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On an Application of Zagier’s Method in the Theory
of Selberg’s Trace Formula
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Introduction

Let H be the complex upper half plane, and put G=PSL(2, R), I'=
PSL(2, Z). Then, the well-known Selberg trace formula holds for the
Hilbert space LX(I"\H). Let furthermore w: z— — £ be the reflection with
respect to the imaginary axis, and let 5=<G, o) be the group generated
by G and . Then, the triple (G, H, 1) turns out to be a weakly symmetric
Riemannian space in the notation of Selberg (§1). Therefore, it is possible
to investigate the trace formula for the Hilbert space L*('\H) with "=
(T, w).

The space LX(I"\ H) has the direct sum decomposition LXI"\H)=V,
@®V,, where V, and V, are defined by V,={fe LXI'\H)| f(wz)=f(2)}, V,
={f e LYI"\ H)| f(wz) = —f(2)} respectively, in accordance with the opera-
tion of w. Since it is clear that V,=I*I"\H), the trace formulas for
IX(["\H) and for V, are the same.

In fact, Venkov [8: Chap. 6] presented trace formulas for ¥, and ¥,
in more general cases where the discontinuous group has an g-invariant
fundamental domain.

On the other hand, Zagier [10] gave a new method to derive the trace
formulas in the case of I'=PSL(2, Z), considering an integral of the form

10=[ K@ 2EGE 9 §2).
nm
In the present paper, we shall prove the trace formula for V,, i.e., for
LX(I"\ H) by means of Zagier’s method in the case of '=PSL(2, Z) (§3
and Theorem 2), and add an explicit form of the trace formula for V, as
a direct consequence of the trace formulas for L*(I"\H) and ¥V, (Theorem

3).

§ 1. Weakly symmetric Riemannian space

Let S be a Riemannian manifold with a positive definite metric ds*=
> &:,dx*dx’. The mapping of S onto itself is called an isometry if it holds
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the metric invariant. Let £ be a group consisting of isometries which
operate on S transitively. If we have an isometry g of S which satisfies
(1) p'Qu=20, e,
(ii) there exists an element m in {2 such that (ux, py)=(my, mx) for
any x, y e S,
we call the triple (2, S, 1) a weakly symmetric Riemannian space.
Let H be the complex upper half plane {z=x-+iye C|{Imz=y>0},
to which we give a Riemann structure defined by

(1.1) ds =1 (@x+dp).
Y

Let furthermore w: z— — 7 be the reflection with respect to the imaginary
axis, and putting G=PSL (2, R), G ={(@, w) be the group generated by G
and . From the fact that the metric (1.1) is invariant under the actions
of G and w, and the triple (G, H, 1) is weakly symmetric, the triple
(G, H, 1) also turns out to be a weakly symmetric Riemannian space. The
metric (1.1) gives rise naturally to a G-invariant measure on H whose ex-
plicit form is

(1.2) dz =Xy

yZ

It can be easily seen that
(i) o*=id

(i) a)(? Z)w:(_z —Z> for any <‘cZ Z) eG.

Hence G is a normal subgroup of G with index 2. Namely we have
(1.3) G=GUwG=GUGow.

Let f(z) be a complex valued function on H. For ¢ € G, the mapping
f(2)—f(02) defines a linear operator. This will be denoted by 7,. A
linear operator T is called an invariant operator with respect to G, if it
commutes with all T, (¢ € G), i.e., if we have T(f(c2))=(Tf)(02).

The Laplace-Beltrami operator induced from (1.1) on H is

&,
1.4 D= 2(__ _ﬁ)
(1.4) | y ax2+ e

and D is a generator of the commutative ring of invariant differential
operators with respect to G.
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§ 2. Selberg transform, Selberg kernel function

Let L be an integral operator defined by

@ UN@=| ke 2)fE)

with a kernel function k(z, z’). In order that an integral operator L de-
fined by k(z, z’) is invariant with respect to G, it is necessary and sufficient
that k(z, z’) satisfies the condition

(2.2) k(oz, 0z")=k(z,z’)  for every g e G,

and such a function k(z, z’) is called a point pair invariant with respect to
G.
Now we put

, |z—2'|F , b ey
2.3) 1z, 2)="—"—, z=x+iy, Z’=x'+iy' e H
yy
Since any point pair invariant with respect to G is a function of a positive
real variable t=1(z, z’), and since t(wz, wz’)=1(z, z’), any point pair invar-
iant with respect to G can also be identified with a function of r=1#(z, z’).
Therefore, for a point pair invariant k(z, z’) with respect to G, we set

@4 o(t(z, 2))=Kk(z, 2'),
and furthermore we impose the following condition on ¢:

2.5) @) is a smooth function with compact support of a positive real
variable t

An invariant operator with respect to G derived from such a function ¢
will be denoted by L,.

Theorem 1 (c.f., [6: p. 55] or [3: Theorem 1.3.2)). Suppose that the
Sunction f on H is an eigenfunction of D with the eigenvalue —(%+r%), re C.
Then, f is an eigenfunction of an arbitrary invariant integral operator L, with
respect to G.  More precisely, we have L,f=hr)f,reC.

The eigenvalue A(r), determined only by L, and r, is called the Selberg
transform. Obviously it is an even function of r, i.e., A(r)=h(—r).

Proposition 1.  Let ¢ be such a function as in (2.5). Then the Selberg
transform can be computed as follows. Set

2.6) om=["_ptwtvido=" j{% it (w=0)



196 E. Yoshida

and define g(u) by
2.7 Ow)=g(u) with w=e*+e *—2.
Then we have

2.8) h(r):f_o g™ du, reC.

Conversely it holds that

2.9 g(u)=71{z—fwh(r)e_”udr’
(2.10) 0()=g(log W2+ YW ),
and

e = L[ 920,

Combining (2.8), (2.9), (2.10) and (2.11), we obtain
.12) (1) =“Lr P_(I,ZM,(I + .L) r tanh zrh(r)dr,
4z J - 2

where P(z) (ve C, ze C—(0, 1]) denotes a Legendre function of the first
kind. Moreover h(r) is a holomorphic function in the whole complex r-plane,
and for r € R it is of rapid decay as |r|—oo.

For the proof, we refer to [3: Theorem 5.3.1] and [10: p. 319].
Put I'=PSL(2, Z), and let ['=(I", o) be the group generated by I
and w. From (1.3), we have

(2.13) I'=rJel'=I'Ulo.

I" and I are discrete subgroups of G and G respectively, which operate on
H discontinuously. The fundamental domain & and & of I" and I" are
given, in a standard form, by

@:{z € anlzl’ —%éRC (Z)éé}’
F={ze H|iz/=1, 0<Re (<3},

respectively.
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9

JAN

Fig. 1
Let L*($) be the Hilbert space of measurable]functions such that
(i) flez)=/f(z) forallge I,
@) [ 1@<,
Let LY D) b: the subspace of LX9) satisfying the additional condition
(iif) f’z f(z)dx:%fl f(2)dx=0.
The space Lg(@) has the s;)ectral decomposition with respect to D

2.14) LX9)=L{D)OCDL: i D),

where C is the space of constant functions, and L?,,,(%) is the continuous
part of the spectrum.

The operator L, is, on L*9), an integral operator with the kernel
function K(z, ), where
(2.15) K(z, 2)= 3 k(z, 62').

oel

If we pllt K(Z= Z,):Zaerk (Z’ O'Z/) and K,(Za Z,):‘Zael"k(za O'(UZ’), then
from (2.13), we have

(2.16) K(z, z)=K(z, 2)+ K'(z, Z)).
For z e H, s ¢ C, the Eisenstein series with respect to " is defined by

(2.17) E(z, )= 3, Im(o2)’,

ael'o\I"

where I'y= {(1 ’11) {n eZ } This series converges absolutely and uniformly
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for Re (s)>>1 and therefore defines a holomorphic function in s which is
real-analytic and ["-invariant in z. The function (2.17) can be continued
meromorphically to the whole complex s-plane, which has a simple pole
at s=1, and satisfies a functional equation

(2.18) E*(z, s)=E*(z, 1 —5),
where
(2.19) EX(z, 5)=n""T(5)0Q29)E(z, 5)=L*(25)E(, 5),

and {(s) is the Riemann zeta-function. The residue at s=1 is

(2.20) res E(z, s)= s res E*(z, 5)= i
s=1 T s=1 T
Now we put
@.21) H(z, 7) =_41_. f " E(z, }+inE(Z, ¥—ir)h(r)dr.
7‘[ - 00

Then we see that the continuous spectrum of L, on L*(J) can be expressed
by 2H(z, z’). Actually we have the following

Proposition 2. Let K*(z, z') be the kernel function defined by
(2.22) K*(z, 2)=K(z, 2)—2H(z, 7).
Then, it is bounded on I X 9.
Proof. From the definition of K*(z, z’) and (2.16), we have
K*(z, 2)=(K(z, ) — H(z, 2)) +(K'(z, /) — H(z, Z')).

It follows from [3: Theorem 5.3.3] that K(z, z’)— H(z, z’) is bounded on
9 X P. Moreover, we can obtain the boundedness of K'(z, z’)— H(z, z)
by a similar consideration as in the proof of [3: Theorem 5.3.3]. Namely
it is sufficient to observe the following two cases:

(2 zisin a compact subset of § and z’ tends to oo,

(b) both z and z’ tend to oo.

Separating the terms with ¢ € I', and ¢ & I",, we have

K'(z, )= 2, kiz, (@ +m)+ 2 k(z, 00Z)).

a&lp

Since k(z, z’) has a compact support by (2.5), >, k(z, owz’) is bounded
&l
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in both cases (a) and (b). Furthermore, as in the proof of [3: Theorem
5.3.31, H(z, z)— /3y g (log y—logy’) is also bounded in both cases (a)
and (b). Hence it is enough to show that

() 3, Kz, oz +m)— Vyy' g (log y—logy")
is bounded.

From [3: Theorem 5.3.2], we have r k(z, 2’ +b)db=/yy’ g (log y—
log ), and we easily find that r Kz, z’+b)db:r k(z, wz' -+ b)db.

Therefore, () is equal to

(%) Zk(z“jx , i+ ) ’r k<z+,x/, i+t)dt.
y =\ y

bezZ

However, in general, if f(¢) is any C~ function of a real variable with
compact support of euclidean measure M, then f satisfies
Zf( )-[_roa|= <—- max| 4.1 |-

y bez

Applying this fact to k((z4x")/y’, i4b/y"), we have

_172 k(z+x , Q4 b) r k(ZJr,x , i+t>dt=0<—17)
y'vez ¥y 4 ~w ¥y y
uniformly for z as y"-—oo. This implies that («x) is bounded in both cases
(a) and (b).
Let L*(2) be the Hilbert space consisting of square-integrable func-
tions on @. (For a detailed definition, which is essentially identical with
that of L¥ ), see for example [3: Chap. 5]). Let L% @) be the space of

cusp forms in L*(2). Then, the space L*(9) also has the spectral decom-
position with respect to D,

(2.23) LH(D)= L(D)DCDL;,.:(D),

where C is the space of constant functions, and L?,,,,(2) is the continuous
part of the spectrum given by integrals of Fisenstein series. As is well
known, we can take Mass wave forms {f,};>, as an orthogonal (but not
orthonormal) basis of LY2) ([3: Theorem 5.2.2)), i.e.,

(@)= Z VK, Qr\n|y)e*"?, Dfy= —(3+r)f; r, >0,

where K,(2) is the K-Bessel function defined by
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K(2)= f " emreosnicoshptdt, (v, z e C, Re (2)>0).
0

On the other hand, the space L*2) has the direct sum decomposition

in accordance with the operation of
L(D)=V.DV.,

where V,={fe LXD)|flwz)=f(2)} and V,={fe LY2) flwz)=—f(2)}.
We call the spaces V, and V, even and odd spaces respectively. Now if
we put

Ly (D)=LYD)NV., {fi,};z1; orthogonal basis of L (2),

L (@D)=LYA2)NV,, {f.};,215 orthogonal basis of L ,(2),

where {j},51={/i};,21 U{/2};s21, then, on account of C®LZ,,,.(2)CV,, we
have

(2.24) V=L (2)DCDL,.: (D), Vo=L{,. (D).
Moreover, since L¥(9)=V, is clear from the definition of L} $), we obtain
(225) Lg(@) =Lg,e(g)s contz (9) L conti (9)

Therefore, we can take {f},}, 2 as an orthogonal basis of LY %).

Let L} be an integral operator on L%J) with a kernel function
K*(z, 7). From the fact that L¥ is completely continuous on L¥(9),*which
comes from Proposition 2, and from the fact L¥f; =h(r,)f;,, we have

(2.26) Riz )= M) 1 7@,
Ji= 0(](:719 11)9

where f,=1 (constant), r,=1i/2 (since Df;=0), and (f,,, f;,) §=I~| [, (@) Fdz.
Consequently, the above results imply the following trace formula

@.27) 3 hr) = f R¥z,72) dz.
J120 2
Venkov [8: §6.4, §6.4] presented the calculation of an integral in
(2.27) by Selberg’s original method in more general discontinuous groups
including I". Here, according to Zagier [10], we will consider the integral
(2.27) by the Rankin-Selberg method.
Let K(z, z') be a kernel function on L*J) such that

TN RN () h(r,)
228 Kg Py =K* Py —— = Jr . . ,
(228)  Ky(z, 2)=K*(z, ) T f)s hZ; (f,l,fh)g,f’(z)f’ @)
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and put
(2.29) ()= I Rz DEG 94z,
and

(2.30) f*@):fﬁ Rz, 2)E*(z, s)dz.

By(2.28), we see that Ki(z, z’) is of rapid decay, hence both I(s) and I*(s)
can be continued to the whole complex s-plane, and have a simple pole at
s=1. Then, by making use of (f;, f;) 5=3%(fs, fs)» and (2.20), the residue
of I'*(s) at s=1 can be given by

res [*(s)= -l—j Rz, 2)dz
s=1 2Js5

3{f, e 3))

Namely, we have
(2.3 _R¥(z, 2)dz=2res I*(s)+h (_;_)
2 §=1
If we put

n_ n_ 3 i\ _
Kz, 2)=K(, 2) ;h(7> H(z, 2),
(2.32) 5 '
’ N g N_2p( ) _ ’
K{(z, 2)=K'(z, 2) 7rh(z) H(z, '),

then from (2.16), (2.22), (2.28) and (f;, /;)s= /3 we have
i) =J§Ko(z, DE(, s)dz+j§1<(,(z, 2E(z, $)dz
=,;_{L Kz 2)EC, s)dz+LKg(z, DE(, s)dz}.
Furthermore set
@33)  Ie)= I Kz DB, 94, I’(s)=LK{,(z, DE(z, s)dz,

then, we easily obtain
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(2.34) res (s) =14 (res 1(s)-res I'(s)).

Similarly, if we put

(2.35)  I*(s)= f Kz DE(z 94z, I’*(s):LKg(z, DE*(z, s)dz,
then we have

(2.36) res 1*(s)=14 (res I*(s) +res I%(s)).
§=1 s=1 s=1

§ 3. Computation of J(s) and its residue at s=1

3.1. Computation of I’(s)

From the definition of I’(s), we have

G.1) I(s)= f “HO)y iy for Re(s)>1,
where
(3.2) ()= J 'Kz, 2)dx.

According to Zagier [10: p. 323 or p. 352], we decompose #”(y) into four
parts, i.e.,

H7(y)= Z A
with

1
Hi)=[ 3 Kz oo,

a&ly
Ai0=|, 3 ke owds— 2" .
AU — T 2 e §¥(14-2ir) ___3_ __l_
== Loy R —airy " h(z)’
- 1
—oo CF(1 4 2ir)C*(1 —2ir)

AYy)= —2%] (gfg,(n) Kf,(Z;my))h(r)dr,

where
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oW=|np 1d>  (ne Z—{0},veC).
din
a>0

If we write I;(s)=f%§(y)y“‘2dy (i=1, ..., 4), then I'(s)=2:_, I'(s) fol-
0

lows easily, and if we furthermore set I[*(s)=C*(Q2s)Ii(s) (i=1, - .-, 4),
then we get I"*(s)=>:_, I}*(s).
Now, we will calculate 7;(s) (i=1, - - -, 4) separately.

(i) Iis).
Since 3, er, k(z, owz)=2 7 _.. o(|2x —n[}[y*), we have

1 > k(z, amz)dx:J‘Dj°° go<-;—:)dx.

0e€ly

However, in view of (2.9), (2.7) and (2.6), we find that
EIEJ:, h(r)dr=—J1;— - go(iy‘;)dx.
This implies that #£7)(y)=0, namely
(3.3) I;(s)=0.
(i) 7Ii(s) and I(s).

By definition, I;(s) and I/(s) are equal to I,(s) and I,(s) in [10: Theorem
2], respectively. Hence, we have by [10: (3.4)]

)= — L E6) [ D2 s—2ir) 4oy
: 4 CF(28)J - T¥(14-2ir)C*(1—2ir)

P

__—/\—

0

Fig. 2

for Re (s)>1. Next, let P be a smooth curve which is sufficiently close to
the real axis such that all zeroes of the Riemann zeta-function on the left
of 14-2iP and {(1+2ir)~'=0(r|*) for r € P, e>0, and put

_ [ C¥(s+2ir)g*(s—2ir)
70=[ % et LOLs
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Then, from [10: (4.8)], I/*(s) can be continued holomorphically to a
sufficiently small neighbourhood U of the point s=1 by the following
identity:

7% —-—-.-_1_._ *2 __1_C*(S)C*(2S——1) s—1 .
I*(s)= 47rC ) (5) T G- h(z 5 ) in se U.

Thus, considering an expansion
(B4 ¥EO)=(E—1)"1"+17—logdr)+O(s—1) (7: Euler constant),

we obtain the Laurent expansion of I;*(s) at s=1:

3.9 I(s)= —IC(S—I)'Z—F{——/c(?’—log 4ﬂ)+_’1(82

— | i) =110,
where
= WY = 2 20)
and
SN
z(r)=c_* (1 +2zr)+Z; (1—2ir),

([10: p. 340]).
As for I{(s), we see by [10: (3.5)] that

’ ___1__ £*(s) is
9=~ 5o h(2> for Re (s)> 1.

Since A(r) is a holomorphic function in the whole complex r-plane, Ii(s)
can be continued meromorphically to the whole complex s-plane by the
right hand side of the above equality. Therefore, we obtain

(36 res 1§*(S)=§i§(5*(2S)lé(S))=——;—h(—;—>, ([10: p. 340)).

Gii) I(s).
It can be seen that I/(s) coincides with the case of m=—1 in [10:
(5.6)], hence we obtain

G.7) =3 L&) oy for Re(e)>1,
2 )

where
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2 2
Vo= o U )y, a=rira
7 y
and &(s, 1*+4) is a zeta-function defined by Zagier [10: (1.12)] or [9: (6)].
To explain {(s, #*-+4) more precisely, consider a binary quadratic form
Ou, v)=au*4-buv4-cv?, (a, b, ce 2),

on which the group SL(2, Z) operates by
(> Q) v)=Qau-+cv, budv),  7=(* D) e sz, 2).
c

and let |Q|=b*—4ac=D be the discriminant of Q. Then, the zeta-function
Z(s, D) is defined by

(B8) s, D)= Y 1 for Re (5)>1,
1

’]
[Q (m,myeze/autQ Q(m, n)t
101=D Qomimy>0 Q(m, n)

where the first sum ranges over SL(2, Z)-equivalence classes of quadratic
forms Q with discriminant D, and

(3.9) Aut Q={7 e SL2, Z)|T - Q=0}.

Transforming z into (+/4/4)(z+1)/(—z+1), we find

s Ax* 137 y* dxdy
V— ’ t ;:A /ZJ‘ ( >
(s, ) Rz

y2 ‘l_x__l'y\zs yZ
Y = o(du*+17) N vl dvdu
co Ly o (1— 2 ) |
x/u2+1v+v

putting u= X, o= VXTI
x
By using [1:2.12(10), 2.1.5 (28)], we get

(.10) V_(s, )= L LCI2" fon(” MF<_§_, s, 1. @ )du,
2 I'(s) ce (I \27 272 w1

where F=,F, is a hypergeometric function. The integral in (3.10) con-
verges absolutely for all s € C, and by a similar consideration as in [10: p.
335}, I(s) can be continued meromorphically to the whole complex s-plane,
which has at most a 2-order pole at s=1.
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Further computation of V_(s, t).
In view of (2.12) and (3.10), we can write

(3.11) V_(s,7)

_ 4% 1y - (i 4
- L e J‘mrtanhnrh(r)‘].oP_(i,z),,i,( 1+2(1_§))

><(1—§)<*'3>/2F< s %,&)j‘idr

From [1:3.2 (18)] or [10: p. 353], we have

P_<1/2>+"(_ 1 +milf$—)>

=<, [Fl(;(irl)m( )<‘/2>‘“F(_;--—ir, —;———ir; 1—2ir; @)],

where %, [f(r)]=f(r)+f(—r) for any function f. Thus, using the hyper-
geometric series, we find that

I i ‘“’””’( 1+2(1—<s))(1 o MF(z 2 2 >5§

=.5’T[_1j@_)_(i>(1/2)_“ 1(1—3)(8/2)—1—”
I'G+ir)*\4 0

oo o )2, 2 L) ]

[ r@Qin[(1—2ir) & 1 I(n+d—iry
"LrG+iryrG—ir)* #=on! I'(n41—2ir)

A\ -n-amir o1 Ly s s 1 d&
(@) e 319 4)
: 1=9) 2 2 e

Then, by [1: 2.4 (2)]

fi-oreoe (. 5398

_T'AI'{(s/2)+n—ir) F(
I'((1+s)24+n—ir)

for Re (s)> 0, also by [1: 2.8 (46)]
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F(S s 1+S+n i 1>=F((l+s)/2—ir+n)F((1-—s)/2—ir+n)
2’2" ’ I'(3—ir4n)?

for Re(s)<1.
Therefore, we show that

JP—<1/2>+M( 1+2(1_5))(1 £)¢ 3)/21:'(2 5 2’$>¢§

—& [coth ar I'(s)2—ir)[ (1 —s)/2—ir) (A)ir 12
2V r(1—2ir) \4

XF(-‘S-'-—ir, 1—S——z‘r; 1—2ir; -4—)dr]
2 2 4

for 0<<Re (s)<1 (c.f., [10: p. 353]). Substituting () into (3.11), we obtain
finally

(G.12)  V.(st)=

47 I’(s/2)2J‘°° rh(r) I'(s/2—ir)[(1 —s)/2—ir)

8xiy/m  I'(s) I'(1-2ir)
X <A)”-(l/2)F(—“-v——-ir, 1—s —ir; 1—2ir; i)dr
4 2 2 4
for 0<Re (s)<1.

In view of (3.7), we have
LXs)= 3 2 T(s)(s, P+ AV_(s, ).
t=—o0

From now on, we will investigate the residue or the Laurent expansion of
the above series at s=1, separating the terms with t£0 and ¢=0.

1) In the case of #=£0, it follows from [9: Proposition 3] that
Z(s, t*+4) has a simple pole at s=1, thus

(3.13) 1es (% n IO PV G, t))=_71? = V(L ) 1es LG5, £24-4).

Then, by (3.10)

V_(1, )= ”41/2 M’*’_’z)p(_ 1.1, @ Ny
e (14w \2° 272 41/

By making use of [1: 2.1.4 (22)], i.e., (1+u®)"*F(3, }; §; v/’ +1)=
F(4,0;%; —ub), F(a,0; ¢; x)=1 and (2.6), we obtain
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(3.14) vn== j Vgi.(xz)ﬁdx.

2) In the case of t=0, clearly 4==4, thus we have by (3.12)

4 (s ([ I'(s/2—ir)['(1—5)/2—ir)
V00 =i T JoLme Fa—2r

1= ipe 1 —2ir: 1>dr.

XF (_S— —1ir,
5 i
Utilizing {1: 2.8 (46)], we see that

F(—S——‘r L= iy 1—2ir; 1>= I -—2ir) _
’ ’ )T (SR DI G2 —ir 1 3)

Hence, we obtain

(3.15)  V.(s,0)

_ 4" I(s/2) J‘“‘ I'(s/2—ir)['((1 —s5)/2—1ir)
87i I'(s) J-» I'(—s2—ir+ )I(s)2—ir+13)

for 0<Re (s)<1.

rh(r)dr

To derive a Laurent expansion of z *I'(s){(s, 4)V _(s, 0) at s=1, we
must settle the analytic continuation of V_(s, 0) to a neighbourhood U of
the point s=1, and to do this, we use a similar method as in the case of
I'(s). Put

F(s, r)= I'(s/2—ir)((1 —s)/2—ir) rh(r)
T T(=s2—irk DI (—s2—ir +3)

-__/--1)0\-
0
Fig. 3

Let P, be a smooth curve which is sufficiently close to the real axis and let

J(s)= J DR, Ja()= J _ F(s, na.
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ZiPO 1 —‘ZiPo

Fig. 4

Then, as is easily seen, F(s, ) has a pole with respect to r in the region
enclosed by P, and the real axis if and only if s lies in the domain between
2P, and the imaginary axis or in the domain between 1—2iP, and the
line ¢ =Re(s)=1 as in Fig. 4. Thus,

J(s)=Jp,(5) in 0<<Re (5)<1.

On the other hand, J, (s) is holomorphic in the region 2iP,<<Re(s)<1—
2iP,, therefore putting
J($)=Jp(5) in U,

we can give the analytic continuation of J(s) to a neighbourhood U of the
point s==1. Furthermore it follows from [9: Proposition 3] that {(s, 4) =
Z(s)(1 4217 —2-*). Hence, we have

(B.16) 7 T(5)(s, DV _(s, 0)=~2£r—ic*’(s)(—1+23+2"S)JP0(S) in U.

Laurent expansion of = I'(8)¢(s, H)V _(s, 0) at s=1.
By (3.4), we have

() =06—1D)""+ (T —logdr)(s—1)"'+ O(1),
and also
(—1425421"9)=2+log2 - (s— 1)+ O((s— 1)®).

Moreover, for Jp (s), we find
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_{ I'(=ir __ I
Tof)= j T T =~ Lo h(r)dr

=1 I " () dr=2zig(0),

1

and

J;o(l)z—l_—jpo{%(l—ir)—l%(_;— —ir)}h(r)dr——_;— f LOPA

1 Po 1

Using f (W(r)/r)dr = — zik(0) and A(r) =h(-r), we see that the last expres-
Py

sion is equal to

%—Jl{l—;—,(l +ir)—Z—Z:—,<—;—+ir)}h(r)dr+%éh(0).
It follows from these facts that the Laurent expansion of =~ *I"(s)Z(s, 4) X
V_(s, 0) at s=1 can be written as
BA7) = ()L, HV _(s, 0)

= A= D+ —log 4 — D x {2+ log2-(-— )}

ni

X {27ig(0)+ T, ()(s — D} +0(D)
g 6=+ 5D flog2+2.(r—log 4m)}s— )"

D=

Lo ne L[ (L1
+g 06D 4EL.{F(1+") r<2+">}
X h(r)dr - (s— 1)1+ 0(1).

Now, since res,_, I"*(s)=>i_, res,_, I'*(s), adding up (3.3), (3.5),
(3.6), (3.13) and (3.17), we obtain the following

Proposition 3. Let Ki(z, z’) be the kernel function defined by (2.32),
and put I’ *(s):f K{(z, 2)E*(z, s)dz. Then, res,_, I'*(s) can be expressed

as

, log 2 1 1 (z)
I'%(s) = 0)+ —h(0)— —h( L
res (s) 4 g()+4 ) 55
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—ler_ N {z(r)+~(1+zr)——_—< +zr)}h(r)dr

+ L5y, res gs, 124 4,
T t#0 s=1

where z(r) =(C*'/C*)(1 +2ir) +(C*/C¥)(1 —2ir) and V_(1, t) is as in (3.14).

3.2. Computation of I(s)
According to its definition, I(s) coincides with that of Zagier [10]
completely, thus we have the following

Proposition 4 ([10: p. 342]). Let K\(z, z’) be the kernel function defined
by (2.32), and put 1 *(s)=I Kz, 2)E*(z, s)dz.  Then, res,_, I*(s) can be

expressed as

res I*(s)= — 1°§ 2 40) +% h(0)— _;_ h (,;_)

s=1

_ 7417 :{z(r)+f;_'(1 +ir)} h(r)dr

+ _214_J: tanh zrrh(r)dr

+ L sva, nreses, 4,
T (2E4 s=1

where
2 R CO N MR PP
(.18) v, =47 “/x+i—t
e
LZ D dx 1i1>2.

§4. Trace formula
We have by [10: (4.13)]

27 1 D<0,

“.n res {(s, D)= Ly
s=1
log €9 D>0,
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where Aut Q is the group defined by (3.9) and ¢, is the largest eigenvalue
of the matrix M which is a generator of Aut Q up to {41} with positive
trace, i.e, Aut Q={+M"ne Z}.

To make the correspondence between Selberg’s method and Zagier’s
method clear in the computation of the integral in (2.27), we will calculate
V_(1, t) res,_, L(s, t*+4) and V(I, ¢) res,_, {(s, t*—4) in a more explicit
form. Since 244 is always positive, using (3.14) and (4.1), we can write

1
.0 e C(S ! +4)——\/Z *4+4 Qmodé(z 2 Of e j x/q;(ic-)tzdx

Then, from the fact that M is a generator of Aut Q up to {+ 1} it follows
that there exists a positive number / (=/, e $Z)such that e}, —¢;'=1 corre-
sponding to each Q. Thus, using (2.6) and (2.7), we have

log 1)
SL(2,Z) eQ-{—- Q
g'=

g(l log&p).

4.2) V_(1, t)res (s, 1*+4) =T

s=1 4 Q mod

1Ql=t

eh—e

In the case of 12—4>0, a similar consideration as for ¢*4-4 is possible,

namely there exists a positive integer / (=/, € Z >1) such that e, +e5'=1
corresponding to each Q, therefore it follows from (3.18) and (4.1) that

-g(/ log €}).

@43) V(1) res (s, P—4)="- log &
s=1 4 QmodSL(z z EQ—e
SQ"’EQ —b

As for t*—4 <0, further calculations after (3.18) yield
4.9 V(l, t) res (s, t*—4)
§=1

=_T 1 _r e- p
Va—r ?Qﬁl:%%(z,m |Aut Q| J-= 14e %" h(r)dr,

where [¢|=2 cos o, 0<ax < 7/2.
Combining (2.27), (2.31) and (2.36), we find that

@5 S, =I~K~*(z, 2)dz=res I*(s)tres I’*(s)+h<-’2.—).
J 20 2 s=1 s=1

Hence, by using Propositions 3, 4, we obtain a trace formula on the even
space V..

Theorem 2 (Trace formula on V,). Let L, (D) be the space of cusp
forms in V,, and let {f;}; .. be the orthogonal basis of L, (D) consisting of
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Maass wave forms. If the eigenvalue of each f; with respect to D is given
by Df; = —(4+7})f;,, then we obtain

2 h(ry)
1120
- 105 2 2(0)+ %—h(O)—kElIJl tanh zrrh(r)dr
1“{ I’ } 1°°F’<1 >
— z(r)+=—=A+ir); (rydr+—| —(-= h(r)d
[ o+ Rasinbioar e [T L2 i)
1 1 J‘oc e—ZcDS-l(]tI/Z)r
. h(r)d
fay/4— 17 omoiSLez) |Aut Q] J-= 147 (rdr
2
1 log<e _o(riogey)
4 iT>2 ?gﬁ’i‘%ff“fz’m eo—Eg
shregl=t
2
T T ek 808,
ts |QQn[l:t2+4( B )EQ+5Q
gf—-egl=t

where z(r)={(C*[0*)(1 +2ir) +-(C*' /L) (1 —2ir) and Aut Q is as in (3.9).

As is proved in Zagier [10], the trace formula on L*(2) is
57 h(r,)=2 res I*(s)—}—h(—i—).
Jjz0 s=1 2
Thus, we have by (4.5)
> h(rjz)zz Doh(rpy— >0 h(rjl)—_—res I*(s)—res I"*(s).
Jgzl FEX) 7120 g=1 s=1

Again, by using Propositions 3, 4, we have a trace formula on the odd
space V.

Theorem 3 (Trace formula on V,). Let {f,}; ., be the orthogonal
basis of the space V, consisting of Maass wave forms. If the eigenvalue of
each f; with respect to D is given by Df; = —(§-r})f;,, then we obtain

2. ;)
Jazl

__3 log 2-g(0) +—1—r tanh zrrh(r)dr — —I—Jw ]1<-1—+ ir)h(r)dr
4 24 J - dr)-=I"\2

1 1 j‘oo e—Zcos-—l(lt]/Z)r

T . h(r)dr
2 Vi1 guofitan AW Q] V- Txet )
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D long (I log <)

1£1>2 QmodSL(2 z) eQ—eQ

1
Ty

eQ+sQ ‘_t

108 g(llog ey,
170 @mod S1.2,2) 5Q+

Q
e4— EQ ’—t

-P‘»—-

where Aut Q is as in (3.9).

The formula of Theorem 3 is just the same as the formula of Venkov

[8: Theorem 6.5.4] in the case of I'=PSL(2, Z).
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