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§ 1. 

Cusps on Hilbert Modular Varieties and 
Values of L-Functions 

Robert Sczech 

Lets be a cusp, and D= ,I; S, the corresponding cusp divisor on a 
Hilbert modular variety X. Every such a cusp belongs to a pair (M, V) 
where Mis a lattice (isomorphic to zn), and Va group of units (isomor
phic to zn- 1) in a totally real number field F of degree n over Q, subject 
to the restriction that all elements in V are totally positive, and that V 
acts on M by multiplication, VM=M. However, the cusp divisor Dis 
not unique for a given pair (M, V). 

The divisor D is a normal crossing divisor, i.e. the irreducible com
ponents S, (hypersurfaces on X) intersect only in simple normal crossings. 
The complicated intersection behavior of the S, can be described in terms 
of a triangulation of the (n-1)-torus Rn- 1/V. Every hypersurface S, 
corresponds to a vertex r: of this triangulation, and k different hypersur
faces S, 1 (1 ~j<k) intersect either in a (n-k)-dimensional submanifold 
S., or the intersection set is empty. In the first case, a is the unique sim
plex of the triangulation having the r:j as vertices. 

This description of the cusp divisor D was given for the first time by 
Hirzebruch [4] in the case of a real quadratic field F (n=2). He showed 
in particular that the corresponding triangulation of the torus S 1 = Rf Vis 
given by the continued fraction expansion of a quadratic irrationality 
associated with M. In the same paper, Hirzebruch defined a rational 
number <p(s)=<p(M, V) called the signature defect of s, in the following 
way: let Y be a small closed neighbourhood in X of the cusp s. Then 
Yis a manifold with boundary aYwhich is a P=Rn/M bundle over the 
torus yn-: =Rn- 1/ V completely determined by the pair (M, V). Let L(Y) 
be the L-polynomial in the relative Chern classes of Y, and sign (Y) the 
signature of Y. From the signature theorem [1], it follows that 

<p(M, V) :=L(Y)-sign (Y) 
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depends only on the boundary a Y of Y, but not on Y itself (which depends 
on the particular divisor D). This number is called the signature defect 
of s because in the hypothetical case aY=<j> we would have <p(M, V)=O. 
Although easy to define, this number is not easy to compute. But in the 
case n=2, using the explicit description of D, Hirzebruch found the beau
tiful formula 

( J ) 1 <p(M, V)= -- I; (bk-3), 
3 1c 

where the b1c are the integers arising from the continued fraction expansion 
of a quadratic irrationality associated with M (the number of terms de
pends on V). 

On the other hand, the pair (M, V) determines a Hecke L-function 

L(M, V, s)= I;' 
mEM/V 

sign N(m) 
\N(m)I' ' 

Re(s)>I. 

Here Y(m) is the norm of m, and m=-i=O runs through a set of representa
tives for the equivalence classes of M modulo V. The special value 
L(M, V, 1) is well defined because L(M, V, s) has an analytic continuation 
to the whole complex s-plano. In the quadratic case n=2, the calculation 
of this number was begun by Hecke and completed by C. Meyer and 
Siegel. Using their results, Hirzebruch proved the relation 

(2) <p(M, V)= d(~) L(M, V, 1) 
(mt 

for n=2, and then conjectured it for all n>2. Here d(M) denotes the 
volume of a fundamental domain for the action of M on Rn. The attrac
tion of this conjecture stems from the fact that the left-hand side reflects 
only pure topological properties of the cusp whereas the right-hand side 
is a pure arithmetic quantity. However, at the time of Hirzebruch's 
paper, it was not even known that the right hand side is always a rational 
number. 

Today, this conjecture is a theorem of Atiyah, Donnelly and Singer 
who gave a proof in the important recent paper [2]. But in comparison 
to Hirzebruch's original proof for n = 2, their proof is not constructive in 
the sense that it does not answer the question how to calculate both sides 
of (2) independently. This question makes sense since Ehlers [3] general
ized Hirzebruch's construction of the cusp divisor D to all totally real 
number fields which leads to a closed expression for <p(M, V) in terms of 
the divisor D, and Shintani [8] established a closed formula for L(M, V, 1) 
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which makes it evident that the right hand side of (2) is a rational number. 
Indeed, a key element in Shintani's formula is also a triangulation of the 
torus nn-1/V. But unfortunately, a proof of (2) along these lines is not 
easy to accomplish, mostly because of an unexpected relation between 
cp(M, V) and cp(M*, V) which we explain in section 5. 

In this paper, we give an explicit formula for cp(M, V) in terms of the 
triangulation of Rn- 1/V generalizing Hirzebruch's formula (1) in the case 
n=2. In addition, we discuss a new idea for calculating L(M, V, 1) 
which would lead to the same closed formula for L(M, V, 1) as for 
cp(M, V). The idea is essentially to identify (the conditionally convergent 
series) L(M, V, 1) as a partial fraction decomposition of cp(M, V) using 
Euler's formula 

1 
1c cot rrx= l:;' -, 

mEZ+x m 

which is in some sense the case n= 1 of Hirzebruch's conjecture. If suc
cessful, this idea would lead to an elementary proof of Hirzebruch's con
jecture. However, at the time of this report, not all of the technical 
difficulties are solved which arise in the case n > 2. 

§2. 

We explain our notation. Let C(k) be the set of all (k -1 )-simplices 
a (1 <k:::;:n) in the triangulation of Rn- 1/V, and denote by C the set of all 
simplices. In this paper, the letter r- will be used exclusively to denote 
an element of C(l), and the letter t will always stand for an element in 
C(n). For example, r- e t means r- is a vertex oft. The complex C associ
ated with the divisor D has a second characteristic property. For every 
a e C(k), there are k linearly independent lattice points A, e M (determined 
only up to a unit in V) such that 

Mn l:; RA,= l:; ZA,. 
rE t1 -rE 11 

(In writing this equation, we assume that M is embedded in Rn through 
the n different embeddings F=--+R.) In particular, for every t e C(n) 
there is a distinguished Z-basis {A,, r- e t} for M, 

M= l:; ZA,. 
,Et 

Let {B;} be the dual basis of M* = l:;,Et ZB; given by 

( 3) {
l, 

tr (A,,B;)= 
0, 

if!'=!'' Et 

if!', !' 1 Et, !'::::/=!' 1• 
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The compact submanifolds s. define homology classes in H 2n-ziY, Z) if 
a e C(k). We want to compute the intersection product IIS. of these 
homology classes in the homology ring H*(Y, Z). From the construction 
of the divisor D, c.f. [3], it is clear that 

TI S,=I 
,Et 

because the n different hypersurfaces corresponding to the n vertices of 
t e C(n) intersect transversally in one point. More generally, we have 

TI S,=S •. 
,Ea 

To allow multiplicities, we consider a partition p of n, 

n= L,P,, 
rEu 

where the indices of p run over the vertices of a. Then the intersection 
numbers 

S~ := TI Sf' e Ho(Y, Z)=Z 
rEa 

are well defined integers. Provided that all hypersurfaces S, do not have 
any self-intersections, we can calculate these intersection numbers using 
the following 

Theorem 1. s~= "Ei <TI B;)- 1 TI (B;)P'. 
tESt(u) -rEt 't'En 

Here t runs over all (n-1)-simplices in St(a)={a' e Cla~a'}, the 
star of a, and B; e F~R denotes the algebraic number defined by (3). 
The stated formula is a special case of the more general formula 

(4) S~= L, (TI tr (xB;))- 1 TI tr (xB;)Pr 
tESt(a) -rEt ?;En 

valid for all x e F as long as none of the denominators vanishes. After 
embedding Fin Rn, the formula extends (by continuity) to all x e Rn out
side the finite set of hyperplanes defined by tr(xB;)=O, -re t, t e St(a). 
In particular, taking a unit vector for x, we get the special case stated in 
Theorem I. 

All these formulas can be proved by using induction over k if a e 
C(k), starting with k=n which is easy since St (a)={a} and all p,= I in 
this case. For the induction step k-+k-1, we use the fact that the inter
section number do S of 

S= TI sr,, a e C(k-1), "E,q,=n-I, q,21, 
rEa rEa 
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with the divisor d of a meromorphic function on Y is zero. In particular, 
for 

d= I; c,S,, c, E Z 
,EO(l) 

we get 

where I; 1, runs over all re a, and I; 2 runs over all r ~ a. By induction 
hypothesis, we know all the intersection numbers in I; 2• Varying the di
visor d, we get in this way a system of linear equations for the intersection 
numbers S, o S, re a, which has a unique solution given by (4). 

The formula stated in Theorem I looks complicated, but it has the 
following nice property: assume n is even, and let a, a' e C(n/2). De
fining B;=O for r not contained int, we can write the intersection number 
s. o s., as 

s. Os.,= I: (TI B;)(TI B;)- 1(TI B;), 
t z-Ea ,Et -rEo-

where nowt runs over all simplices in C(n). To put this formula into the 
right perspective, write 

x.,t := TI B; 
,E• 

for a e C, t e C(n), and consider the matrices 

X =(x.,i), T=(xt,t'), t, t' E C(n). 

In particular, Tis a diagonal matrix whose signature sign (T) equals 

sign (T)= I; sign (TI B;). 
t rEt 

The formula for the intersection number s. o s., given above means that 
the intersection matrix l=(S. o s.,), a, a' e C(n/2), can be factorized as 

If we would know that the homology classes [S.), a e C(n/2), generate the 
middle homology group Hn(Y, Z), and in addition, that the signatures 
of I and T are equal, then by the definition of the signature of Y we could 
conclude that 

Conjecture. ( 5 ) sign (Y)= I; sign (TI B;). 
t -rEt 
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Unfortunately, at this point we do not know whether the last two assump
tions are true, so the last equation is only a conjecture (which is true for 
n=2). The next result was proved in [6]. Modulo the conjecture (5), it 
solves the problem (posed by Hirzebruch in [4]) to find an arithmetic ex
pression for cp(M, V). 

Theorem 2. cp(M, V)= - sign (Y)+2n I; I; s~ fl BP,. 
,ea P,>1 ,e, p,! 

For given a, p runs here over all partitions of n with length = i of 
vertices in a, 

n= I;p,, P,>l. 
,e • 

The conditionp,>I implies that only the a e C(k) with l<k<n/2 con
tribute to the sum. The numbers BP, are the classical Bernoulli numbers 

1 
B,=--, 

2 

§ 3. 

In this section we want to discuss two further geometric invariants of 
the cusp (M, V) which are closely related to the signature defect cp(M, V). 
The first one, cp(M, V, x), is the equivariant version of cp(M, V) arising 
from the equivariant signature theorem [1, p. 589] (it is usually called 
a-invariant, although in [I] it is called a-invariant). The second one, 
-t(M, V, x), could be called equivariant Todd genus because it comes from 
the holomorphic Lefschetz theorem [I, p. 566]. To define these numbers, 
let x e Fbe a solution of the congruence V(M+x)=M+x. (For a given 
group of units Vthere are only finitely many different residue classes M +x 
which will satisfy this equation. Conversely, for every x in F there is 
some power Vk={vkfv e V} such that P(M+x)=M+x.) Then x in
duces an action on Y as follows: Recall that the boundary aY is a 
Rn/M-bundle over the base space Rn- 1/V. On this boundary x acts by 
translation in the fiber Rn/M, w~w+x, and this action has a natural 
extension to Y. For x ~ M (not the identity action) the fixed-point set 
yx is concentrated in the divisor D, so we can define 

cp(M, V, x) :=L(Y, x)[yx]-sign(Y, x), 

where sign (Y, x) is the equivariant signature, and L(Y, x) is the corre
sponding cohomology class in H*(Yx, C). Because x acts trivially on 
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the cohomology group Hn(Y, C), we have actually sign (Y, x)=sign (Y). 
Again, cp(M, V, x) depends only on the boundary oYand the action of x 
on it, but not on Y and the particular divisor D. For a proof of the 
following theorem, see [6]. 

Theorem 3. cp(M, V, x)= -sign (Y)+in ~ (- l)k ~ S~ f1 cP/x,). 
o P-r>O -.Eo 

Here the first sum runs only over those a e C(k), I<k<n, which 
admit a representation of x as 

x= ~x,A, 
,Eu 

with rational coordinates x, (which are determined only up to an integer 
because the A, are determined only up to a unit in V). The correspond
ing submanifolds s. belong then to the fixed-point set yx_ The product 
is taken over the values of the trigonometric functions 

ciu)=n-k ~ m-k, k=l, 2, 3, · · · 
mEZ+u 

(if k= 1, the series has to be ordered according to increasing values of \mi). 
Note that the ck are essentially the derivatives of the cotangent function 

ci(u)= {
o, 
cot nu, 

u eZ } d 
, d-ciu)= -nkck+i<u), 

u E C\Z u 
UEiZ. 

By Euler, we have for integral values of u, 

with the Bernoulli numbers Bk. In particular, if x e M, then formally 
cp(M, V, x)=cp(M, V). But the definition given for cp(M, V, x) makes sense 
only for x Ei M. 

The second invariant, the equivariant Todd genus ,JF(M, V, x), is the 
value 

,JF(M, V, x) :=td (Y, x)[P] 

of the cohomology class td (Y, x) e H*(P, C) contributing to the 
Lefschetz number of x (acting on the trivial line bundle over Y) in the 
holomorphic Lefschetz formula [1, p. 566, 6, p. 57]. Again, this makes 
sense only for x Ei M. In the case x e Mwe define ,JF(M, V, x)=~r(M, V) 
as the coefficient of zn in the formal power series 



36 R. Sczech 

TI S, 
, I-exp (-S,z) 

This number was studied, among others by Ehlers [3] and Satake [5]. In 
[6], we established the following explicit expression for f(M, V, x). 

Theorem 4. f(M, V, x) = (_!_)n I; (- l)k I; S~ I1 Cp,(x,). 
2 u p,>O <Eu 

Aside from the missing signature term and the additional factor 2-n, 
the only difference between this expression and the corresponding expres
sion in Theorem 3 is the slightly different definition of the trigonometric 
functions Ciu): 

Ci(u)=ci(u)+i, Ciu)=ciu) fork> 1. 

Despite these differences, we conjecture that 

Conjecture. ( 6 ) cp(M, V, x)=2nf(M, V, x). 

This equality, if true, would reflect a very special geometric property 
of Y. It is equivalent to our conjecture (5) about the signature of Y. 
This follows from the following result which we found by a very compli
cated calculation. 

Theorem 5. cp(M, V, x)-2nf(M, V, x) 

=sign(Y)- I; (-2)n-k, k=# of vertices in a 
uEC 

=sign(Y)- I: sign(I1 B;). 
tEC(n) <Eu 

If n is odd, then sign (Y)=O by definition. The expressions 

I: (-2t-k= I: sign (TI B;) 
uEC tEC(n) <Et 

also vanish in this case (although this is not obvious). Therefore, for n 
odd, the equality (6) is indeed true. 

§4. 

To the triple (M, V, x) there is associated the Hecke L-series 

L(M, V, x, s)= I;' 
mEM+x/V 

signN(m) 
\N(m)\' ' 

Re (s)> 1 

where m runs through all m=t':=0 in M=i=x which are not equivalent under 
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the action of V. As a natural generalization of Hirzebruch's conjecture we 
propose 

Conjecture. ( 7 ) d(M)L(M, V, x, I)=(1rWcp(M, V, x) 

=(21rir,y(M, V, x). 

Hirzebruch's original conjecture (now a theorem of Atiyah, Donnelly 
and Singer) is the case x=0. Using the functional equation of the £
function at s=0, 

d(M)L(M, V, 0, I)=(1ri)nL(M*, V, 0, 0), 

his conjecture can be reformulated as 

(8) L(M*, V, 0, 0)=cp(M, V, 0). 

This is exactly the relation Atiyah, Donnelly and Singer have proved in 
[2]. Ats= 1, the £-series converges conditionally, 

L(M, V, x, l)=lim I:' ~ 1-
r-oo mEM+x/V N(m) 

IN(m)l<r 

It is this conditionally convergent series which is at the center of our con
siderations. We want to transform the series into another one where m 
runs over all elements in M +x instead over the classes in M +x/V only. 
To this end we apply an old trick of Hecke, and consider an absolutely 
convergent series 

(9) I: f(vm)= d(M) 
vEV N(m) 

with some (at the moment unspecified) termsf(vm). Then 

I:' d(M) = I:' I: f(vm)= I:' f(m), 
mEM+x/V N(m) mEM+x/V vEV mE,lI+x 

and therefore, 

d(M)L(M, V, x, l)=lim I:' f(m). 
r-+oo mE M +x 

IN(m)l<r 

Clearly, f(m) is not determined by this equation. Although we do not 
have a complete proof that the following choice of f(m) satisfies (9), it 
would lead (as we will see in a moment) to an elementary proof of the 
conjecture (7). For a e C let 
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M(a)={m e M+xlm= I; m,A., m,=1=0}. 
,e. 

Then 

f(m)= I;J(a, m) 
•EC 

with/(a, m)=O unless me M(a) where 

f(a, m)=(-l)n-k I: S~ n m;P• for a e C(k). 
Pr>O "Eu 

Notice that the coordinates m, are just the numbers m,=tr (mB!) for any 
t e St (a). In the special case where tr (mB!) does not vanish for all t and 
i- e t, f(m) simplifies to 

f(m)= I; f1 tr (mB!)-1. 
tee ,et 

Every term in this sum has a simple geometric meaning: it is the projective 
volume of the simplex t e C (with respect to a certain differential form 
depending on m), and the identity (9) says then basically that the projective 
volume of all simplices t in V · C equals the projective volume of the totally 
positive chamber of the Rn. The following theorem follows from a new 
limit formula, c.f. [7]. 

Theorem 6. lim I; f(m)=(2tci)n,Jr(M, V, x). 
r-oo mEM+x 

IN(m)l<r 

This identity can be viewed as a partial fraction decomposi1 · c.1 cf the 
right hand sice, generalizing Euler's formula 

(10) lim I; ..!_=1rcot1ex. 
r-oo mEZ+x m 

lml<r 

(In fact, the theorem remains true in the case n = I if we add tci to the 
right hand side; it is then equivalent to (8)). By definition of f(m), we can 
write the left hand side as 

with 

I; ( - I)n-k I; S~R(p, a) 
a EC p,>O 

R(p, a)=lim I; TI m;P•. 
r-oo mEM(o-) -rEa 

IN(m)l<r 

If all p, are > 1, then this last series converges absolutely, and we have by 
definition of the Ciu), 
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R(p, a)=n .. 11 Cp,(tr(xB!)). 
•E• 

But if some p,= 1, then the series converges only conditionally, and special 
considerations are necessary to determine its value. For example, if all 
P.= 1, we prove in [7] that 

R(p, a)=real part of nn fl C1(tr(xB!)). 
•E• 

It is remarkable that all the contributions coming from the special order
ing of R(p, a) according to the increasing values of IN(m)I add up to the 
expression (5) which we conjecture to be the signature of Y. 

§5. 

If we combine the theorem of Atiyah, Donnelly and Singer with our 
formula for cp(M, V), we get the equality 

L(M*, V, 0, 0)= -sign (Y)+2n 1:: 1:: S! fl BP, 
•EC p,>I •E• p,! 

where for given a, the inner sum runs over all partitions p of n and length 
= # of vertices of a. Assuming our conjecture ( 5), we can rewrite this as 

L(M*, V, 0, 0)=2n 1:: 1:: S! fl BP,. 
aEC P,>O •E• p,! 

On the other hand, by a result of Shintani [8], we have 

L(M, V, 0, 0)=2n 1:: 1:: tr(_!__ fl Bq, A~·- 1) 

•EC q,;;:o n •E• q,! 

where for given a, the inner sum runs now over all partition q of k and 
length k = # of vertices in a. 

The striking similarity between these two formulas raises the possi
bility that there is a relation between the rational numbers L(M, V, 0, 0) 
and L(M*, V, 0, 0). If n=2, then it follows from these formulas that 

Conjecture. (11) L(M, V, 0, 0)=inL(M*, V, 0, 0). 

Notice that this relation is trivial if the multiplier ring of Min F con
tains units of negative norm (for example -1 if n is odd) because both 
sides vanish then. Moreover, if Mis fractional ideal in a field of class 
number 1 whose units have only positive norms, then this relation follows 
from Hecke's result that 
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signN(d)=in 

for every generator d of the different of the field. But beyond this evidence, 
we do not know whether (11), or equivalently 

cp(M, V)=incp(M*, V), 

is always true. 
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