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Introduction

Let F be a real quadratic field which has the totally positive funda-
mental unit. We put F=Q(/ m) with a positive square free integer m.
We denote by [1, 4/ m] the order of F generated by 1 and /7 over the
ring of integers Z. Let ¢, be the smallest unit of F such that ¢, >1 and
en €[1, ¥/ m]. We denote by K the number field generated by +/—1 and
¥, over the rational number field Q and by E the elliptic curve over F
defined by the Weierstrass equation;

V=x3+44e,x.

We can attach to K (resp. to E) Hilbert modular forms over F of weight
one (resp. of weight two) in a natural way.

The aim of the present paper is to show that the “quartic residuacity”
of ¢, provides congruences between these Hilbert modular forms. Further
we calculate their Fourier coefficients and express the decomposition law
between K and F by them.

§1. Hilbert modular forms

Let the notation be as in introduction. Denote by G the galois group
of the normal extension K of Q. Then G is of order 16 and is generated
by the following three isomorphisms ¢, ¢ and p:

o(Ye)y=v/—14c,, oW/ —1)=V—=1;
o(¥e)=1/¥e, o/ =)=+ —T;
p(¥e,) =4 oW =1D=—+—1.

It is easy to see that they satisfy the relation;

dt=g'=p'=1, pop=pdp=d’, p=pp.
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Now we shall explain how to attach to K Hilbert modular forms. For
a subfield M of K, we denote by G(M) the Galois group of K over M.
Set k=Q(y/ —m). Then we see

G(F)={(a,0),  Gk)={a, pp).

Therefore G(F) is isomorphic to the dihedral group D, of order 8 and G(k)
is an abelian group. Let p be the representation of G(F) corresponding
to the unique two-dimensional irreducible complex representation of D,.
From now on we assume that

!

The induced representation of p to G decomposes into two distinct
irreducible representations +,, and +, of dimension 2. Let X, be the linear
representation of G whose kernel coincides with G(F). Then

( 1 ) ‘P‘1=‘P0®XF-
Let us assume that

wo(a)=(“/? _ \/Q_—T) o) = (1 é) "’°(9")=((1) (1)>

Since G(k) is abelian, the restriction 4, (i=0, 1) to G(k) decomposes into
two distinct linear representations &; and &,. It is easy to see kernel of
&,=kernel of &} for each i. Put

Let K, be the field of invariants of the kernel of &,. Let L’ be the inter-
section of K and K;. Then the following diagram is obtained.

/ \
<90P> \<02>\/0 vp)

(% sop> %g\
NS
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Let us denote by the same notation &, the ideal character of k induced by
the representation &, in view of Artin reciprocity law. Let f, be the con-
ductor of the abelian extension K,/k. Then f, coincides with the conductor
of the character &, and is self-conjugate. Further the support of f; consists
of all prime ideals of k lying over 2, if f; is non-trivial. The above diagram
shows

(2) neither f, nor f, is trivial &= K is ramified over L.

For each i let L(s, 4,) and L(s, &,) be the Artin L-function of +, and
Hecke L-function of &, respectively. If &, is ramified, then L(s, £,) co-
incides with the Hecke L-function of the primitive character associated
with &, Therefore under the assumption &, is ramified, we have

( 3 ) L(Ss ‘l’i)“_—L(S> Ez)
In the below we assume the following.
Hypothesis. The field K is ramified over L.

It is known that L(s, &,) is the Mellin transform of a cusp form 6,(z)
of the modular group of I'(|D(k/Q)| N,,e(f;)) of weight one (of neben
type), where D(k/Q) denotes the discriminant of k over Q. If we denote
by X the ideal character of k determined by the extension L over &, then
by (1) we have &=1X&,. Therefore in view of an analogy of Doi-Naganuma
correspondence [2], we put

L(s, K)=L(s, §&)L(s, &)
It is easily seen that

L(s, K)=L(s, &-N.;)-
Therefore we write

L(s, K)=[] Ly, K),
P
where the product is taken over all prime ideals of F not lying over 2 and

Ls, K)= Q’ (1 =&N /(BN 1,o(B) )"
P: prime ideal of L

Let us write
(4) L(s, K)= 3 a(m)Ny,(m),

where the sum is taken over all integral ideals of F. Let & be the narrow
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class number of F and let a, (j=1,2, - - -, #) be the integral ideals of F
representing all narrow classes of F. We define / functions g,(z, z/) on
the direct product of two complex upper half planes § by

(5) 84z, Z’):‘"E;A a(éaz?) exp 2z — 1(§2+§%2")),
£>0°

where &> 0 means that £ is totally positive. Since L(s, K) is a L-function
associated with the character &N, of the totally imaginary quadratic
extension L of F, g,(z, z/) are Hilbert modular forms of weight one (cf.
Sections 2 and 5 of [10]). Let E be the elliptic curve defined over F by the
equation:

V=x44e, x.

If we denote by c(m) the conductor of E, then c¢(m) is always nontrivial
and the support of ¢(m) consists of all prime ideals of F lying over 2 (see
Section 3 of this note). Denote by L(s, E) the L-function of E over F.
For a prime ideal p of F prime to 2, let E, the reduction of £ defined over
the residue field F,. Let N(p) be the number of F,-rational points on E,
and put '

b(p)=Nrp(p)+1—N(p),
L(s, E)=(1—=b(p)Nr,o(p)~* + Ny sop)' *)".

Then L(s, E) has the following Euler product expansion:

L(s, Y= [] L/, E).
¢

p,2)=1
Let us write
(6) L(s, E)=72 b(m)N ()",

where mt runs over all integral ideals of F. We shall define / functions
fi(G=1, -+, h) on §X & by

(7) Sie 2)= 3 bEay) exp Qay/ = 1(Ez+£72).

Since E has complex multiplications, E determines a Grossen character +r
of L and L(s, E) coincides with the L-function of the ideal character +*
of L associated with + ([1], [9]). If we denote by ¢* the conductor of ¥,
we see easily, by Section 1 of [9],

PF((x))=x-x* for x e L, x=1 mod* c*.
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This shows f,(z, z’) are Hilbert modular forms of weight 2. Further we
know that c* is associated with ¢(m) in the following relation.

Lemma 1.
c(m)= NL/F(C *)D(L/F).

Proof. Let & be the conductor of E over L. Then Theorem 12 of [8]
shows ¢**=¢. Further by Corollary of Theorem 4 of [8] and Proposition
4 of Section 2, VI of [7], we see

&-D(L|F)=c(m).
Thus we have
Nyyw(c*)'D(L[F)*=c(m)". Q.E.D.
Let f*(m) be the conductor of K over L. Put
f(m)=N_p,x(f*(m)D(L/F).

Under the notation in Section 2 of [10], we may state our results for g,
and f, more precisely. Thus using Lemma 1 we have

Proposition 1. Let 3, (resp. u,) be the Hecke character of the idele
group of F such that the associated ideal character y§ (resp. 3¥) is given by

N =Xyw o & (resp. 93 =Xy o ¥* o Njg),

where ,,» denotes the ideal character of F attached to the extension L.
Then, under the notation in [10], we obtain

(81 -5 8n) € M, (S (), 70>
(fis -+ fa) e ED’e(z,m(c(n’l)a 772)-

Proof. See [10].

§2. Congruences

In this section we show a congruence between Hilbert modular forms
g,(z, ') and f,(z, /). The way of argument is similar to that of our proof
[4] for the congruence between cusp forms by quartic residue of rational
integers. We preserve the notation and the hypothesis in Section 1. Let
p be an odd prime number and p a prime ideal of F lying over p. For an
integer o of F prime to p, we define the symbol («/p) by
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1 if & is square modulo p,
—1 otherwise.

(@lp={
Let J be the automorphism of the reduction E, defined by
(8) J: (xa y)l—)(_'xr Iy)’

for any point (x, y) on E,. Here the letter J denotes an element of algebraic
closure of F, such that I’= —1. For a positive integer i/ we denote by R,
the set of F,-rational (14 J)!-division points on E,. Easy calculation shows

(Fe{0 0¥+ dex=0, x< FJU L)

9
) R)\R,={(x, y)|x*—4z,,=0, y*=x’+4¢, x, x,y e F},

where &, denotes the residue class of ¢, mod p, 0 denotes the identity
element of the group structure on E, and R;\R, means the set of elements
of R, not belonging to R,. Denote by S(p) the set of F,-rational solutions
of the equation x*—z,=0. Then we have

Lemma 2.
N(p)=[S(P)|+3-+(—¢,/p)+olp) mod 8,
where

4 if p=T7 mod 8 and (—1/p)=—1,
0 otherwise.

o®={
Proof. We define a mapping ¢ of S(p) to R,\R, by
¢: x & S(p)——>(2x", 4x°).

It is easy to see ¢ is a bijection. Therefore we obtain by (9)

(10) |Rs|=|S(P)|+3+(—en/p).
To prove our assertion it is sufficient to show the congruence:
(11 N(p)=|R;|+w(p) mod 8.

Assume (—1/p)=—1. Then we see p=3 mod 4 and N, 4(p)=p. There-
fore we have, by (10),

N(p)=p+1,  |R|=4.
This shows (11). Let (—1/p)=1. Then the automorphism J is F,-rational.
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Denote by R the group of F,-rational points on E, and by R, the 2-
primary subgroup of R. Let R_ be the subgroup of R consisting of all
elements of odd order. Then R has a following direct decomposition;

R=R,®R._.

Since J is F,-rational, J operates on R, and R_ respectively. Let U be the
cyclic group of order 4 generated by J. For any x ¢ R we denote by U(x)
the U-orbit of x. We see easily

1 ifxe R,
(12) [U(x)]=42 if x e R\R,,
4 otherwise.

This shows especially
R\R, is non-empty = | R,|=8.
Therefore we obtain
|R,|=|R;| mod 8.
Since | R, is even and |R_|=1 mod 4 (by (12)), we see
N()=|R,|-[R_|=|R,| mod 8.
This establishes (11). Q.E.D.

Proposition 2. Let the notation be as above. Then we have the fol-
lowing congruence;

b(py=a(p)+7(p) mod 8,
where

4 if p=5 mod 8 and p is not inert in F,
()= :
0 otherwise.

Proof. Let g, be a Frobenius substitution of p in the extension K/F
and y the character of u. Let § be the character of G(F) induced by the
identity character of G(F(¥¢,)). Then it is known that

1S (p)|=0(a,)-

Since a(p)=y(o,), by decomposing § to the sum of irreducible characters
of G(F), we have
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(13) |S(M)]=1+(ea/P) +1(0,) =1+ (en/P) +a(p).
By the definition of b(p), Lemma 2 and (13), we obtain
b(p)=Nr o(p) — (en/D) — (—&p/P) + w(p) —a(p) —3 mod 8.
From the regular character of G(F) we deduce the congruence:
14-2a(p) +(—1/9) +(—e,/p) +(e,/P) =0 mod 8.
Therefore we have
b(p)=a(p)+(—1/9) + N ,o(p) + w(p) —2 mod 8.
By the way, easy argument shows
(—1/P)+ N (b)) + w(p) —2=T(p) mod 8.
Use the following facts:

If (—1/p)=—1, then Ny ,(p)=p and p=3 mod 4.
If (—1/p)=1 and p is not inert in F, then p=1 mod 4. Q.E.D.

Corollary. For any integral ideal w of F prime to 2, we have
a(m)=>b(m) mod 4.
Proof. By the definition, we may write
Ly(s, K)={1—a(®)Nr/o(0)"* +Xz;r(9)Nr/o(p) "} "
Comparing L(s, K) with L,(s, E), we have only to prove the congruence:
Xz/7(P) =Ny ,o(p) mod 4.
But this is easily obtained. Q.E.D.
This Corollary shows

Theorem 1. Let the notation and hypothesis be as above. Then for
every j, we obtain

84z, 2)=f(z, z’) mod 4.

§3. Conductors

In this section we calculate the conductor ¢(m) of the elliptic curve
E (=level of Hilbert modular forms f(z, z’)) and level f(m) of Hilbert
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modular forms gz, z’). Further we determine the condition of ¢, to
satisfy our hypothesis. Put

en=A+Bym, with A, BeZ

Then it is easy to see that 4 and B satisfy the following congruences.

A=+1 mod 8, B=0 mod 4 if m=1 mod 4,
A=-+1 mod 8, B=0 mod 4 or A=2 mod 4, B: odd if m=3 mod 4,
A=+1 mod 4, B: even if m=2 mod 4.

By the algorithm of Tate [11], the conductors c(m) is given in the follow-
ing Proposition.

Proposition 3. Let m=1mod 4. Then

c(m)___{Z*" if A=1 mod 8,
28 otherwise.
Let m=3 mod 4. Then

28 if A=1 mod 8§,
c(m)=<:2* if A=—1 mod 8,
2° if A=2 mod 4.

Let m=2 mod 4. Then

4 : J—
c(m)={25 sz:?. mod 4,
q otherwise,

where q is the prime ideal of F lying over 2.

Next we determine the condition that K is ramified over L in the fol-
lowing Proposition.

Proposition 4.

A=1 mod 8, B=0 mod 8 if m=1 mod 4,
K is unramified over L&{A=1 mod 8, B=0 mod 4 if m=3 mod 4,
B=0 mod 4 if m=2 mod 4.

Proof. By (2) we see

&, or &, is unramified&K is unramified over L
=L’ is unramified over k.
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Let us write
A+1=2548, A—1=2%1"

Here f,, e,, u, v are positive integers such that f; and e, are square free
and (fyu, e,v)=1. Further

6___{0 if A is even,
1 otherwise.

Put f=2"°*'f, and e=2"**'¢,. Then we know L’'=Q(v f, v/ —e) (see [2]).
Therefore it follows

L’ is unramified over k&2 is unramified at Q(v/ f) or at
Q(/=e)A==+1 mod 8, B=0 mod 4.

Now we shall recall the definition of “quadratic defect”. Let F be a
number field which is normal over Q and % a prime ideal of § lying over
2. 'We denote by e, the ramification exponent of 3. Let 6 be the com-
pletion of the ring of integers of & at 3 and take a prime element n of 4.
For an integer « of F prime to 2, we denote by Sy(«) the maximal positive
integer ¢ such that « is congruent to a square of an element of 4 mod =
The ideal R58 is called the quadratic defect of « at 8. Assume that the
field {(4/ @) is normal over Q. Then the integer Sy(x) is independent of
the choice of 8 and #. Therefore we can put Sy(a)=Si(«). By Section
63:3 of [6], we see

every prime ideal of § lying over 2 is ramified at F(,/ )
E53(@) <2e;.

Hereafter we may assume that 4=41 mod 8 and B=0 mod 4. Let us
put =L and a=¢, in the above notation. Since ¢,=-+1 mod 4, we
have that S,(e,)=>2¢,. Thus K’ is unramified over L. Next let F=K’
and o=,/¢,. Then §(/ «)=K. Since K’is unramified over L, we can
choose $ such that a prime element x of 4 is given by

:{1+V—1 if ex, =2 (&m=1, 3 mod 4),
l—ym[(l+4/—1) if ex, =4 (&©m=2 mod 4).

Let m=1,3 mod4 and 4=—1 mod 8. Since
en=(1 —x)* mod 4,

we see easily
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v en=1—r mod 7%

This shows that Sy.(y/¢,)=1 and K is ramified over K.
Let m=1,3 mod 4 and A=1 mod 8. Then we can write

(14) Ven=1+pa*+77’, JW:I#—ﬁﬂ—!—nﬂﬂ
where §is a unit of 6 or 0,7, »e 6 and

5:{0 if m=1 mod 4,
1 otherwise.

Put b=B/4. Then we have by (14)
en=14+(B+ O+ —pPr*=1+br*y/ m mod z°.

Thus

B+ B+ —Pr=by/m mod 7.
This shows

Ven=(1+pr)*+by/ ma* mod .
If b is even, then Sg.(y/¢,)=4. Let b be odd. Then by (14)

Ven=(1+(1+pm)’ +(1+0)z* mod z*.
From this it follows
Sey/en)=4=m=3 mod 4.

Therefore we have our assertions for the cases m=1, 3 mod 4.
mod 4. Then we see easily

2=nr*—z" mod =% M =r"—z* mod =*,

271

Let m=2

Put «=1 or ¥/ —1 according to A=1 or —1 mod 8. Then it is noted

that « is a square mod #z®. Let us write
Ven=a+ pat+ 7’4 0n° +9r’,

where §, 7, § are O or units of § and e 6. From this

en=a’+ (B +ap)r’+arn®+ (" —af+ad)x''+(—al +an)z'

=a*+By/m mod 7

Put 5=B/4. Then it follows
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B +aptain+ @' —af+ad)n*+(—al +an)a*=by/ m mod =*.

Therefore
ay/en=(a+pa’+72") +by mat
=(a+ pr* + (T +b)z°)* mod 7%
Since « is square mod 7%, Sy.(ye,)=8. Q.E.D.

Proposition 5. Let the notation be as in Section 1. Then our hypo-
thesis is satisfied with the integers m of the following types:

m=p (p: prime, p=3 mod 4),
m=qq’ (q, q’: primes, g=3,5 mod 8, ¢’=3 mod 4, (¢/q") = —1),
m=2q (q: prime, =3 mod 8).

Further for these m the levels c¢(m) and f(m) of Hilbert modular forms in
Proposition 1 are given by

2t lf m= 2‘17
28 otherwise.

e(m) =f(m) =

Proof. Let m be one of the integers given as above. Put
en=A+Bym.

Then by “infinite decent” of Fermat, we know the followings. If m=1
mod 4, then A=7 mod8. If m=3 mod4, then A is even. If m=2
mod 4, then 4=5mod 8 and B=2 mod 4. Hence our first assertions
follow from Proposition 4. (For details see [3] and [5].) By the results
obtained in [3] and [5)], we know

®) if m=3 mod 4,
[*m)={(4) if m=1 mod 4,
2¢* if m=2 mod 4,

where q is the prime ideal of L lying over 2. Since

€)) if m=3 mod 4,
D(L/F)=1(4) if m=1 mod 4,
) if m=2 mod 4,

the definition of f(m) and Proposition 3 show our last statements. Q.E.D.
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§4. Fourier coefficients and decomposition law

In this section we discuss the relation between the decomposition in
K of the prime ideals p of F and the p-th Fourier coefficients a(p) and
b(p). Firstly we have the following.

Theorem 2. Let p be a prime ideal of F prime to 2. Then we have
the following equivalences:

a(p)#£0sa(p) = 12 splits completely in K/,
a(p) =29 splits completely in K.

Proof. By the definition of p, we know

2 if g,=1
v(o,)=:—2 ifg,=d"%
0 otherwise.
Since G(K’)={c*) and a(p) =v(c,) we have our assertions. Q.E.D.

Corollary. Let 7(p) be the symbol defined in Proposition 2. Then

b(p)= +2 mod 8 splits completely in K,
b(p)=247(p) mod 8 splits completely in K.

Proof. This is deduced from Theorem 2 and Proposition 2. Q.E.D.

Let (e,./p), be the fourth power residue symbol of ¢, modulo . Then

Proposition 6. Let p be a prime ideal of F such that a(p)+0. Then
a(p) =2en/)s

Proof. By Theorem 2 our assumption a(p)=£0 implies (¢,,/p)=1 and
(—=1/p)=1. Thus

(ea/P)i=1 (esp. —DE|S(B)|=4 (resp. 0).
By (13) we obtain
|S(p)|=2+a(p).
This shows our assertions. Q.E.D.

Proposition 7. Let p be an odd prime number which is inert in F and
P the unique prime ideal of F lying over p. Then a(p)==0. Further denote
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by T(m) the positive square free part of the trace of 1+c¢,. Then we have

a(p) = —26(—1/p) =(T(m)/p)= —1.

Proof. The first assertion is deduced from that the group G(K’/Q) is
an abelian group of type (2, 2, 2) and from Theorem 2. Denote by C,
the conjugate class of Frobenius substitution of p in G. Then it is easy
to see

a(p)=—26C,={opp, c*pp}=p splits completely in L*,
where L* is the field of invariants of the group {opp). Since L*¥=
Qv —m, ¥ —T(m)), we have second assertion. Q.E.D.

In the reminder of this section we consider the case m is a prime
number g. We give an explicit expression of a(p) for the prime p not
inert in F.

Theorem 3. Let p be odd prime number which is not inert in F and p
a prime ideal of F dividing p. Let h be the class number of k. Then we
have

a(p) =0& there exists uniquely determined integers
a and b such that a=1 mod 4, (a, p)=1, b>0 and
p*r=a’416gb".

Further in this case we see

a(p)=2(—1)".
Proof. This is proved by determirﬁng the class groups in k cor-
responding to K and K’. See [3] and [5] for details. Q.E.D.

Furthermore if p is split in F, we have other expression.

Theorem 4. Let p be an odd prime number which is split in F. Then
we have

a(p)£0=p=1 mod 8.
In this case p has a following representation in the binary quadratic form:

___{xz-{—8y2 (x=1 mod 4, y>0) if g=3 mod 8,
x*—8y* (x>0, y>0) if g=7 mod 8§,

where x and y are uniquely determined integers prime to p. Let r be an
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integer such that
r’=(—1)49@*2 mod q.

Then we have
alp) =2(—eor( XH2Y,
q

Proof. Our statement follows from Proposition 6 and from the
results in [3] and [5]. Q.E.D.

Remark. Let 6,(z) (i=0, 1) be the cusp forms of weight one defined
in Section 1. Then the decomposition law of the extension K/Q is also
expressed in Fourier coefficients of the form 6,(z)+6,(z). For details we
refer to [3].

The author thanks to Professor J. Evans for pointing out that our
results in Theorem 4 can be collected in the above simple form.
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