Quadratic Units and Congruences between Hilbert Modular Forms

Noburo Ishii

Introduction

Let F be a real quadratic field which has the totally positive fundamental unit. We put $F=\boldsymbol{Q}(\sqrt{m})$ with a positive square free integer m. We denote by $[1, \sqrt{m}]$ the order of F generated by 1 and \sqrt{m} over the ring of integers Z. Let ε_{m} be the smallest unit of F such that $\varepsilon_{m}>1$ and $\varepsilon_{m} \in[1, \sqrt{m}]$. We denote by K the number field generated by $\sqrt{-1}$ and $\sqrt[4]{\varepsilon_{m}}$ over the rational number field Q and by E the elliptic curve over F defined by the Weierstrass equation;

$$
y^{2}=x^{3}+4 \varepsilon_{m} x
$$

We can attach to K (resp. to E) Hilbert modular forms over F of weight one (resp. of weight two) in a natural way.

The aim of the present paper is to show that the "quartic residuacity" of ε_{m} provides congruences between these Hilbert modular forms. Further we calculate their Fourier coefficients and express the decomposition law between K and F by them.

§ 1. Hilbert modular forms

Let the notation be as in introduction. Denote by G the galois group of the normal extension K of \boldsymbol{Q}. Then G is of order 16 and is generated by the following three isomorphisms σ, φ and ρ :

$$
\begin{array}{ll}
\sigma\left(\sqrt[4]{\varepsilon_{m}}\right)=\sqrt{-1} \sqrt[4]{\varepsilon_{m},}, & \sigma(\sqrt{-1})=\sqrt{-1} \\
\varphi\left(\sqrt[4]{\varepsilon_{m}}\right)=1 / \sqrt[4]{\varepsilon_{m}}, & \\
\rho(\sqrt{-1})=\sqrt{-1} \\
\rho\left(\sqrt[4]{\varepsilon_{m}}\right)=\sqrt[4]{\varepsilon_{m}}, &
\end{array}
$$

It is easy to see that they satisfy the relation;

$$
\sigma^{4}=\varphi^{2}=\rho^{2}=1, \quad \varphi \sigma \varphi=\rho \sigma \rho=\sigma^{3}, \quad \varphi \rho=\rho \varphi
$$

Now we shall explain how to attach to K Hilbert modular forms. For a subfield M of K, we denote by $G(M)$ the Galois group of K over M. Set $k=\boldsymbol{Q}(\sqrt{-m})$. Then we see

$$
G(F)=\langle\sigma, \rho\rangle, \quad G(k)=\langle\sigma, \varphi \rho\rangle .
$$

Therefore $G(F)$ is isomorphic to the dihedral group D_{4} of order 8 and $G(k)$ is an abelian group. Let μ be the representation of $G(F)$ corresponding to the unique two-dimensional irreducible complex representation of D_{4}. From now on we assume that

$$
\mu(\sigma)=\left(\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & -\sqrt{-1}
\end{array}\right), \quad \mu(\rho)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

The induced representation of μ to G decomposes into two distinct irreducible representations ψ_{0} and ψ_{1} of dimension 2. Let χ_{F} be the linear representation of G whose kernel coincides with $G(F)$. Then

$$
\begin{equation*}
\psi_{1}=\psi_{0} \otimes \chi_{F} . \tag{1}
\end{equation*}
$$

Let us assume that

$$
\psi_{0}(\sigma)=\left(\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & -\sqrt{-1}
\end{array}\right), \quad \psi_{0}(\rho)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \psi_{0}(\varphi)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Since $G(k)$ is abelian, the restriction $\psi_{i}(i=0,1)$ to $G(k)$ decomposes into two distinct linear representations ξ_{i} and ξ_{i}^{\prime}. It is easy to see kernel of $\xi_{i}=$ kernel of ξ_{i}^{\prime} for each i. Put

$$
K^{\prime}=Q\left(\sqrt{-1}, \sqrt{\varepsilon_{m}}\right), \quad L=Q(\sqrt{-1}, \sqrt{m})
$$

Let K_{i} be the field of invariants of the kernel of ξ_{i}. Let L^{\prime} be the intersection of K_{0} and K_{1}. Then the following diagram is obtained.

Let us denote by the same notation ξ_{i} the ideal character of k induced by the representation ξ_{i} in view of Artin reciprocity law. Let f_{i} be the conductor of the abelian extension K_{i} / k. Then f_{i} coincides with the conductor of the character ξ_{i} and is self-conjugate. Further the support of f_{i} consists of all prime ideals of k lying over 2 , if f_{i} is non-trivial. The above diagram shows
(2) \quad neither f_{0} nor f_{1} is trivial $\Longleftrightarrow K$ is ramified over L.

For each i let $L\left(s, \psi_{i}\right)$ and $L\left(s, \xi_{i}\right)$ be the Artin L-function of ψ_{i} and Hecke L-function of ξ_{i} respectively. If ξ_{i} is ramified, then $L\left(s, \xi_{i}\right)$ coincides with the Hecke L-function of the primitive character associated with ξ_{i}. Therefore under the assumption ξ_{i} is ramified, we have

$$
\begin{equation*}
L\left(s, \psi_{i}\right)=L\left(s, \xi_{i}\right) . \tag{3}
\end{equation*}
$$

In the below we assume the following.

Hypothesis. \quad The field K is ramified over L.

It is known that $L\left(s, \xi_{i}\right)$ is the Mellin transform of a cusp form $\theta_{i}(z)$ of the modular group of $\Gamma_{0}\left(|D(k / Q)| N_{k / Q}\left(f_{i}\right)\right)$ of weight one (of neben type), where $D(k / Q)$ denotes the discriminant of k over \boldsymbol{Q}. If we denote by χ the ideal character of k determined by the extension L over k, then by (1) we have $\xi_{0}=\chi \xi_{1}$. Therefore in view of an analogy of Doi-Naganuma correspondence [2], we put

$$
L(s, K)=L\left(s, \xi_{0}\right) L\left(s, \xi_{1}\right) .
$$

It is easily seen that

$$
L(s, K)=L\left(s, \xi_{0} \cdot N_{L / k}\right)
$$

Therefore we write

$$
L(s, K)=\prod_{\mathfrak{p}} L_{\mathfrak{p}}(s, K),
$$

where the product is taken over all prime ideals of F not lying over 2 and

$$
L_{p}(s, K)=\prod_{\substack{\text { Blp} \\ \Re: \text { prime ideal of } L}}\left(1-\xi_{0} N_{L / k}(\mathfrak{ß}) N_{L / Q}(\mathfrak{P})^{-s}\right)^{-1} .
$$

Let us write

$$
\begin{equation*}
L(s, K)=\sum_{\mathrm{m}} a(\mathfrak{m}) N_{F / Q}(\mathfrak{m})^{-s}, \tag{4}
\end{equation*}
$$

where the sum is taken over all integral ideals of F. Let h be the narrow
class number of F and let $\mathfrak{a}_{j}(j=1,2, \cdots, h)$ be the integral ideals of F representing all narrow classes of F. We define h functions $g_{j}\left(z, z^{\prime}\right)$ on the direct product of two complex upper half planes $\mathfrak{S y}$ by

$$
\begin{equation*}
g_{j}\left(z, z^{\prime}\right)=\sum_{\substack{\xi \in \alpha_{j} \\ \xi=0^{j}}} a\left(\xi \mathfrak{\xi}_{j}^{-1}\right) \exp \left(2 \pi \sqrt{-1}\left(\xi z+\xi^{\varphi} z^{\prime}\right)\right), \tag{5}
\end{equation*}
$$

where $\xi \gg 0$ means that ξ is totally positive. Since $L(s, K)$ is a L-function associated with the character $\xi_{0} N_{L / k}$ of the totally imaginary quadratic extension L of $F, g_{j}\left(z, z^{\prime}\right)$ are Hilbert modular forms of weight one (cf. Sections 2 and 5 of [10]). Let E be the elliptic curve defined over F by the equation:

$$
y^{2}=x^{3}+4 \varepsilon_{m} x .
$$

If we denote by $c(m)$ the conductor of E, then $c(m)$ is always nontrivial and the support of $c(m)$ consists of all prime ideals of F lying over 2 (see Section 3 of this note). Denote by $L(s, E)$ the L-function of E over F. For a prime ideal \mathfrak{p} of F prime to 2, let $E_{\mathfrak{p}}$ the reduction of E defined over the residue field F_{p}. Let $N(\mathfrak{p})$ be the number of F_{p}-rational points on E_{p} and put

$$
\begin{gathered}
b(\mathfrak{p})=N_{F / Q}(\mathfrak{p})+1-N(\mathfrak{p}), \\
L_{\mathfrak{p}}(s, E)=\left(1-b(\mathfrak{p}) N_{F / \mathcal{Q}}(\mathfrak{p})^{-s}+N_{F / Q}(\mathfrak{p})^{1-2 s}\right)^{-1} .
\end{gathered}
$$

Then $L(s, E)$ has the following Euler product expansion:

$$
L(s, E)=\prod_{(p, 2)=1} L_{p}(s, E) .
$$

Let us write

$$
\begin{equation*}
L(s, E)=\sum b(\mathfrak{m}) N_{F / Q}(\mathfrak{m})^{-s}, \tag{6}
\end{equation*}
$$

where \mathfrak{m} runs over all integral ideals of F. We shall define h functions $f_{j}(j=1, \cdots, h)$ on $\mathscr{S}_{\mathcal{L}} \times \mathfrak{S}_{\mathcal{L}}$ by

$$
\begin{equation*}
f_{j}\left(z, z^{\prime}\right)=\sum_{\substack{\xi \in a_{j}^{\prime} \\ \xi \gg 0^{\prime}}} b\left(\xi \mathfrak{q}_{j}^{-1}\right) \exp \left(2 \pi \sqrt{-1}\left(\xi z+\xi^{\varphi} z^{\prime}\right)\right) . \tag{7}
\end{equation*}
$$

Since E has complex multiplications, E determines a Grössen character ψ of L and $L(s, E)$ coincides with the L-function of the ideal character ψ^{*} of L associated with ψ ([1], [9]). If we denote by c^{*} the conductor of ψ^{*}, we see easily, by Section 1 of [9],

$$
\psi^{*}((x))=x \cdot x^{\varphi} \quad \text { for } x \in L, x \equiv 1 \bmod ^{\times} c^{*} .
$$

This shows $f_{j}\left(z, z^{\prime}\right)$ are Hilbert modular forms of weight 2. Further we know that c^{*} is associated with $c(m)$ in the following relation.

Lemma 1.

$$
c(m)=N_{L / F}\left(c^{*}\right) D(L / F)
$$

Proof. Let \tilde{c} be the conductor of E over L. Then Theorem 12 of [8] shows $c^{* 2}=\tilde{c}$. Further by Corollary of Theorem 4 of [8] and Proposition 4 of Section 2, VI of [7], we see

$$
\tilde{c} \cdot D(L / F)=c(m)
$$

Thus we have

$$
N_{L / F}\left(c^{*}\right)^{2} D(L / F)^{2}=c(m)^{2} .
$$

Let $f^{*}(m)$ be the conductor of K over L. Put

$$
f(m)=N_{L / F}(f *(m)) D(L / F) .
$$

Under the notation in Section 2 of [10], we may state our results for g_{j} and f_{j} more precisely. Thus using Lemma 1 we have

Proposition 1. Let η_{1} (resp. η_{2}) be the Hecke character of the idele group of F such that the associated ideal character $\eta_{1}^{*}\left(\right.$ resp. $\left.\eta_{2}^{*}\right)$ is given by

$$
\eta_{1}^{*}=\chi_{L / F} \circ \xi_{0}^{2}\left(\text { resp. } \eta_{2}^{*}=\chi_{L / F} \circ \psi^{*} \circ N_{F / Q}^{-1}\right),
$$

where $\chi_{L / F}$ denotes the ideal character of F attached to the extension L. Then, under the notation in [10], we obtain

$$
\begin{aligned}
& \left(g_{1}, \cdots, g_{h}\right) \in \mathfrak{M}_{(1,1)}\left(f(m), \eta_{1}\right), \\
& \left(f_{1}, \cdots, f_{n}\right) \in \mathfrak{M}_{(2,2)}\left(c(m), \eta_{2}\right)
\end{aligned}
$$

Proof. See [10].

§ 2. Congruences

In this section we show a congruence between Hilbert modular forms $g_{j}\left(z, z^{\prime}\right)$ and $f_{j}\left(z, z^{\prime}\right)$. The way of argument is similar to that of our proof [4] for the congruence between cusp forms by quartic residue of rational integers. We preserve the notation and the hypothesis in Section 1. Let p be an odd prime number and \mathfrak{p} a prime ideal of F lying over p. For an integer α of F prime to \mathfrak{p}, we define the symbol (α / \mathfrak{p}) by

$$
(\alpha / \mathfrak{p})=\left\{\begin{aligned}
1 & \text { if } \alpha \text { is square modulo } \mathfrak{p} \\
-1 & \text { otherwise }
\end{aligned}\right.
$$

Let J be the automorphism of the reduction $E_{\mathfrak{p}}$ defined by

$$
J:(x, y) \longmapsto(-x, I y),
$$

for any point (x, y) on E_{p}. Here the letter I denotes an element of algebraic closure of $F_{\mathfrak{p}}$ such that $I^{2}=-1$. For a positive integer i we denote by R_{i} the set of F_{p}-rational $(1+J)^{i}$-division points on E_{p}. Easy calculation shows

$$
\left\{\begin{array}{l}
R_{2}=\left\{(x, 0) \mid x^{3}+4 \bar{\varepsilon}_{m} x=0, x \in F_{p}\right\} \cup\{\overline{0}\}, \tag{9}\\
R_{3} \backslash R_{2}=\left\{(x, y) \mid x^{2}-4 \bar{\varepsilon}_{m}=0, y^{2}=x^{3}+4 \bar{\varepsilon}_{m} x, x, y \in F_{p}\right\},
\end{array}\right.
$$

where $\bar{\varepsilon}_{m}$ denotes the residue class of $\varepsilon_{m} \bmod \mathfrak{p}, \overline{0}$ denotes the identity element of the group structure on $E_{\mathfrak{p}}$ and $R_{3} \backslash R_{2}$ means the set of elements of R_{3} not belonging to R_{2}. Denote by $S(\mathfrak{p})$ the set of F_{p}-rational solutions of the equation $x^{4}-\bar{\varepsilon}_{m}=0$. Then we have

Lemma 2.

$$
N(\mathfrak{p})=|S(\mathfrak{p})|+3+\left(-\varepsilon_{m} / \mathfrak{p}\right)+\omega(\mathfrak{p}) \bmod 8,
$$

where

$$
\omega(\mathfrak{p})= \begin{cases}4 & \text { if } p \equiv 7 \bmod 8 \text { and }(-1 / p)=-1 \\ 0 & \text { otherwise } .\end{cases}
$$

Proof. We define a mapping φ of $S(\mathfrak{p})$ to $R_{3} \backslash R_{2}$ by

$$
\varphi: x \in S(\mathfrak{p}) \longmapsto\left(2 x^{2}, 4 x^{3}\right) .
$$

It is easy to see φ is a bijection. Therefore we obtain by (9)

$$
\begin{equation*}
\left|R_{3}\right|=|S(\mathfrak{p})|+3+\left(-\varepsilon_{n} / \mathfrak{p}\right) . \tag{10}
\end{equation*}
$$

To prove our assertion it is sufficient to show the congruence:

$$
\begin{equation*}
N(\mathfrak{p}) \equiv\left|R_{3}\right|+\omega(\mathfrak{p}) \bmod 8 \tag{11}
\end{equation*}
$$

Assume $(-1 / \mathfrak{p})=-1 . \quad$ Then we see $p \equiv 3 \bmod 4$ and $N_{F / Q}(\mathfrak{p})=p$. Therefore we have, by (10),

$$
N(\mathfrak{p})=p+1, \quad\left|R_{3}\right|=4
$$

This shows (11). Let $(-1 / \mathfrak{p})=1$. Then the automorphism J is F_{p}-rational.

Denote by R the group of F_{p}-rational points on E_{p} and by R_{+}the 2primary subgroup of R. Let R_{-}be the subgroup of R consisting of all elements of odd order. Then R has a following direct decomposition;

$$
R=R_{+} \oplus R_{-} .
$$

Since J is F_{p}-rational, J operates on R_{+}and R_{-}respectively. Let U be the cyclic group of order 4 generated by J. For any $x \in R$ we denote by $U(x)$ the U-orbit of x. We see easily

$$
|U(x)|= \begin{cases}1 & \text { if } x \in R_{1} \tag{12}\\ 2 & \text { if } x \in R_{2} \backslash R_{1} \\ 4 & \text { otherwise }\end{cases}
$$

This shows especially

$$
R_{3} \backslash R_{2} \text { is non-empty } \square\left|R_{3}\right|=8 .
$$

Therefore we obtain

$$
\left|R_{+}\right| \equiv\left|R_{3}\right| \bmod 8
$$

Since $\left|R_{3}\right|$ is even and $\left|R_{-}\right| \equiv 1 \bmod 4($ by (12)), we see

$$
N(\mathfrak{p})=\left|R_{+}\right| \cdot\left|R_{-}\right| \equiv\left|R_{3}\right| \bmod 8 .
$$

This establishes (11).
Q.E.D.

Proposition 2. Let the notation be as above. Then we have the following congruence;

$$
b(\mathfrak{p}) \equiv a(\mathfrak{p})+\gamma(\mathfrak{p}) \bmod 8,
$$

where

$$
\gamma(\mathfrak{p})= \begin{cases}4 & \text { if } p \equiv 5 \bmod 8 \text { and } p \text { is not inert in } F \\ 0 & \text { otherwise } .\end{cases}
$$

Proof. Let $\sigma_{\mathfrak{p}}$ be a Frobenius substitution of \mathfrak{p} in the extension K / F and ν the character of μ. Let δ be the character of $G(F)$ induced by the identity character of $G\left(F\left(\sqrt[4]{\varepsilon_{m}}\right)\right)$. Then it is known that

$$
|S(\mathfrak{p})|=\delta\left(\sigma_{\mathfrak{p}}\right) .
$$

Since $a(\mathfrak{p})=\nu\left(\sigma_{\mathfrak{p}}\right)$, by decomposing δ to the sum of irreducible characters of $G(F)$, we have

$$
\begin{equation*}
|S(\mathfrak{p})|=1+\left(\varepsilon_{m} / \mathfrak{p}\right)+\nu\left(\sigma_{\mathfrak{p}}\right)=1+\left(\varepsilon_{m} / \mathfrak{p}\right)+a(\mathfrak{p}) \tag{13}
\end{equation*}
$$

By the definition of $b(\mathfrak{p})$, Lemma 2 and (13), we obtain

$$
b(\mathfrak{p}) \equiv N_{F / Q}(\mathfrak{p})-\left(\varepsilon_{m} / \mathfrak{p}\right)-\left(-\varepsilon_{m} / \mathfrak{p}\right)+\omega(\mathfrak{p})-a(\mathfrak{p})-3 \bmod 8 .
$$

From the regular character of $G(F)$ we deduce the congruence:

$$
1+2 a(\mathfrak{p})+(-1 / \mathfrak{p})+\left(-\varepsilon_{m} / \mathfrak{p}\right)+\left(\varepsilon_{m} / \mathfrak{p}\right) \equiv 0 \bmod 8
$$

Therefore we have

$$
b(\mathfrak{p}) \equiv a(\mathfrak{p})+(-1 / \mathfrak{p})+N_{F / Q}(\mathfrak{p})+\omega(\mathfrak{p})-2 \bmod 8 .
$$

By the way, easy argument shows

$$
(-1 / \mathfrak{p})+N_{F / Q}(\mathfrak{p})+\omega(\mathfrak{p})-2 \equiv \gamma(\mathfrak{p}) \bmod 8 .
$$

Use the following facts:
If $(-1 / \mathfrak{p})=-1$, then $N_{F / Q}(\mathfrak{p})=p$ and $p \equiv 3 \bmod 4$.
If $(-1 / p)=1$ and p is not inert in F, then $p \equiv 1 \bmod 4$. Q.E.D.
Corollary. For any integral ideal \mathfrak{m} of F prime to 2 , we have

$$
a(\mathfrak{m}) \equiv b(\mathfrak{m}) \bmod 4
$$

Proof. By the definition, we may write

$$
L_{\mathfrak{p}}(s, K)=\left\{1-a(\mathfrak{p}) N_{F / Q}(\mathfrak{p})^{-s}+\chi_{L / F}(\mathfrak{p}) N_{F / Q}(\mathfrak{p})^{-2 s}\right\}^{-1} .
$$

Comparing $L_{p}(s, K)$ with $L_{p}(s, E)$, we have only to prove the congruence:

$$
\chi_{L / F}(\mathfrak{p}) \equiv N_{F / Q}(\mathfrak{p}) \bmod 4
$$

But this is easily obtained.
Q.E.D.

This Corollary shows
Theorem 1. Let the notation and hypothesis be as above. Then for every j, we obtain

$$
g_{j}\left(z, z^{\prime}\right) \equiv f_{j}\left(z, z^{\prime}\right) \bmod 4 .
$$

§ 3. Conductors

In this section we calculate the conductor $c(m)$ of the elliptic curve E (=level of Hilbert modular forms $f_{j}\left(z, z^{\prime}\right)$) and level $f(m)$ of Hilbert
modular forms $g_{j}\left(z, z^{\prime}\right)$. Further we determine the condition of ε_{m} to satisfy our hypothesis. Put

$$
\varepsilon_{m}=A+B \sqrt{m}, \quad \text { with } \quad A, B \in Z
$$

Then it is easy to see that A and B satisfy the following congruences.
$\begin{cases}A \equiv \pm 1 \bmod 8, B \equiv 0 \bmod 4 & \text { if } m \equiv 1 \bmod 4, \\ A \equiv \pm 1 \bmod 8, B \equiv 0 \bmod 4 \text { or } A \equiv 2 \bmod 4, B: \text { odd } & \text { if } m \equiv 3 \bmod 4, \\ A \equiv \pm 1 \bmod 4, B: \text { even } & \text { if } m \equiv 2 \bmod 4 .\end{cases}$
By the algorithm of Tate [11], the conductors $c(m)$ is given in the following Proposition.

Proposition 3. Let $m \equiv 1 \bmod 4$. Then

$$
c(m)= \begin{cases}2^{5} & \text { if } A \equiv 1 \bmod 8 \\ 2^{6} & \text { otherwise }\end{cases}
$$

Let $m \equiv 3 \bmod 4$. Then

$$
c(m)= \begin{cases}2^{3} & \text { if } A \equiv 1 \bmod 8 \\ 2^{4} & \text { if } A \equiv-1 \bmod 8 \\ 2^{6} & \text { if } A \equiv 2 \bmod 4\end{cases}
$$

Let $m \equiv 2 \bmod 4$. Then

$$
c(m)= \begin{cases}2^{4} & \text { if } B \equiv 2 \bmod 4 \\ \mathfrak{q}^{5} & \text { otherwise }\end{cases}
$$

where \mathfrak{q} is the prime ideal of F lying over 2.
Next we determine the condition that K is ramified over L in the following Proposition.

Proposition 4.

K is unramified over $L \Leftrightarrow \begin{cases}A \equiv 1 \bmod 8, B \equiv 0 \bmod 8 & \text { if } m \equiv 1 \bmod 4, \\ A \equiv 1 \bmod 8, B \equiv 0 \bmod 4 & \text { if } m \equiv 3 \bmod 4, \\ B \equiv 0 \bmod 4 & \text { if } m \equiv 2 \bmod 4 .\end{cases}$
Proof. By (2) we see
ξ_{0} or ξ_{1} is unramified $\Leftrightarrow K$ is unramified over L
$\Rightarrow L^{\prime}$ is unramified over k.

Let us write

$$
A+1=2^{\varepsilon} f_{0} u^{2}, \quad A-1=2^{\varepsilon} e_{0} v^{2}
$$

Here f_{0}, e_{0}, u, v are positive integers such that f_{0} and e_{0} are square free and $\left(f_{0} u, e_{0} v\right)=1$. Further

$$
\varepsilon= \begin{cases}0 & \text { if } A \text { is even } \\ 1 & \text { otherwise }\end{cases}
$$

Put $f=2^{-\varepsilon+1} f_{0}$ and $e=2^{-\varepsilon+1} e_{0}$. Then we know $L^{\prime}=\boldsymbol{Q}(\sqrt{f}, \sqrt{-e})$ (see [2]). Therefore it follows
L^{\prime} is unramified over $k \Leftrightarrow 2$ is unramified at $\boldsymbol{Q}(\sqrt{f})$ or at $Q(\sqrt{-e}) \Leftrightarrow A \equiv \pm 1 \bmod 8, B \equiv 0 \bmod 4$.

Now we shall recall the definition of "quadratic defect". Let \mathscr{F} be a number field which is normal over Q and \mathfrak{B} a prime ideal of \mathscr{F} lying over 2. We denote by $e_{\mathfrak{F}}$ the ramification exponent of \mathfrak{P}. Let \hat{o} be the completion of the ring of integers of \mathfrak{F} at \mathfrak{F} and take a prime element π of \hat{o}. For an integer α of F prime to 2 , we denote by $S_{\mathfrak{\beta}}(\alpha)$ the maximal positive integer t such that α is congruent to a square of an element of $\hat{o} \bmod \pi^{t}$. The ideal $\mathfrak{P}^{S_{\mathfrak{B}}(\alpha)}$ is called the quadratic defect of α at \mathfrak{B}. Assume that the field $\mathfrak{F}(\sqrt{\alpha})$ is normal over \boldsymbol{Q}. Then the integer $S_{\mathfrak{F}}(\alpha)$ is independent of the choice of \mathfrak{F} and π. Therefore we can put $S_{\mathfrak{F}}(\alpha)=S_{\mathfrak{F}}(\alpha)$. By Section $63: 3$ of [6], we see
every prime ideal of \mathfrak{F} lying over 2 is ramified at $\mathfrak{F}(\sqrt{\alpha})$

$$
\Leftrightarrow S_{\mathfrak{F}}(\alpha)<2 e_{\mathfrak{\gamma}} .
$$

Hereafter we may assume that $A \equiv \pm 1 \bmod 8$ and $B \equiv 0 \bmod 4$. Let us put $\mathfrak{F}=L$ and $\alpha=\varepsilon_{m}$ in the above notation. Since $\varepsilon_{m} \equiv \pm 1 \bmod 4$, we have that $S_{L}\left(\varepsilon_{m}\right) \geqq 2 e_{L}$. Thus K^{\prime} is unramified over L. Next let $\mathfrak{F}=K^{\prime}$ and $\alpha=\sqrt{\varepsilon_{m}}$. Then $\mathscr{F}(\sqrt{\alpha})=K$. Since K^{\prime} is unramified over L, we can choose \mathfrak{P} such that a prime element π of \hat{o} is given by

$$
\pi= \begin{cases}1+\sqrt{-1} & \text { if } e_{K^{\prime}}=2(\Leftrightarrow m \equiv 1,3 \bmod 4), \\ 1-\sqrt{m} /(1+\sqrt{-1}) & \text { if } e_{K^{\prime}}=4(\Leftrightarrow m \equiv 2 \bmod 4) .\end{cases}
$$

Let $m \equiv 1,3 \bmod 4$ and $A \equiv-1 \bmod 8 . \quad$ Since

$$
\varepsilon_{m} \equiv(1-\pi)^{2} \bmod 4,
$$

we see easily

$$
\sqrt{\overline{\varepsilon_{m}}} \equiv 1-\pi \bmod \pi^{2}
$$

This shows that $S_{K^{\prime}},\left(\sqrt{\varepsilon_{m}}\right)=1$ and K is ramified over K^{\prime}.
Let $m \equiv 1,3 \bmod 4$ and $A \equiv 1 \bmod 8$. Then we can write

$$
\begin{equation*}
\sqrt{\varepsilon_{m}}=1+\beta \pi^{2}+\gamma \pi^{3}, \quad \sqrt{m}=1+\delta \pi+\eta \pi^{2} \tag{14}
\end{equation*}
$$

where β is a unit of \hat{o} or $0, \gamma, \eta \in \hat{o}$ and

$$
\delta= \begin{cases}0 & \text { if } m \equiv 1 \bmod 4 \\ 1 & \text { otherwise }\end{cases}
$$

Put $b=B / 4$. Then we have by (14)

$$
\varepsilon_{m} \equiv 1+\left(\beta+\beta^{2}\right) \pi^{4}+(\gamma-\beta) \pi^{5} \equiv 1+b \pi^{4} \sqrt{m} \bmod \pi^{6} .
$$

Thus

$$
\beta+\beta^{2}+(\gamma-\beta) \pi \equiv b \sqrt{m} \bmod \pi^{2}
$$

This shows

$$
\sqrt{\varepsilon_{m}} \equiv(1+\beta \pi)^{2}+b \sqrt{m} \pi^{2} \bmod \pi^{4}
$$

If b is even, then $S_{K^{\prime}}\left(\sqrt{\varepsilon_{m}}\right) \geqq 4$. Let b be odd. Then by (14)

$$
\sqrt{\overline{\varepsilon_{m}}} \equiv(1+(1+\beta) \pi)^{2}+(1+\delta) \pi^{3} \bmod \pi^{4}
$$

From this it follows

$$
S_{K^{\prime}}\left(\sqrt{\overline{\varepsilon_{m}}}\right) \geqq 4 \Leftrightarrow m \equiv 3 \bmod 4
$$

Therefore we have our assertions for the cases $m \equiv 1,3 \bmod 4$. Let $m \equiv 2$ $\bmod 4$. Then we see easily

$$
2 \equiv \pi^{4}-\pi^{6} \bmod \pi^{8}, \quad \sqrt{m} \equiv \pi^{2}-\pi^{3} \bmod \pi^{4}
$$

Put $\alpha=1$ or $\sqrt{-1}$ according to $A \equiv 1$ or $-1 \bmod 8$. Then it is noted that α is a square $\bmod \pi^{8}$. Let us write

$$
\sqrt{\overline{\varepsilon_{m}}}=\alpha+\beta \pi^{4}+\gamma \pi^{5}+\delta \pi^{6}+\eta \pi^{7},
$$

where β, γ, δ are 0 or units of \hat{o} and $\eta \in \hat{o}$. From this

$$
\begin{aligned}
\varepsilon_{m} & \equiv \alpha^{2}+\left(\beta^{2}+\alpha \beta\right) \pi^{8}+\alpha \gamma \pi^{9}+\left(\gamma^{2}-\alpha \beta+\alpha \delta\right) \pi^{10}+(-\alpha \gamma+\alpha \eta) \pi^{11} \\
& \equiv \alpha^{2}+B \sqrt{m} \bmod \pi^{12} .
\end{aligned}
$$

Put $b=B / 4$. Then it follows

$$
\beta^{2}+\alpha \beta+\alpha \gamma \pi+\left(\gamma^{2}-\alpha \beta+\alpha \delta\right) \pi^{2}+(-\alpha \gamma+\alpha \eta) \pi^{3} \equiv b \sqrt{m} \bmod \pi^{4} .
$$

Therefore

$$
\begin{aligned}
\alpha \sqrt{\varepsilon_{m}} & \equiv\left(\alpha+\beta \pi^{2}+\gamma \pi^{3}\right)^{2}+b \sqrt{m} \pi^{4} \\
& \equiv\left(\alpha+\beta \pi^{2}+(\gamma+b) \pi^{3}\right)^{2} \bmod \pi^{8} .
\end{aligned}
$$

Since α is square $\bmod \pi^{8}, S_{K^{\prime}}\left(\sqrt{\overline{\varepsilon_{m}}}\right) \geqq 8$.
Q.E.D.

Proposition 5. Let the notation be as in Section 1. Then our hypothesis is satisfied with the integers m of the following types:

$$
\begin{aligned}
& m=p(p: \text { prime }, p \equiv 3 \bmod 4), \\
& m=q q^{\prime}\left(q, q^{\prime}: \text { primes, } q \equiv 3,5 \bmod 8, q^{\prime} \equiv 3 \bmod 4,\left(q / q^{\prime}\right)=-1\right), \\
& m=2 q(q: \text { prime, } q \equiv 3 \bmod 8) .
\end{aligned}
$$

Further for these m the levels $c(m)$ and $f(m)$ of Hilbert modular forms in Proposition 1 are given by

$$
c(m)=f(m)= \begin{cases}2^{4} & \text { if } m=2 q, \\ 2^{6} & \text { otherwise } .\end{cases}
$$

Proof. Let m be one of the integers given as above. Put

$$
\varepsilon_{m}=A+B \sqrt{m} .
$$

Then by "infinite decent" of Fermat, we know the followings. If $m \equiv 1$ $\bmod 4$, then $A \equiv 7 \bmod 8$. If $m \equiv 3 \bmod 4$, then A is even. If $m \equiv 2$ $\bmod 4$, then $A \equiv 5 \bmod 8$ and $B \equiv 2 \bmod 4$. Hence our first assertions follow from Proposition 4. (For details see [3] and [5].) By the results obtained in [3] and [5], we know

$$
f^{*}(m)= \begin{cases}(8) & \text { if } m \equiv 3 \bmod 4, \\ (4) & \text { if } m \equiv 1 \bmod 4, \\ 2 q^{2} & \text { if } m \equiv 2 \bmod 4,\end{cases}
$$

where \mathfrak{q} is the prime ideal of L lying over 2 . Since

$$
D(L / F)= \begin{cases}(1) & \text { if } m \equiv 3 \bmod 4, \\ (4) & \text { if } m \equiv 1 \bmod 4, \\ (2) & \text { if } m \equiv 2 \bmod 4,\end{cases}
$$

the definition of $f(m)$ and Proposition 3 show our last statements. Q.E.D.

§ 4. Fourier coefficients and decomposition law

In this section we discuss the relation between the decomposition in K of the prime ideals \mathfrak{p} of F and the \mathfrak{p}-th Fourier coefficients $a(\mathfrak{p})$ and $b(\mathfrak{p})$. Firstly we have the following.

Theorem 2. Let \mathfrak{p} be a prime ideal of F prime to 2 . Then we have the following equivalences:

$$
\begin{aligned}
& a(\mathfrak{p}) \neq 0 \Leftrightarrow a(\mathfrak{p})= \pm 2 \Leftrightarrow \mathfrak{p} \text { splits completely in } K^{\prime}, \\
& a(\mathfrak{p})=2 \Leftrightarrow \mathfrak{p} \text { splits completely in } K .
\end{aligned}
$$

Proof. By the definition of μ, we know

$$
\nu\left(\sigma_{\mathfrak{p}}\right)= \begin{cases}2 & \text { if } \sigma_{\mathfrak{p}}=1 \\ -2 & \text { if } \sigma_{\mathfrak{p}}=\sigma^{2} \\ 0 & \text { otherwise }\end{cases}
$$

Since $G\left(K^{\prime}\right)=\left\langle\sigma^{2}\right\rangle$ and $a(\mathfrak{p})=\nu\left(\sigma_{\mathfrak{p}}\right)$ we have our assertions.
Q.E.D.

Corollary. Let $\gamma(\mathfrak{p})$ be the symbol defined in Proposition 2. Then
$b(\mathfrak{p}) \equiv \pm 2 \bmod 8 \Leftrightarrow \mathfrak{p}$ splits completely in K^{\prime},
$b(\mathfrak{p}) \equiv 2+\gamma(\mathfrak{p}) \bmod 8 \Leftrightarrow \mathfrak{p}$ splits completely in K.
Proof. This is deduced from Theorem 2 and Proposition 2. Q.E.D.
Let $\left(\varepsilon_{m} / \mathfrak{p}\right)_{4}$ be the fourth power residue symbol of ε_{m} modulo \mathfrak{p}. Then
Proposition 6. Let \mathfrak{p} be a prime ideal of F such that $a(\mathfrak{p}) \neq 0$. Then

$$
a(\mathfrak{p})=2\left(\varepsilon_{m} / \mathfrak{p}\right)_{4} .
$$

Proof. By Theorem 2 our assumption $a(\mathfrak{p}) \neq 0$ implies $\left(\varepsilon_{m} / \mathfrak{p}\right)=1$ and $(-1 / \mathfrak{p})=1$. Thus

$$
\left(\varepsilon_{m} / \mathfrak{p}\right)_{4}=1(\text { resp. }-1) \Leftrightarrow|S(\mathfrak{p})|=4(\text { resp. } 0)
$$

By (13) we obtain

$$
|S(\mathfrak{p})|=2+a(\mathfrak{p}) .
$$

This shows our assertions.
Q.E.D.

Proposition 7. Let p be an odd prime number which is inert in F and \mathfrak{p} the unique prime ideal of F lying over $p . \quad$ Then $a(\mathfrak{p}) \neq 0 . \quad$ Further denote
by $T(m)$ the positive square free part of the trace of $1+\varepsilon_{m}$. Then we have

$$
a(\mathfrak{p})=-2 \Leftrightarrow(-1 / p)=(T(m) / p)=-1 .
$$

Proof. The first assertion is deduced from that the group $G\left(K^{\prime} / Q\right)$ is an abelian group of type $(2,2,2)$ and from Theorem 2. Denote by C_{p} the conjugate class of Frobenius substitution of p in G. Then it is easy to see

$$
a(\mathfrak{p})=-2 \Leftrightarrow C_{p}=\left\{\sigma \varphi \rho, \sigma^{3} \varphi \rho\right\} \Leftrightarrow p \text { splits completely in } L^{*}
$$

where L^{*} is the field of invariants of the group $\langle\sigma \varphi \rho\rangle$. Since $L^{*}=$ $\boldsymbol{Q}(\sqrt{-m}, \sqrt{-T(m)})$, we have second assertion.
Q.E.D.

In the reminder of this section we consider the case m is a prime number q. We give an explicit expression of $a(\mathfrak{p})$ for the prime p not inert in F.

Theorem 3. Let p be odd prime number which is not inert in F and \mathfrak{p} a prime ideal of F dividing p. Let h be the class number of k. Then we have

$$
\begin{aligned}
& a(\mathfrak{p}) \neq 0 \Leftrightarrow \text { there exists uniquely determined integers } \\
& a \text { and } b \text { such that } a \equiv 1 \bmod 4,(a, p)=1, b>0 \text { and } \\
& p^{3 h}=a^{2}+16 q b^{2} .
\end{aligned}
$$

Further in this case we see

$$
a(p)=2(-1)^{b}
$$

Proof. This is proved by determining the class groups in k corresponding to K and K^{\prime}. See [3] and [5] for details.
Q.E.D.

Furthermore if p is split in F, we have other expression.
Theorem 4. Let p be an odd prime number which is split in F. Then we have

$$
a(\mathfrak{p}) \neq 0 \Leftrightarrow p \equiv 1 \bmod 8 .
$$

In this case p has a following representation in the binary quadratic form:

$$
p= \begin{cases}x^{2}+8 y^{2}(x \equiv 1 \bmod 4, y>0) & \text { if } q \equiv 3 \bmod 8 \\ x^{2}-8 y^{2}(x>0, y>0) & \text { if } q \equiv 7 \bmod 8\end{cases}
$$

where x and y are uniquely determined integers prime to p. Let r be an
integer such that

$$
r^{2} \equiv(-1)^{(1 / 4)(q+1)} 2 \bmod q .
$$

Then we have

$$
a(\mathfrak{p})=2(-1)^{(p-1) / 8}\left(\frac{x+2 r y}{q}\right)
$$

Proof. Our statement follows from Proposition 6 and from the results in [3] and [5].
Q.E.D.

Remark. Let $\theta_{i}(z)(i=0,1)$ be the cusp forms of weight one defined in Section 1. Then the decomposition law of the extension K / \boldsymbol{Q} is also expressed in Fourier coefficients of the form $\theta_{0}(z)+\theta_{1}(z)$. For details we refer to [3].

The author thanks to Professor J. Evans for pointing out that our results in Theorem 4 can be collected in the above simple form.

References

[1] M. Deuring, Die zetafunktionen einer algebraischen Kurven von geshlechte eins IV, Nachr. Akad. Wiss. Göttingen (1957), 55-80.
[2] K. Doi and H. Naganuma, On the functional equation of certain Dirichlet series, Invent. Math., 9 (1969), 1-14.
[3] T. Hiramatsu and N. Ishii, Quartic residuacity and cusp forms of weight one, Comment Math. Univ. St. Pauli, 34 (1985), 91-103.
[4] N. Ishii, Cusp forms of weight one, quartic reciprocity and elliptic curves, Nagoya Math. J., 98 (1985), 117-137.
[5] - On the quartic residue symbol of totally positive quadratic units, Tokyo J. Math., 9 (1986), 53-65.
[6] O. T. O'Mera, Introduction to quadratic forms, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.
[7] J. P. Serre, Corps locaux, Hermann, 1963.
[8] J. P. Serre and J. Tate, Good reduction of abelian varieties, Ann. of Math., 88 (1968), 492-517.
[9] G. Shimura, On the zeta function of an abelian variety with complex multiplication, Ann. of Math., 94 (1971), 504-533.
[10] —— The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J., 45 (1978), 637-679.
[11] J. Tate, Algorithm for determining the type of a singular fibre in an elliptic pencil, Lecture notes in Math., 476 (1975), 33-52.

Department of Mathematics

University of Osaka Prefecture
Sakai, Osaka, 591
Japan

