Advanced Studies in Pure Mathematics 13, 1988
Investigations in Number Theory
pp. 433-460

Local Densities of Quadratic Forms
Yoshiyuki Kitaoka

Dedicated to Professor I. Satake on his 60th birthday

Introduction

Let 4™, B™ be integral positive definite matrices. Our problem is
to study when the quadratic equation A[X]= B has an integral solution.
We know already that A[X]=B has an integral solution provided that
mz=2n-3, it has an integral solution over Z, and min,., . z. Blx] is suffi-
ciently large. But we know nothing about this problem for m=<2n+2
except in the case of n=1. To have a perspective, we know empirically
that it is better to study the magnitude of the number r(B, A) of integral
solutions of A[X]=B. Siegel showed that the weighted average of r(B, 4,)
for A4, e gen A is an infinite product of the amount «,(B, 4) of local solu-
tions, roughly speaking. Hence the local density «, (B, 4) may suggest
something global. If, for example, the average is relatively large, that is,
T, ax(B, A)>k(>>0), then we can expect r(B, A)>0 for every A’ in
gen A. 1If, to the contrary, the average is relatively small, then we may
expect that it is almost equal to r(B, 4”") for some A" in gen A4, in other
words, r(B, A)/r(B, A”) may be sufficiently small for every 4’ in gen 4
with cls A’+#£cls 4”7, and it leads us to the linear independence of theta
series like in the case of m=n-|1 (cf. the conjectures in [2, 3, 13]). Al-
though there is a gap between the behaviour of the infinite product
[T, (B, 4) and the one of each «,(B, 4), we want to give sufficient con-
ditions in order that lim, &,(B;, 4)=0 or lim, inf a,(B,, 4)>>0 at the outset.

Theorem A. Let M, N=N, | N, be regular quadratc lattices over Z,
and let {M )., be representatives of submodules in M isometric to N, which
are not transformed mutually by isometries of M. Then there are positive
constants ¢,(N,, M,) such that

“p(Ns M):Z ci(Nl’ Mi)ap(N29 MZL)
Hence the behaviour of «, (N, | N,, M) with N, fixed is reduced to

the one of &, (NV,, M)
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Theorem B. Let M, N be regular quadratic lattices over Z, with
tk N=n<tk M=m and NC M.

a) If there is a submodule N, of M such that N,=N and
[MNQ,N,: Ny]<c,, then a, (N, M)>c, for a positive constant c, depending
only on M, c,.

b Ifmz=2n+1 and a,(N, M)>ci (>0), then there is a submodule
N’ of M such that N'=N and [M NQ,N’: N']<c} for some constant c,
depending only on M, c;.

If m>2n+3, then the assumption of a) holds and hence a (N, M)>
¢; (>0) for NC M. This corresponds just to the global fact stated at the
very beginning from the viewpoint of an analytic approach. For m>2n
-+ 1, the local density is away from zero if and only if an almost primitive
representation of N by M exists. Does this suggest that the above global
fact holds for primitive representations if m>2n-}-1? The spinor excep-
tions must be taken account of in the case of m=3, n=1.

Theorem C. Let MDN be regular quadratic lattices with tk M=m,
rtk N=n, ind M =r and suppose n+1<m=<2n. Then there is a positive
constant ¢(M, N) such that a,(p'N, M)>c(M, N)ptm-nmtret=-m fop t>0.

Unless n=r+2, m=2n, it is easy to see (n—r)n+r-+1—m)=0.
If n=r+42 and m=2n, then a,(p'N, M)>c(M, N)p~* holds. The al-
most converse inequality «, (p'N, M)<cp“~?* holds for any ¢>0 if the
following holds:

Put
[ ] = 15isk - (Gaussian polynomial),
g [T d—g [ (d—g%)
1Sisg 1<isk-g

e =3]" ]+

7=0

and define F(a, k, z) inductively:

FO,k,2)= 2, (—l)k‘ng~g(_q)[ k ]qg(g+3)/2—kzg__1,
0<g=h g

=g=

a+lsg=sk

Fla+1,k,2)= 3. Fla g 2)(— 1)k‘ng_g(—q)[ k ]qg(g+3)/z_kzg
g
—F(a, k, 2)gt@htatnnga+t

If, then F(n—2,n—1, g )=Fn—2,n, ¢ %)=0 (n=rk N) holds, then
the above almost converse inequality holds, and it is the case if n<{9.



Quadratic Forms 435

It may be interesting to study the case when «(N,, M)—0 (or —o0)
and a,(N,, M)<c, (or >c,) for some constant ¢, for every prime p=gq.

It might be a next problem to give a sufficient and/or necessary con-
dition to lime, (K, M)=0, lim«, (K, M)>>0 where K runs over submodules
in a fixed lattice.

We denote by Z,, Q, the ring of p-adic integers, the field of p-adic
numbers respectively. For a quadratic lattice M over Z,, O(x), B(x, »)
are the quadratic form and the bilinear form on it with Q(x+4y)—Q(x)—
O(»)=2B(x,y). M?*is, by definition, {x e Q,M |B(x, M\YC Z,}. w(M),
8(M) denote Z,{Q(x)|xe M}, {B(x,)|x,ye M} respectively and then
28(M)YC n(M)C 3(M) is obvious.

§1.

In this section we define the local density for the sake of complete-
ness, and give a reduction formula.

Let M=Zu,, - - -, u,), N=Z,v,, - - -, v,] be regular quadratic lattices
over Z, with rank M=m=rank N=n, and suppose that there is a sub-
module K=Z_[w,, - - -, w,] of M which is isometric to N. These are fixed
through this section.

We put

a: N—>M|p‘M*

AN, M)= ¢ is a linear mapping with Q(o'x)}’

=0(x)mod 2p‘'Z, for xe N

¢ is a linear mapping with Q(ox)}
=Q(x)mod 2p‘Z, for xe N ’
o is a'linear mapping with B(ox, ¢ y)}
=B(x,y)modp'Z, for x,ye N ’

¢ induces an injective mapping}
from N/pN to M/pM ’
o induces an injective mapping}
from N/pN to M/pM ’
There is an isometry 5 of M such}

E,(N, M)={o & BN, M)
{ that ﬂ(K)ZZplo(vl): St G(vn)]

F (N, M; K)={g & C,{N, M)

Proposition 1. Let hy, h, be integers such that p**n(N¥)C2Z,
p(MNC2Z, respectively. Then the following assertions hold where
W(M)C2Z, is supposed in (ii) ~(v).

(1) For t=hy, AN, M) is well-defined.

(ii) Bu(N, M) is well-defined for t =0 and (p*)*"*D/*-™" ¢ B (N, M)
is constant for t Zhy-+1, and § B, (N, M)=[M*: M]" % A, (N, M) if t Zhy.
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(i) C,(N, M) is well-defined for t =0 and (p*)*+D2-m" 4 C (N, M)
is constant if either t=hy-+1 for p=#£2, or t=hy+2 for p=2, and
¥ C, (N, My=2"»»4 B (N, M) for t =0 if p+£2 and for t =hy+2 if p=2.

(iv) For t=hy+1, we have RE (N, M)=[M* M]"#D, (N, M),
and (ptyrbr-mr g D (N, M) is constant for t Zhy,+1.

(V) There is a constant a such that for t =a, F,(N, M; K) is well-
defined and (p)*" "0/~ " ¢ F (N, M; K) is constant.

Proof. Suppose t=h,; then we have 3(M*)Cin(M*)Cp~*Z, and
hence B(M*, p'M*)CZ, Thus we have p"M*C(M¥*)*=M. Moreover
for xe M,ye M* we have Q(x+p'y)=0(x)+2p'B(x, y)+p*Q(y)=
Q(x)mod 2p*Z,. Thus 4,.(N, M) is well-defined. Suppose n(M)C2Z,.
If t=hy, then p"MCp'M*C M implies §B, (N, M)=[p*M*: p"M]"
tA (N, M)=[M* M]"$ AN, M). Put S=(B(u;uy), T=(B(,; v,));
then$ B,.(N, M) is the cardinality of the set r(T, S;p*) of X ¢ M,, (Z,/p'Z,)
which satisfies that S[X][x]=T[x] mod 2p’Z, for every x ¢ Z;. We claim
that p™ 4 r(T, S; p)=>.,£r(T, S; p**") where {T;} runs over symmetric
matrices such that T,[x]=T[x]mod2p‘Z, for every xe Z? and x—
T[x]mod 2p**'Z, gives a distinct mapping if i=~j. This is clear, con-
sidering the mapping X—X from [],r(T,, S;p’*") onto r(T, S;p"). By
Corollary 1 on p. 180 in [6], there is G, e GL,(Z,) such that T,=T[G,] if
t=hy+1, and then £r(T,, S; p**)=4r(T, S; p**'). . Since the cardinality
of {T,} is p~»*»”, we have, for t =h,+1,

#Bp;(N, M):p~nm+n(n+1)/2#BPHI(N, M)

This completes the proof of (ii). Since B,.(N, M)=C,{N, M) for p=2,
we may suppose p=2 to prove the assertion (iii). By r/(T, S; 2°*") we
denote the set {Xe M, (Z,/2'*'Z,)|S[X]=Tmod 2'*'Z,}. Let {I7} be
the set of T},="'T"} e M,(Z,/2'*'Z,) which are distinct if i=+j and satisfies
T/[x]=T[x] mod 2°*'Z, for every x ¢ Zy. Considering the mapping X —X
from [[,r'(T;, S;2*)—r(T, S; 2%, we have

STEr(T,, S5 20 =24 (T, S; 29,

and as above for f=h,+1 §r' (T, S; 2"*"Y=4+/(T, S; 2'*") implies
rn-LARp/(T, S; 28 =2m"§¢(T, S; 2"). Thus we have, tor t >h,+1,

#C2t+1(N9 M):#l’/(T, S; 2t+1)=2mn—n(n—1)/2#r(T’ S; 2t)
=2"#r(T, S; 2¢*").

This completes the proof of the assertion (iii). The first assertion of (iv)
is proved similarly to (ii). The second assertion follows from (14.2) and



Quadratic Forms 437

(14.3) in [9], applying it to N—E, Q,M—H, G—M*, ue D, (N, M).
Lastly we show (v). Let ¢ e C,(N, M) and y,, z; e M satisfy y,=z,=
o(v;) mod p’M. Since B(y;, y)=B(v;, v;) mod p*, by virtue of Corollary
4 on p. 184 and its proof in [6], there is an isometry « of M such that
ol Z [y, -, v D)=2Z)z, - - -,2z,]. Thus F,(N, M; K) is well-defined for
a sufficiently large t. Put S=(B(u; u,), T=(B(v,,v,) and for ¢e
F,(N, M; K) we take any element y, € M such that y,=¢(v,) mod p*M,
and define Ye M, (Z,) by (, -+, y.)=(u;, ---,u,)Y. Then for an
isometry 7 in the definition of F, (N, M; K) (p(wy), -- -, pw,)=
(»» +++,¥,)G for some G in GL,(Z,). Defining A4eGL.(Z,), Ze
Mm,n(Zp) by (77(141), o "n(um)):(ul’ v "um)A9 (WU Tt wn)'—“(ula Tt um)Z’
we have (ub ] um)AZ= (77(”1)’ ] 77(u'm))Z: (ﬂ(Wl), Tt 7](W'n)) =
Dy -+ Y)G=(uy, -+ -, u,)YG and thus AZ=YG. Itis easy to see that
the mapping ¢— Y is a bijection from F,.(N, M; K) to r(N, M; K; p")=
A S[Y]=Tmod p?, YG=AZ for some G in .
{Y ¢ Mno(Z,)mOdP' o) (Z) and A ¢ GL(Z) with S[A]—=S } Since
the second condition YG=AZ holds also for every Y’=Y modp’ for a
sufficiently large ¢ as noted above in terms of lattices, the assertion (v) is
proved similarly to (ii).
We define the local densities by

C(p(N, M) :2n52sp-6m,n[M#: M]n hm (pt)n(n +1)/2-mn # Ap:(N, M)
t—co
—2n82:p=Imsn |im (pt)n(n+l)/2—mn # ch(N, M) lf II(M) - 2Zp

t—oo

=2 %mn 1112 (pHyrmevr-mn g C (N, M) if n(M)C2Z,
and in the case of n(M)C2Z,
4, (N, M)=2blim (p')"** 92" 4 E (N, M)
=270meM*: M lim (p')** =" § Do (N, M),
a,(N, M; K)=lim (pyr»*=m 4 Fy (N, M K).
The following is due to Siegel.
Proposition 2. (N, M)=2"*? 35 v xeon [No: NI* "™ *'d(Ny, M)

if W(M)C2Z,.

Proof. Put S=(B(u;u,)), T=(B(v,v,) and C,(T,S)={Xe
M, (Z,) mod p*|S[X]=Tmodp*}. $C,(T,S)=4#Cu(N, M) is clear.

For Ge GL,(Q,)NM,(Z,) we put C(T,S;G)={X e Mm,n(?p) mod pf|
S[X1=Tmodp’, XG™"is primitive} and then # C‘p,(T, S)=>c#C,(T,S;G)
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where G runs over GL,(Z,)\GL,(Q,) N M,(Z,), noting that if XG;'(i=1, 2)
is primitive, then G,G;*e GL,(Z,) holds. Suppose S[X]=7mod p’ and
XG-! is primitive for Ge GL(Q,)NM (Z,). Put S[X]=T+ p'R; then
R='Re M,(Z,) and S[XG']=T[G "]+ p*R[G"']. Denote by {R;, - - -, R}
the representatives of the set {p‘R[G™'1|R='Re M, (Z,)} mod {p’R|R=
‘Re M,(Z,)}. Then we have S[XG™'|=T[G ']+ R, mod p* for some i.
Since | T|=|S[XG~']||G} mod p’, we have 2 ord |G| < ord | T'|if t >o0rd |T|,
and then R, and hence T[G™'] are integral for a sufficiently large ¢. - The
mapping X+>XG"" is a bijection from

ol - G) = ¢ : S[X]=Tmod p*

C1AT, S; G)= {X ¢ Mo (Z) mod p'M,, (Z) G| 1= primitive}
—> [ CUTIG 1+ R, S; 1,).

For a sufficiently large 7, R,=0mod pt“* holds and then T[G™']+R,=
T[G-1[G’] for some G’ ¢ GL,(Z,). Thus we have

$Co(T, S; )= 4 C,(T[G™], S; 1)
:__(pordeI)n+lﬁépt(T[G-l], S; ln)

— (pordIGl)n+1 2nizyp
S[X][x]= T[G*x]mod 2p'Z, for}
every x ¢ Z and X is primitive

x#{Xmodpt

as in the proof of (iii) in Proposition 1,
____(pord}Gl)n+12n62,p #Ep;(T[G_l], M)’

identifying T[G-*] with the quadratic lattice corresponding to it. Since
#C(T, S; @=(p>9) 4 C (T, S; G), we have # C,(N, M)=4C, (T, S)
=24 Co(T, S5 G)= X 4 (po)»+1-m2m2 4 E(T[G™'], M).  Using
terms of lattices, we complete the proof.

Remark. By (iv) of the previous proposition, there exist constants
¢, ¢; dependent only on M such that ¢, <d (N, M)<c, if d (N, M)=0.
Hence we have

a (N, M)R > [Ng NP
QpNONoON
dp(Noy M)#0

___Zp(n~m+1)/2‘ord(d1\’/d11) ;U;{L I QZ,NDLDN, LEH},
"

where H runs over representatives of isometry classes of primitive sub-
modules of rank=n of M. On the other hand, the proposition implies
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directly a,(N, M)=2"2d (M, M)p°«@¥/402 4 IN | Q,N DN,DN, Ny= M}
if n=m.

If n=m=2, then the following is easily shown by checking the reduc-
tion formula in [5].

Suppose p£2 and N={ep") | {e&;p*>, M={8,;p%> | {(5,p">,
where ¢, ¢, d,, d, are p-adic units in Z, with ¢e,=4,9, and 0< A4, < 4,,
0<B,<B,, A+A4,=B,+B,mod2, A,=B,, A,=B, (These conditions
are necessary to «,(N, M)=£0.) Then we have

ap(Ni M)/OZP(M, M)
F(14+2(e,0,)) pr~ 51 o= P2 if A,<<B,,
A,=B,mod2 (i=1,2).
0 if A, <B,, and either
A, =B, mod?2 or
A,z B, mod 2,
(1 4-X(e,8))) ptAr+4e= /2= By if BB, mod 2, B,< A4, and
A,=B,mod 2,
= (314 X(e,0))) pArt4e- 172 B if B;#= B, mod 2, B,< A4, and
A% B, mod 2,

(41+43)/2- By Ali‘gz X(—e89)7)
’4 pa €18

FpP B (p—A(—e8,)) if B;=B,mod2, B,< A, an

X Bl <B29 '
1 if B;=B, mod 2, B,< A, and
B,=B,,

where A(e)= <—5—) (Legendre symbol).
p
We give another reduction formula.

Proposition 3. Suppose n(M)C2Z, and N=N, | N, with tk N;=
n, >0 (i=1,2) and let {M};_, be representatives of submodules of M iso-
metric to N, which are not transformed mutually by isometries of M. Then
we have

@V, M)=3_ (Mt: MYIM: M, | M), (Nyy M; Mer,(Nyy M),

Lemma 1. We have, for a sufficiently large t
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§CuN, M)= 33 4 F (N, M M) $o, & CNy, M) | BOM, 0:N)=0(p")}

Proof. For g, in C,(N;, M) we take and fix ¢,(x,) as an element of
M where {x,} is a basis of N;, and fix an isometry « of M such that
aZo(x), « - -, a,(x,,)]=M, for some i. Suppose that ¢ € C (N, M) is
given, and put ¢,=c|y, which is in F,(N,, M; M,) for some i. For a, M,
corresponding to g, as above, we put ¢,=aoa |y,- Then B(N,, N,)=0 implies
B(M,, 0,(N;))=0mod p*, and the correspondence ¢—(g,, 0,) is injective
from C_.(N, M) to

LI Fpt(Nu M; M) X{o, € Cpt(Nz’ M) | B(M;, 0,(N,))=0mod p}.

Conversely for o, e F,(N,, M; M), g, C,(N,, M) with B(M,, 0,(N,))
=0modp* we get o=0, | a 'o, & C,( N, M). Thus the mapping is
surjective.

Lemma 2. #{o, e C,(N,, M)|B(M;, g,N;)=0mod p*}
=(IM7: M)[IM: M, | M{]D™4C (N, M}).

Proof. We claim {xe M |B(M,, x)=0mod p'}=p'M} | M}. The
left contains clearly the right, noting that p*M*C M for a sufficiently large
t. Conversely suppose that x e M satisfy B(M,, x)=0mod p?, and de-
compose x=x,-+-X;, x,€ Q,M,, x,e Q,M{. Then B(M, x)=B(M,, x,)
=0 mod p* follows and hence we have x, ¢ p’M*CM. Thus x,=x—x, €
MNQM}!=M}holds. Taking an integer a such that p*MiC M, CM,
we have

$lo. € Col(Ny, M)| B(M, 0,N,) =0(p")}
=#{0‘2 € Cpt(NZa M)]UZ(NZ)CPtMgJ,MEL}
=[M:p* M} | M)
g, is linear and 1

B(oyx, 0, 0)=

B(x, y) mod p* '
for any x, y € N,.

X § (0t Ny—>p* M} | M} p(p*M?% | M})

Write g,(x)=7,(x)+7,(x) with 7.(x) e p*Mi/p**°M}, Ty(x)e M{/p'M;
then we have B(7,(x), 7:(»))=0mod p* 3(M?) and p*8(M )= p**~23(p* M?)
Cp-vyMyC pttwZ,C p'Z, for t =2a. Thus we have
#{0, € C,(Ny, M)| B(M,, 3,N;)=0 mod p*}
=[M: p*M} | M1 "perm2 4 Co(Ny, M.
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PIM: p* MY | Mi]=pe™/IM: M, | MM, | Mi: peM3 | M}]
(M3 M)IM: M, | M{]

I

completes the proof of the lemma and then the proposition, combining
with the previous lemma.

Remark. In the proposition, [M¥: M,)/[M: M, | M+]is integral, and
it is not hard to see that

a (N, M; K) ,
=[MNQ,K: K"} (O(K)/O(K) N O(M N Q,K))
o is linear and B(ox, o))
=B(x, y) mod p*'Z, for
o:MNQK x,ye MNQ,K,
—>M/p*'M |and there is y € O(M)
such that yoK=XK,
77‘7(Mﬂ QpK):M N QPK

x hm (pt)n(n+1),’2—mn #
L—o0

where O(*) means the group of isometries of *.

§2.

Proposition 4. Let M, M’, N and N’ be regular quadratic lattices
over Z, with tk M =1k M’=m, tk N=rk N'=n. Then we have

a) a,(p’N,p"M)=p™"*Da,(N, M),

b) if MCM’, then a (N, M)<[M’: M]*a(N, M),

c) ifMCM’ and p"M'C M,
then a (N, M) p ™" D[M: p"M']*-a,(p"N, M),

d) if NCN/, then a,(N', M)<[N’: N]™ " 'a,(N, M),

e) if M'CM and for every isometry ¢ from N to M, o(N) is con-
tuined in M, then a (N, M)=[M: M']""a (N, M’).

Proof. For the assertion a) we may suppose r >0. For a sufficiently
large ¢, we have

a(p'N, p"M)
—_ 2na2,p—am‘"[(prM)3: prM]n(pt)n(n+1)/2—mn #I:Apt(prN’ prM)
=2n62,p—5m,np2rmn[M#: M]n(pz)n(n +1)/2-mn ﬁ Apt—zr(N, M)
=2n52,p—5m,n[M$: M]n(pt—Z'r)n(n+l)/2-mn ﬂ Apt—zr(N, M)p’rn(n +1)
= pr i (N, M).

By virtue of a) we may assume n(M), n(M’)C2Z, for the assertions b) ~
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e). Using the canonical mapping i: M/p°M—M’/p'M’, we define the
mapping ¢—io¢ from C, (N, M) to C.(N, M’). Since f{p: N—
M[p'M |p is linear and io¢@=0}=[M’: M]", we have §C,(N, M)=
Do o' € Cou(N, M) |i 0@/ =io0p}<|M': M]"4C (N, M’) and this com-
pletes the proof of b). For ¢) we have

o, (N, M")=p~""**Ya (p"N, p"M’) by a)
Zp M p M ' (p"N, M) by b).

For d), from Proposition 2 follows

(N, My=2%%s 37 [N,: NJ*""*'d (N,, M)

QpNDNDN

_2___2”62‘7 Z [N(): NI]n—m-Hdp(No’ M)[NI. N]n—m+l

QpN'SHeoON

=[N’: NJ*="+a (N, M).

For e) we fix a natural number % such that p"n(N*)C2Z,. For an integer
t greater than 4 and ¢ ¢ BN, M), there is an isometry ¢’ from N to M
such that ¢’(N)==¢(N) by virtue of Corollary 1 on p. 180 in [6], consider-
ing ¢ as a homomorphism from N to M. Since ¢/(N)C M’ follows from
the assumption, we have ¢(N)C M’. Thus we have

% B,(N, M)=4{s € B,(N, M)|o(N)C M"}
—[M: M"J" 4 B,(N, M),

and hence
o, (N, M)=[M: M']""a,(N, M’).

Theorem 1. Let N, M be regular quadratic lattices over Z, with
tk N=n<tk M =m and N C M, and c a positive number.

a) If there is a submodule N, of M such that Ny=N and [M N Q,N,:
Nl<e, then a, (N, M)>c(M)c"*'"™ holds for positive constant ¢(M)
dependent only on M.

b) If mz2n+1 and « (N, M)>c, then there is a submodule N’ of
M such that N'=N and [M N\ Q,N’: N'1<c'(M) for some constant c’(M)
dependent only on M, c.

Proof. Since

(Xp(N, M)—:ap(NO’ M)
=2"me ST [K: NJTmd(K, M)

QpNoDKEDNo

=205 M (1Q,Ny: NJJ*~™*d,(M 1\ Q,N,, M),
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we have only to define c(M) by Minu g, a,w, %0 2" ?d,(K, M), noting
that (K, M) can take only a finite number of values. To prove b), we
put r =miny yy,-~ 0rd [N;: N] and suppose m>2n+1. Then
dp(No, M0
o (N, M)=2"*» 37 [Ny NI*"™"'d(Ny, M)
QpNSNeDON
L2"2 max  d (N, M) > p*™ ™D A(n,s),

QpNDNoDON szr
where A(n, 5) is the number of lattices over Z, which contains a given
lattice with index p?, and A(n, s)<(1—p~")'~"p™-bs is easy,

§CI(M) Z ps(Zn—m)

s=r

<e(M)p.
Thus we have ¢ <a (N, M) <c,(M)p"®"~™ and hence
r <log (c,(M)/c)/(m—2n)logp.

For a lattice N,D N which satisfies d,(N,, M)=0 and [N,: N]=r, there is
an isometry ¢ from N, to M such that ¢(N,) is primitive in M. Hence we
have [M N Q,0(N): a(N)]=[M N Q,0(Ny): a(N)]=[a(N): ¢(N)]=[N,: N]
= p” and have only to take ¢(N) as N’ to complete the proof.

Next we will give a sufficient condition to the assumption of a) in
Theorem 1.

Lemma 3. Let M be a regular quadratic lattice over Z, with tk M =
mz=2n, ind M >n. Then there is a constant c(M) such that for a regular
submodule N of M with tk N=n, there is a submodule N, of M which
satisfies Ny=N and [M N Q,Ny: N]<c(M).

Proof. We use the induction on m. Take and fix a maximal sub-
lattice M’ C M once and for all. Since ind M’=ind M =n, M’ is split by

_[_n<p"/2((1) (1))> for an integer a with n(M’)=p*Z, which represents

primitively any regular quadratic lattice K of tk K=n with n(K)Cp*Z,.
Suppose n(N)C p®Z, and take a primitive submodule N, of M’ isometric
to N. Noting the canonical injection from M N Q,N,/N, to M/M’, we
have [M N Q,N,: NJ<[M: M’]. Next suppose n(N)D p°Z,, and decom-
pose N=N, | N, so that N, is modular and n(N,)Dp°Z, Put S=
{KC M |K: modular, n(K)Dp*Z,} and let {M,, - .-, M,} be representa-
tives of O(M)\S, and ¢(N,)=M, for some i and ¢ € O(M). If N,=0,
then [M N Q,N: N]<max,[M NQ,M,;: M,]. Suppose N,#0. We claim
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ind M+>1k N,. To do it, write QN,= | (H |V, QM}= | ,H | W,
where H denotes the hyperbolic plane and V, W are anisotropic. Since
2s,+dim ¥ +dim Q,N,=dim Q,N,+dim Q,N,=n<ind M =ind (Q,M, |
QMY =ind (Q,N, | Q,M})=s,+5,+ind (V' | W), we have ind M}—
tk N, =s,— 1k N,=>s,+dim V—ind (V' | W)=s5,=0. Applying the as-
sumption of the induction to ¢(N,) C M, there is a constant c¢(M}) such
that there is a submodule Nj of M} isometric to ¢(N,) with [M}N Q,N;:
NJ<c(MY). Putting Ny=M, | Ni, we have Ny~ N, | N;=N and

[M N Q,N,: NJ=[M NQN,: (M, | MHNQ,NI(M, | MHNQ,N,: N,]
<IM: M, | MilIM, | (MiNQ,N2): M, | Ni
<IM: M, | Mi]IM;NQ,N>: Nij
<e(MPIM: M, | M{].

Hence we have only to put c(M)=max((M: M'], [MNQ,M,: M,
c(MPM: M, | M}]). The first step of the induction is the case when
rk M =2 and M is isotropic, but the assertion is clear by the above argu-
ment in this case.

Theorem 2. Let 0<r <n<m be integers and M, N, regular quadratic
lattices over Z, with tk M =m, 1k N,=r where N;=0 if r=0. Moreover
we assume that there is a quadratic space V such that Q.M =Q,N, | V and
ind V=n—r. Then there is a constant ¢ =c(M, Ny, n, r) such that if N =
N, | N, is a regular quadratic lattice of 1k N=n represented by M, then
there is a submodule N,C M isometric to N with [M N Q,N,: Nj]<c.

Proof. Put S={KCM|K=N,}andlet {M,, -- ., M,} be representa-
tives of O(M)\ S. Suppose that N=N, | N, is a regular lattice of tk N=n
represented by M; then there is an isometry ¢ from N to M satisfying
o(N,)=M, for some i. Since N,=M,, V=Q,M} and ind Q. M} >n—r
=1k N,. From Lemma 3 follows that there is a submodule N; of M}
isometric to N, with [M} N Q,N;: NjJ<c(M}) where c(M}) is a constant
dependent only on M. Putting Ny=M, | N, we have Ny= N and

[MNQ,N,: NJ=[MNQ,N,: (M, | M})NQ,N;]
XM, L M)NQ(M, | Nj): M, | Nj]
<[M: M, | M{]IM; N Q,N;: Ni]
=max[M: M, | Mi]c(M3),

which is to be denoted by ¢(M, N, n, r).
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Remark. Without assumption ind ¥ >rn—r, Theorem 2 does not
hold. Since for a regular quadratic space U over Q, we have ind U >n if
dim U=2n+3, m+r=2n+43 is a sufficient condition to ind ¥V=n—r.
Hence we have «, (N, M)>r(>0) for some x if rtk M >2rk N+43 and
a,(N, M)=0, taking r =0.

§3.

In this section we study the behaviour of &, (p"N, M) as r—oo.

Lemma 4. Let M be a regular quadratic lattice over Z, of ind M =r.
Then there are constants ¢, ¢, dependent only on M satisfying the following:
Let N=N, | N, be a regular quadratic submodule of M with tk N,=r and
suppose that the scale of any Jordan component of N, contains 3(N,). If,
then 3(N)C p*Z,, then there is an isometry ¢ from N to M such that
[MN on'(Nl): a(N)I<c.

Proof. We take and fix any maximal sublattice M'=M, | M, of M
once and for all, where n(M,)=p°Z,, ind My=r, tk M,=2r and M, is
anisotropic. Let ¢, be an integer such that ¢,>a-+-4 and p*~Z,D3(M?).
Suppose 8(N)Cp=Z,; then n(p*N)C8(p~*N,)=8(p*N)Cp**Z,C
n(M,) implies that there is a primitive submodule N; of M, isometric to

p 2N and N{*in M, is isometric to (N{)¢~" (the scaling of N{ by —1). Since
(Vi L M) C 3N L M) =g+ | M9 =3((p~*N)¥) + (M} C

p'3(N?) follows from p*8(N9)D p*a(N))"'D p*~“Z,D5(M7), we can take a

p*3(N*%)-maximal lattice /4 on Q,,(N LJ_Ml) contalnmg (N ’LJ_Ml)* and
then N’l_LM DM*. Decompose M as M, | M, where rk M,=2ind M,
and M, is anisotropic, and then M} is a 4p~*3(N*)~'-maximal lattice.
Putting M,= p°K where K is Z, or pZ -maximal, we have Mi=pK>
p~?K.  Since n(p~’K) =p n(K) = n(KPn(M) " D n(K)p*8(NH D
8(N¥)~!, M contains an 3(N?%)~-maximal lattice. Thus M* contains an
8(N*)~*-maximal lattice since Mj, M% do. Since Q,N, 1Q,N,=Q,NC
o,M= QpN 1L QNI+ in M,) | Q,M; implies that Q,N, is represented by
Q,(Ni*+in M) | Q, = Q,M*, and n(N,) C3(N,) C8(N¥)"", there is a sub-

module N of i* 1sometrlc to N,. Defining an isometry ¢ from N to M
by ¢(N)=p*N{ and ¢(N,)=N"’, we have

M N Qo(N,): a(N)]=[M NQ,Ni: p°Ni]
=[MNQ,N;: M'NQ,NIM' NQ,Ni: p°Ni]
<[M: M'IN}: pN7]
=p¥[M: M’]
which is to be c,.
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Lemma 5. Let M, N be a regular quadratic lattice over Z, and its
regular submodule with tk M =m, tk N=n. Suppose that n+1<m,
r=ind M, N=N, | N, with tk N,=r and that there is an isometry o from
N to M such that [M N\ Q,o(N,): 6(N)1<c. Then we have o, (N, M)>
¢ (Ny, (@(N)* in K) | (K*+in M))=#0 if 8(N)C p*Z,. Here K is a primi-
tive submodule of M such that tk K =2r, K Da(N,) and ord dK <c,, and ¢
is any gvien positive number and c,, c,, ¢, are positive numbers dependent
only on M, c.

Proof. We may assume n(M)C2Z, For N'=¢ (M NQ,o(Ny)_|
N,(DN) we have

a (N, M)Z=[N’: N]"*'"™a (N’, M) (Proposition 4)
Z[N": NI""' (M N Quo(Ny), M; M N Qa(Ny)
X ap(Ny, a(V)H)£0 (Proposition 3).

Now we claim that there is a positive constant ¢, (and also ¢, - - -, here-
after) dependent only on ¢, M such that o (M NQe(N), M; M0
Q,5(N))>c,. Putting L=M N Qo(N)=Z,]w, ---,w,], we have

a (L, M; L)=[M*: M] Itlﬂrg (ptyrereni-mr g le: L—>M[p*"M*| B(ox, 6y) =
B(x, yymod p'Z, for x,ye L and p(L)=Z,[[e(w,), - - -,
o(w,)] for some 5 ¢ O(M)}.
=[M*: M) }ifg (p*yrhrmmr o € Dyl L, M) |9(L)=Z [o(wy),

-+, a(w,)] for some 5 e O(M)},

where ¢(w,) is an appropriate representative in M

=>[M*: M]" lim (pt)f<r+1>/2-m#{a ¢ Dy (L. M)|I¥=* modphM*}
t—oo

for xe L

where /4 is an integer such that p*n(M*)C2pZ,, since for t =k and ¢ ¢

D,.(L, M), there is an isometry ¢’ from L to M such that ¢ =¢’ mod p’ M*
and by Corollary 2 on p. 182 in [6] ¢’ extends to an isometry 5 of M if
o’(x)=xmod p"M* for x ¢ L, and thus pL=_Z[¢'(w,), - - -, a’(w,)]. The
last sequence is constant for t>h. Hence (L, M;L)=[M*: M]
«(pryrhrmmr . Thus we have a,(M N Q,o(N), M; MNQ,o(N))>c,
It is easy to see [N’: N]<c and thus we have

ay(N, M)z c™* ey, (N, 0(N)H) = e, (N, o(N)Y) - (£0).
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By virtue of Lemma 1 in Section 3 in [8] there is a submodule K of M
such that KDo(N,), tk K=2r and ord dK<c¢,. Here we may suppose
that K is primitive in M. We will show that for any isometry » from N,
to o(Np*+, p(V,) is contained in (¢(N;)* in K) | (K in M). To do it, we
have only to show that x e ¢(N,)* with Q(x) e 3(N) is in (¢(N)* in K) |
(Kt in M) if 3(N)C p©Z, for a sufficiently large c,. Since [M: K | K']
-o(NH)Co(N)F N(K | KH)=(e(N)* in K) | K+, there are y e g(N)* in
K, ze K+ such that [M: K | Kt]x=y-+4z. First we note that the number
of the isometry classes of K, K+ is finite since orddK <c,. Suppose
3(N)c p*"Z,, where ¢, will be fixed in process of the proof. Since
KDa(Ny), 8(e(N,)Cp*"Z, and orddK<c, we can take ¢, so that
ind K=r. For a Z,-maximal lattice K containing K we have ord [K: K]<
¢,/2 and [K~ﬂ QDG(NI): O'(Nl)]z[g N on(Nl): KN on'(Nl)] [KN ng(Nl):
a(N)I<IK: KIIM N Q,0(N,): a(N)]<cp*”. Putting Nj=K N Q,0(N,), we
have N/* in K=N/-" and [N}: o(N)]<cp**? and hence 3(N))C Pz,
holds for a sufficiently large ¢, since 8(N,)C8(N)Cp*'Z, From ye
o(N)* in KCo(N)t in K=N{-=N{b, O(p) e p*'Z, follows. Then
[M: K | K'PQ(x)=Q(»)+ O(2) implies Q(z) e p*Z, Since K* is
anisotropic and ord dK* < ¢,, we can take ¢,so that [M: K | K!] 'z e K4,
and hence [M: K | K']"'y=x—[M: K | K']7'ze Q (¢(N)* in KN M =
o(N)* in K. Thus we have proved x e ¢(N)* in K | K+, and then by
virtue of Proposition 4, a, (N, M) = cia (N,, a(N)Y)=clo(N)*: (e(V,)*-
in K) | K7™ " a (N, (0(N)* in K) | K+) 0. Since [M: K | K+]
«a(N) Ca(N)* N(K LK) =(a(N)* in K) | K+, we have [¢(N,)*-: (a(N)*+
inK) | KY<[M:K | K+]™ "and hence a (N, M)=c,[M:K | K+]m-n-m,
ot )(Ny, (e(Ny)* in K) | K+)=£0. This completes the proof.

Lemma 6. We keep everything in Lemma 5. There is a positive con-
stant ¢’ dependent only on M such that x in (c(N))+ in K) | K+ with Q(x) €
8(N) is contained in (¢(N,)L in K) | pt®/2-¢' K+ where a is defined by 8(N)=
Pz,

Proof. We may assume n(M)C2Z, and use notations in the proof
of the previous lemma. Let x be an element of (¢(V,)* in K) | K+ with
0O(x) e 3(N), and write x=y+z with y e ¢(¥V)+ in K, ze KL. Since y e
o(N)t in K Co(N)* in K=N/t in K=N{Y and d=[N}: o(N)]<cp°*?,
we have Q(y) e n(N)Cn(d 'e(N))Cd*p*Z, and hence O(z)=Q(x)—
0(y)ed*p°Z, Take a p°-maximal sublattice K’ of K+, and then we
have Q(p**~t*ldz)= p***~**"1d*Q(z) C p***Z,. Hence p°~**dz is con-
tained in K’ since Q K’=Q, K~ is anisotropic. Thus z is in pt*/*1~d 'K’
c ptel-<’ KL for some positive constant ¢’ depending only on ¢, ¢,, c;.
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Theorem 3. Let M, N be regular quadratic lattices over Z, with
rk M=m, tk N =n satisfying n+1<m. Assume that N=N, | N, with
rk N,=ind M (=r, say) and there is an isometry ¢ from N to M such that
[M N Qo(N,): a(N)<cfor agiven constant c. Then there are positive con-
stants ¢y, « -+, ¢, depending only on M and c such that if ord 3(N) (=a,
say)=cy, then a (N, M)>c,pte/f-nnrrii=-mg (p=leIN,, p~lefg(N)* in
K) | p~°2K+)=£0, where K is a primitive submodule of M such that K>
o(N), tk K=2r, ind K=r and ord dK <c,.

Proof. By virtue of the previous two lemmas and Proposition 4, we
have

O(p(N, M)>C'56(p(NZ, (o‘(Nl)J. in K)J_KJ')
=cJ(e(N)* in K) | KL: (e(N)* in K) | ptem-c’gL]-(n=n)
Xap(Nb (O'(N1)‘L in K)_Lp[aﬂ]—c'KJ_)

where we assume that ¢/2>¢’ in Lemma 6,

—_ Csp([aﬂ]-—c')(m—ZT)(r—n) +la2l{n-rY(n—-r+1)

Xay(p~HMN,, p~t*He(NY*+ in K) | p=@'K*)

:cspc'(m~27)(n—-r) .p[a,/ZJ(n—r)(n+r+1—m)
Xa(p~MIN,, p P o(N)* in K) | p~'KY).

Remark. Lemma 4 gives a sufficient condition for the assumption
in the theorem.

Corollary. Let M DN be regular quadratic lattices with Tk M =m,
rtk N=nzind M =r, and suppose n+1<m. Then there is a positive con-
stant ¢(M, N) such that a (p'N, M)>c(M, N)p*®-nr+r+1=m for ¢ >0.

Proof. There is a lattice N’/ which contains N and is an orthogonal
sum of one-dimensional lattices and [N’: N] is less than a number
depending only on n. From Proposition 4 follows «,(p'N, M)=
[N/:N]**'""™q (p'N’, M). M DN implies p'N’ C M for t with p* >[N’ N].
Write N’=N, | N, where rk N,=r and the scale of any Jordan component
of N, contains 3(N,). By virtue of Lemma 4, there is an isometry ¢ from
P'N’ to M such that [M N Qa(p'N,): a(p’N)I< pe if 8(p'N)CpZ,
and p'>=[N’: N] for ¢,, ¢, in it. From the theorem o (p'N’, M)>
cpEa/ZJ(n—r)(n+r+1-m)ap(pt—[a/2]N2, p-[aﬂ](o-(ptNl)J_ in K)J_p—caK_L) if a=
ord 8(p*N’) is sufficiently large, where K is a primitive submodule of M
such that K>o(p'N,), tk K=2r, ind K=r and orddK<¢, and ¢, ¢, ¢,
depend only on M. Since N, N’, N,, N,, are fixed, |a—2¢| is bounded
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and hence p*~t®/%1N, can run over only a finite number of isometry classes.
Let K be a maximal Z, lattice containing K: then K: Kl< pe/* and M N
Q.0(p'Ny)=KnN de(p‘Nl) is contained in KN Qo(p’N,) with index<
[K: K]. Noting that ¢(p*N,)* in K is isometric to (KN Q,0(p*N))™Y, we
have (p~=[K: K]"'0(p'N) P D(K N Qo(p'N)) P =a(p'N)t in KD
s(p'N)* in KD[K: Kl(e(p'N)*+ in K)=[K: K(K N Qa(pN)) D
[K: Klo(ptN) and hence p*~l¢[K: KIN{P=—sp-la2)g(p‘N,)* in K)
= pt-lerl-e[ £ K]-'N{D. Thus p~t?(g(pN,)* in K) runs over a
finite number of isometry classes depending only on M, N, and hence we
bave a,(p'"1*"N,, p~t*(o(p’N)* in K) | p~K')=c, (>0) where ¢,
depends only on M, N. Therefore we have proved the theorem.

Remark. Forintegers 0<r<n<mwithn+1<m=<2n,0<m—2r <4
it is easy to see (n—r)(n+r+1—m) <0 if and only if n=r 4-2 and m—2r
=4. Unless, hence rk M —2ind M =4, rk N =ind M -2, there is a posi-
tive constant ¢ such that «, (p’N, M)>c if a (N,M)=0.

§4.
In this section we show that «,(p’N, M) seems to tend to zero as

t—> oo in the exceptional case in the last remark.
We assume that p is an odd prime in this section. We will prove

Theorem 4. Let M be a quadratic lattice JF<<(1) (l)>>_]_< 151{—8>1

{p> 1 {—8p) where § is a non-square unit. For a regular quadratic lattice
N over Z, with tk N=n<rk M we consider the formal power series

f)= 3 a(N@, M),

Then f(x) is a rational function in x whose denominator is

H (1 _p(n—j)(n+j+1—21‘—4)/‘lx).

0=j=n

Remark. Ifn=r -2, then the denominator of f(x) seems to become

(1__p(n-j)(n+f+1—27'-4>/2x)_____ n (l_p(n—j)(fﬂ-n)/?x)
0=js=n-2 0<j<n-2
— 1— piti-nry
2g];[gn( p ),

and this is the case at least n<<9. If this is the case, f(x) converges for
|x |<p and so a (N®, M)(p'~*)*<c for any positive number ¢ and some
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constant c. Hence we have a(p'N, M)<c(p?)*p~*. Let M’ be a regu-
lar quadratic lattice over Z, with rk M’—2ind M’=4 and n=1k N=
ind M’+2, and M a Z,-maximal lattice containing M’. Then we have

c(M’, N)p™ <a,(p'N, M’) (Corollary in § 3)
<[M: M'|"o(p'N, M) (Proposition 4)
<c[M: M (pey*p~™.
Hence in the exceptional case in the last remark a,(p‘N, M’) tends to
zero under the reduction of the denominator of f(x). Is the estimate of

a (N, M) from below in Theorem 3 and the corollary almost best?
We need several lemmas to prove the theorem.

Put S=ST=diag<((1)é>, ,((1)(1)>, 1, —4, p, —5p> where 6 is a
R R i

nonsquare unit, and denote by &, the set of all integral symmetric matrices
of size n with entries in Z,.

Lemma 7. For non-negative integers a<t, we have for any ¢ ¢ Z}

_p(r+2)(t+a)+1 if‘a<t’

p(r+2)(t+a) 1'fa=t,

> eS [g]ep“/p‘)={

geZ% T4 mod pt
where e(x)=exp (2zix).

Proof. For a=t, the lemma is obvious. We suppose a<t. Since

; e(Slglep®/p®)
={x ymZodpt e(2xyap“")}’($ mZ;i u e(xﬁsp""))(Mgwz e(—x*dep®t))

><( Z e(xzepa+1—t))( Z e(_xzaspa+l—t))
z mod pt « mod pt

and
. ymZod " e(2xyep® )= p'#{x mod p*| x=0mod p*~°}
=pt+a,’
2. e(xzePa—t)=p(t+a>/2<-i)t_a ! if p'~*=1mod 4,
o mod pt P V=1 otherwise,

we have
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>, e(S[glep®/p)

€
= pritre) pltrarf <_£_)l—ap<t+a)/2 ( —‘55)t—a< -1 )l—a
p p

Xp<z+a+1)/2 <_5_)t‘a_1p(z+a+1)/z ( ——56)2—“'1 —1 )““'1
p p p

— (r+2)(t+a)+1

We put

(T, §)=2mra(T, S)
=lim (p*)* 12" 4{G e M, (Z,) mod p*| S[G]=T mod p'},

f—co

where T'is a regular matrix in &, and m=2r+4. We denote by 0,8,
the set of all symmetric matrices of size n with entries in Q,. For Re
Q,©,, let {p*, -+ -, p*} (o, £+ - <La,<0<Za,,,< -+ ) be non-zero ele-
mentary divisors and put w(R)=(— p)* and v»(R)= p~Ti-1*, where w(R)=
v(R)=1 if all elementary divisors are integral.

Lemma 8. (T, S)=1im3} zcq.¢./c,8(— tr TR)YW(R)V(R)" "% and if

t—ro0 PtREG,

rzn, then ay(T, S)= ) recg,eme,(—tr TR)YW(RW(R) """ is absolutely
convergent.

Proof. #{Ge M, (Z,) modp*|S[G]=Tmod p*}
—p e S S eftr (S - X))

G mod p? X €Sn/ptCy

= pinanr ST e(—tr (TX)p~?) ; e(tr (S[G1X)p~9H).

X €Cn/ptCn

Here we put X =diag (e,p*, - - -, £, p*)[U], U € GL,(Z,) and may assume
e, € 25, 0<a,<---<a,<t; then we have

2. e(tr (S[G1X) p™)

G

=11( 2 e(Slglep™ )

¢=1 g mod p?
:p(r+2) 2?:1(t+a@)w(p—:X)
:pZ(r+2)th(p—tX)—(r+2)w(p-—tX)’

and this gives the first expression of ay(7, S). The second follows from
usual arguments.
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Let C, D be matrices in M, (Z,) and write (C, D)=1 if C*D is sym-
metric and all elementary divisors of nX2n matirx (C, D) are 1. Let
{p", ---, p} be elementary divisors of C(C|%0) and put X=
diag (p», ---, p™), C=VXU, U,V eGL,(Z,) and D=VD"U""; then
C'D=Q"'D)H[!U"" and its non-integral elementary divisors are
{p~*|2,>>0} and we may suppose that U is uniquely determined as one of
representatives of (GL,(Z,)NX'GL,(Z,)O\GL,(Z,). It is easy to see
that any element of Q,&, can be expressed as C~'D with (C, D)=1.
Hence the sum >, e(tr TR) where R runs over Q,&,/©, so that the non-
integral elementary divisors of R are {p~*|2,>>0} is equal to

e(tr XT'D)['U]-T))
V& (GLaZp) N1 T La ) 0\ Ln(Zp)

DeMn(Z)/1®n

=> 3 e(tr T[UY]-x7'D).
[
We put A={(4;, - -+, A,) |01, < -+ - <2, 2, € Z} and for 2=(2;, - - -, 4,)
e A we put X(2)=diag (p, - - -, p*) and
R.(T, =3 e(tr TX(2)~'D)
D

where D runs over M (Z,) mod X(2)S, so that (X(2), D)==1, and put w(1)=
(—p)*if 2,=0<2,,,. Now we have a new expression for aj(7, S)

(T, )= 2 w)p~ =0 3, R (—T[U™], 1)

UeGnd)

if ¥ =n, where we put G,(2)=(GL,(Z,)NX(2A)'GL(Z )L D\GL,(Z,).
We define (s, T) by

Bls, T)= 2 w@)p~ =4 > R(T[U™], A).
2€4 UeGald)
B(s, T) is absolutely convergent if s =n+2, and ay(T, S)=p(r +2, —T) if
r=n.

Lemma 9. For aregular T € ©,, f(s, T) is a polynomial in p~* and
Br+2, —Ty=a)(T, S,) if 2r +-4=n.

Proof. For a sufficiently large ¢, which is dependent not on r but on T,

a(T, S,)= . >, e(—TRywW(Ru(R)"*

€QpSn/Gn
PIREG

=p(r+2, —T;1t)  forrz=n/2-2
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where S(s, T’; ¢) is the partial sum on 2=(4,, - - -, 2,) € 4 with 2, <¢. Since
B(s, T;t) and p(s, T; t+1) are polynomials in p~* and B(r+2, T; )=
Br+2, T;t+ DN=ay(—1T,S,) for r=n/2—2, we have p(s, T; t)=
BGs, T;t+1)="-.-=p§(s, T). Hence it completes the proof.

Lemma 10. For a natural number k, the number of symmetric regular

matrices of size k with entries in Z|pZ is equal to p**** ] ... (1—p~).
odd

Proof. A symmetric regular matrix with entries in F=2Z/pZ is ‘equiv-
alent to one of S,=diag(l, ---, 1) or S,=diag(l, ..., 1, §) where § is a
non-square. Thus the number in question is equal to

#GLUF)  §GL(F)
$0(S) §O(S,)
It is known that {GL(F)=(p*—1)(p*—p).--(p*—p*), #0(S)=
Y O(S)=2p** Y2 [T cicih-np(1—p ™) if k is odd, and §O(diag(l, - - -,
_1\k/2
1y =2pe (= (DT ) gy 1 (1 po) for g e X ik
p

is even where (—) is the quadratic residue symbol. The lemma follows
immediately from these.

For 0<k<h<n we put
={2=Q, - -+, 4,) e 4]2,>0if and only if i >k},
Apn={e 4|2, =118 k<i<h, 2,=2if i >H}.
It is obvious that

Ay={2e A|2,=1}, 4,={(0, - -, 0)},

Aip={2eA|0=" - =2; <A1 <) A1 22}
A= ][] i dy= 1] i
0sk=n kSh=n

Lemma 11. For T e S, and 1 e 4, 0<k<h<n), we have
R,(pT, Hy=pr-0=i:b2 [T (1—p)R(T, 2—1),

1gish~k
i:0dd

where A—1=(0, - -+, 0, 2g1—1, -+, 2, —1) € 4,.

Proof. First we claim that for 1e 4,, we have R,(T, )=
R, (T, (Qge1s »++» A,)) wWhere T7 is the lower right (n—k)X(rn—k)

submatrix. For P =diag (p¥+, - .., p*), L) = (1" P) holds and it is easy

to see that (X(2), D)=1if and only if D,=*D,, D,=P*D,, (P, D,)==1 where
D® D, . St SIS S .

D= [ D, D ] Since X(2) [t S, S PtS, PS.| the representatives
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mod X(1)&, of D which satisfies (X(2), D)=1 can be chosen to be
{[8 84] ‘(P’ Dpy=1 D,mod P@n_k}, and then we have

R (T, D)= tr T L 00
an=gefer] o o))

— 3" e(tr T'P-'D,)
Dy
=Rn—k(Tla (xk+15 R 2n))

Suppose that 2 e 4,,, i.e., 4,=>2. Itis easy to see that (X(2), D)=1
holds if and only if

X(2)~'D is symmetric and D is in GL,(Z,)
EX(w)~'D is symmetric for y=@2,—1, -- -, 2,—1)
Disin GL(Z)
S0, D=1

since %(2)= pX(¢)=0 mod p*.

Putting D=D, +%()X, D runs over the representatives mod X(2)&, of D
safisfying (X(2), D)=1 if and only if D, runs over the representatives
mod )&, of D, satisfying (X(¢), D,)=1 and X runs over &,/p&S,. Hence
we have

R.(pT, = ; e(tr pTp~"2(1) ™ (D, + X() X))
= %Xj eltr TX(u)™'D)) 3 eftr (TX))
=p’1‘<"“”2Rn(T 1)
Suppose that 1 e 4, , (h=1),ie., 1=2=---=2,<2,,<---. Put-

(h)
ting x@:[l’lh P], D_—.[g: gi]’ it is easy to see (X(2), D)=1 if and

only if D,='D, e GL,(Z,), D;=p~'P'D, and (P, D,)=1. Hence we have

r7'l,
R (pT, )= tr pT D D
(P ) Dl,DZz,m e< rp [ P"l] [p—lpltDz D:])’

where D,, D, and D, run over {D;e&,/pS,||D,|£0modp}, D,e
M, . (Z[pZ)and {D, e M,_,(Z,)mod PSS, _, |(P, D,)=1} respectively,

zﬁ{Dl}ph(n_h)Rn-h(pT’: (‘Zhﬂﬂ R Zn))

where 77 is the right lower (n— k) X (n—h) submatrix of T,
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=ph(h+1)/2 H (1__p—z')_ph(n—h).p(n-h)(n—h+1)/2
1=i<h
i:0dd
an—h(T/a (2h+1—1: tc 2n'_'l))
=p"®02 ] (1= p )R,(T, i—1).

iro0dd

Finallygfor 2 € 4,,,, we have
Rn(st Z)an—k(pT,a (2k+la R } Zn))
where T is the right lower (n—k) X (n— k) submatrix of T

=prPembE I (1=p ) Ry T, Qin—1, - -+, 2,— 1))

lsish—k
i:0dd

= pr=k)(n-k+1)/2 H (1—p9)-R (T, 1—1).
1<i<h—k

i:0dd

We denote by F(x), F(x; k, h) 0<k<h<n)
é}ﬁ(s:ptT)xt, ;0( Z w(d) p~ (Fios Z )R"(p”T[U‘l], D)xt

A€dk,n Ueta(2

respectively. To prove Theorem 4, we have only to prove that the above
formal power series F(x) is a rational function whose denominator is
[Togjsa (1 —pr-@rizi=ioryy  Obviously F(X) = <i<nza F(x; Kk, B)
holds.

Lemma 12. For 0<k<h<n we have
F(x; k, )=F(QQ; k, hy+c(k, hp*~™*x >, F(x;h,[)
hsf=n

where

c(k’h):=lﬂn—kﬂn+k+&ﬂ+n—nl

(I—p=)~! (p~t—1).

ish—k k+1Zish
reven

IA

.

Proof. For 2=(0, -+-,0, 24,1, - -+, 4,) € A, we denote (0, ---,0,
Apir—1, -+, 2, —1) e 4, by p=2—1. The mapping A—>21—1 gives obvi-
ously a bijection from 4, , to 4,. Putting P=diag(p™+~, ..., p*7),
we have

1, 1
1A= plas R X(/,t):[ " ] and P =0 mod p.
P
pP
Ui® U, U,
It is easy to see that for U= [U4 U,»=» UG:I e M (Z,), UeGL(Z)N
U, U, U,
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X)) 'GL(Z)X(2) if and only if U,e GL(Z), U;e GL,_(Z,), U, e
GLn—h(Zp)’ U,=0modp, U,e plwk,n—h(zp)Pa Use Mh—k,n—h(Zp)P and
)
U,e GL, (Z)N\P~'GL, ,(Z,)P, and for V= [51 I’fz] e M,(Z,
3 4

V & GL(Z,) N 1)~ GL(Z,X(1)

if and only if Ve GL(Z), V,e GL,_,(Z,), V,e M, ,_(Z,)P and V, e
GL,_.(Z)NP'GL,_,(Z)P. Hence GL(Z)NX(A) 'GL(Z)X(A)C
GL.(Z,)N2Uy) ' GL,(Z,)X(y) holds and then we have
R.(p'TIUY, p)
=[GL(Z)NXU)" ' CL(Z(1r): GL(Z,) N XD GL(Z,)1(A)]
X 3 R(PTIUL, )

UeGalp)

UeGn(d)

since R,(TIUL, )=R,(T, ) for U e GL(Z,) N () 'GL(Z) (). The
index is equal to p*" ™ 1., 1c;<, (P —1) [Tigign-x (P7*—1)* by [1].
Now we have

F(x; k, h)
=FQO; k, )+ 23 ( >3 w@p™ &2 > R(p'T[U, H)x*
tz1  A€dg,n UeGqn(d)

=FQ; k, B+ pons [ (1—p)

LiZh-k
zodd
X2, 25 w@p~E2 51 R (p'TIU, 2—1D)x*
t=1  i€dx,n UeGn(d)
=F(0; k, )+ pe-0e=x0e [T (1—p~)
s
xpror 1] (p7=D I (p7'=D7
kE+1zigh 1£igh
Xx 25 ( 25 w@p~ o 5. R (p'TU], 2—-1)x*
t20 2€dg,n UeGyu(i-1)
=F(0; k’ h)+p(n—k)(n+k+3)/2—(n—k)s(____1)n—k H (l_p-i)
x M7= I (=D~
k+1<i<h 1<i<h
XxZ(Z p—(Em)s Z R(p”T[U ]#))xc
t20 wuedp Gn(n)
=F(O;k, h)__i_p(n—lc)(n+k+3)/2+h n—(n~k)s n (l_p—i)—l
é éh

X I (p‘i—l)-th;S;F(x;h,f)

k+1sisSh

—F(0; k, )+ c(k, Hp*—™ix 3 F(x; b, f).
hsSfsn
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Lemma 13. For 0<a<n we have
n (1 _— p(n—j)('n.+j+1—23)/2x)F(x)
0<jsa
=a polynomial in x of degree a
+xe*t 30 A(a, k)F(x; k, h),

a+1ZkZhZn

where A(a, k) is inductively defined as follows:

AQ, ky=( 2, c(g k)p* —p*>™p=m  for 1<k=n,
0=g=k
A+l )= 3. Ala g)c(gkpe™r
a+iZg=sk
__A(a’ k)p(n—a.——1)(n+a,+2—23)/2 for a+2§k§_n

Proof. We use the induction on a. For a=0 we have

(1 __pn(n+1-2$)/2x)F(x)
=FO0)+ > clk, hp¥™sx > F(x;hf)
) 0<k=hZn hsfsn
___pn(n+1—‘ls)/2x Z F(x; k’ h)
=n

0SE=h

=FO0)+p"x >, F(x;k,h{ X c(g, k)pss—pr=+hr}
0 0=g=¥k

Lk<hsn
=FO0)+x 3 A®0, K)F(x;k, h).
1Lksh

= =n

Suppose that the assertion is true for a; then we have

(1 __p(n—j)(n+j+1—2s)/2x)F(x)
0=jSa+1

=(1—pr-e-brreti=inr g polynomial in x of degree a
+xert 55 Ala, K)F(x; k, b}
a+lSkshin
=a polynomial in x of degree a--1
+xe*t > Aa, k)F(x; k, h)
a+1£Fsnsn

___p(n—a—l)(n+a+Z—-Zs)/2xa+Z Z A(a’ k)F(x; k, h)

a+1Zk<hsn
=a polynomial in x of degree a1
+x2*t >0 Ala, k)e(k, hp* " x 31 F(x;h, f)
a+lskshsn hEfsn

__p(n—a—l)(n+a+2—2s)/2xa+2 Z A(a’ k)F(x; k’ h)

a+l1<k<h<Ln
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=a polynomial in x of degree a-+1
+x¢t > Fkh{ 3 A g)e(g, k)pe ™
a+l1Skshsn a+l1Zg=sk

_p(n—a—l)(n+a+2—23)/2A(a’ k)}
=a polynomial in x of degree a1
+xe*t 37 F(x; k, hA(a+1, k),

a+25k2hEn
since the coefficient of F(x;a+41, &) vanishes. Thus we have proved
Lemma 13 and hence Theorem 4, putting a=n.

In order to show that the denominator of f(x) in Theorem 4 is
[2<s<n (1 —p~i97D72x) in the case of n=r-2, it is necessary and sufficient
to show A(m—2,n—1) >, 1cne, F(x;n—1, h)+A(n—2, n)F(x; n, n)=0
for s=n. We show hereafter that the coefficients of the formal power
series F(x;n—1,n—1), F(x;n—1,n), F(x;n,n) do not have a pole at
s=n. Hence A(n—2,n—1)= A(n—2, n)=0 at s =n is sufficient for the
denominator of f(x) to be [[.<;<, (1—p /¥ D72x).

Lemma 14. The coefficients of the formal power series F(x;n—1,
n—1), F(x; n—1, n), F(x; n, n) do not have a pole at s=n.

Proof. First we note that 4, ,={(0, ---,0}, 4,_,,={0, ---,0, D},
Ay_ynos={0, ---,0,a)]a=2}. Hence the assertion is obvious from the
definition for F(x;n—1, n), F(x; n,n). By definition, F(x;n—1, n—1)
is equal to

—p pe 5 R(PTIUTL, -, 0, a)x'.

t=0 a2 UEGn((0,-+,0,a))

It is not hard to see that the correspondence Ursthe transpose of the n-th
column of U-! is the bijective mapping from G,((©0, ---, 0, a)) to
{(xb ct 'axn)!xi € Zp’ (xla o xn)zl}/',;' where (xl, t 'axn)'};,"(yl’ o ’y'n,)
if and only if there is an element we Z} such that (x, .-, x)=
w(y, - -+, y,)mod p*. Using the claim at the beginning of the proof of
Lemma 11, the coefficient c¢(p’T) of x* of (—p) 'F(x;n—1,n—1)is

s 5 R(p'TIx], @)
= {(@1y000,20) | (T1ye0es xp)=1}/g
=2.,p" 2., e(p*T[x}d[p®).
az2 (@150, 80 | (L15000s zn)=1}/g d(én;;i:pl“

We have only to prove that this is, in fact a polynomial in p~¢. It is easy
to see
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2. e(p'T(x]d/p®)

zimod p¢ d mod p?
(T1y°%n)=1 (d,p)=1

= 2. 2. 2, e(p'Tix]y*dlp®)

{(®1,°+,20) | (Z1,+++,Zn) =1}/5" ¥ mod p d mod p2
w,p=1 (@,p)=1

=p(1—p7) 2. 2. e(p*T[x]d[p®).
(@yeeesam) @150 e2m) =1}/ d ol po

Therefore, putting D(p‘T, @) =3, moa pe 2 amoa pe €(P TTx]d[p®), we have
(d,p)=1
2, e(p'T[x]d/p®)

{(@1,++,20) | (X1, ++,Zn) =1}/ d mod p&
(d,p)=1

=p *(0—=p ) {D(P'T, &) — p"**D(p'T, a—2)}.

To evaluate D(p'T, a), we may suppose T =diag (¢,p™, - - -,¢,P™), ¢; € Z},
0<h,<---<b,. If a>b,+t, then

D(PT,a)= 3 ed> e,p™xfp~)
i=1

xi mod p2
d mod p%
(d,p)=1

= 3 I X eledspri-r)

d modp? i=1 x mod p@

(@,p)=1
= 3 M S e
(d,p)=1 7=1 z mod pe—t—bi
d mod p®
=prirEh 3 ﬁp(d—t—bi)ﬂ(ﬂ)a—t_bi
d mod p% ¢=1 P
(d,p)=1
1 p* " "=1mod 4,
% ¥/—1 pet-=3mod4
— pnt+Tb)/2+na/2+a-1 2 ﬂ)“_t—bi
p d mod p 1,1;[1( p
(d,p)=1
1 pet"%=1mod 4,
X
V=1 pot-t=3mod4.

Hence D(p'T, a+42)= p"**D(p'T, a) follows for a>b, -+t and the coeffi-
cient of x* of F(x;n—1,n—1) is a polynomial in p~*. Thus Lemma 14
has been proved.

The condition A(n—2,n—1)=A(n—2,n)=0 at s =n is easily trans-
formed to the one stated in the introduction.
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