Advanced Studies in Pure Mathematics 13, 1988 Investigations in Number Theory pp. 261–275

Quadratic Units and Congruences between Hilbert Modular Forms

Noburo Ishii

Introduction

Let F be a real quadratic field which has the totally positive fundamental unit. We put $F = Q(\sqrt{m})$ with a positive square free integer m. We denote by $[1, \sqrt{m}]$ the order of F generated by 1 and \sqrt{m} over the ring of integers Z. Let ε_m be the smallest unit of F such that $\varepsilon_m > 1$ and $\varepsilon_m \in [1, \sqrt{m}]$. We denote by K the number field generated by $\sqrt{-1}$ and $\sqrt[4]{\varepsilon_m}$ over the rational number field Q and by E the elliptic curve over F defined by the Weierstrass equation;

$$y^2 = x^3 + 4\varepsilon_m x.$$

We can attach to K (resp. to E) Hilbert modular forms over F of weight one (resp. of weight two) in a natural way.

The aim of the present paper is to show that the "quartic residuacity" of ε_m provides congruences between these Hilbert modular forms. Further we calculate their Fourier coefficients and express the decomposition law between K and F by them.

§1. Hilbert modular forms

Let the notation be as in introduction. Denote by G the galois group of the normal extension K of Q. Then G is of order 16 and is generated by the following three isomorphisms σ , φ and ρ :

$\sigma(\sqrt[4]{\varepsilon_m}) = \sqrt{-1} \sqrt[4]{\varepsilon_m},$	$\sigma(\sqrt{-1}) = \sqrt{-1};$
$\varphi(\sqrt[4]{\varepsilon_m}) = 1/\sqrt[4]{\varepsilon_m},$	$\varphi(\sqrt{-1}) = \sqrt{-1};$
$\rho(\sqrt[4]{\varepsilon_m}) = \sqrt[4]{\varepsilon_m},$	$\rho(\sqrt{-1}) = -\sqrt{-1}.$

It is easy to see that they satisfy the relation;

$$\sigma^4 = \varphi^2 = \rho^2 = 1$$
, $\varphi \sigma \varphi = \rho \sigma \rho = \sigma^3$, $\varphi \rho = \rho \varphi$.

Received June, 9, 1986.

Now we shall explain how to attach to K Hilbert modular forms. For a subfield M of K, we denote by G(M) the Galois group of K over M. Set $k = Q(\sqrt{-m})$. Then we see

$$G(F) = \langle \sigma, \rho \rangle, \qquad G(k) = \langle \sigma, \varphi \rho \rangle.$$

Therefore G(F) is isomorphic to the dihedral group D_4 of order 8 and G(k) is an abelian group. Let μ be the representation of G(F) corresponding to the unique two-dimensional irreducible complex representation of D_4 . From now on we assume that

$$\mu(\sigma) = \begin{pmatrix} \sqrt{-1} & 0 \\ 0 & -\sqrt{-1} \end{pmatrix}, \qquad \mu(\rho) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

The induced representation of μ to G decomposes into two distinct irreducible representations ψ_0 and ψ_1 of dimension 2. Let χ_F be the linear representation of G whose kernel coincides with G(F). Then

$$(1) \qquad \qquad \psi_1 = \psi_0 \otimes \chi_F$$

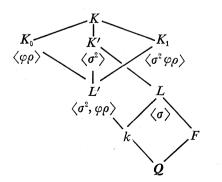
Let us assume that

$$\psi_0(\sigma) = \begin{pmatrix} \sqrt{-1} & 0 \\ 0 & -\sqrt{-1} \end{pmatrix}, \quad \psi_0(\rho) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \psi_0(\varphi) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Since G(k) is abelian, the restriction ψ_i (i=0, 1) to G(k) decomposes into two distinct linear representations ξ_i and ξ'_i . It is easy to see kernel of ξ_i =kernel of ξ'_i for each *i*. Put

$$K' = Q(\sqrt{-1}, \sqrt{\varepsilon_m}), \qquad L = Q(\sqrt{-1}, \sqrt{m}).$$

Let K_i be the field of invariants of the kernel of ξ_i . Let L' be the intersection of K_0 and K_1 . Then the following diagram is obtained.



Let us denote by the same notation ξ_i the ideal character of k induced by the representation ξ_i in view of Artin reciprocity law. Let f_i be the conductor of the abelian extension K_i/k . Then f_i coincides with the conductor of the character ξ_i and is self-conjugate. Further the support of f_i consists of all prime ideals of k lying over 2, if f_i is non-trivial. The above diagram shows

(2) neither $f_{\mathfrak{g}}$ nor $f_{\mathfrak{l}}$ is trivial $\iff K$ is ramified over L.

For each *i* let $L(s, \psi_i)$ and $L(s, \xi_i)$ be the Artin *L*-function of ψ_i and Hecke *L*-function of ξ_i respectively. If ξ_i is ramified, then $L(s, \xi_i)$ coincides with the Hecke *L*-function of the primitive character associated with ξ_i . Therefore under the assumption ξ_i is ramified, we have

$$(3) L(s, \psi_i) = L(s, \xi_i).$$

In the below we assume the following.

Hypothesis. The field K is ramified over L.

It is known that $L(s, \xi_i)$ is the Mellin transform of a cusp form $\theta_i(z)$ of the modular group of $\Gamma_0(|D(k/Q)| N_{k/Q}(f_i))$ of weight one (of neben type), where D(k/Q) denotes the discriminant of k over Q. If we denote by χ the ideal character of k determined by the extension L over k, then by (1) we have $\xi_0 = \chi \xi_1$. Therefore in view of an analogy of Doi-Naganuma correspondence [2], we put

$$L(s, K) = L(s, \xi_0)L(s, \xi_1).$$

It is easily seen that

$$L(s, K) = L(s, \xi_0 \cdot N_{L/k}).$$

Therefore we write

$$L(s, K) = \prod_{\mathfrak{p}} L_{\mathfrak{p}}(s, K),$$

where the product is taken over all prime ideals of F not lying over 2 and

$$L_{\mathfrak{p}}(s, K) = \prod_{\substack{\mathfrak{P} \mid \mathfrak{p} \\ \mathfrak{P}: \text{ prime ideal of } L}} (1 - \xi_0 N_{L/k}(\mathfrak{P}) N_{L/Q}(\mathfrak{P})^{-s})^{-1}$$

Let us write

(4)
$$L(s, K) = \sum_{\mathfrak{m}} a(\mathfrak{m}) N_{F/Q}(\mathfrak{m})^{-s},$$

where the sum is taken over all integral ideals of F. Let h be the narrow

class number of F and let a_j $(j=1, 2, \dots, h)$ be the integral ideals of F representing all narrow classes of F. We define h functions $g_j(z, z')$ on the direct product of two complex upper half planes \mathfrak{H} by

(5)
$$g_j(z,z') = \sum_{\substack{\xi \in \mathfrak{a}_j \\ \xi \geqslant 0}} d(\xi \mathfrak{a}_j^{-1}) \exp\left(2\pi \sqrt{-1}(\xi z + \xi^{\varphi} z')\right),$$

where $\xi \gg 0$ means that ξ is totally positive. Since L(s, K) is a L-function associated with the character $\xi_0 N_{L/k}$ of the totally imaginary quadratic extension L of F, $g_j(z, z')$ are Hilbert modular forms of weight one (cf. Sections 2 and 5 of [10]). Let E be the elliptic curve defined over F by the equation:

$$y^2 = x^3 + 4\varepsilon_m x.$$

If we denote by c(m) the conductor of E, then c(m) is always nontrivial and the support of c(m) consists of all prime ideals of F lying over 2 (see Section 3 of this note). Denote by L(s, E) the *L*-function of E over F. For a prime ideal \mathfrak{p} of F prime to 2, let $E_{\mathfrak{p}}$ the reduction of E defined over the residue field $F_{\mathfrak{p}}$. Let $N(\mathfrak{p})$ be the number of $F_{\mathfrak{p}}$ -rational points on $E_{\mathfrak{p}}$ and put

$$b(\mathfrak{p}) = N_{F/\mathcal{Q}}(\mathfrak{p}) + 1 - N(\mathfrak{p}),$$

$$L_{\mathfrak{p}}(s, E) = (1 - b(\mathfrak{p})N_{F/\mathcal{Q}}(\mathfrak{p})^{-s} + N_{F/\mathcal{Q}}(\mathfrak{p})^{1-2s})^{-1}.$$

Then L(s, E) has the following Euler product expansion:

$$L(s, E) = \prod_{(\mathfrak{p}, 2)=1} L_{\mathfrak{p}}(s, E).$$

Let us write

(6)
$$L(s, E) = \sum b(\mathfrak{m}) N_{F/Q}(\mathfrak{m})^{-s},$$

where m runs over all integral ideals of F. We shall define h functions f_i $(j=1, \dots, h)$ on $\mathfrak{H} \times \mathfrak{H}$ by

(7)
$$f_j(z,z') = \sum_{\substack{\xi \in \mathfrak{a}_j \\ \xi \gg 0'}} b(\xi \mathfrak{a}_j^{-1}) \exp\left(2\pi \sqrt{-1}(\xi z + \xi^{\varphi} z')\right).$$

Since E has complex multiplications, E determines a Grössen character ψ of L and L(s, E) coincides with the L-function of the ideal character ψ^* of L associated with ψ ([1], [9]). If we denote by c^* the conductor of ψ^* , we see easily, by Section 1 of [9],

$$\psi^*((x)) = x \cdot x^{\varphi}$$
 for $x \in L$, $x \equiv 1 \mod^{\times} c^*$.

This shows $f_j(z, z')$ are Hilbert modular forms of weight 2. Further we know that c^* is associated with c(m) in the following relation.

Lemma 1.

$$c(m) = N_{L/F}(c^*)D(L/F).$$

Proof. Let \tilde{c} be the conductor of E over L. Then Theorem 12 of [8] shows $c^{*2} = \tilde{c}$. Further by Corollary of Theorem 4 of [8] and Proposition 4 of Section 2, VI of [7], we see

$$\tilde{c} \cdot D(L/F) = c(m).$$

Thus we have

$$N_{L/F}(c^*)^2 D(L/F)^2 = c(m)^2.$$
 Q.E.D.

Let $f^*(m)$ be the conductor of K over L. Put

$$f(m) = N_{L/F}(f^{*}(m))D(L/F).$$

Under the notation in Section 2 of [10], we may state our results for g_j and f_j more precisely. Thus using Lemma 1 we have

Proposition 1. Let η_1 (resp. η_2) be the Hecke character of the idele group of F such that the associated ideal character η_1^* (resp. η_2^*) is given by

$$\eta_1^* = \chi_{L/F} \circ \xi_0^2 \ (resp. \ \eta_2^* = \chi_{L/F} \circ \psi^* \circ N_{F/O}^{-1}),$$

where $\chi_{L/F}$ denotes the ideal character of F attached to the extension L. Then, under the notation in [10], we obtain

$$(g_1, \dots, g_h) \in \mathfrak{M}_{(1,1)}(f(m), \eta_1),$$

 $(f_1, \dots, f_h) \in \mathfrak{M}_{(2,2)}(c(m), \eta_2).$

Proof. See [10].

§ 2. Congruences

In this section we show a congruence between Hilbert modular forms $g_j(z, z')$ and $f_j(z, z')$. The way of argument is similar to that of our proof [4] for the congruence between cusp forms by quartic residue of rational integers. We preserve the notation and the hypothesis in Section 1. Let p be an odd prime number and p a prime ideal of F lying over p. For an integer α of F prime to p, we define the symbol (α/p) by

N. Ishii

$$(\alpha/\mathfrak{p}) = \begin{cases} 1 & \text{if } \alpha \text{ is square modulo } \mathfrak{p}, \\ -1 & \text{otherwise.} \end{cases}$$

Let J be the automorphism of the reduction E_{μ} defined by

$$(8) J: (x, y) \mapsto (-x, Iy),$$

for any point (x, y) on $E_{\mathfrak{p}}$. Here the letter *I* denotes an element of algebraic closure of $F_{\mathfrak{p}}$ such that $I^2 = -1$. For a positive integer *i* we denote by R_i the set of $F_{\mathfrak{p}}$ -rational $(1+J)^i$ -division points on $E_{\mathfrak{p}}$. Easy calculation shows

(9)
$$\begin{cases} R_2 = \{(x, 0) \mid x^3 + 4\bar{\varepsilon}_m x = 0, x \in F_{\mathfrak{p}}\} \cup \{\bar{0}\}, \\ R_3 \setminus R_2 = \{(x, y) \mid x^2 - 4\bar{\varepsilon}_m = 0, y^2 = x^3 + 4\bar{\varepsilon}_m x, x, y \in F_{\mathfrak{p}}\}, \end{cases}$$

where $\bar{\varepsilon}_m$ denotes the residue class of $\varepsilon_m \mod \mathfrak{p}$, $\bar{0}$ denotes the identity element of the group structure on $E_{\mathfrak{p}}$ and $R_3 \setminus R_2$ means the set of elements of R_3 not belonging to R_2 . Denote by $S(\mathfrak{p})$ the set of $F_{\mathfrak{p}}$ -rational solutions of the equation $x^4 - \bar{\varepsilon}_m = 0$. Then we have

Lemma 2.

$$N(\mathfrak{p}) = |S(\mathfrak{p})| + 3 + (-\varepsilon_m/\mathfrak{p}) + \omega(\mathfrak{p}) \mod 8,$$

where

$$\omega(\mathfrak{p}) = \begin{cases} 4 & \text{if } p \equiv 7 \mod 8 \text{ and } (-1/\mathfrak{p}) = -1, \\ 0 & \text{otherwise.} \end{cases}$$

Proof. We define a mapping φ of $S(\mathfrak{p})$ to $R_3 \setminus R_2$ by

$$\varphi \colon x \in S(\mathfrak{p}) \longmapsto (2x^2, 4x^3).$$

It is easy to see φ is a bijection. Therefore we obtain by (9)

(10)
$$|R_{\mathfrak{z}}| = |S(\mathfrak{p})| + 3 + (-\varepsilon_m/\mathfrak{p}).$$

To prove our assertion it is sufficient to show the congruence:

(11)
$$N(\mathfrak{p}) \equiv |R_{\mathfrak{z}}| + \omega(\mathfrak{p}) \mod 8.$$

Assume $(-1/\mathfrak{p}) = -1$. Then we see $p \equiv 3 \mod 4$ and $N_{F/Q}(\mathfrak{p}) = p$. Therefore we have, by (10),

$$N(\mathfrak{p}) = p+1, \qquad |R_{\mathfrak{z}}| = 4.$$

This shows (11). Let (-1/p)=1. Then the automorphism J is F_p -rational.

266

Denote by R the group of F_{p} -rational points on E_{p} and by R_{+} the 2primary subgroup of R. Let R_{-} be the subgroup of R consisting of all elements of odd order. Then R has a following direct decomposition;

$$R = R_{+} \oplus R_{-}$$
.

Since J is $F_{\mathfrak{p}}$ -rational, J operates on R_{+} and R_{-} respectively. Let U be the cyclic group of order 4 generated by J. For any $x \in R$ we denote by U(x) the U-orbit of x. We see easily

(12)
$$|U(x)| = \begin{cases} 1 & \text{if } x \in R_1, \\ 2 & \text{if } x \in R_2 \setminus R_1, \\ 4 & \text{otherwise.} \end{cases}$$

This shows especially

 $R_3 \setminus R_2$ is non-empty $\Rightarrow |R_3| = 8$.

Therefore we obtain

 $|R_+|\equiv |R_3| \mod 8.$

Since $|R_3|$ is even and $|R_-| \equiv 1 \mod 4$ (by (12)), we see

$$N(\mathfrak{p}) = |R_+| \cdot |R_-| \equiv |R_3| \mod 8.$$

This establishes (11).

Proposition 2. Let the notation be as above. Then we have the following congruence;

$$b(\mathfrak{p})\equiv a(\mathfrak{p})+\gamma(\mathfrak{p}) \mod 8,$$

where

$$\gamma(\mathfrak{p}) = \begin{cases} 4 & \text{if } p \equiv 5 \mod 8 \text{ and } p \text{ is not inert in } F, \\ 0 & \text{otherwise.} \end{cases}$$

Proof. Let $\sigma_{\mathfrak{p}}$ be a Frobenius substitution of \mathfrak{p} in the extension K/F and ν the character of μ . Let δ be the character of G(F) induced by the identity character of $G(F(\sqrt[4]{\varepsilon_m}))$. Then it is known that

$$|S(\mathfrak{p})| = \delta(\sigma_{\mathfrak{p}}).$$

Since $a(\mathfrak{p}) = \nu(\sigma_{\mathfrak{p}})$, by decomposing δ to the sum of irreducible characters of G(F), we have

Q.E.D.

N. Ishii

(13)
$$|S(\mathfrak{p})| = 1 + (\varepsilon_m/\mathfrak{p}) + \nu(\sigma_{\mathfrak{p}}) = 1 + (\varepsilon_m/\mathfrak{p}) + a(\mathfrak{p}).$$

By the definition of b(p), Lemma 2 and (13), we obtain

$$b(\mathfrak{p}) \equiv N_{F/\mathcal{Q}}(\mathfrak{p}) - (\varepsilon_m/\mathfrak{p}) - (-\varepsilon_m/\mathfrak{p}) + \omega(\mathfrak{p}) - a(\mathfrak{p}) - 3 \mod 8.$$

From the regular character of G(F) we deduce the congruence:

$$1+2a(\mathfrak{p})+(-1/\mathfrak{p})+(-\varepsilon_m/\mathfrak{p})+(\varepsilon_m/\mathfrak{p})\equiv 0 \mod 8.$$

Therefore we have

$$b(\mathfrak{p}) \equiv a(\mathfrak{p}) + (-1/\mathfrak{p}) + N_{F/\varrho}(\mathfrak{p}) + \omega(\mathfrak{p}) - 2 \mod 8$$

By the way, easy argument shows

$$(-1/\mathfrak{p}) + N_{F/o}(\mathfrak{p}) + \omega(\mathfrak{p}) - 2 \equiv \mathfrak{l}(\mathfrak{p}) \mod 8.$$

Use the following facts:

If $(-1/\mathfrak{p}) = -1$, then $N_{F/Q}(\mathfrak{p}) = p$ and $p \equiv 3 \mod 4$. If $(-1/\mathfrak{p}) = 1$ and p is not inert in F, then $p \equiv 1 \mod 4$. Q.E.D.

Corollary. For any integral ideal m of F prime to 2, we have

 $a(\mathfrak{m})\equiv b(\mathfrak{m}) \mod 4.$

Proof. By the definition, we may write

$$L_{\mathfrak{p}}(s, K) = \{1 - a(\mathfrak{p})N_{F/O}(\mathfrak{p})^{-s} + \chi_{L/F}(\mathfrak{p})N_{F/O}(\mathfrak{p})^{-2s}\}^{-1}.$$

Comparing $L_{\mu}(s, K)$ with $L_{\mu}(s, E)$, we have only to prove the congruence:

 $\chi_{L/F}(\mathfrak{p}) \equiv N_{F/O}(\mathfrak{p}) \mod 4.$

But this is easily obtained.

This Corollary shows

Theorem 1. Let the notation and hypothesis be as above. Then for every *j*, we obtain

$$g_i(z, z') \equiv f_i(z, z') \mod 4.$$

§3. Conductors

In this section we calculate the conductor c(m) of the elliptic curve E (=level of Hilbert modular forms $f_i(z, z')$) and level f(m) of Hilbert

268

Q.E.D.

modular forms $g_j(z, z')$. Further we determine the condition of ε_m to satisfy our hypothesis. Put

$$\varepsilon_m = A + B\sqrt{m}$$
, with $A, B \in \mathbb{Z}$.

Then it is easy to see that A and B satisfy the following congruences.

$(A \equiv \pm 1 \mod 8, B \equiv 0 \mod 4)$	if $m \equiv 1 \mod 4$,
$A \equiv \pm 1 \mod 8, B \equiv 0 \mod 4 \text{ or } A \equiv 2 \mod 4, B: \text{ odd}$	if $m \equiv 3 \mod 4$,
$A \equiv \pm 1 \mod 4$, B: even	if $m \equiv 2 \mod 4$.

By the algorithm of Tate [11], the conductors c(m) is given in the following Proposition.

Proposition 3. Let $m \equiv 1 \mod 4$. Then

 $c(m) = \begin{cases} 2^5 & \text{if } A \equiv 1 \mod 8, \\ 2^6 & \text{otherwise.} \end{cases}$

Let $m \equiv 3 \mod 4$. Then

$$c(m) = \begin{cases} 2^3 & \text{if } A \equiv 1 \mod 8, \\ 2^4 & \text{if } A \equiv -1 \mod 8, \\ 2^6 & \text{if } A \equiv 2 \mod 4. \end{cases}$$

Let $m \equiv 2 \mod 4$. Then

 $c(m) = \begin{cases} 2^4 & \text{if } B \equiv 2 \mod 4, \\ q^5 & \text{otherwise,} \end{cases}$

where q is the prime ideal of F lying over 2.

Next we determine the condition that K is ramified over L in the following Proposition.

Proposition 4.

$$K \text{ is unramified over } L \Leftrightarrow \begin{cases} A \equiv 1 \mod 8, \ B \equiv 0 \mod 8 & \text{if } m \equiv 1 \mod 4, \\ A \equiv 1 \mod 8, \ B \equiv 0 \mod 4 & \text{if } m \equiv 3 \mod 4, \\ B \equiv 0 \mod 4 & \text{if } m \equiv 2 \mod 4. \end{cases}$$

Proof. By (2) we see

$$\xi_0$$
 or ξ_1 is unramified $\Leftrightarrow K$ is unramified over L

 $\Rightarrow L'$ is unramified over k.

Let us write

$$4+1=2^{\varepsilon}f_{0}u^{2}, \qquad A-1=2^{\varepsilon}e_{0}v^{2}.$$

Here f_0, e_0, u, v are positive integers such that f_0 and e_0 are square free and $(f_0u, e_0v) = 1$. Further

$$\varepsilon = \begin{cases} 0 & \text{if } A \text{ is even,} \\ 1 & \text{otherwise.} \end{cases}$$

Put $f=2^{-\varepsilon+1}f_0$ and $e=2^{-\varepsilon+1}e_0$. Then we know $L'=Q(\sqrt{f}, \sqrt{-e})$ (see [2]). Therefore it follows

L' is unramified over $k \rightleftharpoons 2$ is unramified at $Q(\sqrt{f})$ or at $Q(\sqrt{-e}) \Leftrightarrow A \equiv \pm 1 \mod 8, B \equiv 0 \mod 4.$

Now we shall recall the definition of "quadratic defect". Let \mathfrak{F} be a number field which is normal over Q and \mathfrak{P} a prime ideal of \mathfrak{F} lying over 2. We denote by $e_{\mathfrak{F}}$ the ramification exponent of \mathfrak{P} . Let δ be the completion of the ring of integers of \mathfrak{F} at \mathfrak{P} and take a prime element π of δ . For an integer α of F prime to 2, we denote by $S_{\mathfrak{P}}(\alpha)$ the maximal positive integer t such that α is congruent to a square of an element of $\delta \mod \pi^t$. The ideal $\mathfrak{P}^{S_{\mathfrak{P}}(\alpha)}$ is called the quadratic defect of α at \mathfrak{P} . Assume that the field $\mathfrak{F}(\sqrt{\alpha})$ is normal over Q. Then the integer $S_{\mathfrak{P}}(\alpha)$ is independent of the choice of \mathfrak{P} and π . Therefore we can put $S_{\mathfrak{P}}(\alpha) = S_{\mathfrak{F}}(\alpha)$. By Section 63:3 of [6], we see

every prime ideal of \mathfrak{F} lying over 2 is ramified at $\mathfrak{F}(\sqrt{\alpha})$ $\Leftrightarrow S_{\mathfrak{F}}(\alpha) \leq 2e_{\mathfrak{F}}.$

Hereafter we may assume that $A \equiv \pm 1 \mod 8$ and $B \equiv 0 \mod 4$. Let us put $\mathfrak{F} = L$ and $\alpha = \varepsilon_m$ in the above notation. Since $\varepsilon_m \equiv \pm 1 \mod 4$, we have that $S_L(\varepsilon_m) \ge 2e_L$. Thus K' is unramified over L. Next let $\mathfrak{F} = K'$ and $\alpha = \sqrt{\varepsilon_m}$. Then $\mathfrak{F}(\sqrt{\alpha}) = K$. Since K' is unramified over L, we can choose \mathfrak{P} such that a prime element π of δ is given by

$$\pi = \begin{cases} 1 + \sqrt{-1} & \text{if } e_{\kappa'} = 2 \ (\rightleftharpoons m \equiv 1, 3 \mod 4), \\ 1 - \sqrt{m}/(1 + \sqrt{-1}) & \text{if } e_{\kappa'} = 4 \ (\rightleftharpoons m \equiv 2 \mod 4). \end{cases}$$

Let $m \equiv 1, 3 \mod 4$ and $A \equiv -1 \mod 8$. Since

$$\varepsilon_m \equiv (1-\pi)^2 \mod 4$$
,

we see easily

$$\sqrt{\varepsilon_m} \equiv 1 - \pi \mod \pi^2$$
.

This shows that $S_{K'}(\sqrt{\varepsilon_m}) = 1$ and K is ramified over K'.

Let $m \equiv 1, 3 \mod 4$ and $A \equiv 1 \mod 8$. Then we can write

(14)
$$\sqrt{\varepsilon_m} = 1 + \beta \pi^2 + \gamma \pi^3, \qquad \sqrt{m} = 1 + \delta \pi + \eta \pi^2,$$

where β is a unit of \hat{o} or $0, \hat{\gamma}, \eta \in \hat{o}$ and

$$\delta = \begin{cases} 0 & \text{if } m \equiv 1 \mod 4, \\ 1 & \text{otherwise.} \end{cases}$$

Put b = B/4. Then we have by (14)

$$\varepsilon_m \equiv 1 + (\beta + \beta^2)\pi^4 + (\gamma - \beta)\pi^5 \equiv 1 + b\pi^4 \sqrt{m} \mod \pi^6.$$

Thus

$$\beta + \beta^2 + (\gamma - \beta)\pi \equiv b\sqrt{m} \mod \pi^2$$
.

This shows

$$\sqrt{\varepsilon_m} \equiv (1+\beta\pi)^2 + b\sqrt{m}\pi^2 \mod \pi^4.$$

If b is even, then $S_{K'}(\sqrt{\varepsilon_m}) \ge 4$. Let b be odd. Then by (14)

$$\sqrt{\varepsilon_m} \equiv (1+(1+\beta)\pi)^2+(1+\delta)\pi^3 \mod \pi^4.$$

From this it follows

$$S_{\kappa'}(\sqrt{\varepsilon_m}) \geq 4 \Leftrightarrow m \equiv 3 \mod 4.$$

Therefore we have our assertions for the cases $m \equiv 1, 3 \mod 4$. Let $m \equiv 2 \mod 4$. Then we see easily

$$2\equiv\pi^4-\pi^6 \mod \pi^8, \qquad \sqrt{m}\equiv\pi^2-\pi^3 \mod \pi^4.$$

Put $\alpha = 1$ or $\sqrt{-1}$ according to $A \equiv 1$ or $-1 \mod 8$. Then it is noted that α is a square mod π^8 . Let us write

$$\sqrt{\varepsilon_m} = \alpha + \beta \pi^4 + \gamma \pi^5 + \delta \pi^6 + \eta \pi^7,$$

where β , γ , δ are 0 or units of \hat{o} and $\eta \in \hat{o}$. From this

$$\varepsilon_m \equiv \alpha^2 + (\beta^2 + \alpha\beta)\pi^3 + \alpha\tilde{\tau}\pi^3 + (\tilde{\tau}^2 - \alpha\beta + \alpha\delta)\pi^{10} + (-\alpha\tilde{\tau} + \alpha\eta)\pi^{11}$$
$$\equiv \alpha^2 + B\sqrt{m} \mod \pi^{12}.$$

Put b = B/4. Then it follows

$$\beta^2 + \alpha\beta + \alpha \tilde{\imath} \pi + (\tilde{\imath}^2 - \alpha\beta + \alpha\delta)\pi^2 + (-\alpha \tilde{\imath} + \alpha\eta)\pi^3 \equiv b\sqrt{m} \mod \pi^4.$$

Therefore

$$\alpha\sqrt{\varepsilon_m} \equiv (\alpha + \beta\pi^2 + \gamma\pi^3)^2 + b\sqrt{m}\pi^4$$
$$\equiv (\alpha + \beta\pi^2 + (\gamma + b)\pi^3)^2 \mod \pi^8.$$

Since α is square mod π^{*} , $S_{K'}(\sqrt{\varepsilon_{m}}) \geq 8$.

Proposition 5. Let the notation be as in Section 1. Then our hypothesis is satisfied with the integers m of the following types:

O.E.D.

$$m = p$$
 (p: prime, $p \equiv 3 \mod 4$),
 $m = qq'$ (q, q': primes, $q \equiv 3, 5 \mod 8, q' \equiv 3 \mod 4, (q/q') = -1$),
 $m = 2q$ (q: prime, $q \equiv 3 \mod 8$).

Further for these m the levels c(m) and f(m) of Hilbert modular forms in Proposition 1 are given by

$$c(m) = f(m) = \begin{cases} 2^4 & \text{if } m = 2q, \\ 2^6 & \text{otherwise.} \end{cases}$$

Proof. Let *m* be one of the integers given as above. Put

$$\varepsilon_m = A + B\sqrt{m}$$
.

Then by "infinite decent" of Fermat, we know the followings. If $m \equiv 1 \mod 4$, then $A \equiv 7 \mod 8$. If $m \equiv 3 \mod 4$, then A is even. If $m \equiv 2 \mod 4$, then $A \equiv 5 \mod 8$ and $B \equiv 2 \mod 4$. Hence our first assertions follow from Proposition 4. (For details see [3] and [5].) By the results obtained in [3] and [5], we know

$$f^{*}(m) = \begin{cases} (8) & \text{if } m \equiv 3 \mod 4, \\ (4) & \text{if } m \equiv 1 \mod 4, \\ 2q^{2} & \text{if } m \equiv 2 \mod 4, \end{cases}$$

where q is the prime ideal of L lying over 2. Since

$$D(L/F) = \begin{cases} (1) & \text{if } m \equiv 3 \mod 4, \\ (4) & \text{if } m \equiv 1 \mod 4, \\ (2) & \text{if } m \equiv 2 \mod 4, \end{cases}$$

the definition of f(m) and Proposition 3 show our last statements. Q.E.D.

272

§4. Fourier coefficients and decomposition law

In this section we discuss the relation between the decomposition in K of the prime ideals \mathfrak{p} of F and the \mathfrak{p} -th Fourier coefficients $a(\mathfrak{p})$ and $b(\mathfrak{p})$. Firstly we have the following.

Theorem 2. Let \mathfrak{p} be a prime ideal of F prime to 2. Then we have the following equivalences:

 $a(\mathfrak{p}) \neq 0 \Leftrightarrow a(\mathfrak{p}) = \pm 2 \Leftrightarrow \mathfrak{p}$ splits completely in K', $a(\mathfrak{p}) = 2 \Leftrightarrow \mathfrak{p}$ splits completely in K.

Proof. By the definition of μ , we know

$$\nu(\sigma_{\mathfrak{p}}) = \begin{cases} 2 & \text{if } \sigma_{\mathfrak{p}} = 1 \\ -2 & \text{if } \sigma_{\mathfrak{p}} = \sigma^{2}, \\ 0 & \text{otherwise.} \end{cases}$$

Since $G(K') = \langle \sigma^2 \rangle$ and $a(\mathfrak{p}) = \nu(\sigma_{\mathfrak{p}})$ we have our assertions. Q.E.D.

Corollary. Let $\gamma(p)$ be the symbol defined in Proposition 2. Then

 $b(\mathfrak{p}) \equiv \pm 2 \mod 8 \Leftrightarrow \mathfrak{p} \text{ splits completely in } K',$ $b(\mathfrak{p}) \equiv 2 + \gamma(\mathfrak{p}) \mod 8 \Leftrightarrow \mathfrak{p} \text{ splits completely in } K.$

Proof. This is deduced from Theorem 2 and Proposition 2. Q.E.D.

Let $(\varepsilon_m/\mathfrak{p})_4$ be the fourth power residue symbol of ε_m modulo \mathfrak{p} . Then

Proposition 6. Let \mathfrak{p} be a prime ideal of F such that $a(\mathfrak{p}) \neq 0$. Then

$$a(\mathfrak{p})=2(\varepsilon_m/\mathfrak{p})_4.$$

Proof. By Theorem 2 our assumption $a(p) \neq 0$ implies $(\varepsilon_m/p) = 1$ and (-1/p) = 1. Thus

$$(\varepsilon_m/\mathfrak{p})_4 = 1 \text{ (resp. } -1) \Leftrightarrow |S(\mathfrak{p})| = 4 \text{ (resp. } 0).$$

By (13) we obtain

 $|S(\mathfrak{p})|=2+a(\mathfrak{p}).$

This shows our assertions.

Proposition 7. Let p be an odd prime number which is inert in F and \mathfrak{p} the unique prime ideal of F lying over p. Then $a(\mathfrak{p})\neq 0$. Further denote

Q.E.D.

by T(m) the positive square free part of the trace of $1 + \varepsilon_m$. Then we have

$$a(\mathfrak{p}) = -2 \Leftrightarrow (-1/p) = (T(m)/p) = -1.$$

Proof. The first assertion is deduced from that the group G(K'/Q) is an abelian group of type (2, 2, 2) and from Theorem 2. Denote by C_p the conjugate class of Frobenius substitution of p in G. Then it is easy to see

$$a(\mathfrak{p}) = -2 \Leftrightarrow C_p = \{\sigma \varphi \rho, \sigma^3 \varphi \rho\} \Leftrightarrow p \text{ splits completely in } L^*,$$

where L^* is the field of invariants of the group $\langle \sigma \varphi \rho \rangle$. Since $L^* = Q(\sqrt{-m}, \sqrt{-T(m)})$, we have second assertion. Q.E.D.

In the reminder of this section we consider the case m is a prime number q. We give an explicit expression of a(p) for the prime p not inert in F.

Theorem 3. Let p be odd prime number which is not inert in F and p a prime ideal of F dividing p. Let h be the class number of k. Then we have

 $a(\mathfrak{p}) \neq 0 \Leftrightarrow$ there exists uniquely determined integers a and b such that $a \equiv 1 \mod 4$, (a, p) = 1, b > 0 and $p^{\mathfrak{sh}} = a^2 + 16qb^2$.

Further in this case we see

$$a(\mathfrak{p})=2(-1)^{b}.$$

Proof. This is proved by determining the class groups in k corresponding to K and K'. See [3] and [5] for details. Q.E.D.

Furthermore if p is split in F, we have other expression.

Theorem 4. Let p be an odd prime number which is split in F. Then we have

$$a(\mathfrak{p}) \neq 0 \Leftrightarrow p \equiv 1 \mod 8.$$

In this case p has a following representation in the binary quadratic form:

$$p = \begin{cases} x^2 + 8y^2 \ (x \equiv 1 \mod 4, y > 0) & \text{if } q \equiv 3 \mod 8, \\ x^2 - 8y^2 \ (x > 0, y > 0) & \text{if } q \equiv 7 \mod 8, \end{cases}$$

where x and y are uniquely determined integers prime to p. Let r be an

integer such that

$$r^2 \equiv (-1)^{(1/4)(q+1)} 2 \mod q.$$

Then we have

$$a(\mathfrak{p}) = 2(-1)^{(p-1)/8} \left(\frac{x+2ry}{q} \right).$$

Proof. Our statement follows from Proposition 6 and from the results in [3] and [5]. Q.E.D.

Remark. Let $\theta_i(z)$ (i=0, 1) be the cusp forms of weight one defined in Section 1. Then the decomposition law of the extension K/Q is also expressed in Fourier coefficients of the form $\theta_0(z) + \theta_1(z)$. For details we refer to [3].

The author thanks to Professor J. Evans for pointing out that our results in Theorem 4 can be collected in the above simple form.

References

- [1] M. Deuring, Die zetafunktionen einer algebraischen Kurven von geshlechte eins IV, Nachr. Akad. Wiss. Göttingen (1957), 55-80.
- [2] K. Doi and H. Naganuma, On the functional equation of certain Dirichlet series, Invent. Math., 9 (1969), 1-14.
- [3] T. Hiramatsu and N. Ishii, Quartic residuacity and cusp forms of weight one, Comment Math. Univ. St. Pauli, **34** (1985), 91–103.
- [4] N. Ishii, Cusp forms of weight one, quartic reciprocity and elliptic curves, Nagoya Math. J., 98 (1985), 117-137.
- [5] —, On the quartic residue symbol of totally positive quadratic units, Tokyo J. Math., 9 (1986), 53-65.
- [6] O. T. O'Mera, Introduction to quadratic forms, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.
- [7] J. P. Serre, Corps locaux, Hermann, 1963.
- [8] J. P. Serre and J. Tate, Good reduction of abelian varieties, Ann. of Math., 88 (1968), 492-517.
- [9] G. Shimura, On the zeta function of an abelian variety with complex multiplication, Ann. of Math., 94 (1971), 504-533.
- [10] —, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J., 45 (1978), 637-679.
- [11] J. Tate, Algorithm for determining the type of a singular fibre in an elliptic pencil, Lecture notes in Math., 476 (1975), 33-52.

Department of Mathematics University of Osaka Prefecture Sakai, Osaka, 591 Japan