -r), we have 

Thus the .second assertion of (iii) follows. q.e.d. 

Now we study the singular part Lfs(s, 'Y/'H,p) .. 

Proposition 2.29. Let m e N and let µ be an integer prime top. The 
function t;;s(s; C123, L*(µ)) is holomorphic at s= I -m, and the special value 
at S= 1-m isgiven by 

[;;s(I-m; C123, L*(µ)) 

=iC(m)p 2<m-l) ·I:; {J'(l-m; (g1, ~2))-1riK(l-m; (g1, g2))}. 
oEBs,µ 

Proof Proposition 2.22 and Lemma 2.26 show that 

Thus we see immediately from (2.4.1) and the expansion (2.3.25) that 
[;;s(s; C123, L*(µ)) is holomorphic at s= 1-m, and that the special value at 
s= 1-m is expressed as in the proposition. 

If follows from Proposition 2.25, Proposition 2.29, and (2.4.2) that 
Lt,s(s, 'Y/'H,p) is holomorphic at s= 1-m (me N). The following proposi
tion plays a key role to evaluate its special value at s = 1- m. 

Proposition 2.30. Let m e N. Then, 

4id(-lym I:;t(µ) I:; f logt-9(t; l-g 1)9<2ml(t; I-g 2)dt 
(2m)! µ eEBH,µ le(=) 

= 8n-2(-l)m 2I;l B2m+1-jBJ,t 

p 2m- 1 j-1 j!(2m+l-j)!j' 

where µ runs over l and tc, and c is taken sufficiently small. 

Proof As in the proof of Proposition 2.28, let g;,~~.µ U= 1, 2, 3) be 
the j-component of ga,r,µ e EH,µ (see (2.1.6)). We set µa 2 =X, 2µar=u. 
If (a, r) runs over all elements of .ff(p) with a::';: 0 mod p, and µ is over 1 
and tc, then, (x, u)=(µa2, 2µar) just doubly covers all elements of .ff(p) 
with x::';:O mod p. If a=::O mod p, then, g;,~~.µ=g;,:~,µ= 1. Thus, 
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(2.4.12) _!_I:; ,y(µ) I:; f logt-p(t; l-~~~~,µ~<2m>(t; 1-~~~~,µ)dt 
2 µ (a,r) e..r(p) I,(oo) · 

= E E ,y(x)f . log t-p(t; l-((x-u)/p))¢' 2mV; 1-(u/p))dt. 
x,;t;Omodp umodp I,(oo) . 

We need the following lemma. 

Lemma 2.31. Let x be any integer prime to p. Then, 
(i) 

2m+l 

E ¢(t; 1-((x-u)/p))¢< 2m>(t; 1-(u/p))= E r1,2m¢<n(1; 1-(x/p)) 
umodp J=l 

with 

rj,2m 
(-1) 1(2m)! -B _ 

"1(2 +1- ")1 2m-j 2m+l-3 J. m J .p 
(1 <j<2m+ 1), 

(ii) L,(oo)logt- u~pp(t; 1-<cx-u)/p))p< 2m>(t; 1-<ufp))dt 

_2m+1 (-1)1B;((x/p)) 
= -2m E r1,2m . • 

1=1 j 

Proof We may take x so that 1 <x<p-1. We get, with the help 
of Lemma 2.16, 

E p(t; l-((x-u)/p))p< 2m>(t; 1-(u/p)) 
umodp 

= I; E }.J,zm(l-(u/p)) exp t(2-(u/p)-(2(x-u)/p)) 
J=O umodp (et - l)i+ 

=I: 1 {t1
}. (1-u/p)et<2-xfp>+f;}. (1-u/p)et<l-x/p)} 

J=O (et -1)1+ 2 U=l J, 2m U=X J, 2m 

= 1t {~: A1,2m(l-u/p)¢ 1+i(t; 1-x/p) + ~i}.J,2m(l-u/p)¢ 1+lt; 1-x/p) }· 

Then, using the formula ¢1+1(t; a)= --"(l/j)p;(t; a)+((a- j)/j)¢it; a) 
(j~ 1) recurrently, we obtain the expression 

(2.4.13) E p(t; l-((x-u)/p))p< 2m>(t; 1-(u/p)) 
umodp 

2m+l 

= E r1.2m(x)¢<1>(t; 1-x/p), 
J=O 

where r1,2,,.(x) (0~j~2m+ 1) are certain rational numbers (they may 
depend on x). Recalling the Laurent expansion (2.3.9) of ¢<t> (t; a), and 
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comparing the coefficients of the term t-J- 1 in the Laurent expansions at 
t=0 of the both sides of (2.4.13), we get the explicit values of rJ,2m(x): 

( ) J ) " (2m)!B 2m+i-il-<(x-u)/p)) -1 j!rJ,2m(X = L...J 
umodp (2m+ 1- j)! 

(I <j<2m+ I), 

1 
ro,zmlX)= 2 l I: {B2m+1O-<(x-u)/p))+B 2m+i(I-(u/p>)}. 

m+ umodp 

Then, the property (2.4.5) of Bix) shows that 

r (x)=(-l)J(2m)!Bzm+i-J 
J,Zm j!( 2m+l-j)Jp2m-J 

(1 <j<2m+ 1). 

Thus the assertion (i) follows. Similarly as in (2.3.40), we have 

which, together with (i), completes the proof of the assertion (ii). 

Thus, (2.4.6) and Lemma 2.31 with the definition (1.2.11) of the 
generalized Bernoulli numbers imply Proposition 2.30. 

Proposition 2.32. Let m e N. Then, 
(i) I:µ ,fr(µ)Cs(I-m; C123, L*(µ)) e Q. 
(ii) In particular, if m = I, 

Proof Taking (ii) of Proposition 2.22, Lemma 2.21, Lemma 2.26, 
and Proposition 2.30 into account of, we observe that 

We get, immediately by (i) of Proposition 2.24, (2.3.42), and Lemma 2.26, 

Thus the assertion (i) follows from Proposition 2.29. Next suppose that 
m = 1. Since obviously, .A'"co,ll = .A'"ci,o> = 0, we see easily again from Pro
position 2.24, Lemma 2.26 that 
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Therefore we find from Proposition 2.29, Proposition 2.22, (2.3.43), Lemma 
2.26, and Proposition 2.30 that 

Hence the following lemma completes the proof of Proposition 2.32. 

Lemma 2.33. We have 

Proof We notice that 

Then it follows from Lemma 2.26 that the left side of the equality in the 
lemma is equal to 

-_l f 1- 2 I:, ,JF(µ) L. <jJ(t; l-e 1)¢>(t; l-e 2)dt 
70 I', µ l;,EBH,µ 

= -.l f i- 2 I:, ,JF(x) I:, <jJ(t; 1-<(x-u)/p))<jJ(t; I-<ufp))dt 
trl I'e x~Omodp umodp 

=~f i- 2 I:, ,JF(x){<jJ(t; I-<xfp))+P</J'(t; I-<xfp))}dt 
'!Cl I', x,;!eOmodp 

=2 I:, ,JF(x){Bz(l-<xfp) )/2+ pBs(I -<xfp) )/3}, 
x,;!aO mod p 

which, in addition to (1.2.11), completes the proof of Lemma 2.33. 

Finally, we evaluate the special values at s=O of the zeta functions 
attached to the cones Cj3 U= 1, 2). 

Proposition 2.34. The following identities hold; 
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. - 1 . · Li '1/,{µ)t;,s(O; C13, L*(µ))=- 2 .Bz,+· 
p 

Proof Only the. first identity will.be proved. Proposition 2.25 and 
(2.4.1) show that 

. 3 Li ,Jr(µ)t;,s(O; C23, L*(µ))=- 16 Li ,Jr(µ) Li Bz((2µar)/p) 
(a,r) e..r(p) 
a2.=2armodp 

3 
=SpBz,t· q.e.d. 

Gathering (2.4.2), Proposition 2.25, Proposition 2.32, and Proposition 
2.34 together, we obtain the following proposition. 

Proposition 2.35. We have 
( i) L;,s(l-m, 1fH,p) e Q (me N). 
(ii) L;,s(O, 1fH,p)=(ll/36p)B 3,.,-(1/24p)B 1,.,,. 

Now Theorem 1 (the main theorem) in the introduction follows im
mediately from Proposition 2.28, Proposition 2.35, (2.4.4), and the fact 
that if p-1 mod 4, Bk,.,=0 for any odd k. 

2.5. Evaluation of special values of L;,p(s, Xdet), ~;(s). 

Let X be a primitive character mod p, p being an odd prime. We 
have defined the functions L;,p(s, Xdet), Lt,s(s, Xdet), ~t, p(s), ~t,s(s) in (2.4.3). 
As we see from Proposition 2.9, Proposition 2.10, the principal parts 
L;,p(s, Xdet), ~t,p(s) are holomorphic at s= 1-m (me N). 

We need a lemma concerning the Bernoulli polynomials. 

Lemma 2.36. Let m e N. Then, 
( i) L,a,J,Omodp X(a2)B2m-iC(a/p))=O. 
(ii) Let k be any integer with O~k<2m+ 1. Then, 

L, X(a2)Bzm+1-i(-a/p))Bi(a/p))=O. 
a,J,Omod p 

Proof Replacing a with -a, and then, using the property BJ:(1-x) 
=(-l)kBix) and (2.4.6), we have the assertions (i), (ii). 

Then, Proposition 2.3, (d), (e) of Proposition 2.12, and Lemma 2.36 
show that 

(2.5.1) r, x(o)t;,(1-m; c 1, M*(o))=O 
6,i!O mod p 

(j= 1, 2). 
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For each triple (k1, k2, k3) of integers .satisfying k1, k2 2-l, k3>0; and 
k1 +k 2 +k 3 =2(m-1) (me N), we define the numbers f!Jck,,k,,ks) as follows; 

( i) If k 1k2k3 ¾0, we set 

(ii) Let r be an integer with 1 <r:::;3. If kr=0 and other k/s 
(j ¾r) are non-zero, we set 

(iii) Let r, n be integers with 1 ~r<n<3. If kr=kn=0 and the 
rest of k/s is non-zero (m> 1), we set 

f16cck,,k,,k,l= -2rciC(m)Ack,,k.,ks) I; X(o) I; B(k 1, k2, k 3, ~). 
o;s0modp t;ESo 

f:r,fn::\::1 

(iv) If (k1, k2 , k3)=(0, 0, 0), we set 

!16(0,0,0) = -2rciC(l)Aco,o,O) I: X(o) I: B(0, 0, O; ~). 
o,s0modp t;ES, 

f;;",l (j-1,2,3) 

As the following Lemma 2.37 shows, all the numbers !16ck,,k,,k,) are proved 
to be zero. However, these numbers are useful to evaluate the special 
values L;,AI -m, Xctet). 

Lemma 2.37. For any triple (k 1, k2, k 3) as above, !Jlck,,k,,k,J =0. 

Proof For each T=(;: 2 !:2) e L;, we write 

Replacing Twith -T, we observe that, if~¥l¾I, then, ~~J.=1-~¥>, and 
that, if~£fl=l, then, ~~J.=l(l~j<3). Thus it follows from the defini
tion of !16ck,,k,,k,l and some properties of Bk(x) that !16ck,,k,,k,J = -!16ck,,k,,k,l· 

q.e.d. 

The special values at s= I-m (me N) of Lt,p(s, Xctet) are obtained in 
a similar manner as in the proof of Proposition 2.28. The result is very 
simple. 

Proposition 2.38. We have Lt,p(l-m, Xctet)=0 (m= 1, 2, · · · ). 

Proof. We notice that, for each integer o prime top, 
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Ej 1·2) n Ej 1•3l ={~TIT=(~ ~), t1 E Z/pZ, ti=.O modp}, 

s11• 3) n Ef·3)=</>, 

Ei2•3l n Ei1•2) = { <;r I T = (~!12 ~t), t12 E Z/pZ, 3tiz=-O mod p }· 

Then we have, by (i) of Lemma 2.36, 

(2.5.2) 

Thus, making use of the definition (2.4.3) of L;,p(s, Xdet), Proposition 2.11, 
Proposition 2.12, and the identities (2.5.1), (2.5.2), we obtain 

L;,p(l -m, Xdet)=p2<m-l) ,I;' :J?/(k1,k2,ksl• 
(k1,k2,ks) 

where (k1, k2, k3) is taken over all triples of integers satisfying k 1, k2?:.. -1, 
k3>O, and k1+k 2+k 3 =2(m-1). Therefore, Lemma 2.37 completes the 
proof of Proposition 2.38. 

Now we consider the function L;,s(s, Xdet). We have 

(2.5.3) ,I; X(o)z;s(s; C123, M*(o)) 
o,;!a0 mod p 

=P- 2' ,I; X(o) ,I; {;8 (s; {Vi, Vi, V3}, (.;~P, .;¥l)). 
1$0 mod p TELf/pL; 

det (T)eao mod p 

Dividing the summation into two parts according to t1::;::O modp or not in 

T = (~1 ~12), we see that the left side of (2.5.3) is equal to 
12 2 

p- 2' ,I; X(o)z;s(s; {V 1, Vi, V3}, (<(t1-2t12)/p), <2t12/P))) 
a,t1;E0modp 
t12modp 

+r 2• .I: X(-ti2Ks<s; {V1, Vi, V3}, (<-2t12IP), <2t12/P))). 
t12;;;i:0 mod p 
t2 modp 

Using the well-known fact that .I:o,taOmodp X(o)=O, we get 

(2.5.4) ,I; X(o)z;s(s; C123, M*(o)) 
,,taomodp 

=p 1- 2•x(-4)- 1 .I: X(a2)z;s(s; { Vi, Vi, Va}, « -a/p), <aJp) )). 
c,jlaJmodp 

Since Proposition 2.22, Lemma 2.36 show that 
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Z: X(a2)J(l-m; (<-a/p), (a/p)))=O (me N), 
a,;!;Omodp 

it is not difficult to see from (2.5.4), (2.3.25), Proposition 2.22, Proposition 
2.24, and Lemma 2.36 that the function in the left side of the equality 
(2.5.4) is holomorphic at s= 1-m, and moreover that its special value at 
s= 1-m is given by 

(2.5.5) E X(o)i:s(s; C123, M*(o))I = X(-4)-14ic(-l)m+lp2m-lqm) 
J!j!;Omodp S=l-m (2m)! 

xJ logt- E X(a2)<fa(t; (a/p>)<JJ<2m>(t; 1-(a/p))dt, 
I,(oo) a;!;O mod p 

where e is taken sufficiently small. In a similar manner as in Lemma 
2.31, we can write 

2m+l 

(2.5.6) Z: X(a2)<fa(t; (a/p)}/Pm>(t; 1-(a/p))= Z: AJ<p<il(t), 
a,;1;0 mod p J=l 

where <fa(t)=<fa(t; 0)= 1/(et-1), and },,J (1 <j <2m+ 1) are given by 

(2.5.7) (- l)ij! },,J= (2m)! . I: X2(a)B2m+1-i(a/p)). 
(2m+ 1-J)! a;!;Omodp 

We notice that },, J = 0 if j is even. By a similar argument as in the proof 
of Lemma 2.31, we have 

(2.5.8) 

(note that },,JBJ=O if f~l). Computing the number ),,1 from (2.5.7), we 
get, by (1.2.11), (2.4.5), 

if x2 is non-trivial, 

(2.5.9) if X is quadratic. 

Moreover, we find that 

I: X(o)Cs(s; C130 M*(o)) 
J;!;Omod p 

=P- 28 E X(t1t2)Cs(s; {V1, V2}, (t1/P)) 
ti,t2'1=0 mod p 

The case of the cone C23 is similar. Thus we have, identically, 
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(2.5.10) I; X(oKs(s; Cjs, M*(o))=0 a,. modp 
U= 1, 2). 

In view of the identities from (2.5.4) to (2.5.10), we obtain the following 
proposition. 

Proposition 2.39. The sepcial values at S= 1-m (m= 1, 2, ... ) of 
Lts(s, Xdet) are given as follows: 

22m+1m B2m,z• 1 
X(-4)- 1(- l)"' 

Lts(l-m, Xdet)= X(- l)(- l)"'-1 
( 2m-t l)B 

--~-m-+-lm-- p - 2m 

t being the unique non-trivial quadratic character mod p. 

ifX~t, 

ifX=t-

By virtue of Proposition 2.38 and Proposition 2.39, we can evaluate 
the special values Lt(l-m, Xdet) explicitly. The result is given in Theorem 
2 in the introduction. 

Finally, we shall evaluate the value ~t(0). Using (2.4.3), Proposition 
2.11, Proposition 2.12, and Proposition 2.15, we get 

~tp(0)= 1/24. 

Further, we see from Proposition 2.22 that J(l-m; (1, 1))=0 (me N) 
and that 

Since we can write ef>(t)<f/2l(t)= µ1</>'(t)+ µ21><2'(t)+ µ8if><3'(t) with µ1 = -1/6, 
µ2= -1/2, µs= -1/3, we have 

f log t·ef>(t)1><2'(t)dt= -211:i ± µJ~J = -rri/12, 
I£(oo) j=l j 

which shows that J'(0; (1, 1))= -3rr 2/2. We see from Proposition 2.24 
that K(O; (1, 1))=0 (note that .A'to,1)=%<1,0,=0). Therefore, the function 
(s(s; {V 1, Vs, Vs}, (1, 1)) is holomorphic at S= 1-m (me N), and its special 
value at s=0 is given by 

(2.5.11) (s(0; {V1, V2, Vs}, (I, I))=iC(I)J'(0; (I, I))= -3/32. 

Moreover, we have by Proposition 2.25, 

(s(0; {V 1, Va}, l)= 1/12, (s(0; {Vi, Vs}, 1)= 1/16, 
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which, in addition to (2.5.11), imply that ~~s(O)= -1/48. Accordingly, 

Thus we are successful in giving another proof of the following theorem 
due to Siegel [20, Satz 3], Shintani [16, Theorem 2]. 

Theorem 2.40 (Siegel-Shintani). The special value at s=O of the zeta 
function ~t(s) is given by 

~f(O)= 1/48. 

Chapter m. Some applications to the representation of Sp(2n, Fp) 
in the space of Siegel cusp forms 

3.1. The representation µk of Sp(2n, Fp) in the space of cusp forms 

Let ~n be the Siegel upper half plane of degree n: ~ n = { Z e Mn( C) I 
Z = t Z Im (Z) > O}. The real symplectic group @2n = Sp(2n, R) of degree 
2n acts on ~n in a usual manner: · 

Z~g(Z)=(AZ+B)(CZ+D)- 1 ( Z E SJn, g=(t: ~) E @2n )· 

By this action, @2n/{ ± l} gives the group of biholomorphic automorphisms 
of ~n· We put 

J(g, Z)=det(CZ+D) for g= ( j ~) E @2n· 

Denote by I' 2n(l) the principal congruence subgroup with level l (le N) of 
the Siegel modular group Sp(2n, Z): 

I' 2n(l)={r e Sp(2n, Z)Jr=lzn modi}. 

For a positive integer k, let @S/I'2n(l)) be the space of Siegel cusp forms 
of degree n, weight k with respect to I' 2n(l); namely, it consists of all holo
morphic functionsf(Z) on SJn which satisfy the following two conditions: 

{(i) J(r(Z))=J(r, Z)kf(Z) 
(ii) det (Im (Z))k12 Jf(Z) J 

for any re I' 2n(l), 
is bounded on SJn· 

We write, simply, I' 2n=I' 2n(l) ( =Sp(2n, Z)). The group I' 2n(l)is a normal 
subgroup of I'zn• For a E I' 2n and/ E @SiI'2n(l)), we put 
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(3.1.1) (fj [a]k)(Z)=J(a, Z)-k f(a(Z) ). 

Obviously,fj[a]k e 6iI' 2n(l)). In the following we suppose that p is an 
odd prime. It is well-known that the quotient group I' 2n/I'2n(p) is 
isomorphic to the finite symplectic group Sp(2n, Fp) of degree 2n over the 
finite field FP of p-elements. For a e I' 2 n, a=a modp is regarded as an 
element of Sp(2n, Fp) via the isomorphism I' 2n/I'2n(p)~Sp(2n, Fp). By 
means of (3.1.1), one can construct a representation µk of Sp(2n, Fp) in 
the space 6iI' 2,.(p)); for a E Sp(2n, Fp) (a E I' 2n) and f E 6iI' 2n(p)), we 
set 

(3.1.2) 

It is easily checked that (3.1.2) is well-defined. We put, for re @2,., Z e 
SJ,., 

We have H(r; g(Z))=H(g- 1rg; Z) for g, re @2,.. Denote by dZ the 
invariant measure on SJ,. given by 

dZ=det(Y)-n-t CT dX;JdY;J 
1:J.i:;ij:J.n 

for Z=X+iY. 

The following theorem is due to Godement [2] (see also Lemma 1 of [5]). 

Theorem 3.1 (Godement). Let k>2n. The trace of µia- 1) (a e I' 2,.) 

is given by the following formula: 

tr(µla- 1))=a(k)J I: H(r; Z)dZ, 
I'2n(P)\~n rEI'2n(p)a 

where we put 

(3 1 3) a(k) -- r n(k-(n+ I)/2) 
. . - 2"(2tr)"<n+t)12r ,.(k-n- I) 

(for r n(s), see Chap. I). 

For a symmetric matirx x of size 1,1 (1 <v:::::n), we write 

(3.1.4) t,.,.(x)=(ln ~ 8). 
0 1,. 

Suppose that a (a e I' 2,.) is Sp(2n, Fp)-conjugate to some element t,.,.(S) 
with Se L., det (S)~O mod p. For each integer r (1 :::::r:::::n), let Ilr(a) 
be the set consisting of all elements re I' 2n(p)a that are I' 2n-conjugate to 
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some elements tn,rCx) with x e L" det (x):¾=O. Set, following [16, § 3 of 
Chap. 2], 

(3.1.5) In(Ilr(a); k)=a(k)f ~ H(r; Z)dZ. 
I'2n(P)\~n rEllr(a) 
n 

Put Un= [I (2r:k/I'(k)). 
k-1 

We denote by ong the invariant measure on @2n which satisfies 

for any integrable function/ on ~n· Then we have 

(3.1.6) 

3.2. On the integrals In(Ilr(a); k) 

In the case of a= 12n, Shintani [16] proved the absolutely convergence 
of the integrals In(Ilr(a); k) under a certain condition fork and expressed 
the values of them as elementary constant multiples of the special values 
at non-positive integers of the zeta function .;;(s). In the following, as 
quite an analogy of Shintani's results, we evaluate the values of the inte
grals In(Ilr(a); k) for a general a by using the special values of .;;(s; -d!'). 
We keep the notation used in Chap. I. 

Let 1 <1.1::;;,n and let Se L, with det (S)~O mod p. We may assume 
that a=tn,,(S). Then we observe that Ilr(a)~<P only if v<r;;;;,n. Set 

ra,p={a E I'2n I a- 1aa=.a modp}. 

Then, I'a,p is a subgroup of I' 2n, and I' 2n(P) is a normal subgroup of I'a,p· 
In a formal manner, we get, by (3.1.6), 

(3.2.1) InCilr(a); k)=a'(k)[I'.,P: I'2nCP)] 

xf ~ ~ H(g- 1rg; iln)ong, 
I'2n\®2n qEI'a,p\I'2n rEq-lllr(a)a 

where [I'a,p: I' 2n(p)] denotes the group index of I'a,p to I' 2n(p). Let 
2';;'(S) be the same as in (1.2.3). Denote by ® 2n,r the subgroup of @2n 

consisting of all matrices whose left lower (2n - r) X r blocks are zero. 
Every element q of ® 2n,r has the following block decomposition: 
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(3.2.2) (
1 Yi Yiz)(l, n ty O 0 q= 12 

In 
o )(a <X ta-1 /3), 

1n-r r o 

where a E GL.(R), h= [~ 1] E ®zcn-r), X12, Yiz E M(r, n-r; R), Yi E Mr(R) 

(C Yi= Yi)- Let on,,q be the left invariant measure of @2n,r given by 

Lemma 3.2. Let rx=tn,.CS) with Se L., det (S)~O modp. For each 
integer r with v-s;,r<n, we have 

u <J-1II,(rx)a= u r- 1{tn.rCx) IX E 2'~')(S)}r 
t1EI'a,p\I'2n rEI'2nn@2n,r\I'~Hi 

(the both sides are disjoint unions). 

Proof. In the proof we use, implicitly, the fact that p is an odd 
prime. The disjointness of the unions is clear. First, let x e 2'~r>(S), 

r e I'zn· There exists U e GLr(Z/pZ) with X= U ( g g) 1 U mod p. Since 

the map /3---'>-fi of I' 2n to Sp(2n, Fp) is surjective, there exists a1 e I' 2n such 
that tn,rCx)=a11rxa1 modp. Thus, r- 1tn,rCx)r=(air)- 1-r1rx(aif) with some 
1:'1 E I'znCp). Write <l1r=p<l with p E I'a,'{J and <J E I'a,p\I'zn• Then, 
r-1tn,rCx)r = a- 1p- 1-r1rxpa. Since p- 1rxp = rx modp, we have p- 1rxp=-r2rx 
with some -r2 e I' 2n(p). Hence, p- 1-r1rxp e Ilr(rx). 

Conversely, let <J E I'a,p\I' 2n, and let -r E I' 2n(P) with -rrx E Ilr(rx). 
Then we have <J-1'1:'<X<J=r-1tn,r(x)r with some r E I'2n n ®2n,r \I'zn and XE 

L,, rank(x)=r. The task we have to do is to prove that x e 2'~r>(S). If 

-I h -1 _ ( ) d w • • (A B) I' we put ra =r1, t en, r1 rxr1=tn,r X mo p. ntmg r1 = CD E 2n 

we have 

(3.2.3) 
(g g)c=O modp, 

c(~ g)=o modp. 

Since tDA-tBC=ln, we get, by (3.2.3), 

We decompose A, C, Das follows: 
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Since det(S)$0 modp, we have, again by (3.2.3), c1:::::0 modp, c2:::::0 
modp. Thus we see easily from the relation AtD-BtC=ln thatafd 1+ 
a~d2= I, mod p. Accordingly, there exists some VE GLn(Z/pZ) of the 

form V=(!1 !2)- We have, by (3.2.4), tv(g ~)v= (~ ~) modp. 

Thus, (i ~) E 2t>(S). In the same manner as in the proof of Lemma 

1.4, we can conclude that x E 2'~r>(S). q.e.d. 

We set 

Let v;;;,r;;;,n. Using the decomposition in Lemma 3.2, we get, by the 
equality (3.2.1), 

(3.2.5) In(llr(a); k) 

=a'(k)[I'a,p: I'2n(P)]f I: H(g- 1tn,rCx)g; iln)ong. 
I'2nn<»2n,r\®2n xE.PV) (S) 

Making use of Lemma 22 of [16] and the decomposition (3.2.2) of 
q E @2n,n We have 

(3.2.6) 

=a'(k)[I'.,p: I' 2n(p)]2r(2n-r+1)/2 ~n(J\:' 
n-r r 

xf X(gt-<r- 1>12 I: det(l 7 -igxtg)-kdrg 
Gll'. +JSL,(Z) xE _.,~r, (S) 

=a'(k)[I'a,p: I'2nCP)]2rc2n-r+1J12 ~:~:c: 
X Z(f;(x, k), 2' 7 (S), n-(r-1)/2). 

By virtue of Proposition 1.6, the integral Z(f;(x, k), 2' 7 (S), n-(r-1)/2) 
is absolutely convergent for k>2n+3, and hence the equalities (3.1.6), 
(3.2.1), (3.2.5), (3.2.6) can be justified definitely. Thus the absolutely con
vergence of the integral In(llrta); k) follows for k>2n+3. We obtain 
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Proposition 3.3. 

Proposition 3.3. Let I;;;;v;;;;n and take Se L" with det(S):5;:0modp. 
Put a=tn,.CS). For each r (v;;;;r.S:n), the integral ln(Ilr(a); k) given by 
(3.1.5) is absolutely convergent.for k::2'.2n+3 and is equal to 

lr . I' (p)Jp-r(n-(r-l)/2)b(n k r)Q e*(r-n ~(r)) 
a,p• 2n , , n,r<:.r , "S , 

where we put 

n-r 
(3.2.7) b(n, k, r)= [I (2k-n-j)(2k-n-j+2)- · -(2k-n+j-2), 

j-1 

(3.2.8) 
2r(n-r)-1 

Q _ Wn-r 
• n,r - un_J4ir)Cn-r)(n-r+l)/2 

(we understand b(n, k, r)= I, Qn,r= I for r=n). 

Proof The absolutely convergence of the integral In(Ilr(a); k) has 
already been verified. The functional equation in Proposition 1.9 shows 
that 

(3.2.9) Z(.f;(x, k), £\(S), n-(r- I)/2) 

irr<r+1i12p-r<n-cr-1i12ic r (k-n- I) 
= 2(2ir)r(r-n)rr(k-(r~ 1)/2) -f;(r-n, ,~l). 

The latter half of the assertion is a direct consequence of (3.2.6), (3.2.9). 

3.3. Traces of µia) in the case of degree 4 (n = 2) 

We consider the case of n=2, v= I. Take a non-quadratic residue 
,c mod p and fix it. For any integer µ prime top, we put 

It is easy to see that 

[I'aµ,P: I'lp)]=2p\p 2- 1). 

Since L(-1, ,Jr)= -B 2,;,/2, ((-1)= -1/12, the identity (1.2.12) shows that 

~t(-1, ,11))=- ! t(µ),;,B2,t+ 214 (1-p2). 
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It follows from Proposition 3.3 that, if r = 1. 

It is immediate to see from Proposition 1.2, Proposition 3.3 that, if r=2, 

lz(Ilz(aµ); k)= p(p;- l) {p,fr(- l)Lt(O, i/rdet)+p,fr(µ}i:,,,L;(O, i/re,p) 

+(p 2-l)~t(O)} (k>7). 

Thus, by virtue of Theorem 2 in the introduction and Theorem 2.40, we 
obtain 

It is essentially known by [1], [13], [14], [5] and verified in a similar manner 
that, ifn=2, in the trace formula for tr(µla;;- 1)) in Theorem 3.1, the con
tributions from any other conjugacy classes except from Il,(aµ) (r= 1, 2) 
vanish identically. Thus one obtains, if k>7, 

Summing up the results above, we obtain the following theorem (and also 
(0.3) in the introduction). 

Theorem 3.4. Letµ be any integer prime top. If k>?, then, 

tr (µiaµ))= -2- 53- 1p2(p 2 - 1){,fr(- µ}r:,,_B2 ,,i,+(p 2 - 1)/6}{2k-3) 

+2- 1p(p 2 - l){p,fr(-µ}i:,i,Lt(O, i/re,p)+2- 43- 1(2p2 -p- l)}. 

It is well-known that 

T ={ ,/p 
t i~p 

P=l mod 4, 
P=3 mod 4. 

Substituting 1, ,r, for µ and subtracting tr (µia,)) from tr (µia 1)) in 
Theorem 3.4, we obtain Theorem 3 in the introduction. As a direct 
corollary of Theorem 3.4, the imaginary part of tr (µiaµ)) is given as 
follows: 

p=l mod 4, 
p=3 mod 4. 
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