
Advanced Studies in Pure Mathematics 15, 1989 
Automorphic Forms and Geometry of Arithmetic Varieties 
pp. 41-64 

On Dimension Formula for Siegel Modular Forms 

Ryuji Tsushima 

§ 0. Introduction 

Let @:ig be the Siegel upper half plane of degree g, and let Sp(g, Z) be 
the Siegel modular group of degree g. Let I' be a subgroup of Sp(g, Z) 
of finite index, and let µ be a holomorphic representation of GL(g, C) into 
GL(r, C). By an automorphic form of type µ with respect to I', we mean 
a holomorphic mapping/ of@:ig to the r-dimensional complex vector space 
C' which satisfies the following equalities: 

f(M(Z))=µ(CZ+D)f(Z), 

for any M = ( ~ ~) e I' and Z e @:iv where M (Z) is defined to be 

(AZ+B)(CZ+D)-1. (We need to assume the holomorphy off at "cusps" 
if g= 1.) We denote by Aµ(I') the complex vector space of automorphic 
forms of typeµ with respect to I'. It is known that Aµ(I') is finite di
mensional ([8]). In case µ(CZ+ D) = <let (CZ+ Dl, an automorphic form 
of type µ is also called an automorphic form of weight k, and Aµ(I') is 
also denoted by AiI'). In case the degree of µ is greater than one, an 
automorphic form of type µ is called a vector-valued automorphic form. 

Our main problem is to find a formula for dim Aµ(I') as a function 
in the signature ofµ. The first result to our main problem was obtained 
by J.-1. lgusa in case g=2. (The case g= 1 is classical.) Let I' g(N) be 
the principal congruence subgroup of Sp(g, Z) oflevel N, i.e., 

I'g(N)={Me Sp(g, Z)IM=1 2gmodN}. 

A(I') : = EBk;;,o AiI') has a structure of a graded ring. By using the theory 
of theta series, he explicitly determined the generators of A(I') and repre
sented these generators by theta constants for some cases such as I' = I' z( 1) 
or I'z(2) ([29], [30]). Especially dim AiI'z(l)) and dim AiI'z(2)) were 
known in this work. In [31], he constructed a graded ring homomorphism 
pg from a subring Rg of A(I' g(l)) to the graded ring S(2, 2g+2) of binary 
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(2g+2)-forms. Rg contains A(I'g(l))C2l:=E0k;;,oA2iI'g(l)) and coincides 
with A(I' g(l)) if g is odd or g=2, 4. p1 is bijective and p2 is injective. 
He reproved the structure theorem of A(I'z(l)) by using this homomorph
ism p2 and the structure theorem of S(2, 6). But these methods were re
stricted to special cases of I' and the case of weight k. 

Fm general group I' and representationµ, two main approaches are 
known. The first is a geometric one which uses Riemann-Roch
Hirzebruch's formula and the holomorphic Lefschetz fixed points formula 
(when I' has fixed points). The second is a group-theoretical one which 
uses Selberg's trace formula. 

If N'?:_ 3, then I' g(N) acts on @:>g without fixed points. So Xg : = 
I' g(N)\ @:>g is a manifold in this case. But Xg is not compact. I. Satake 
constructed a compactification Xg of Xg which is a projective variety ([43]). 
But if g>2, then Xg has bad singularities along its cusps: Xg-Xg. J.-I. 
lgusa constructed a desingularization J\, X3 of X2, Jl3 which is a blowing 
up of X2, Jl3 along its cusps, respectively ([32]). For general g, a smooth 
compactification Xg of Xg was constructed in. [3] and in [41]. When we 
need to specify the level N, we denote Xg, Xg and Xg by Xg(N), Xg(N) 
and Xg(N), respectively. 

The first result to our main problem from the first approach was ob
tained by T. Yamazaki ([57]). He applied Riemann-Roch-Hirzebruch's 
formula to X 2 and calculated dim AiI'z(N)) with N> 3. The first result 
to our main problem from the second approach was obtained by Y. Morita 
and U. Christian independently ([39], [9] and [10]). They calculated 
dim AiI'z(N)) with N> 3 by Selberg's trace formula. The next result 
would be the author's one. In 1979, he calculated dim A.(I's(N)) with 
N2 3 by applying Riemann-Roch-Hirzebruch's formula to X3 ([50]). Next 
in 1980, the author applied the holomorphic Lefschetz fixed points formula 
to the action on Xz(N) of I'z(l)/I'z(N) with N>3 and calculated 
dim AiI'z(l)), and then dim AiI'z(2)) simiiarly ([51]). About the same 
time K. Hashimoto calculated dim Ak (I' 2 (1)) and dim Ak (I'z(2)) by 
Selberg's trace formula ([19] I). These results can be regarded as the 
third proof of the structure theorem of A(I'z(l)). He (and T. lbukiyama) 
also explicitly calculated dim Ak(I') for more general congruence sub
groups such as I'=I'o(p), where p is a prime number and I' 0 (p)= 

{M=(~~)IC=Omodp} ([19] I, [22] and [28]). Next in 1982, the 

author explicitly calculated the dimension of the spaces of vector-valued 
automorphic forms Aµ(I'z(N)) with N> l by geometric method ([52]). 

There are discrete subgroups of Sp(g, R) which have quite different 
properties. For discrete subgroups I' of Sp(g, R) suchthatI'\@:>g iseom
pact, dim A/I') was calculated in [26], [33] and [27] by geometric method 
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and in [37] by Selberg's trace formula. They expressed the dimension 
of Aµ(I') as a finite sum of invariants attached to each elliptic fixed point 
of I', or what is the same, elliptic conjugacy classes of I'. So the dimen
sion can be calculated once a complete list of such data is known. (They 
solved this problem for general bounded symmetric domains.) Sp(2, R) 
has discrete arithmetic subgroups which are related to a quaternion unitary 
groups. The quotient space of @52 by a group of this type is not compact 
but it is compactified by adding a finite number of points to it. As to such 
a group I', dim AiI') was calculated in [56], [46] by geometric method 
and in [I], [19] II by Selberg's trace formula. We refer the reader to a 
note by I. Satake [45] and Satake-Ogata's article in this volume. 

So our next problem should be to calculate dim AiI's(I)). The 
author was studying this problem by geometric method and K. Hashimoto 
was studying by Selberg's trace formula. But there were some difficulties 
unsolved on both sides (see § 2). So recently we were studying this prob
lem jointly ([23]). But this work has not been completed now. While we 
were studying this problem, S. Tsuyumine succeeded to solve it ([54]). His 
method is similar (but far more complicated) to the Igusa's second proof 
for the structure theorem of A(I'z(I)). The kernel of Igusa's graded ring 
homomorphism p3 : A(I's(I))-S(2, 8) was known to be an ideal which is 
generated by a cusp form X18 of weight eighteen ([31]), and the structure of 
S(2, 8) was known by T. Shioda ([48]). Tsuyumine explicitly determined 
the structure and the generators of the graded ring A(I's(I)) by using these 
results. So especially dim AiI's(I)) was known. 

Although our problem was already solved, it is still not meaningless 
to solve this problem by our method, because Tsuyumine's method is re
stricted to the case of the full modular group I's(l) and of weight k. If 
dim Ak(I's(I)) is calculated by our method, it is easy to extend this result 
to the case of general congruence subgroups or the case of vector-valued 
automorphic forms, since the process to reach there has been already 
reduced to a routine work (modulo the vanishing theorem in the vector
valued case). 

To solve our problem by geometric method, we need to classify the 
fixed points sets of the action of the finite group H :=I's(I)/I's(N) with 
N> 3 on the smooth compactification X.(N) and to classify all conjugacy 
classes of H which have fixed points on X,(N). We need to calculate the 
contributions to the dimension formula of these conjugacy classes one by 
one by the holomorphic Lefschetz fixed points formula. We define that 
two fixed points sets of Hare equivalent to each other if there is an element 
of H which maps one fixed points set to another. In this classification 
there are more than one hundred kinds of fixed points sets (in the case of 
degree two, there were only twenty-five) and there are about three hundreds 
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conjugacy classes which have fixed points on Xs(N). 
To solve our problem by Selberg's trace formula, we need to classify 

all conjugacy classes of I' 3(1) which have non-zero contributions to the 
dimension formula. Although in the case of geometric method, we study 
the finite group I' 3(1)/I's(N) and in the case of Selberg's trace formula, 
we study the infinite group I's(l), the classifications of these conjugacy 
classes go almost in parallel with each other. So in both methods, 
we need to calculate the contributions of about three hundred conjugacy 
classes. To execute such a hard calculation, it is very effective to 
compare the results from these two approaches with each other. 

Let f(t) be the generating function of A(I' 3 (l)), i.e., f(t)= 
~k;,,o tk dim AiI',(1)). Then this is a rational function and the degree of 
the denominator of f(t) is one hundred and ten. (There is a misprint in 
[54] p. 832, (l-T1 2)' in the denominator should be (l-T 12)2.) So the 
expansion of f(t) to partial fractions has essentially fifty five terms, since 
f(t) is an even function. We are calculating the coefficients of these fifty 
five terms one by one and we have calculated these coefficients except the 
following four terms: 1/(1-t), 1/(1-t)2, 1/(p-t) and 1/(p2-t), where 
p=exp (2rri/3). Among them, the coefficient of 1/(1-t) is the most dif
ficult one. To determine this exactly, we need to calculate the contributions 
of about one hundred conjugacy classes. Perhaps we need to spend much 
time and effort such as mathematkians of old times spent to calculate the 
circular constant. 

The joint work of K. Hashimoto and the author was expected to 
be one of main parts of this volume. But unfortunately it is still incom
plete, and therefore instead the author presents here an expository note. 

In 1986 a paper of M. Eie and C.-Y. Lin was published in American 
Journal of Mathematics which states that they found the formula for 
dim Ak(I',(I)) by Selberg's trace formula ([15]). If this were true, our 
effort will be of no use. But the author should confess that this paper 
seems very deceptive to him. In the end of this note, we comment on 
this paper. 

§ 1. Dimension formula for I'lN) and I's(N) with N> 3 

For the sake of simplicity we mainly study the case of weight k in 
this note. In this section we present the calculation of dim Ak(I'lN)) with 
N> 3. The method we employ now was developed by the author in [50] 
and is more systematic than the original method ofT. Yamazaki. 

In both methods (geometric and Selberg), we do not calculate the di
mension of Aµ(I') directly, but calculate the dimension of the space of 
"cusp forms" Sµ(I'). Sµ(I') is a subspace of Aµ(I'), and dim Aµ(I') is 
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calculated by a theory of Eisenstein series from dim Sµ(I'). So we need 
to define the space Sµ(I'). 

We recall the construction of the compactification Kg of the quotient 
space Xg. Since 6g is not a bounded domain, a part of its boundary is 
in "infinite place", so we need to consider a bounded domain q; g which is 
biholomorphic to 6g. We put 

q;g :={Z e M(g, e)!IZ=Z, Z*Z<lg}· 

Then q;g is a bounded domain and the Cayley transformation c: 6g-+q;g 
is defined to be 

and this is a biholomorphic mapping. The action of Sp(g, R) on q; g ex
tends to its closure ?JJ gin eg<g+tl/ 2• 

We put 

where O::;;;;,g'<g. Then Fg' is in ?JJg-q;g and biholomorphic to q;K,. Fg' 
and its images by the action of Sp(g, R) are called boundary components 
of degree g' of q; g• ?JJ g- q; g is devided into a disjoint union of boundary 
components. Fg' and is images by the action of Sp(g, Z) are called 
rational boundary components of degree g' (for the definition of a (rational) 
boundary component in general, see a text book for example [44]). We 
define a certain topology on q;~ : = q; g U { rational boundary components} 
(l43]), and Satake's compactification Xg(N) is the quotient space of q;; by 
I' g(N). Xg(N)-Xg(N) is a disjoint union of a finite number of copies of 
Xg,(N) (O<g'<g) and a copy of Xg,(N) in Xg(N)-Xg(N) is called a cusp 
of degree g'. Any smooth compactification Xg has a morphism 1rg: Xg-+ 
Xg which is the identity on the quotient space Xg. Here we take a so
called toroidal compactification due to D. Mumford ([3]). Then E :=Xg 
-Xg is a divisor with normal crossings and each irreducible component 
in E has a structure of a fiber space over a cusp of degree g-1 through 
1Cg whose general fiber is an abelian variety of dimension g-1. 

Let µ: GL(g, e)-+GL(r, C) be a holomorphic representation. We 
define an action of Sp(g, R) on the product space 6g X er by 

M(Z, u) :=(M(Z), µ(ez+D)u), 

for M = ( ~ ~) e Sp(g, R), Z e 6g and u e er. If N> 3, then the quotient 
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space Vµ of6gXC' by I'g(N) has a structure of a vector bundle on Xg. 
From the construction of the smooth compactification Xg ([3], [41]), it is 
proved that this vector bundle Vµ has a natural extension to a vector 
bundle t\ on Xg. (Vµ is not extended to a vector bundle on Xg in general.) 
In case µ(CZ+ D) = det (CZ+ D), Vµ and r\ are line bundles and denoted 
by Lg and Lg, respectively. Lg is extended to a line bundle Lg on Xg such 
that the restriction of Lg to a cusp of degree g' is isomorphic to Lg' and 
Lg is the pullback of Lg by 1rg. This line bundle Lg is ample and the 
projectivity of Xg follows from this fact ([5]). The space Aµ(I' g(N)) is 
naturally identified with I'(Xg, @(f\)). 

Definition (1.1). The space of cusp forms Sµ(I' g(N)) is defined to be 
I'(Xg, @(f\-E)), where @(-C\-E) means the subsheaf of @(J\) consisting 
of the germs of sections of f\ which vanish along E. If g :2: 2, then any 
subgroup I' of Sp(g, Z) of finite index contains I' g(N) for some N:2: 3 ([6] 
and [38]). Sµ(I') is defined to be Aµ(I') n Sµ(I' g(N)). In case g= 1, a 
subgroup I' of SL(2, Z) of finite index does not contain I'i(N) in general 
but always contains a normal subgroup I'' of finite index which acts fixed 
points free, so Sµ(I') is defined by using I'' instead of I'i(N). In case 
µ(CZ+D)=det (CZ+DY, Sµ(I') is also denoted by S.(I'). 

Let w=h(Z) TI;,;;iZii be a holomorphic n-form on 6g (n=dim 6g= 
g(g+ 1)/2). Then w is invariant under I' g(N), i.e., f*(w)=w for any f e 
I' g(N), if and only if h belongs to Ag+iCI' g(N)). So the line bundle L'f(g+1> 

on Xg is isomorphic to the canonical line bundle Kxg of Xg. We denote 
by w the n-form on Xg which is induced from w. 

Proposition (1.2). w may have a single pole along E, so the sheaf 
@(£'fcg+1>) is isomorphic to @(Kxg + E). 

Outline of the proof Let E1 be an irreducible component of E. Then 
E1 consists of the limits of the points in Xg, and E1 is defined by an equa
tion for example Im (Z 11) = oo. In this case the coordinates of the generic 
point on E1 consist of W11 :=exp (2niZ 11/ N) and (Zi)i<i,:;j, and E1 is de
fined by W11 = 0. By these coordinates, w is represented as 

h(Z)NdW 11/2niW11 TI 1<i-c;,iZii• 

since dZ 11=NdW 11/2niW 11. Sow may have a single pole along E. 

The reason to calculate dim S.(I') is that we can apply the theorem 
of Riemann-Roch-Hirzebruch by the following 

Theorem (1.3). For i>0 and k>g+l, we have 
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Hi(Xg, <P(Dfk-E))=0. 

Hence dim SiI' g(N))=X(Xg(N), <P(Dr-E)) (the Euler-Poincare charac
teristic). 

Proof Let [E] be the line bundle associated with the divisor E. Then 
the sheaf <P([~k-£) is isomorphic to <P([~k@[E]®<-1)), and by the above 
proposition this is isomorphic to <P(£rck-g-'J(8)K2 ). Since Lg is a pull-

- g 
back of the ample line bundle Lg, our assertion is essentially a consequence 
of the Kodaira vanishing theorem ([36]). 

Let ci (l<i<n) be the i-th Chern class of Xg and let Qn be the 
Riemann-Roch polynomial of dimension n. By definition the space of 
cusp form SiI'g(N)) is I'(Xg, <P([rk-E)), so if k>g+2, then from the 
above theorem the dimension of this space is equal to 

QnCci([~k@[E]®C-')); C1, ···,en), 

where ci(L) means the first Chern class of L. 
So our problem is reduced to the calculation of this polynomial. To 

execute this calculation we introduce the notion of logarithmic Chern class 
([50]). 

Definition (1.4). Let X be a compact complex manifold of dimension 
n and Ea reduced divisor on X with simple normal crossings. Then for 
p e E, one may take a coordinate system (z,, · .. , zn) around p such that 
Eis defined by z1 • •• z1 = 0. Let 8 x be the sheaf of germs of local holo
morphic vector fields on X and let 8 x (log E) denote the (locally free) sub
sheaf of 8 x consisting of germs of those local holomorphic vector fields 
which can be expressed in the form 

Uh) holomorphic). 

8 x (log E) is the dual sheaf of .Q~ (log E) which was defined in [11]. We 
denote by T x (log E) the vector bundle which corresponds to 8 x (log E). 
Then the i-th logarithmic Chern class i'\ of X relative to Eis defined to be 
ci (Tx (log E)). 

We denote the total Chern class of X by c(X)= 1 +c, +···+en and 
the total logarithmic Chern class of X relative to E by c(X, E) = 1 + c1 + 
···+en. Let E= U tEr Et be the decomposition of E into a union of ir
reducible components and let ct : = ci([E1]) be the dual cohomology class 
of Ei. Then there is the following relation between Chern classes and 
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logarithmic Chern classes. 

Theorem (1.5) ([50]). We have 

c(X)=c(X, E)· CT;e10+e;). 

Now we calculate the dimension of SiI'z(N)). In the three dimen
sional case, the Riemann-Roch polynomial QlK; Ci, c2, c3) is equal to 

K 8/6+c 1K2/4+(c/+c 2)K/12+c 1c2/24. 

So we need to calculate this polynomial replacing K by ci(f~)l,(8)[E]®<-1l) 
and c1, c2 by the first, second Chern class of 1\, respectively. By Proposi
tion (1.2), C1(f rk@[E]®Hl) is equal to 

-kc1/3- I:; e;, 

and by Theorem (1.5), we have 

C1 =c 1+ I:te;, 

c2=c2+ciCI:t e;)+ I:t<Je;er 

Therefore what we need to calculate is (the value at the fundamental class 
of) the following polynomial: 

2-s3- 4(-4k 8c/+ l8k2c/- l8kc/- l8kc 1c2+27c1c2) 

+2-s3- 2(-2k 2c/+6kc/-3c/-3c 2)(I:t e;) 

+2-s3- 2(-2k+3)ci((I:t Et)2+ I:t<J e;e1) 

-2- 33- 1(I:; e;)(I:t<J e;e1)+(0)(I:; e;)8. 

These intersection numbers in this polynomial are calculated by the follow
ing five methods. 

a) The intersection numbers in the first line are proportional to the 
volume of the fundamental domain of I'z(N) and calculated by the Hir
zebruch's proportionality principle ([40]). 

b) The intersection numbers in the second line vanish. 
c) The first term in the fourth line is calculated by using the theory 

of torus embedding ([35]). 
d) An irreducible component E1 of E has a structure of an elliptic 

surface over a cusp of degree one in X2 by the restriction of the morphism 
l't'2 : x2-x 2 to E1 : 
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The intersection numbers in the third line are calculated by using the 
structure of this fiber space. 

e) We need not calculate the second term in the fourth line because 
its coefficient is 0. But in the original work of T. Yamazaki, he did not 
use the logarithmic Chern classes and in his method the coefficient of this 
term did not vanish. So he needed to calculate this term. He calculated 
this term by using Igusa's theory on theta constants. On the other hand 
in the case of degree three, the coefficient of the term (I;, e,)6 does not 
vanish. So we need to use his method in the case of degree three in 
fact. 

a) Now we return to the general case of degree g. Let Z e 6g and 

put Z=(Z,i). Then for M=(i ~) e Sp(g, R) we have 

So if s2 is the symmetric tensor representation of GL(g, C) of degree two, 
then the vector bundle v .• is isomorphic to the cotangent bundle r;g on 
Xg. We can prove that the vector bundle v .. is isomorphic to T2 g (log E)* 
similarly as in the proof of Proposition (I .2). For the values of the pro
ducts of Chem classes of Vµ, the extended Hirzebruch proportionality 
principle holds ([40]). In particular we have the following 

Theorem {1.6). Let iJ be the compact dual of6g and let/\ be the i-th 
Chern class of i!J. Let v, (1 < i<n) be non-negative integers with 1:, iv, =n. 
Then we have 

( CT i:"i'')[Xg(N)] = c( CT ,c/')[.@], 

where [.@] (resp. [Xg(N)]) is the fundamental class in H 2n(~, Z) (resp. 
H2n(Xg(N), Z)), This constant c is rational and expressed as 

c=(- I)n vol (I' g(~)\6g) . 
vol{~) 

We do not present here the definition of the compact dual and the 

relation between the invariant measures on 6 g and on .@. It is essential 
that the intersection number( CT ,c/')[Xg(N)] is proportional to the volume 
of the fundamental domain. Therefore the value of the first line in ( *) is 
expressed by a polynomial in k and the volume. This polynomial is 
determined uniquely by the symmetric domain. In the case of Siegel upper 
half plane of degree g, this is equal to 
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Tio<t,;;J,;;g (2k+i+ j-2g-2), 

especially this is equal to (2k-2)(2k-3)(2k-4) in the case of degree two 
([26]). So the value of the first line is expressed as 

d(2k- 2) (2k- 3) (2k-4), 

where d is a constant. Comparing the coefficient of k8, we have 

23d= -2- 13- 4c/[.1\(N)]. 

Let n=dim 6g=g(g+ 1)/2 and let XtJ (resp. YtJ) be the real (resp. imag
inary) part of Ztr Then the invariant measure vol on 6g is defined by 
(det Y)-(g+I) ni,;;jdXij ni,;;jdYij' By [7] and [2:i], it is known that 

ct[Xg(N)] =(- l)nrr-n(g+ l)nn! 2-g(g+si12 vol (I' g(N)\6g). 

By [8] and by [49], it is known that 

rr /1): r iN)J=Ng( 2g+I) nplN n1,;;h,,,;go-r 2"), 

vol (I'il)\6 2)=2- 13- 35- 1rr3• 

By using the above results, we derive that 

d=2-103-s5-1NtO nplN(}-p-2)(1-p-4). 

So the first line in ( *) is calculated. 

b) Let E1 be an irreducible component of E=Xg-Xg. Then the 
morphism rrg: Xg---+Xg maps E1 to a cusp of degree g-1. We assume that 
the restriction of rr g to E1 : 

rrglE 1 : E1~Xg-i 

factors through rrg_1: Xg_ 1---+Xg-i· If g<4, then Namikawa's smooth 
compactification satisfies this assumption ([41]). We denote the morphism 
of E 1 to Xg-i by rr and the inclusion of E 1 to Xg by i. In case the repre
sentation µ is the standard representation of GL(g, C), we denote Vµ and 
P\ by Vg and Vg, respectively. Then from the construction of v •. 
(::'. T2 g (log E)*), it is easily seen that there exist the following short exact 
sequences of vector bundles : 

O~rr*(T 2 g_, (log E)*)~i* (T2 g (log E)*)~i*(Vg)~O, 

o~rr*(V g-l)~i*(V g)~C E1 ~o, 
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where CE1 means the trivial line bundle with fiber C on £ 1. We denote 
by c(V) the total Chem class of a vector bundle V. 

Proposition (1.7). From the above exact sequences, we have 

i*(c(Txg {log E)*))=ir*(c(T,rg_, {log E)*)·c(Vg_ 1)). 

Thus we proved that the pullback by i of the logarithmic Chem 
classes of Xg relative to E is represented as a pullback by 1r of Chem 
classes of vector bundles on Xg-i· This property holds for the vector 
bundle V,, for general representationµ. 

Let us return to the case of degree two. From the above proposition 
it is clear that the terms in the second line in{*) vanish, since it holds that 

C12e1[X2]={i*{c1))2[E1], 

(i*{c1))2 is a pullback by 1r of a cohomology class on X1• But X1 is one
dimensional, so this is zero. Similarly c2e1[X2] vanishes. 

The validity of Hirzebruch's proportionality is one of the reasons to 
use logarithmic Chem classes instead of usual Chem classes. To hold the 
above property is another reason. In the case of degree three, the author 
proved a similar proposition as above by using the structure of a group 
scheme of E, - W over X2, where W is the set of points where 1r is not 
smooth and used it to prove the vanishing of many intersection numbers. 
If one uses the usual Chem classes, then the calculation would be much 
harder because such intersection numbers do not vanish. 

c) Now we return to the case of degree two. Let E1 be an irreducible 
component of E. The fiber space ir: E,-+Xi(N) has a structure of a com
pactification of the universal family of elliptic curves with level N. If p E 

Xi(N), then 1r- 1(p) is an elliptic curve and if q is a cusp, then 1r- 1(q) 
consists of N rational curves /1, / 2, · · ·, IN such that It and lt+i meet at a 
point. (We put IN+i =I,.) Since 1r- 1{p) and 1r- 1(q) are algebraically equiv
alent and do not intersect, there exists the following relation among inter
section numbers on E1: 

Moreover we have 

hence 

l/=-2. 
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11 is an intersection of E1 and another irreducible component in E which 
we denote by E2. So we have 

i*(e22)[E1]=e 1e/[x'lN)]= -2. 

Since XlN) has (1/2)N4 TI PIN (l -p- 4) cusps of degree one and Xi(N) has 
(1/2)N2Tip1N(l-p- 2) cusps, there are (1/12)N7Tip1N(l-p- 2)(1-p- 4) points 
in x'iN) where three irreducible components of E intersect and there are 
(1/8)N7TI PIN(l-p- 2)(1-p- 4) rational curves where two irreducible compo
nents of E intersect. Therefore the first term in the fourth line in ( *) is 
calculated as 

(Z::iei)(Z::i<Jeie 1) = Z::i<ieie / + e/e 1) + 3 Z::t<J<keie 1ek 

=(-4/8+3/12)N7TIP1NO-r2)(1-r4). 

e1e/[x'iN)] was easily calculated from the structure of E1 as above. 
But in the case of degree three, the structure of E1 is very complicated so 
we use the theory of torus embedding ([35]) to calculate such intersection 
numbers (see [50] § 2). 

d) From Proposition (1.7) and Proposition (1.2), we have 

i*(c1)= -3rr*(ciC£1)). 

Since c1e1e2[XlN)]= -3rr*(c 1(£1))[/1] and 11 =E 1 n E2 is mapped to a point 
by rr, this number vanishes. So to calculate the third line in(*), it suffices 
to calculate c1e/[XlN)]. 

We have 

Let q be as before. Then [q] is a line bundle on X1(N) of degree one and 
we have 

rr*(ci([q]))i*(e1)[E1]= Z:::f=1 ci([li])i*(e1)[E1]= -2N. 

So the term c1e/[x'iN)]=-3rr*(ci(£ 1))i*(e1)[Ei] is equal to 6N-deg(£ 1). 
Since vol(I'i(l)\6 1) is equal to rr/3, it is similarly proved as before that 
the degree of £ 1 is equal to (1/24)N3 TIP1N(l-p- 2). So we have 

ci(Z:::i ei)2[X2] =c1(Z:::t e/)[x'2] 

= (1/8)N8 TI PIN (1-p-2)(1- p-4). 

Thus we calculated the third line and proved the following 
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Theorem (1.8). If N>3 and k>4, then the dimension of SiI'z(N)) is 
equal to 

c2-103- 35- 1(2k-2)(2k-3)(2k-4) 

-2-a3- 2(2k-3)N- 2 +2- 53- 1 N- 3)[I'z(I): I'/N)]. 

e) Now we calculate the second term of the fourth line in ( * ). The 
following method is due to T. Yamazaki. To calculate this term, it suffices 
to calculate e/[Xz(N)] and to calculate such a self-intersection number we 
need to replace the cohomology class e1 by another cohomology class. We 
recall the definition of theta constants with half-integral characteristics. 

Definition (1.9). Let m=(m', m") be in Z 2K and let m' and m" be the 
first and the lastg components ofm, respectively. For (r, z) in CSgXCK, 
we put 

Om(r, z)= I; e[(p+m'/2)rt(p+m'/2)/2+(p+m'/2Y(z+m"/2)], 
pEZg 

where e[x] is defined to be e2~tx. This series converges absolutely and 
uniformly on every compact subset of <sgx CK. We put Om(r)=Om(r, 0) 
and call this theta constant of characteristic m. 

Om(r) depends only on m mod 2 and this is identically zero if mnm" 
=odd. Therefore there are 2K-1 (2K+l) theta constants which are not 
identically zero. r e <sg is said to be a reducible point if r is equivalent, 
with respect to I' g(l ), to a point in the form 

( r1 0) 
0 'rz ' 

where r 1 e CSg' and r 2 e <sg-g' (0<g' <g). Then we have the following 

Theorem (1.10) ([29] and [18]). In case g=2, there are ten non-zero 
theta constants. Let X10 be the product of the squares of them. Then X10 E 
S 10(I'z(l)) and p E <?32 is reducible if and only ifX10(p)=O. 

Let R be the zeros of X10 in X2 and R its closure in X2• From the 
above theorem we have 

So it follows that 
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We multiply this equation bye/ and calculate (the values of) both sides. 
The left hand side is calculated as lOc1 (l 2)e/[X 2]=(-10/3)l'te/[X 8]= 
( -5/6)N 4 TI PIN (l -p 2). Let R1 be an irreducible component of R. which 
intersects £ 1• Then R1 is biholomorphic to X1 X X1 and £ 1 n R1 has a 
form: {p}XX 1 (or X1 X{p}), wherep is a cusp of X 1• {p}XX 1 and {q}X 
X 1 are algebraically equivalent on R1 and they do not intersect if p~q. 
Therefore we have 

wherej: R1---+X2 is the inclusion. So it follows that 

Next c1([E])e/=c:i3+ I:i<t c:/c:i. So the value of this is equal to c:/[X2]

N3 flp1N(l-p- 2). Thus we conclude that 

e/[1\]=(l/6)N 8 n PIN(l-p- 2). 

In the above five methods, we have used only the structure of x'2 and 
did not use special results except in the last method. Since the intersection 
number c:/[X2] is of topological nature, it is desirable to calculate this 
without using Theorem (1.10). So we present here the following 

Problem (1. 11 ). Calculate the intersection number c:/ ([ X2]) without 
using J.-1. Igusa's results on theta constants. 

In the case of degree three, dim SiI's(N)) with N> 3 was calculated 
by the combinations of the above five methods. The results correspond
ing to Theorem (1.10) is the following 

Theorem (1.12) ([31]). In case g=3, there are thirty six non-zero theta 
constants. Let X18 be the product of them and 2 140 the thirty fifth funda
mental symmetric polynomial of the eighth powers of them. The X18 and 2 140 

belong to S1s{I'3(1)) and S14o{I's(l)), respectively and p e <?58 is reducible if 
and only ifX1iP)=214o(P)=O. 

By using this theorem we can replace the cohomology class ci([E]) 2 

by another cohomology class and calculate such a self-intersection number 
as ci([E])6[.X3]. And the result is as follows. 

Theorem (1.13). If N> 3 and k> 5, then the dimension of SiI's(N)) 
is equal to 
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(2- 1s3-s5-27- 1(2k-2)(2k-3)(2k-4)2(2k-5)(2k-6) 

-2-103-25-1(2k-6)N-5+2-s3-aN-6)[I'a{l): I'a(N)]. 

§ 2. Dimension formula for I' 2(1) and I' 3(1) 
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Since I' g(I) has fixed points on @>8 , I' g(I)\ @>8 has singularities. So 
we need to use the holomorphic Lefschetz fixed points formula to calculate 
the dimension formula for I' g(I). First we recall the holomorphic 
Lefschetz formula. Let X be a compact complex manifold and Va holo
morphic vector bundle on X, and let H be a finite group of automorphisms 
of the pair (X, V). For any h e H, let X" be the fixed points set of h and 
let 

N" = I: 0 N"(8) 

denote the normal bundle of X" decomposed according to the eigenvalues 
ei8 of h. We put 

Cl/to(N"(8))= IT (I-e-"'fl-io)-1 
fl I-e-io ' 

where the (total) Chern class of N"(8) is 

c(N"(8))= ITsO+xfl). 

Let ff(X") be the Todd class of X" and ch (VI X")(h) the Chern character 
of VIX" with h-action ([4]). Put 

(h)= (ch (VI X")(h) · IT 8 Cl/t8(N"(8)) · ff(X"))[X"]. 
µ det {l-h I (N")*) 

Then we have 

Theorem (2.1) ([4]). 

I:p;eo (- l)P Trace (h I flP(X, 0(V)))= µ(h). 

Let flP(X, 0(V))H be the fl-invariant subspace of flP(X, 0(V)). Then 
by this theorem we have 

I:p;eo{- l)P dim flP(X, 0(V))H =- 1- I:1ieH µ(h). 
IHI 

Let N>3. The group H :=I'g(I)/I'g(N) acts on the pair (Xg(N), 
£rk), so it acts on I'(Xg(N), 0(.Lrk(-E))). SiI' g(l)) is identified with the 
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invariant subspace I'(Xg(N), @(L'fk-(E)))H. Therefore dim Sk(I'g(l)) is 
calculated as 

1 
\HI LihEHµ(h), 

under the assumption that the vanishing theorem holds. 

Now we consider the case of degree two. To execute this calculation, 
we need to classify the fixed points sets of H in X2 in the sence we 
defined in the Introduction. The fixed points sets of I'z(l) on ® 2 were 
classified by E. Gottschling in [16] and [17]. By this result the fixed points 
sets of H: =I'z(l)/I'z(N) in the quotient space X2 are classified. Let E1 

be an irreducible component of E = X2 - X2 Then E1 has a structure of an 
elliptic surface over X 1• The action of an element h of H which maps E1 

to itself is decomposed into an action of horizontal direction and an action 
of vertical direction. If h fixes a point in E 1, then the action of horizontal 
direction of h fixes a point in X1• The fixed points in X1 come from the 
fixed points of I' 1(1) on ® 1 which are well known. Since the action of 
vertical direction of h is decomposed into a translation and the involution 
with respect to the origin of the elliptic curve, its fixed points are easily 
classified. Thus we can classify the fixed points over cusps of degree one. 
Let p be a cusp of degree zero in X2 and n-2 : Xc~X 2 as before. Then 
n-2 - 1(p) is a reducible rational variety composed of(l/4)N 3 Tip1N(l-p- 2) 

projective lines meeting three at each one of the (1/6)N 3 TIP1N(l-p- 2) 

points ([32]) and fixed points in n-2 - 1(p) are easily classified. 
What we need to do next is to describe exactly the structure of the 

fixed points sets and to calculate the intersection numbers which appear in 
the holomorphic Lefschetz fixed points theorem. We refer the reader to 
the original paper by the author [51]. 

Now we consider the case of degree three. First we recall Sel

berg's trace formula. For M=(j i) e Sp(g, R) and Z e ®g, we put 

J(M, Z)=det (CZ+D) and Zi 1=Xi 1+-l=TYiJ· Then we have 

Theorem (2.2) ([8] Expose 10). Let I' be a subgroup of Sp(g, Z) of 
finite index. If k > 2g, then 

dim SiI')=qf J:MErJ(M, Z)-k det( M~Z )-k (det Y)kdZ, 
I'\'5g 2 - 1 

where q is a polynomial in k of degree g(g+ 1)/2 and dZ is the invariant 
measure defined by (det Y)- <g+ti TI i~1dXi 1dYiJ· 
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If C is a conjugacy class or subset of I', then the following integral 

qf 'E,MEcJ(M, Z)-k det( M~Z )-k (det YldZ, 
I'\Sg 2 -1 

is called the contribution of C to dim S/I'). 

In the case of degree three, unsolved problems remain on both sides 
(geometric and Selberg, or Tsushima and Hashimoto) to calculate 
dim S/I's(l)). On the side of the geometric method, we need to classify 
the fixed points sets of H on .X3• The fixed points sets in the boundary: 
.X3 -X 3 are easily classified as before. To classify the fixed points in the 
quotient space X3 , we need to classify the fixed points sets of I' 3 (1) on 6 3• 

This problem was solved by K. Hashimoto. In [20], he introduced a 
principle of Milnor and Springer-Steinberg, by which the classification of 
elliptic conjugacy classes is reduced to a problem of Hermitian forms. By 
this method, the elliptic conjugacy classes of I's(l) were enumerated com
pletely, and their contributions have been determined explicitly ([23]). 

On the side of Selberg's trace formula, unsolved problem is to 
calculate special values of zeta-functions or £-functions of various kinds. 
These special values appear as the contributions of parabolic of elliptic/ 
parabolic conjugacy classes of I's(l) (see [19]). The conjugacy classes of 
H=I's(I)/I's(N) corresponding to these conjugacy classes of I's(l) fix 
points in E = X3 - X3• As to the contributions of these conjugacy classes, 
the geometric method is more effective than Selberg's trace formula and 
these contributions are calculated by the geometric method. So if we 
use the geometric method and the Selberg's trace formula jointly, there 
would be no problem unsolved. This was the starting point of the joint 
work of K. Hashimoto and the author. 

Recently T. Arakawa [2] established the method to calculate these 
special values of zeta-functions except the value at the origin of Shintani's 
zeta-function of degree three which appears as the contribution of the 

conjugacy classes of (~s f) with rank S=3. So the difficulties on the 

side of Selberg's trace formula were solved for the most part. But to 
determine the value of Shintani's zeta-function, we need to use the result 
of the geometric method. 

We recall the definition of Shintani's zeta-function. 

Definition (2.3) ([47]). We put 

C:1(s)= 'E, e(T)- 1 (det n-·, 
where the summation is taken over all the SL(r, Z)-equivalence classes of 
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positive definite half-integeral symmetric matrices and 

o:(T)=#{S e SL(r, Z) \ tSTS= T}. 

It is known that the summation in the above definition converges if 
Re (s)>(r+ 1)/2. Furthermore c:(s) has an analytic continuation to the 
whole complex plane with possible simple poles at s=j/2 U= 1, · · ·, r+ 1). 
Let II r be the subset of I' g(N) consisting of elements which are conjugate, 

in I' g(l), to matrices of the form (~g 1~), where Sis an integral symmetric 

matrix of size g and of rank r. The importance of Shintani's zeta-function 
is based on the following theorem and conjecture. 

Theorem (2.4) ([47]). Let C(s) be the Riemannian zeta-function and 
put 

Pg,g'(k)= fl f~1 (2k-g-i)(2k-g-i+2)· · ·(2k-g+i-2), 

Wr=C(2)C(4)· · ·C(2r) (w0 =l), 

Then the contribution Ig(II r• N, k) of II r to dim SiI' g(N)) (N > 3) is equal 
to 

2r(n-r)-1 1'*( +r) [I' (1): r (N)]N-r(2g-r+l)/2 Wn-r'or -g p _ (k). 
g g U (4 )<n-r)(n-r+l)/2 g,g r 

n-r 'Jr 

Conjecture (2.5). If N > 3 and k > 2g, then 

dim SiI' g(N))= L.ir-0 Ig(IIr, N, k). 

This means that the conjugacy classes of I' g(N) (N> 3) other than 
in IIr (O<r<g) have no contributions to dim SiI' g(N)). This conjecture 
is true if g= 1 or 2, and in case g=3, it was proved by P. Ploch, K. 
Hashimoto (and M. Eie), independently. Ct(s) is the Riemannian zeta
function C(s), so its special values at negative integers are wellknown. The 
special values of C;(s) at negative integers were calculated by T. Shintani 
and others. 

The special values of Cf(s) at the origin and negative integers have not 
been calculated. So we determine the value of Cf(O) by Theorem (1. 13), 
Theorem (2.4), and Conjecture (2.5). Since Conjecture (2.5) was verified 
in case g=3, we have the following 

Theorem (2.6). We have 
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In [12] M. Eie claims to have "calculated" all the contributions of the 
conjugacy classes of I's(2) to dim SiI's(2)) except that of IJ3 n I's(2). By 
using the fact that the contribution of IJ3 n I's(2) to dim SiI's(2)) is 
2- 6[I's(l): I's(2)li:t(O) and dim SiI's(2)) is an integer, he proved that 

,:co)= 2- 73-s + 2- 33- 45- 17- 1/, 

where l is an integer. So Theorem (2.6) is proved modulo integers by a 
different method. He also used Theorem (I. 13) to determine the value of 
t;t(O) exactly and used it to calculate dim SiI'a(2)). 

Thus we solved all the problems to calculate dim SiI's(l)). No 
essential problem remains unsolved. But if the calculation is too much, 
too-muchness may be an essential problem. 

In the end we shall make a brief comment on M. Eie and C.-Y. Lin's 
paper [15] published in American Journal of Mathematics in 1986 and M. 
Eie's [13] in Memoirs AMS in 1987. In the first paper they claim that 
they calculated dim Sk(I's(l)) (Main Theorem I), dim SiI' 8(2)) (Main 
Theorem II), and dim SiI's(N)), N> 3 (Main Theorem III). But we can 
admit none of them because of its incompleteness or lack of originality. 

First concerning Theorem I, in the Acknowledgement in [15], they 
assert that they obtained their results independently of S. Tsuyumine. It 
is, however, hard to believe as we show below. 

As mentioned in Introduction, our problem is to calculate the coef
ficients of the partial fractions of the generating function of A(I's(l)). 
There are two different standpoints to solve this problem. One is to 
calculate all the contributions of the conjugacy classes of I's(l) and this 
standpoint is the same as ours. The other is, as written in [15] p. 1064, to 
calculate only contributions of conjugacy classes which are easy to calcu
late and determine the coefficients of some part of partial fractions, and to 
determine the coefficients of the remaining partial fractions by the knowl
edge of modular forms of lower weights instead of the calculation of the 
contributions of difficult conjugacy classes. 

Their "proof" of Main Theorem I in [15] is not complete from either 
point of view. From the first standpoint they refer in [15] Proposition 10 
to their papers [12], [14] and a paper titled "Conjugacy classes of the 
modular group Sp(3, Z), Manuscript (1984)" instead of detailed calcula
tions. Since the last paper has not been published, we cannot say anything 
on it. It might be substituted by [13], on which we comment later. On 
the other hand their papers [12], [14] are not enough complete to be able 
to serve as references. First [12] contains many elementary errors. For 
example in Chapter III Lemma 2, the case when P(X) = (.x2 + X + I )(X4 -

X 2 + I) is missing. But we shall stop listing up all the errors since this 
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was written several years ago. 
Now we comment on [14] which was published in Transactions of the 

American Mathematical Society in 1985. In this paper they "classified" 
the conjugacy classes of elliptic elements of Sp(3, Z) which fix a single 
point in @53• But their result is wrong, since some conjugacy classes are 
missing. We give an example due to K. Hashimoto. Put 

and 

0 -1 1 -2 -1 0 
-1 1 0 0 -1 0 

M= 
1 0 -1 1 1 -1 
2 -1 0 0 1 -1 
0 1 0 1 1 0 
1 -1 1 -1 0 -1 

-2./6 -3./6 -3./2 3./6 -3./2 2./6 ./6 +3./2 -./6 +3./2 
2./6 3./6 -3./2 -3./6 -3./2 -2./6 -./6 +3./2 ./6 +3./2 
8./3 0 0 4./3 -4./3 4./3 
2./6 -./6 -3./2 ./6 -3./2 2./6 -3./6 -3./2 3./6 -3./2 

-2./6 ./6 -3./2 -./6 -3./2 -2./6 3./6 -3./2 -3./6 -3./2 
-4./3 -4./3 4./3 8./3 0 0 

Then M e Sp(3, Z) and P e Sp(3, R). The characteristic polynomial of M 
is (x2+ l)(X 4 -X 2 + 1). And we have 

.r'3 0 0 1 0 0 
0 -.r'f 0 0 1 0 

P- 1MP=(2)- 1 
0 0 0 0 0 2 

-1 0 0 .r'3 0 0 
0 -1 0 0 -.r'f 0 

l 0 0 -2 0 0 0 

So Mis conjugate to e[-1/6, 5/6, 1/2] (in the sense of [14]) in Sp(3, R) 
and its conjugacy class is missing in [14], since elliptic elements which are 
conjugate to e[I/6, 5/6, 1/2] or e[7 /6, I 1/6, 3/2] do not appear in the Table 
II in [14]. 

Therefore their paper cannot be complete from the first standpoint 
since their paper uses a wrong result. 

If they wish their paper to be complete from the second standpoint, 
they need to make clear the references of their knowledge of modular forms 
of lower weights. As far as we know the dimension of SlI's(l)) with k> 12 
was known by Tsuyumine's work for the first time. {dim SiI's(l)) with 



On Dimension Formula for Siegel Modular Forms 61 

O<k< 10 was known to be O in [31].) In [15] they claim that they have 
obtained the same result for dim SiI'a(l)) as Tsuyumine's, by using the 
knowledge of dim SiI's(l)) with 10<k<44, which determines the coef
ficients of eighteen partial fractions that are difficult to calculate, without 
giving any reference. We do not know, however, any literature on it 
except for Tsuyumine's paper. 

Now we consider their Main Theorems II and III, calculating dim 
SiI'/2)) and dim SiI's(N)), respectively. In both cases the essential 
point of the proof is to determine the exact value of (t(0), for which they 
use the author's Theorem (1.13) without giving any reference. Theorem III 
is then even a tautology, while Theorem II could be said their new "result" 
aside from gaps in the proof. 

Next we give some comments on M. Eie's recent paper [13]. 
In the second chapter he "classified" all the conjugacy classes of 

Sp(3, Z) which have non-zero contributions to dimension formula and in 
the third chapter he "gave" their contributions. They are very detailed 
results and may give an impression of a completed and elaborate work. 
But he still uses the wrong result [14] and there exists another conjugacy 
class which is missing. In Lemma 1 in the second chapter, he states 
(without proof) that a conjugacy class which has non-zero contribution 
fixes a single point on 6s or has a representative in r:, n or rg, where 
n is the stabilizer in Sp(3, Z) of a rational boundary component of 
degree i. But this is wrong. In fact, put 

0 0 0 1 0 0 
0 0 0 1 1 0 

N= 
0 0 -1 0 0 -1 

-1 1 0 0 0 0 
0 -1 0 0 0 0 
0 0 1 0 0 0 

Then N is a torsion element of Sp(3, Z). The fixed points set of N is a 
one-dimensional submanifold F of 6 3 and N has non-zero contribution to 
the dimension formula. Of course, Fis biholomorphic to 6 1• The sub
group LI of I's(l) consisting of elements which map Finto itself is iso
morphic to a discrete subgroup LI' of SL(2, R). We can prove that LI' is 
commensurable with the unit group of a maximal order of an indefinite 
division quaternion algebra over Q which is generated by 

( 0 ../2) 
../2 0 

and ( 0 ,/3') 
-./3' 0 . 

Therefore LI\F is compact. This means that F does not intersect rational 
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boundary components of @53, so N does not fix rational boundary compo
nents. 

Therefore it is impossible that they can reach the same result as 
Tsuyumine's without adding the contributions for these missing conjugacy 
classes. 
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