On an Application of Zagier's Method in the Theory of Selberg's Trace Formula

Eiji Yoshida

Introduction

Let H be the complex upper half plane, and put $G=\operatorname{PSL}(2, R), \Gamma=$ $\operatorname{PSL}(2, Z)$. Then, the well-known Selberg trace formula holds for the Hilbert space $L^{2}(\Gamma \backslash H)$. Let furthermore $\omega: z \rightarrow-\bar{z}$ be the reflection with respect to the imaginary axis, and let $\widetilde{G}=\langle G, \omega\rangle$ be the group generated by G and ω. Then, the triple ($\widetilde{G}, H, 1$) turns out to be a weakly symmetric Riemannian space in the notation of Selberg (§1). Therefore, it is possible to investigate the trace formula for the Hilbert space $L^{2}(\tilde{\Gamma} \backslash H)$ with $\tilde{\Gamma}=$ $\langle\Gamma, \omega\rangle$.

The space $L^{2}(\Gamma \backslash H)$ has the direct sum decomposition $L^{2}(\Gamma \backslash H)=V_{e}$ $\oplus V_{o}$, where V_{e} and V_{o} are defined by $V_{e}=\left\{f \in L^{2}(\Gamma \backslash H) \mid f(\omega z)=f(z)\right\}, V_{o}$ $=\left\{f \in L^{2}(\Gamma \backslash H) \mid f(\omega z)=-f(z)\right\}$ respectively, in accordance with the operation of ω. Since it is clear that $V_{e}=L^{2}(\tilde{\Gamma} \backslash H)$, the trace formulas for $L^{2}(\tilde{\Gamma} \backslash H)$ and for V_{e} are the same.

In fact, Venkov [8: Chap. 6] presented trace formulas for V_{e} and V_{o} in more general cases where the discontinuous group has an ω-invariant fundamental domain.

On the other hand, Zagier [10] gave a new method to derive the trace formulas in the case of $\Gamma=P \operatorname{PSL}(2, Z)$, considering an integral of the form $I(s)=\int_{\Gamma \backslash H} K_{0}(z, z) E(z, s) d z \quad(\S 2)$.

In the present paper, we shall prove the trace formula for V_{e}, i.e., for $L^{2}(\tilde{\Gamma} \backslash H)$ by means of Zagier's method in the case of $\Gamma=P S L(2, Z)(\S 3$ and Theorem 2), and add an explicit form of the trace formula for V_{o} as a direct consequence of the trace formulas for $L^{2}(\Gamma \backslash H)$ and V_{e} (Theorem 3).

§ 1. Weakly symmetric Riemannian space

Let S be a Riemannian manifold with a positive definite metric $d s^{2}=$ $\sum g_{i j} d x^{i} d x^{j}$. The mapping of S onto itself is called an isometry if it holds

Received February 4, 1986.
the metric invariant. Let Ω be a group consisting of isometries which operate on S transitively. If we have an isometry μ of S which satisfies
(i) $\mu^{-1} \Omega \mu=\Omega, \mu^{2} \in \Omega$,
(ii) there exists an element m in Ω such that $(\mu x, \mu y)=(m y, m x)$ for any $x, y \in S$,
we call the triple (Ω, S, μ) a weakly symmetric Riemannian space.
Let H be the complex upper half plane $\{z=x+i y \in C \mid \operatorname{Im} z=y>0\}$, to which we give a Riemann structure defined by

$$
\begin{equation*}
d s^{2}=\frac{1}{y^{2}}\left(d x^{2}+d y^{2}\right) \tag{1.1}
\end{equation*}
$$

Let furthermore $\omega: z \rightarrow-\bar{z}$ be the reflection with respect to the imaginary axis, and putting $G=P S L(2, R), \widetilde{G}=\langle G, \omega\rangle$ be the group generated by G and ω. From the fact that the metric (1.1) is invariant under the actions of G and ω, and the triple $(G, H, 1)$ is weakly symmetric, the triple ($\widetilde{G}, H, 1$) also turns out to be a weakly symmetric Riemannian space. The metric (1.1) gives rise naturally to a \widetilde{G}-invariant measure on H whose explicit form is

$$
\begin{equation*}
d z=\frac{d x d y}{y^{2}} \tag{1.2}
\end{equation*}
$$

It can be easily seen that
(i) $\omega^{2}=i d$
(ii) $\omega\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \omega=\left(\begin{array}{rr}a & -b \\ -c & d\end{array}\right)$ for any $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G$.

Hence G is a normal subgroup of \tilde{G} with index 2 . Namely we have

$$
\begin{equation*}
\tilde{G}=G \cup \omega G=G \cup G \omega . \tag{1.3}
\end{equation*}
$$

Let $f(z)$ be a complex valued function on H. For $\sigma \in \widetilde{G}$, the mapping $f(z) \rightarrow f(\sigma z)$ defines a linear operator. This will be denoted by T_{σ}. A linear operator T is called an invariant operator with respect to \tilde{G}, if it commutes with all $T_{\sigma}(\sigma \in \widetilde{G})$, i.e., if we have $T(f(\sigma z))=(T f)(\sigma z)$.

The Laplace-Beltrami operator induced from (1.1) on H is

$$
\begin{equation*}
D=y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right), \tag{1.4}
\end{equation*}
$$

and D is a generator of the commutative ring of invariant differential operators with respect to \widetilde{G}.

§ 2. Selberg transform, Selberg kernel function

Let L be an integral operator defined by

$$
\begin{equation*}
(L f)(z)=\int_{H} k\left(z, z^{\prime}\right) f\left(z^{\prime}\right) d z^{\prime} \tag{2.1}
\end{equation*}
$$

with a kernel function $k\left(z, z^{\prime}\right)$. In order that an integral operator L defined by $k\left(z, z^{\prime}\right)$ is invariant with respect to \widetilde{G}, it is necessary and sufficient that $k\left(z, z^{\prime}\right)$ satisfies the condition

$$
\begin{equation*}
k\left(\sigma z, \sigma z^{\prime}\right)=k\left(z, z^{\prime}\right) \quad \text { for every } \sigma \in \widetilde{G} \tag{2.2}
\end{equation*}
$$

and such a function $k\left(z, z^{\prime}\right)$ is called a point pair invariant with respect to \widetilde{G}.

Now we put

$$
\begin{equation*}
t\left(z, z^{\prime}\right)=\frac{\left|z-z^{\prime}\right|^{2}}{y y^{\prime}}, \quad z=x+i y, \quad z^{\prime}=x^{\prime}+i y^{\prime} \in H \tag{2.3}
\end{equation*}
$$

Since any point pair invariant with respect to G is a function of a positive real variable $t=t\left(z, z^{\prime}\right)$, and since $t\left(\omega z, \omega z^{\prime}\right)=t\left(z, z^{\prime}\right)$, any point pair invariant with respect to \tilde{G} can also be identified with a function of $t=t\left(z, z^{\prime}\right)$. Therefore, for a point pair invariant $k\left(z, z^{\prime}\right)$ with respect to \widetilde{G}, we set

$$
\begin{equation*}
\varphi\left(t\left(z, z^{\prime}\right)\right)=k\left(z, z^{\prime}\right) \tag{2.4}
\end{equation*}
$$

and furthermore we impose the following condition on φ :
(2.5) $\varphi(t)$ is a smooth function with compact support of a positive real variable t

An invariant operator with respect to \widetilde{G} derived from such a function φ will be denoted by L_{φ}.

Theorem 1 (c.f., [6: p. 55] or [3: Theorem 1.3.2]). Suppose that the function f on H is an eigenfunction of D with the eigenvalue $-\left(\frac{1}{4}+r^{2}\right), r \in C$. Then, f is an eigenfunction of an arbitrary invariant integral operator L_{φ} with respect to \widetilde{G}. More precisely, we have $L_{\varphi} f=h(r) f, r \in C$.

The eigenvalue $h(r)$, determined only by L_{φ} and r, is called the Selberg transform. Obviously it is an even function of r, i.e., $h(r)=h(-r)$.

Proposition 1. Let φ be such a function as in (2.5). Then the Selberg transform can be computed as follows. Set

$$
\begin{equation*}
Q(w)=\int_{-\infty}^{\infty} \varphi\left(w+v^{2}\right) d v=\int_{w}^{\infty} \frac{\varphi(t)}{\sqrt{t-w}} d t \quad(w \geqq 0) \tag{2.6}
\end{equation*}
$$

and define $g(u)$ by

$$
\begin{equation*}
Q(w)=g(u) \quad \text { with } \quad w=e^{u}+e^{-u}-2 . \tag{2.7}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
h(r)=\int_{-\infty}^{\infty} g(u) e^{i r u} d u, \quad r \in \boldsymbol{C} . \tag{2.8}
\end{equation*}
$$

Conversely it holds that

$$
\begin{gather*}
g(u)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} h(r) e^{-i r u} d r \tag{2.9}\\
Q(w)=g\left(\log \frac{w+2+\sqrt{w^{2}+4 w}}{2}\right), \tag{2.10}
\end{gather*}
$$

and

$$
\begin{equation*}
\varphi(t)=-\frac{1}{\pi} \int_{t}^{\infty} \frac{d Q(w)}{\sqrt{w-t}} \tag{2.11}
\end{equation*}
$$

Combining (2.8), (2.9), (2.10) and (2.11), we obtain

$$
\begin{equation*}
\varphi(t)=\frac{1}{4 \pi} \int_{-\infty}^{\infty} P_{-(1 / 2)+i r}\left(1+\frac{t}{2}\right) r \tanh \pi r h(r) d r, \tag{2.12}
\end{equation*}
$$

where $P_{\nu}(z)(\nu \in C, z \in C-(0,1])$ denotes a Legendre function of the first kind. Moreover $h(r)$ is a holomorphic function in the whole complex r-plane, and for $r \in \boldsymbol{R}$ it is of rapid decay as $|r| \rightarrow \infty$.

For the proof, we refer to [3: Theorem 5.3.1] and [10: p. 319].
Put $\Gamma=P S L(2, Z)$, and let $\tilde{\Gamma}=\langle\Gamma, \omega\rangle$ be the group generated by Γ and ω. From (1.3), we have

$$
\begin{equation*}
\tilde{\Gamma}=\Gamma \cup \omega \Gamma=\Gamma \cup \Gamma \omega . \tag{2.13}
\end{equation*}
$$

Γ and $\tilde{\Gamma}$ are discrete subgroups of G and \tilde{G} respectively, which operate on H discontinuously. The fundamental domain \mathscr{D} and $\tilde{\mathscr{D}}$ of Γ and $\tilde{\Gamma}$ are given, in a standard form, by

$$
\begin{aligned}
& \mathscr{D}=\left\{z \in H| | z \mid \geqq 1,-\frac{1}{2} \leqq \operatorname{Re}(z) \leqq \frac{1}{2}\right\}, \\
& \tilde{\mathscr{D}}=\left\{z \in H| | z \mid \geqq 1,0 \leqq \operatorname{Re}(z) \leqq \frac{1}{2}\right\},
\end{aligned}
$$

respectively.

Fig. 1
Let $L^{2}(\tilde{\mathscr{D}})$ be the Hilbert space of measurablefunctions such that
(i) $f(\sigma z)=f(z)$ for all $\sigma \in \tilde{\Gamma}$,
(ii) $\int_{\tilde{\mathscr{G}}}|f(z)|^{2} d z<\infty$.

Let $L_{0}^{2}(\tilde{\mathscr{D}})$ be the subspace of $L^{2}(\mathscr{D})$ satisfying the additional condition
(iii) $\int_{0}^{1 / 2} f(z) d x=\frac{1}{2} \int_{0}^{1} f(z) d x=0$.

The space $L^{2}(\tilde{\mathscr{D}})$ has the spectral decomposition with respect to D

$$
\begin{equation*}
L^{2}(\check{\mathscr{D}})=L_{0}^{2}(\widetilde{\mathscr{D}}) \oplus C \oplus L_{\text {conti }}^{2}(\mathscr{D}), \tag{2.14}
\end{equation*}
$$

where C is the space of constant functions, and $L_{\text {conti }}^{2}(\mathscr{D})$ is the continuous part of the spectrum.

The operator L_{φ} is, on $L^{2}(\tilde{\mathscr{D}})$, an integral operator with the kernel function $\tilde{K}\left(z, z^{\prime}\right)$, where

$$
\begin{equation*}
\tilde{K}\left(z, z^{\prime}\right)=\sum_{\sigma \in \tilde{I}} k\left(z, \sigma z^{\prime}\right) \tag{2.15}
\end{equation*}
$$

If we put $K\left(z, z^{\prime}\right)=\sum_{\sigma \in \Gamma} k\left(z, \sigma z^{\prime}\right)$ and $K^{\prime}\left(z, z^{\prime}\right)=\sum_{\sigma \in \Gamma} k\left(z, \sigma \omega z^{\prime}\right)$, then from (2.13), we have

$$
\begin{equation*}
\tilde{K}\left(z, z^{\prime}\right)=K\left(z, z^{\prime}\right)+K^{\prime}\left(z, z^{\prime}\right) \tag{2.16}
\end{equation*}
$$

For $z \in H, s \in C$, the Eisenstein series with respect to Γ is defined by

$$
\begin{equation*}
E(z, s)=\sum_{\sigma \in \Gamma_{0} \backslash \Gamma} \operatorname{Im}(\sigma z)^{s} \tag{2.17}
\end{equation*}
$$

where $\Gamma_{0}=\left\{\left.\left(\begin{array}{ll}1 & n \\ & 1\end{array}\right) \right\rvert\, n \in Z\right\}$. This series converges absolutely and uniformly
for $\operatorname{Re}(s)>1$ and therefore defines a holomorphic function in s which is real-analytic and Γ-invariant in z. The function (2.17) can be continued meromorphically to the whole complex s-plane, which has a simple pole at $s=1$, and satisfies a functional equation

$$
\begin{equation*}
E^{*}(z, s)=E^{*}(z, 1-s) \tag{2.18}
\end{equation*}
$$

where

$$
\begin{equation*}
E^{*}(z, s)=\pi^{-s} \Gamma(s) \zeta(2 s) E(z, s)=\zeta^{*}(2 s) E(z, s) \tag{2.19}
\end{equation*}
$$

and $\zeta(s)$ is the Riemann zeta-function. The residue at $s=1$ is

$$
\begin{equation*}
{\underset{s=1}{\operatorname{res}} E(z, s)=\frac{6}{\pi} \operatorname{res}_{s=1} E^{*}(z, s)=\frac{3}{\pi} ~}_{\text {. }} \tag{2.20}
\end{equation*}
$$

Now we put

$$
\begin{equation*}
H\left(z, z^{\prime}\right)=\frac{1}{4 \pi} \int_{-\infty}^{\infty} E\left(z, \frac{1}{2}+i r\right) E\left(z^{\prime}, \frac{1}{2}-i r\right) h(r) d r . \tag{2.21}
\end{equation*}
$$

Then we see that the continuous spectrum of L_{φ} on $L^{2}(\mathscr{D})$ can be expressed by $2 H\left(z, z^{\prime}\right)$. Actually we have the following

Proposition 2. Let $\tilde{K}^{*}\left(z, z^{\prime}\right)$ be the kernel function defined by

$$
\begin{equation*}
\tilde{K}^{*}\left(z, z^{\prime}\right)=\tilde{K}\left(z, z^{\prime}\right)-2 H\left(z, z^{\prime}\right) \tag{2.22}
\end{equation*}
$$

Then, it is bounded on $\tilde{\mathscr{D}} \times \tilde{\mathscr{D}}$.
Proof. From the definition of $\tilde{K}^{*}\left(z, z^{\prime}\right)$ and (2.16), we have

$$
\tilde{K}^{*}\left(z, z^{\prime}\right)=\left(K\left(z, z^{\prime}\right)-H\left(z, z^{\prime}\right)\right)+\left(K^{\prime}\left(z, z^{\prime}\right)-H\left(z, z^{\prime}\right)\right)
$$

It follows from [3: Theorem 5.3.3] that $K\left(z, z^{\prime}\right)-H\left(z, z^{\prime}\right)$ is bounded on $\tilde{\mathscr{D}} \times \tilde{\mathscr{D}}$. Moreover, we can obtain the boundedness of $K^{\prime}\left(z, z^{\prime}\right)-H\left(z, z^{\prime}\right)$ by a similar consideration as in the proof of [3: Theorem 5.3.3]. Namely it is sufficient to observe the following two cases:
(a) z is in a compact subset of $\tilde{\mathscr{D}}$ and z^{\prime} tends to ∞,
(b) both z and z^{\prime} tend to ∞.

Separating the terms with $\sigma \in \Gamma_{0}$ and $\sigma \notin \Gamma_{0}$, we have

$$
K^{\prime}\left(z, z^{\prime}\right)=\sum_{n \in Z} k\left(z, \omega\left(z^{\prime}+n\right)\right)+\sum_{\substack{\sigma \in \Gamma \\ \sigma \notin \Gamma_{0}}} k\left(z, \sigma \omega z^{\prime}\right) .
$$

Since $k\left(z, z^{\prime}\right)$ has a compact support by (2.5), $\sum_{\substack{\sigma \in \Gamma \\ \sigma \in \Gamma_{0}}} k\left(z, \sigma \omega z^{\prime}\right)$ is bounded
in both cases (a) and (b). Furthermore, as in the proof of [3: Theorem
 and (b). Hence it is enough to show that

$$
\begin{equation*}
\sum_{n \in Z} k\left(z, \omega\left(z^{\prime}+n\right)\right)-\sqrt{y y^{\prime}} g\left(\log y-\log y^{\prime}\right) \tag{*}
\end{equation*}
$$

is bounded.
From [3: Theorem 5.3.2], we have $\int_{-\infty}^{\infty} k\left(z, z^{\prime}+b\right) d b=\sqrt{y y^{\prime}} g(\log y-$ $\log y^{\prime}$), and we easily find that $\int_{-\infty}^{\infty} k\left(z, z^{\prime}+b\right) d b=\int_{-\infty}^{\infty} k\left(z, \omega z^{\prime}+b\right) d b$. Therefore, (*) is equal to

$$
\text { (**) } \quad \sum_{b \in Z} k\left(\frac{z+x^{\prime}}{y^{\prime}}, i+\frac{b}{y^{\prime}}\right)-y^{\prime} \int_{-\infty}^{\infty} k\left(\frac{z+x^{\prime}}{y^{\prime}}, i+t\right) d t .
$$

However, in general, if $f(t)$ is any C^{∞} function of a real variable with compact support of euclidean measure M, then f satisfies

$$
\left|\frac{1}{y} \sum_{b \in Z} f\left(\frac{b}{y}\right)-\int_{-\infty}^{\infty} f(t) d t\right| \leqq \frac{M}{y} \max \left|\frac{d}{d t} f(t)\right| .
$$

Applying this fact to $k\left(\left(z+x^{\prime}\right) / y^{\prime}, i+b / y^{\prime}\right)$, we have

$$
\frac{1}{y^{\prime}} \sum_{b \in Z} k\left(\frac{z+x^{\prime}}{y^{\prime}}, i+\frac{b}{y^{\prime}}\right)-\int_{-\infty}^{\infty} k\left(\frac{z+x^{\prime}}{y^{\prime}}, i+t\right) d t=O\left(\frac{1}{y^{\prime}}\right)
$$

uniformly for z as $y^{\prime} \rightarrow \infty$. This implies that $(* *)$ is bounded in both cases (a) and (b).

Let $L^{2}(\mathscr{D})$ be the Hilbert space consisting of square-integrable functions on \mathscr{D}. (For a detailed definition, which is essentially identical with that of $L^{2}(\mathscr{D})$, see for example [3: Chap. 5]). Let $L_{0}^{2}(\mathscr{D})$ be the space of cusp forms in $L^{2}(\mathscr{D})$. Then, the space $L^{2}(\mathscr{D})$ also has the spectral decomposition with respect to D,

$$
\begin{equation*}
L^{2}(\mathscr{O})=L_{0}^{2}(\mathscr{D}) \oplus C \oplus L_{\text {conti }}^{2}(\mathscr{D}), \tag{2.23}
\end{equation*}
$$

where C is the space of constant functions, and $L_{\text {conti }}^{2}(\mathscr{D})$ is the continuous part of the spectrum given by integrals of Eisenstein series. As is well known, we can take Mass wave forms $\left\{f_{j}\right\}_{j \geq 1}$ as an orthogonal (but not orthonormal) basis of $L_{0}^{2}(\mathscr{D})$ ([3: Theorem 5.2.2]), i.e.,

$$
f_{j}(z)=\sum_{n \neq 0} y^{1 / 2} a_{j}(n) K_{i r j}(2 \pi|n| y) e^{2 \pi i n x}, D f_{j}=-\left(\frac{1}{4}+r_{j}^{2}\right) f_{j}, r_{j}>0,
$$

where $K_{\nu}(z)$ is the K-Bessel function defined by

$$
K_{\nu}(z)=\int_{0}^{\infty} e^{-z \cosh t} \cosh \nu t d t, \quad(\nu, z \in C, \operatorname{Re}(z)>0) .
$$

On the other hand, the space $L^{2}(\mathscr{D})$ has the direct sum decomposition in accordance with the operation of ω

$$
L^{2}(\mathscr{D})=V_{e} \oplus V_{o},
$$

where $\quad V_{e}=\left\{f \in L^{2}(\mathscr{D}) \mid f(\omega z)=f(z)\right\}$ and $V_{o}=\left\{f \in L^{2}(\mathscr{D}) \mid f(\omega z)=-f(z)\right\}$. We call the spaces V_{e} and V_{o} even and odd spaces respectively. Now if we put

$$
\begin{array}{lll}
L_{0, e}^{2}(\mathscr{D})=L_{0}^{2}(\mathscr{D}) \cap V_{e}, & \left\{f_{j_{1}}\right\}_{j_{1} \geqq 1} ; & \text { orthogonal basis of } L_{0, e}^{2}(\mathscr{D}), \\
L_{0, o}^{2}(\mathscr{D})=L_{o}^{2}(\mathscr{D}) \cap V_{o}, & \left\{f_{j_{2}}\right\}_{j_{2} \geqq 1} ; & \text { orthogonal basis of } L_{0, o}^{2}(\mathscr{D}),
\end{array}
$$

where $\{j\}_{j \geqq 1}=\left\{j_{1}\right\}_{j_{1} \geqq 1} \cup\left\{j_{2}\right\}_{j_{2} \geqq 1}$, then, on account of $C \oplus L_{\text {conti }}^{2}(\mathscr{D}) \subset V_{e}$, we have

$$
\begin{equation*}
V_{e}=L_{0, e}^{2}(\mathscr{D}) \oplus C \oplus L_{\text {conti }}^{2}(\mathscr{D}), \quad V_{0}=L_{0, o}^{2}(\mathscr{D}) \tag{2.24}
\end{equation*}
$$

Moreover, since $L^{2}(\widetilde{\mathscr{D}})=V_{e}$ is clear from the definition of $L^{2}(\widetilde{\mathscr{D}})$, we obtain

$$
\begin{equation*}
L_{0}^{2}(\tilde{\mathscr{D}})=L_{0, e}^{2}(\mathscr{D}), \quad L_{\text {conti }}^{2}(\tilde{\mathscr{D}})=L_{\text {conti }}^{2}(\mathscr{D}) . \tag{2.25}
\end{equation*}
$$

Therefore, we can take $\left\{f_{j_{1}}\right\}_{j_{1} \geqq 1}$ as an orthogonal basis of $L_{0}^{2}(\mathscr{\mathscr { D }})$.
Let L_{φ}^{*} be an integral operator on $L^{2}(\mathscr{D})$ with a kernel function $\tilde{K} *\left(z, z^{\prime}\right)$. From the fact that L_{φ}^{*} is completely continuous on $L^{2}(\tilde{\mathscr{D}}),{ }_{1}^{,}$which comes from Proposition 2, and from the fact $L_{\varphi}^{*} f_{j_{1}}=h\left(r_{j_{1}}\right) f_{j_{1}}$, we have

$$
\begin{equation*}
\tilde{K} *\left(z, z^{\prime}\right)=\sum_{j_{1}=0}^{\infty} \frac{h\left(r_{j_{1}}\right)}{\left(f_{j_{1}}, f_{j_{1}}\right)_{\tilde{g}}} f_{j_{1}}(z) \overline{f_{j_{1}}\left(z^{\prime}\right)}, \tag{2.26}
\end{equation*}
$$

where $f_{0} \equiv 1$ (constant), $r_{0}=i / 2$ (since $D f_{0} \equiv 0$), and $\left(f_{j_{1}}, f_{i_{1}}\right)_{\tilde{\mathscr{Z}}}=\int_{\tilde{\mathscr{G}}}\left|f_{j_{1}}(z)\right|^{2} d z$. Consequently, the above results imply the following trace formula

$$
\begin{equation*}
\sum_{j_{1} \geq 0} h\left(r_{j_{1}}\right)=\int_{\tilde{\mathscr{G}}} \tilde{K}^{*}(z, z) d z . \tag{2.27}
\end{equation*}
$$

Venkov [8: §6.4, §6.4] presented the calculation of an integral in (2.27) by Selberg's original method in more general discontinuous groups including Γ. Here, according to Zagier [10], we will consider the integral (2.27) by the Rankin-Selberg method.

Let $\tilde{K}_{0}\left(z, z^{\prime}\right)$ be a kernel function on $L^{2}(\widetilde{\mathscr{D}})$ such that

$$
\begin{equation*}
\tilde{K}_{0}\left(z, z^{\prime}\right)=\tilde{K}^{*}\left(z, z^{\prime}\right)-\frac{h(i / 2)}{\left(f_{0}, f_{0}\right)_{\tilde{g}}}=\sum_{j_{1} \geqq 1} \frac{h\left(r_{j_{1}}\right)}{\left(f_{j_{1}}, f_{j_{1}}\right)_{\tilde{\mathfrak{g}}}} f_{j_{1}}(z) \overline{f_{j_{1}}\left(z^{\prime}\right)}, \tag{2.28}
\end{equation*}
$$

and put

$$
\begin{equation*}
\tilde{I}(s)=\int_{\tilde{\mathscr{F}}} \tilde{K}_{0}(z, z) E(z, s) d z \tag{2.29}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{I}^{*}(s)=\int_{\tilde{\mathscr{I}}} \tilde{K}_{0}(z, z) E^{*}(z, s) d z \tag{2.30}
\end{equation*}
$$

$\operatorname{By}(2.28)$, we see that $\tilde{K}_{0}\left(z, z^{\prime}\right)$ is of rapid decay, hence both $\tilde{I}(s)$ and $\tilde{I}^{*}(s)$ can be continued to the whole complex s-plane, and have a simple pole at $s=1$. Then, by making use of $\left(f_{0}, f_{0}\right)_{\tilde{\mathscr{q}}}=\frac{1}{2}\left(f_{0}, f_{0}\right)_{\mathscr{O}}$ and (2.20), the residue of $\tilde{I}^{*}(s)$ at $s=1$ can be given by

$$
\begin{aligned}
\operatorname{res}_{s=1}^{\tilde{I}^{*}(s)} & =\frac{1}{2} \int_{\tilde{\mathscr{G}}} \tilde{K}_{0}(z, z) d z \\
& =\frac{1}{2}\left\{\int_{\tilde{\mathscr{Q}}} \tilde{K}^{*}(z, z) d z-h\left(\frac{i}{2}\right)\right\} .
\end{aligned}
$$

Namely, we have

$$
\begin{equation*}
\int_{\tilde{\mathscr{R}}} \tilde{K}^{*}(z, z) d z=2 \operatorname{res} \tilde{I}_{s=1}^{*}(s)+h\left(\frac{i}{2}\right) \tag{2.31}
\end{equation*}
$$

If we put

$$
\begin{align*}
& K_{0}\left(z, z^{\prime}\right)=K\left(z, z^{\prime}\right)-\frac{3}{\pi} h\left(\frac{i}{2}\right)-H\left(z, z^{\prime}\right) \\
& K_{0}^{\prime}\left(z, z^{\prime}\right)=K^{\prime}\left(z, z^{\prime}\right)-\frac{3}{\pi} h\left(\frac{i}{2}\right)-H\left(z, z^{\prime}\right) \tag{2.32}
\end{align*}
$$

then from (2.16), (2.22), (2.28) and $\left(f_{0}, f_{0}\right)_{\mathscr{\mathscr { O }}}=\pi / 3$ we have

$$
\begin{aligned}
\tilde{I}(s) & =\int_{\tilde{\mathscr{P}}} K_{0}(z, z) E(z, s) d z+\int_{\tilde{\mathscr{O}}} K_{0}^{\prime}(z, z) E(z, s) d z \\
& =\frac{1}{2}\left\{\int_{\mathscr{D}} K_{0}(z, z) E(z, s) d z+\int_{\mathscr{O}} K_{0}^{\prime}(z, z) E(z, s) d z\right\} .
\end{aligned}
$$

Furthermore set

$$
\begin{equation*}
I(s)=\int_{\mathscr{O}} K_{0}(z, z) E(z, s) d z, \quad I^{\prime}(s)=\int_{\mathscr{O}} K_{0}^{\prime}(z, z) E(z, s) d z \tag{2.33}
\end{equation*}
$$

then, we easily obtain

$$
\begin{equation*}
\operatorname{res}_{s=1} \tilde{I}(s)=\frac{1}{2}\left(\operatorname{res}_{s=1} I(s)+\operatorname{res}_{s=1} I^{\prime}(s)\right) . \tag{2.34}
\end{equation*}
$$

Similarly, if we put

$$
\begin{equation*}
I^{*}(s)=\int_{\mathscr{Q}} K_{0}(z, z) E^{*}(z, s) d z, \quad I^{*}(s)=\int_{\mathscr{O}} K_{0}^{\prime}(z, z) E^{*}(z, s) d z \tag{2.35}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\operatorname{res}_{s=1} \tilde{I}^{*}(s)=\frac{1}{2}\left(\underset{s=1}{\operatorname{res}} I^{*}(s)+\underset{s=1}{\operatorname{res}} I^{*}(s)\right) . \tag{2.36}
\end{equation*}
$$

§ 3. Computation of $\tilde{I}(s)$ and its residue at $s=1$

3.1. Computation of $I^{\prime}(s)$

From the definition of $I^{\prime}(s)$, we have

$$
\begin{equation*}
I^{\prime}(s)=\int_{0}^{\infty} \mathscr{K}^{\prime}(y) y^{s-2} d y \quad \text { for } \operatorname{Re}(s)>1 \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathscr{K}^{\prime}(y)=\int_{0}^{1} K_{0}^{\prime}(z, z) d x . \tag{3.2}
\end{equation*}
$$

According to Zagier [10: p. 323 or p. 352], we decompose $\mathscr{K}^{\prime}(y)$ into four parts, i.e.,

$$
\mathscr{K}^{\prime}(y)=\sum_{i=1}^{4} \mathscr{K}_{i}^{\prime}(y)
$$

with

$$
\begin{aligned}
& \mathscr{K}_{1}^{\prime}(y)=\int_{0}^{1} \sum_{\sigma \in \Gamma}^{\sigma \in \Gamma_{0}} k \\
& \mathscr{K}_{2}^{\prime}(y)=\int_{0}^{1} \sum_{\sigma \in \Gamma_{0}} k(z, \sigma \omega z) d x, \\
& \mathscr{K}_{3}^{\prime}(y)=-\frac{y}{2 \pi} \int_{-\infty}^{\infty} y^{2 i r} \frac{\zeta^{*}(1+2 i r)}{\zeta^{*}(1-2 i r)} h(r) d r-\frac{3}{\pi} h\left(\frac{i}{2}\right), \\
& \mathscr{K}_{4}^{\prime}(y)=-\frac{2 y}{\pi} \int_{-\infty}^{\infty} \frac{1}{\zeta^{*}(1+2 i r) \zeta^{*}(1-2 i r)}\left(\sum_{n=1}^{\infty} \tau_{i r}^{2}(n) K_{i r}^{2}(2 \pi n y)\right) h(r) d r,
\end{aligned}
$$

where

$$
\tau_{\nu}(n)=|n| \nu \sum_{\substack{d \mid n \\ d>0}} d^{-2 \nu}, \quad(n \in Z-\{0\}, \nu \in C) .
$$

If we write $I_{i}^{\prime}(s)=\int_{0}^{1} \mathscr{K}_{i}^{\prime}(y) y^{s-2} d y(i=1, \cdots, 4)$, then $I^{\prime}(s)=\sum_{i=1}^{4} I_{i}^{\prime}(s)$ follows easily, and if we furthermore set $I_{i}^{\prime *}(s)=\zeta^{*}(2 s) I_{i}^{\prime}(s)(i=1, \cdots, 4)$, then we get $I^{\prime *}(s)=\sum_{i=1}^{4} I_{i}^{\prime *}(s)$.

Now, we will calculate $I_{i}^{\prime}(s)(i=1, \cdots, 4)$ separately.
(i) $I_{2}^{\prime}(s)$.

Since $\sum_{\sigma \in \Gamma_{0}} k(z, \sigma \omega z)=\sum_{n=-\infty}^{\infty} \varphi\left(|2 x-n|^{2} / y^{2}\right)$, we have

$$
\int_{0}^{1} \sum_{\sigma \in \Gamma_{0}} k(z, \sigma \omega z) d x=\int_{-\infty}^{\infty} \varphi\left(\frac{x^{2}}{y^{2}}\right) d x .
$$

However, in view of (2.9), (2.7) and (2.6), we find that

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} h(r) d r=\frac{1}{y} \int_{-\infty}^{\infty} \varphi\left(\frac{x^{2}}{y^{2}}\right) d x .
$$

This implies that $\mathscr{K}_{2}^{\prime}(y) \equiv 0$, namely

$$
\begin{equation*}
I_{2}^{\prime}(s) \equiv 0 \tag{3.3}
\end{equation*}
$$

(ii) $I_{3}^{\prime}(s)$ and $I_{4}^{\prime}(s)$.

By definition, $I_{3}^{\prime}(s)$ and $I_{4}^{\prime}(s)$ are equal to $I_{3}(s)$ and $I_{4}(s)$ in [10: Theorem 2], respectively. Hence, we have by [10: (3.4)]

$$
I_{4}^{\prime}(s)=-\frac{1}{4 \pi} \frac{\zeta^{*^{2}}(s)}{\zeta^{*}(2 s)} \int_{-\infty}^{\infty} \frac{\zeta^{*}(s+2 i r) \zeta^{*}(s-2 i r)}{\zeta^{*}(1+2 i r) \zeta^{*}(1-2 i r)} h(r) d r
$$

Fig. 2
for $\operatorname{Re}(s)>1$. Next, let P be a smooth curve which is sufficiently close to the real axis such that all zeroes of the Riemann zeta-function on the left of $1+2 i P$ and $\zeta(1+2 i r)^{-1}=O\left(|r|^{\varepsilon}\right)$ for $r \in P, \varepsilon>0$, and put

$$
J_{P}(s)=\int_{P} \frac{\zeta^{*}(s+2 i r) \zeta^{*}(s-2 i r)}{\zeta^{*}(1+2 i r) \zeta^{*}(1-2 i r)} h(r) d r .
$$

Then, from [10: (4.8)], $I_{4}^{\prime *}(s)$ can be continued holomorphically to a sufficiently small neighbourhood U of the point $s=1$ by the following identity:

$$
I_{4}^{\prime *}(s)=-\frac{1}{4 \pi} \zeta^{*^{2}}(s) J_{P}(s)-\frac{1}{4} \frac{\zeta^{*}(s) \zeta^{*}(2 s-1)}{\zeta^{*}(s-1)} h\left(i \frac{s-1}{2}\right) \quad \text { in } s \in U
$$

Thus, considering an expansion

$$
\begin{equation*}
\zeta^{*}(s)=(s-1)^{-1}+\frac{1}{2}(\gamma-\log 4 \pi)+O(s-1)(\gamma: \text { Euler constant }), \tag{3.4}
\end{equation*}
$$

we obtain the Laurent expansion of $I_{4}^{\prime *}(s)$ at $s=1$:

$$
\begin{align*}
I_{4}^{\prime *}(s)= & -\kappa(s-1)^{-2}+\left\{-\kappa(\gamma-\log 4 \pi)+\frac{h(0)}{8}\right. \tag{3.5}\\
& \left.-\frac{1}{4 \pi} \int_{-\infty}^{\infty} z(r) h(r) d r\right\}(s-1)^{-1}+O(1)
\end{align*}
$$

where

$$
\kappa=\frac{1}{4 \pi} \int_{-\infty}^{\infty} h(r) d r=\frac{1}{2} g(0)
$$

and

$$
z(r)=\frac{\zeta^{* \prime}}{\zeta^{*}}(1+2 i r)+\frac{\zeta^{*^{\prime}}}{\zeta^{*}}(1-2 i r)
$$

([10: p. 340]).
As for $I_{3}^{\prime}(s)$, we see by $[10:(3.5)]$ that

$$
I_{3}^{\prime}(s)=-\frac{1}{2} \frac{\zeta^{*}(s)}{\zeta^{*}(s+1)} h\left(\frac{i s}{2}\right) \quad \text { for } \operatorname{Re}(s)>1
$$

Since $h(r)$ is a holomorphic function in the whole complex r-plane, $I_{3}^{\prime}(s)$ can be continued meromorphically to the whole complex s-plane by the right hand side of the above equality. Therefore, we obtain

$$
\begin{equation*}
\operatorname{res}_{s=1} I_{3}^{\prime *}(s)=\operatorname{res}_{s=1}\left(\zeta^{*}(2 s) I_{3}^{\prime}(s)\right)=-\frac{1}{2} h\left(\frac{i}{2}\right), \quad([10: \mathrm{p} .340]) \tag{3.6}
\end{equation*}
$$

(iii) $I_{1}^{\prime}(s)$.

It can be seen that $I_{1}^{\prime}(s)$ coincides with the case of $m=-1$ in [10: (5.6)], hence we obtain

$$
\begin{equation*}
I_{1}^{\prime}(s)=\sum_{t=-\infty}^{\infty} \frac{\zeta\left(s, t^{2}+4\right)}{\zeta(2 s)} V_{-}(s, t) \quad \text { for } \operatorname{Re}(s)>1 \tag{3.7}
\end{equation*}
$$

where

$$
V_{-}(s, t)=\int_{H} \varphi\left(\frac{\left(|z|^{2}-(\Delta / 4)\right)^{2}}{y^{2}}+t^{2}\right) y^{s} d z, \quad\left(\Delta=t^{2}+4\right)
$$

and $\zeta\left(s, t^{2}+4\right)$ is a zeta-function defined by Zagier [10: (1.12)] or [9: (6)]. To explain $\zeta\left(s, t^{2}+4\right)$ more precisely, consider a binary quadratic form

$$
Q(u, v)=a u^{2}+b u v+c v^{2}, \quad(a, b, c \in Z)
$$

on which the group $S L(2, Z)$ operates by

$$
(\gamma \circ Q)(u, v)=Q(a u+c v, b u+d v), \quad \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, Z)
$$

and let $|Q|=b^{2}-4 a c=D$ be the discriminant of Q. Then, the zeta-function $\zeta(s, D)$ is defined by

$$
\begin{equation*}
\zeta(s, D)=\sum_{\substack{[Q] \\|Q|=D}} \sum_{\substack{(m, n) \in Z^{2} / \text { Aut } Q \\ Q(m, n)>0}} \frac{1}{Q(m, n)^{s}} \quad \text { for } \operatorname{Re}(s)>1, \tag{3.8}
\end{equation*}
$$

where the first sum ranges over $S L(2, Z)$-equivalence classes of quadratic forms Q with discriminant D, and

$$
\begin{equation*}
\text { Aut } Q=\{\gamma \in S L(2, Z) \mid \gamma \circ Q=Q\} \tag{3.9}
\end{equation*}
$$

Transforming z into $(\sqrt{\triangle / 4})(z+1) /(-z+1)$, we find

$$
\begin{aligned}
V_{-}(s, t) & =\Delta^{s / 2} \int_{H} \varphi\left(\frac{\Delta x^{2}+t^{2} y^{2}}{y^{2}}\right) \frac{y^{s}}{|1-x-i y|^{2 s}} \frac{d x d y}{y^{2}} \\
& =\Delta^{s / 2} \int_{-\infty}^{\infty} \frac{\varphi\left(\Delta u^{2}+t^{2}\right)}{\left(1+u^{2}\right)^{s / 2}} \cdot \int_{0}^{\infty} \frac{v^{s-1}}{\left(1-\frac{2 u}{\sqrt{u^{2}+1}} v+v^{2}\right)^{s}} d v d u,
\end{aligned}
$$

putting $\quad u=\frac{y}{x}, \quad v=\sqrt{x^{2}+y^{2}}$.
By using [1:2.12(10), 2.1.5 (28)], we get

$$
\begin{equation*}
V_{-}(s, t)=\frac{1}{2} \frac{\Gamma(s / 2)^{2}}{\Gamma(s)} \Delta^{s / 2} \int_{-\infty}^{\infty} \frac{\varphi\left(\Delta u^{2}+t^{2}\right)}{\left(1+u^{2}\right)^{s / 2}} F\left(\frac{s}{2}, \frac{s}{2} ; \frac{1}{2} ; \frac{u^{2}}{u^{2}+1}\right) d u, \tag{3.10}
\end{equation*}
$$

where $F={ }_{2} F_{1}$ is a hypergeometric function. The integral in (3.10) converges absolutely for all $s \in C$, and by a similar consideration as in [10: p. 335], $I_{1}^{\prime}(s)$ can be continued meromorphically to the whole complex s-plane, which has at most a 2 -order pole at $s=1$.

Further computation of $V_{-}(s, t)$.
In view of (2.12) and (3.10), we can write

$$
\begin{align*}
& V_{-}(s, t) \tag{3.11}\\
&= \frac{\Delta^{s / 2}}{8 \pi} \frac{\Gamma(s / 2)^{2}}{\Gamma(s)} \int_{-\infty}^{\infty} r \tanh \pi r h(r) \int_{0}^{1} P_{-(1 / 2)+i r}\left(-1+\frac{\Delta}{2(1-\xi)}\right) \\
& \times(1-\xi)^{(s-3) / 2} F\left(\frac{s}{2}, \frac{s}{2} ; \frac{1}{2} ; \xi\right) \frac{d \xi}{\sqrt{\xi}} d r .
\end{align*}
$$

From [1:3.2 (18)] or [10: p. 353], we have

$$
\begin{aligned}
& P_{-(1 / 2)+i r}\left(-1+\frac{\Delta}{2(1-\xi)}\right) \\
& \quad=\mathscr{S}_{r}\left[\frac{\Gamma(2 i r)}{\Gamma\left(\frac{1}{2}+i r\right)^{2}}\left(\frac{4}{\Delta}\right)^{(1 / 2)-i r} F\left(\frac{1}{2}-i r, \frac{1}{2}-i r ; 1-2 i r ; \frac{4(1-\xi)}{\Delta}\right)\right],
\end{aligned}
$$

where $\mathscr{S}_{r}[f(r)]=f(r)+f(-r)$ for any function f. Thus, using the hypergeometric series, we find that

$$
\begin{aligned}
& \int_{0}^{1} P_{-(1 / 2)+i r}\left(-1+\frac{\Delta}{2(1-\xi)}\right)(1-\xi)^{(s-3) / 2} F\left(\frac{s}{2}, \frac{s}{2} ; \frac{1}{2} ; \xi\right) \frac{d \xi}{\sqrt{\xi}} \\
&= \mathscr{S}_{r}\left[\frac{\Gamma(2 i r)}{\Gamma\left(\frac{1}{2}+i r\right)^{2}}\left(\frac{4}{\Delta}\right)^{(1 / 2)-i r} \int_{0}^{1}(1-\xi)^{(s / 2)-1-i r}\right. \\
&\left.\times F\left(\frac{1}{2}-i r, \frac{1}{2}-i r ; 1-2 i r ; \frac{4(1-\xi)}{\Delta}\right) F\left(\frac{s}{2}, \frac{s}{2} ; \frac{1}{2} ; \xi\right) \frac{d \xi}{\sqrt{\xi}}\right] \\
&= \mathscr{S}_{r}\left[\frac{\Gamma(2 i r) \Gamma(1-2 i r)}{\Gamma\left(\frac{1}{2}+i r\right)^{2} \Gamma\left(\frac{1}{2}-i r\right)^{2}} \sum_{n=0}^{\infty} \frac{1}{n!} \frac{\Gamma\left(n+\frac{1}{2}-i r\right)^{2}}{\Gamma(n+1-2 i r)}\right. \\
&\left.\times\left(\frac{\Delta}{4}\right)^{-n-(1 / 2)+i r} \int_{0}^{1}(1-\xi)^{(s / 2)+n-1-i r} F\left(\frac{s}{2}, \frac{s}{2} ; \frac{1}{2} ; \xi\right) \frac{d \xi}{\sqrt{\xi}}\right] .
\end{aligned}
$$

Then, by [1: 2.4 (2)]

$$
\begin{aligned}
& \int_{0}^{1}(1-\xi)^{(s / 2)+n-1-i r} F\left(\frac{s}{2}, \frac{s}{2} ; \frac{1}{2} ; \xi\right) \frac{d \xi}{\sqrt{\xi}} \\
& \quad=\frac{\Gamma\left(\frac{1}{2}\right) \Gamma((s / 2)+n-i r)}{\Gamma((1+s) / 2+n-i r)} F\left(\frac{s}{2}, \frac{s}{2} ; \frac{1+s}{2}+n-i r ; 1\right)
\end{aligned}
$$

for $\operatorname{Re}(s)>0$, also by [1:2.8(46)]

$$
F\left(\frac{s}{2}, \frac{s}{2} ; \frac{1+s}{2}+n-i r ; 1\right)=\frac{\Gamma((1+s) / 2-i r+n) \Gamma((1-s) / 2-i r+n)}{\Gamma\left(\frac{1}{2}-i r+n\right)^{2}}
$$

for $\operatorname{Re}(s)<1$.
Therefore, we show that
(*)

$$
\int_{0}^{1} P_{-(1 / 2)+i r}\left(-1+\frac{\Delta}{2(1-\xi)}\right)(1-\xi)^{(s-3) / 2} F\left(\frac{s}{2}, \frac{s}{2} ; \frac{1}{2} ; \xi\right) \frac{d \xi}{\sqrt{\xi}}
$$

$$
\begin{aligned}
= & \mathscr{S}_{r}\left[\frac{\operatorname{coth} \pi r}{2 i \sqrt{\pi}} \frac{\Gamma(s / 2-i r) \Gamma((1-s) / 2-i r)}{\Gamma(1-2 i r)}\left(\frac{\Delta}{4}\right)^{i r-1 / 2}\right. \\
& \left.\times F\left(\frac{s}{2}-i r, \frac{1-s}{2}-i r ; 1-2 i r ; \frac{4}{\Delta}\right) d r\right]
\end{aligned}
$$

for $0<\operatorname{Re}(s)<1$ (c.f., [10: p. 353]). Substituting (*) into (3.11), we obtain finally

$$
\begin{gather*}
V_{-}(s, t)=\frac{\Delta^{s / 2}}{8 \pi i \sqrt{\pi}} \frac{\Gamma(s / 2)^{2}}{\Gamma(s)} \int_{-\infty}^{\infty} r h(r) \frac{\Gamma(s / 2-i r) \Gamma((1-s) / 2-i r)}{\Gamma(1-2 i r)} \tag{3.12}\\
\times\left(\frac{\Delta}{4}\right)^{i r-(1 / 2)} F\left(\frac{s}{2}-i r, \frac{1-s}{2}-i r ; 1-2 i r ; \frac{4}{\Delta}\right) d r
\end{gather*}
$$

for $0<\operatorname{Re}(s)<1$.
In view of (3.7), we have

$$
I_{1}^{\prime *}(s)=\sum_{t=-\infty}^{\infty} \pi^{-s} \Gamma(s) \zeta\left(s, t^{2}+4\right) V_{-}(s, t)
$$

From now on, we will investigate the residue or the Laurent expansion of the above series at $s=1$, separating the terms with $t \neq 0$ and $t=0$.

1) In the case of $t \neq 0$, it follows from [9: Proposition 3] that $\zeta\left(s, t^{2}+4\right)$ has a simple pole at $s=1$, thus

$$
\begin{equation*}
\underset{s=1}{\operatorname{res}}\left(\sum_{t \neq 0} \pi^{-s} \Gamma(s) \zeta\left(s, t^{2}+4\right) V_{-}(s, t)\right)=\frac{1}{\pi} \sum_{t \neq 0} V_{-}(1, t) \operatorname{res}_{s=1} \zeta\left(s, t^{2}+4\right) \tag{3.13}
\end{equation*}
$$

Then, by (3.10)

$$
V_{-}(1, t)=\frac{\pi}{2} \Delta^{1 / 2} \int_{-\infty}^{\infty} \frac{\varphi\left(\Delta u^{2}+t^{2}\right)}{\left(1+u^{2}\right)^{1 / 2}} F\left(\frac{1}{2}, \frac{1}{2} ; \frac{1}{2} ; \frac{u^{2}}{u^{2}+1}\right) d u
$$

By making use of [1:2.1.4 (22)], i.e., $\left(1+u^{2}\right)^{-1 / 2} F\left(\frac{1}{2}, \frac{1}{2} ; \frac{1}{2} ; u^{2} /\left(u^{2}+1\right)\right)=$ $F\left(\frac{1}{2}, 0 ; \frac{1}{2} ;-u^{2}\right), F(a, 0 ; c ; x)=1$ and (2.6), we obtain

$$
\begin{equation*}
V_{-}(1, t)=\frac{\pi}{2} \int_{t^{2}}^{\infty} \frac{\varphi(x)}{\sqrt{x-t^{2}}} d x . \tag{3.14}
\end{equation*}
$$

2) In the case of $t=0$, clearly $\Delta=4$, thus we have by (3.12)

$$
\begin{aligned}
& V_{-}(s, 0)=\frac{4^{s / 2}}{8 \pi i \sqrt{\pi}} \frac{\Gamma(s / 2)^{2}}{\Gamma(s)} \int_{-\infty}^{\infty} r h(r) \frac{\Gamma(s / 2-i r) \Gamma((1-s) / 2-i r)}{\Gamma(1-2 i r)} \\
& \quad \times F\left(\frac{s}{2}-i r, \frac{1-s}{2}-i r ; 1-2 i r ; 1\right) d r .
\end{aligned}
$$

Utilizing [1: 2.8 (46)], we see that

$$
F\left(\frac{s}{2}-i r, \frac{1-s}{2}-i r ; 1-2 i r ; 1\right)=\frac{\Gamma\left(\frac{1}{2}\right) \Gamma(1-2 i r)}{\Gamma(-s / 2-i r+1) \Gamma\left(s / 2-i r+\frac{1}{2}\right)} .
$$

Hence, we obtain

$$
\begin{align*}
& V_{-}(s, 0) \tag{3.15}\\
& \quad=\frac{4^{s / 2}}{8 \pi i} \frac{\Gamma(s / 2)^{2}}{\Gamma(s)} \int_{-\infty}^{\infty} \frac{\Gamma(s / 2-i r) \Gamma((1-s) / 2-i r)}{\Gamma(-s / 2-i r+1) \Gamma\left(s / 2-i r+\frac{1}{2}\right)} r h(r) d r
\end{align*}
$$

for $0<\operatorname{Re}(s)<1$.
To derive a Laurent expansion of $\pi^{-s} \Gamma(s) \zeta(s, 4) V_{-}(s, 0)$ at $s=1$, we must settle the analytic continuation of $V_{-}(s, 0)$ to a neighbourhood U of the point $s=1$, and to do this, we use a similar method as in the case of $I_{4}^{\prime}(s)$. Put

$$
F(s, r)=\frac{\Gamma(s / 2-i r) \Gamma((1-s) / 2-i r)}{\Gamma(-s / 2-i r+1) \Gamma\left(-s / 2-i r+\frac{1}{2}\right)} r h(r) .
$$

Fig. 3
Let P_{0} be a smooth curve which is sufficiently close to the real axis and let

$$
J(s)=\int_{-\infty}^{\infty} F(s, r) d t, \quad J_{P_{0}}(s)=\int_{P_{0}} F(s, r) d r .
$$

Fig. 4
Then, as is easily seen, $F(s, r)$ has a pole with respect to r in the region enclosed by P_{0} and the real axis if and only if s lies in the domain between $2 i P_{0}$ and the imaginary axis or in the domain between $1-2 i P_{0}$ and the line $\sigma=\operatorname{Re}(s)=1$ as in Fig. 4. Thus,

$$
J(s)=J_{P_{0}}(s) \quad \text { in } 0<\operatorname{Re}(s)<1
$$

On the other hand, $J_{P_{0}}(s)$ is holomorphic in the region $2 i P_{0}<\operatorname{Re}(s)<1-$ $2 i P_{0}$, therefore putting

$$
J(s)=J_{P_{0}}(s) \quad \text { in } U,
$$

we can give the analytic continuation of $J(s)$ to a neighbourhood U of the point $s=1$. Furthermore it follows from [9: Proposition 3] that $\zeta(s, 4)=$ $\zeta^{2}(s)\left(1+2^{1-2 s}-2^{-s}\right)$. Hence, we have

$$
\begin{equation*}
\pi^{-s} \Gamma(s) \zeta(s, 4) V_{-}(s, 0)=\frac{1}{8 \pi i} \zeta^{* 2}(s)\left(-1+2^{s}+2^{1-s}\right) J_{P_{0}}(s) \quad \text { in } U \tag{3.16}
\end{equation*}
$$

Laurent expansion of $\pi^{-s} \Gamma(s) \zeta(s, 4) V_{-}(s, 0)$ at $s=1$.
By (3.4), we have

$$
\zeta^{*^{2}}(s)=(s-1)^{-2}+(\gamma-\log 4 \pi)(s-1)^{-1}+O(1),
$$

and also

$$
\left(-1+2^{s}+2^{1-s}\right)=2+\log 2 \cdot(s-1)+O\left((s-1)^{2}\right)
$$

Moreover, for $J_{P_{0}}(s)$, we find

$$
\begin{aligned}
J_{P_{0}}(1) & =\int_{P_{0}} \frac{\Gamma(-i r)}{\Gamma(1-i r)} r h(r) d r=-\frac{1}{i} \int_{P_{0}} h(r) d r \\
& =-\frac{1}{i} \int_{-\infty}^{\infty} h(r) d r=2 \pi i g(0),
\end{aligned}
$$

and

$$
J_{P_{0}}^{\prime}(1)=\frac{1}{i} \int_{P_{0}}\left\{\frac{\Gamma^{\prime}}{\Gamma}(1-i r)-\frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1}{2}-i r\right)\right\} h(r) d r-\frac{1}{2} \int_{P_{0}} \frac{h(r)}{r} d r .
$$

Using $\int_{P_{0}}(h(r) / r) d r=-\pi i h(0)$ and $h(r)=h(-r)$, we see that the last expression is equal to

$$
\frac{1}{i} \int_{-\infty}^{\infty}\left\{\frac{\Gamma^{\prime}}{\Gamma}(1+i r)-\frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1}{2}+i r\right)\right\} h(r) d r+\frac{\pi i}{2} h(0)
$$

It follows from these facts that the Laurent expansion of $\pi^{-s} \Gamma(s) \zeta(s, 4) \times$ $V_{-}(s, 0)$ at $s=1$ can be written as

$$
\begin{align*}
\pi^{-s} & \Gamma(s) \zeta(s, 4) V_{-}(s, 0) \tag{3.17}\\
= & \frac{1}{8 \pi i}\left\{(s-1)^{-2}+(\gamma-\log 4 \pi)(s-1)^{-1}\right\} \times\{2+\log 2 \cdot(s-1)\} \\
& \times\left\{2 \pi i g(0)+J_{P_{0}}^{\prime}(1)(s-1)\right\}+O(1) \\
= & \frac{1}{2} g(0)(s-1)^{-2}+\frac{g(0)}{4}\{\log 2+2(\gamma-\log 4 \pi)\}(s-1)^{-1} \\
\quad+ & \frac{1}{8} h(0)(s-1)^{-1}-\frac{1}{4 \pi} \int_{-\infty}^{\infty}\left\{\frac{\Gamma^{\prime}}{\Gamma}(1+i r)-\frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1}{2}+i r\right)\right\} \\
& \times h(r) d r \cdot(s-1)^{-1}+O(1) .
\end{align*}
$$

Now, since $\operatorname{res}_{s=1} I^{\prime *}(s)=\sum_{i=1}^{4} \operatorname{res}_{s=1} I_{i}^{\prime *}(s)$, adding up (3.3), (3.5), (3.6), (3.13) and (3.17), we obtain the following

Proposition 3. Let $K_{0}^{\prime}\left(z, z^{\prime}\right)$ be the kernel function defined by (2.32), and put $I^{\prime *}(s)=\int_{\mathscr{D}} K_{0}^{\prime}(z, z) E^{*}(z, s) d z . \quad$ Then, $\operatorname{res}_{s=1} I^{\prime *}(s)$ can be expressed as

$$
\operatorname{res}_{s=1}^{I^{\prime} *}(s)=\frac{\log 2}{4} g(0)+\frac{1}{4} h(0)-\frac{1}{2} h\left(\frac{i}{2}\right)
$$

$$
\begin{aligned}
& -\frac{1}{4 \pi} \int_{-\infty}^{\infty}\left\{z(r)+\frac{\Gamma^{\prime}}{\Gamma}(1+i r)-\frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1}{2}+i r\right)\right\} h(r) d r \\
& +\frac{1}{\pi} \sum_{t \neq 0} V_{-}(1, t) \underset{s=1}{\operatorname{res}} \zeta\left(s, t^{2}+4\right),
\end{aligned}
$$

where $z(r)=\left(\zeta^{*} / \zeta^{*}\right)(1+2$ ir $)+\left(\zeta^{*} / \zeta^{*}\right)(1-2 i r)$ and $V_{-}(1, t)$ is as in (3.14).

3.2. Computation of $I(s)$

According to its definition, $I(s)$ coincides with that of Zagier [10] completely, thus we have the following

Proposition 4 ([10: p. 342]). Let $K_{0}\left(z, z^{\prime}\right)$ be the kernel function defined by (2.32), and put $I^{*}(s)=\int_{\mathscr{9}} K_{0}(z, z) E^{*}(z, s) d z$. Then, $\operatorname{res}_{s=1} I^{*}(s)$ can be expressed as

$$
\begin{aligned}
\operatorname{res}_{s=1} I^{*}(s)= & -\frac{\log 2}{2} g(0)+\frac{1}{4} h(0)-\frac{1}{2} h\left(\frac{i}{2}\right) \\
& -\frac{1}{4 \pi} \int_{-\infty}^{\infty}\left\{z(r)+\frac{\Gamma^{\prime}}{\Gamma}(1+i r)\right\} h(r) d r \\
& +\frac{1}{24} \int_{-\infty}^{\infty} \tanh \pi r r h(r) d r \\
& +\frac{1}{\pi} \sum_{t \geq 4} V(1, t) \underset{s=1}{\operatorname{res}} \zeta\left(s, t^{2}-4\right)
\end{aligned}
$$

where

$$
V(1, t)= \begin{cases}\frac{\pi}{2} \int_{0}^{\infty} \frac{\varphi(x)}{\sqrt{x+4-t^{2}}} d x & |t|<2 \tag{3.18}\\ \frac{\pi}{2} \int_{t^{2}-4}^{\infty} \frac{\varphi(x)}{\sqrt{x+4-t^{2}}} d x & |t|>2\end{cases}
$$

§4. Trace formula

We have by [10: (4.13)]

$$
\operatorname{res}_{s=1}^{\operatorname{res}} \zeta(s, D)= \begin{cases}\frac{2 \pi}{\sqrt{|D|} \mid} \sum_{\substack{|Q \operatorname{modS} L(2, Z)\\| Q \mid=D}} \frac{1}{\mid \text { Aut } Q \mid} & D<0 \tag{4.1}\\ \frac{1}{\sqrt{|D|}} \sum_{\substack{Q \bmod S L(2, Z \\|Q|=D}} \log \varepsilon_{Q} & D>0\end{cases}
$$

where Aut Q is the group defined by (3.9) and ε_{Q} is the largest eigenvalue of the matrix M which is a generator of Aut Q up to $\{ \pm 1\}$ with positive trace, i.e, Aut $Q=\left\{ \pm M^{n} \mid n \in Z\right\}$.

To make the correspondence between Selberg's method and Zagier's method clear in the computation of the integral in (2.27), we will calculate $V \quad(1, t) \operatorname{res}_{s=1} \zeta\left(s, t^{2}+4\right)$ and $V(1, t) \operatorname{res}_{s=1} \zeta\left(s, t^{2}-4\right)$ in a more explicit form. Since $t^{2}+4$ is always positive, using (3.14) and (4.1), we can write

$$
V_{-}(1, t) \underset{s=1}{\operatorname{res}} \zeta\left(s, t^{2}+4\right)=\frac{\pi}{4} \frac{1}{\sqrt{t^{2}+4}} \sum_{\substack{Q \bmod \\|Q|=t^{2}+4}} \operatorname{lin}(2, Z)<\varepsilon_{Q}^{2} \cdot \int_{t^{2}}^{\infty} \frac{\varphi(x)}{\sqrt{x-t^{2}}} d x .
$$

Then, from the fact that M is a generator of Aut Q up to $\{ \pm 1\}$, it follows that there exists a positive number $l\left(=l_{Q} \in \frac{1}{2} Z\right)$ such that $\varepsilon_{Q}^{l}-\varepsilon_{Q}^{-l}=t$ corresponding to each Q. Thus, using (2.6) and (2.7), we have

$$
\begin{equation*}
V_{-}(1, t) \operatorname{res} \zeta\left(s, t^{2}+4\right)=\frac{\pi}{4=1} \sum_{\substack{\text { mod } \\ \mid Q 1=t^{2} L(2, Z) \\ \varepsilon_{Q}^{l}-\varepsilon \bar{q}^{l} t=t}} \frac{\log \varepsilon_{Q}^{2}}{\varepsilon_{Q}^{l}+\varepsilon_{Q}^{-l}} g\left(l \log \varepsilon_{Q}^{2}\right) . \tag{4.2}
\end{equation*}
$$

In the case of $t^{2}-4>0$, a similar consideration as for $t^{2}+4$ is possible, namely there exists a positive integer $l\left(=l_{Q} \in Z \geqq 1\right)$ such that $\varepsilon_{Q}^{l}+\varepsilon_{Q}^{-l}=t$ corresponding to each Q, therefore it follows from (3.18) and (4.1) that

$$
\begin{equation*}
V(1, t) \underset{s=1}{\operatorname{res}} \zeta\left(s, t^{2}-4\right)=\frac{\pi}{4} \sum_{\substack{Q \bmod S_{L} L(2, Z) \\ \mid C l=t t^{2}+4 \\ \varepsilon_{Q}^{l}+\varepsilon \bar{Q} l=t}} \frac{\log \varepsilon_{Q}^{2}}{\varepsilon_{Q}^{l}-\varepsilon_{Q}^{-l}} g\left(l \log \varepsilon_{Q}^{2}\right) . \tag{4.3}
\end{equation*}
$$

As for $t^{2}-4<0$, further calculations after (3.18) yield

$$
\begin{align*}
& V(1, t) \underset{s=1}{\operatorname{res}} \zeta\left(s, t^{2}-4\right) \tag{4.4}\\
& \quad=\frac{\pi}{\sqrt{4-t^{2}}} \sum_{\substack{Q \bmod S \bar{L}(2, Z) \\
Q 1=t^{2}-4}} \frac{1}{\mid \text { Aut } Q \mid} \cdot \int_{-\infty}^{\infty} \frac{e^{-2 \alpha r}}{1+e^{-2 \pi r}} h(r) d r,
\end{align*}
$$

where $|t|=2 \cos \alpha, 0<\alpha \leqq \pi / 2$.
Combining (2.27), (2.31) and (2.36), we find that

$$
\begin{equation*}
\sum_{j_{1} \geq 0} h\left(r_{j_{1}}\right)=\int_{\tilde{\mathscr{O}}} \tilde{K}^{*}(z, z) d z=\operatorname{res}_{s=1} I^{*}(s)+\operatorname{res}_{s=1} I^{*}(s)+h\left(\frac{i}{2}\right) \tag{4.5}
\end{equation*}
$$

Hence, by using Propositions 3, 4, we obtain a trace formula on the even space V_{e}.

Theorem 2 (Trace formula on V_{e}). Let $L_{0, e}(\mathscr{D})$ be the space of cusp forms in V_{e}, and let $\left\{f_{j_{1}}\right\}_{j_{1} \geqq 1}$ be the orthogonal basis of $L_{0, e}(\mathscr{D})$ consisting of

Maass wave forms. If the eigenvalue of each $f_{j_{1}}$ with respect to D is given by $D f_{j_{1}}=-\left(\frac{1}{4}+r_{j_{1}}^{2}\right) f_{j_{1}}$, then we obtain

$$
\begin{aligned}
& \sum_{j_{1} \geq 0} h\left(r_{j_{1}}\right) \\
& =-\frac{\log 2}{4} g(0)+\frac{1}{2} h(0)+\frac{1}{24} \int_{-\infty}^{\infty} \tanh \pi r r h(r) d r \\
& -\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{z(r)+\frac{\Gamma^{\prime}}{\Gamma}(1+i r)\right\} h(r) d r+\frac{1}{4 \pi} \int_{-\infty}^{\infty} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1}{2}+i r\right) h(r) d r \\
& +\sum_{|t|<2} \frac{1}{\sqrt{4-t^{2}}} \sum_{\substack{Q \bmod S L(2, Z) \\
Q \mid=t^{2}-4}} \frac{1}{\mid \text { Aut } Q \mid} \cdot \int_{-\infty}^{\infty} \frac{e^{-2 \cos -1(|t| / 2) r}}{1+e^{-2 \pi r}} h(r) d r
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{4} \sum_{t \neq 0} \sum_{\substack{Q \bmod , S_{1}(2, Z) \\
1 Q=t^{2} L+4 \\
\varepsilon_{Q}^{l}-\varepsilon_{Q} \bar{q}^{2}=t}} \frac{\log \varepsilon_{Q}^{2}}{\varepsilon_{Q}^{l}+\varepsilon_{Q}^{-l}} g\left(l \log \varepsilon_{Q}^{2}\right),
\end{aligned}
$$

where $z(r)=\left(\zeta^{*} / \zeta^{*}\right)(1+2$ ir $)+\left(\zeta^{*} / \zeta^{*}\right)(1-2$ ir $)$ and Aut Q is as in (3.9).
As is proved in Zagier [10], the trace formula on $L^{2}(\mathscr{D})$ is

$$
\sum_{j \geq 0} h\left(r_{j}\right)=2 \underset{s=1}{\operatorname{res}} I^{*}(s)+h\left(\frac{i}{2}\right)
$$

Thus, we have by (4.5)

$$
\sum_{j_{2} \geqq 1} h\left(r_{j_{2}}\right)=\sum_{j \geqq 0} h\left(r_{j}\right)-\sum_{j_{1} \geqq 0} h\left(r_{j_{1}}\right)=\underset{s=1}{\operatorname{res}} I^{*}(s)-\underset{s=1}{\operatorname{res}} I^{\prime *}(s) .
$$

Again, by using Propositions 3, 4, we have a trace formula on the odd space V_{o}.

Theorem 3 (Trace formula on V_{o}). Let $\left\{f_{j_{2}}\right\}_{j_{2} \geqq 1}$ be the orthogonal basis of the space V_{o} consisting of Maass wave forms. If the eigenvalue of each $f_{j_{2}}$ with respect to D is given by $D f_{j_{2}}=-\left(\frac{1}{4}+r_{j_{2}}^{2}\right) f_{j_{2}}$, then we obtain

$$
\begin{aligned}
& \sum_{j_{2} \geq 1} h\left(r_{j_{2}}\right) \\
&=-\frac{3}{4} \log 2 \cdot g(0)+\frac{1}{24} \int_{-\infty}^{\infty} \tanh \pi r r h(r) d r-\frac{1}{4 \pi} \int_{-\infty}^{\infty} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1}{2}+i r\right) h(r) d r \\
&+\sum_{|t|<} \frac{1}{\sqrt{4-t^{2}}} \sum_{\substack{\bmod S_{2}(2, Z) \\
|Q|=t^{2}-4}} \frac{1}{\mid \text { Aut } Q \mid} \cdot \int_{-\infty}^{\infty} \frac{e^{-2 \cos -1(|t| / 2) r}}{1+e^{-2 \pi r}} h(r) d r
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1}{4} \sum_{\substack{t \neq 0 \\
t \bmod \\
1 Q 1=t t^{2} L(4, Z) \\
\varepsilon_{\varepsilon_{-}^{l}}^{2}-\varepsilon_{Q}^{l}=t}} \frac{\log \varepsilon_{Q}^{2}}{\varepsilon_{Q}^{l}+\varepsilon_{Q}^{-l}} g\left(l \log \varepsilon_{Q}^{2}\right),
\end{aligned}
$$

where Aut Q is as in (3.9).
The formula of Theorem 3 is just the same as the formula of Venkov [8: Theorem 6.5.4] in the case of $\Gamma=P S L(2, Z)$.

References

[1] Erdelyi, A. et al., Higher transcendental functions, Vol. I, McGraw-Hill, New York 1954.
[2] -, Tables of integral transforms, Vol. I, McGraw-Hill, New York 1954. [3] Kubota, T., Elementary theory of Eisenstein series, Kodansha and John Willey, Tokyo-New York 1973.
[4] Rankin, R., Contribution to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions I, Proc. Camb. Phil. Soc., 35 (1939), 351372.
[5] Selberg, A., Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Arch. Math. Naturvid., 43 (1940), 47-50.
[6] - Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Ind. Math. Soc., 20 (1956), 47-87.
[7] Szmidt, J., The Selberg trace formula for the Picard group $S L(2, Z[i])$, Acta. Arith. XLII, (1983), 391-424.
[8] Venkov, A. B., Spectral theory of automorphic functions, Proc. Steklov. Inst. Math., (1982), no. 4.
[9] Zagier, D., Modular forms whose Fourier coefficients involve zeta functions of quadratic fields, in Modular functions of one variable VI, Lect. Notes in Math., no. 627, Springer Verlag, Berlin 1977, 107-169.
[10] _-, Eisenstein series and the Selberg trace formula I, Proc. Symp., Representation theory and automorphic functions, Tata Inst., Bombay 1979, 303-355.

Department of Mathematics
Faculty of Science
Kyushu University 33
Fukuoka 812, Japan

