Advanced Studies in Pure Mathematics 13, 1988 Investigations in Number Theory pp. 193–214

On an Application of Zagier's Method in the Theory of Selberg's Trace Formula

Eiji Yoshida

Introduction

Let *H* be the complex upper half plane, and put $G=PSL(2, \mathbb{R})$, $\Gamma=PSL(2, \mathbb{Z})$. Then, the well-known Selberg trace formula holds for the Hilbert space $L^2(\Gamma \setminus H)$. Let furthermore $\omega: z \to -\bar{z}$ be the reflection with respect to the imaginary axis, and let $\tilde{G} = \langle G, \omega \rangle$ be the group generated by *G* and ω . Then, the triple ($\tilde{G}, H, 1$) turns out to be a weakly symmetric Riemannian space in the notation of Selberg (§ 1). Therefore, it is possible to investigate the trace formula for the Hilbert space $L^2(\tilde{\Gamma} \setminus H)$ with $\tilde{\Gamma} = \langle \Gamma, \omega \rangle$.

The space $L^2(\Gamma \setminus H)$ has the direct sum decomposition $L^2(\Gamma \setminus H) = V_e$ $\bigoplus V_o$, where V_e and V_o are defined by $V_e = \{f \in L^2(\Gamma \setminus H) | f(\omega z) = f(z)\}, V_o = \{f \in L^2(\Gamma \setminus H) | f(\omega z) = -f(z)\}$ respectively, in accordance with the operation of ω . Since it is clear that $V_e = L^2(\tilde{\Gamma} \setminus H)$, the trace formulas for $L^2(\tilde{\Gamma} \setminus H)$ and for V_e are the same.

In fact, Venkov [8: Chap. 6] presented trace formulas for V_e and V_o in more general cases where the discontinuous group has an ω -invariant fundamental domain.

On the other hand, Zagier [10] gave a new method to derive the trace formulas in the case of $\Gamma = PSL(2, \mathbb{Z})$, considering an integral of the form

$$I(s) = \int_{\Gamma \setminus H} K_0(z, z) E(z, s) dz \quad (\S 2).$$

In the present paper, we shall prove the trace formula for V_e , i.e., for $L^2(\tilde{\Gamma} \setminus H)$ by means of Zagier's method in the case of $\Gamma = PSL(2, \mathbb{Z})$ (§3 and Theorem 2), and add an explicit form of the trace formula for V_o as a direct consequence of the trace formulas for $L^2(\Gamma \setminus H)$ and V_e (Theorem 3).

§ 1. Weakly symmetric Riemannian space

Let S be a Riemannian manifold with a positive definite metric $ds^2 = \sum g_{ij} dx^i dx^j$. The mapping of S onto itself is called an isometry if it holds

Received February 4, 1986.

the metric invariant. Let Ω be a group consisting of isometries which operate on S transitively. If we have an isometry μ of S which satisfies

(i) $\mu^{-1}\Omega\mu = \Omega, \ \mu^2 \in \Omega,$

(ii) there exists an element m in Ω such that $(\mu x, \mu y) = (my, mx)$ for any $x, y \in S$,

we call the triple (Ω, S, μ) a weakly symmetric Riemannian space.

Let *H* be the complex upper half plane $\{z=x+iy \in C | \text{Im } z=y>0\}$, to which we give a Riemann structure defined by

(1.1)
$$ds^{2} = \frac{1}{y^{2}} (dx^{2} + dy^{2}).$$

Let furthermore $\omega: z \to -\bar{z}$ be the reflection with respect to the imaginary axis, and putting $G = PSL(2, \mathbb{R})$, $\tilde{G} = \langle G, \omega \rangle$ be the group generated by Gand ω . From the fact that the metric (1.1) is invariant under the actions of G and ω , and the triple (G, H, 1) is weakly symmetric, the triple $(\tilde{G}, H, 1)$ also turns out to be a weakly symmetric Riemannian space. The metric (1.1) gives rise naturally to a \tilde{G} -invariant measure on H whose explicit form is

$$dz = \frac{dxdy}{y^2}.$$

It can be easily seen that

(i)
$$\omega^2 = id$$

(ii) $\omega \begin{pmatrix} a & b \\ c & d \end{pmatrix} \omega = \begin{pmatrix} a & -b \\ -c & d \end{pmatrix}$ for any $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$.

Hence G is a normal subgroup of \tilde{G} with index 2. Namely we have

(1.3)
$$\tilde{G} = G \cup \omega G = G \cup G \omega$$

Let f(z) be a complex valued function on H. For $\sigma \in \tilde{G}$, the mapping $f(z) \rightarrow f(\sigma z)$ defines a linear operator. This will be denoted by T_{σ} . A linear operator T is called an invariant operator with respect to \tilde{G} , if it commutes with all T_{σ} ($\sigma \in \tilde{G}$), i.e., if we have $T(f(\sigma z)) = (Tf)(\sigma z)$.

The Laplace-Beltrami operator induced from (1.1) on H is

(1.4)
$$D = y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right),$$

and D is a generator of the commutative ring of invariant differential operators with respect to \tilde{G} .

§ 2. Selberg transform, Selberg kernel function

Let L be an integral operator defined by

(2.1)
$$(Lf)(z) = \int_{H} k(z, z') f(z') dz'$$

with a kernel function k(z, z'). In order that an integral operator L defined by k(z, z') is invariant with respect to \tilde{G} , it is necessary and sufficient that k(z, z') satisfies the condition

(2.2)
$$k(\sigma z, \sigma z') = k(z, z')$$
 for every $\sigma \in \tilde{G}$,

and such a function k(z, z') is called a point pair invariant with respect to \tilde{G} .

Now we put

(2.3)
$$t(z,z') = \frac{|z-z'|^2}{yy'}, \quad z = x + iy, \quad z' = x' + iy' \in H.$$

Since any point pair invariant with respect to G is a function of a positive real variable t=t(z, z'), and since $t(\omega z, \omega z')=t(z, z')$, any point pair invariant with respect to \tilde{G} can also be identified with a function of t=t(z, z'). Therefore, for a point pair invariant k(z, z') with respect to \tilde{G} , we set

(2.4)
$$\varphi(t(z, z')) = k(z, z'),$$

and furthermore we impose the following condition on φ :

(2.5) $\varphi(t)$ is a smooth function with compact support of a positive real variable t

An invariant operator with respect to \tilde{G} derived from such a function φ will be denoted by L_{φ} .

Theorem 1 (c.f., [6: p. 55] or [3: Theorem 1.3.2]). Suppose that the function f on H is an eigenfunction of D with the eigenvalue $-(\frac{1}{4}+r^2)$, $r \in C$. Then, f is an eigenfunction of an arbitrary invariant integral operator L_{φ} with respect to \tilde{G} . More precisely, we have $L_{\varphi}f = h(r)f$, $r \in C$.

The eigenvalue h(r), determined only by L_{φ} and r, is called the Selberg transform. Obviously it is an even function of r, i.e., h(r) = h(-r).

Proposition 1. Let φ be such a function as in (2.5). Then the Selberg transform can be computed as follows. Set

(2.6)
$$Q(w) = \int_{-\infty}^{\infty} \varphi(w + v^2) dv = \int_{w}^{\infty} \frac{\varphi(t)}{\sqrt{t - w}} dt \qquad (w \ge 0)$$

and define g(u) by

(2.7)
$$Q(w) = g(u) \quad with \quad w = e^u + e^{-u} - 2.$$

Then we have

(2.8)
$$h(r) = \int_{-\infty}^{\infty} g(u) e^{iru} du, \qquad r \in C.$$

Conversely it holds that

(2.9)
$$g(u) = \frac{1}{2\pi} \int_{-\infty}^{\infty} h(r) e^{-iru} dr,$$

(2.10)
$$Q(w) = g\left(\log \frac{w + 2 + \sqrt{w^2 + 4w}}{2}\right),$$

and

(2.11)
$$\varphi(t) = -\frac{1}{\pi} \int_{t}^{\infty} \frac{dQ(w)}{\sqrt{w-t}}.$$

Combining (2.8), (2.9), (2.10) and (2.11), we obtain

(2.12)
$$\varphi(t) = \frac{1}{4\pi} \int_{-\infty}^{\infty} P_{-(1/2)+ir}\left(1+\frac{t}{2}\right) r \tanh \pi r h(r) dr,$$

where $P_{\nu}(z)$ ($\nu \in C$, $z \in C - (0, 1]$) denotes a Legendre function of the first kind. Moreover h(r) is a holomorphic function in the whole complex r-plane, and for $r \in \mathbf{R}$ it is of rapid decay as $|r| \rightarrow \infty$.

For the proof, we refer to [3: Theorem 5.3.1] and [10: p. 319].

Put $\Gamma = PSL(2, \mathbb{Z})$, and let $\tilde{\Gamma} = \langle \Gamma, \omega \rangle$ be the group generated by Γ and ω . From (1.3), we have

(2.13)
$$\tilde{\Gamma} = \Gamma \cup \omega \Gamma = \Gamma \cup \Gamma \omega.$$

 Γ and $\tilde{\Gamma}$ are discrete subgroups of G and \tilde{G} respectively, which operate on H discontinuously. The fundamental domain \mathcal{D} and $\tilde{\mathcal{D}}$ of Γ and $\tilde{\Gamma}$ are given, in a standard form, by

$$\mathcal{D} = \{ z \in H | |z| \ge 1, -\frac{1}{2} \le \operatorname{Re}(z) \le \frac{1}{2} \},$$

$$\tilde{\mathcal{D}} = \{ z \in H | |z| \ge 1, 0 \le \operatorname{Re}(z) \le \frac{1}{2} \},$$

respectively.

Let $L^2(\tilde{\mathscr{D}})$ be the Hilbert space of measurable functions such that (i) $f(\sigma z) = f(z)$ for all $\sigma \in \tilde{\Gamma}$,

(ii)
$$\int_{\tilde{z}} |f(z)|^2 dz < \infty.$$

Let $L_0^2(\tilde{\mathscr{D}})$ be the subspace of $L^2(\tilde{\mathscr{D}})$ satisfying the additional condition (iii) $\int_{-\infty}^{1/2} f(z)dx = \frac{1}{2} \int_{0}^{1} f(z)dx = 0.$

The space $L^2(\tilde{\mathscr{D}})$ has the spectral decomposition with respect to D

(2.14)
$$L^{2}(\tilde{\mathscr{D}}) = L^{2}_{0}(\tilde{\mathscr{D}}) \oplus C \oplus L^{2}_{conti}(\tilde{\mathscr{D}}),$$

where C is the space of constant functions, and $L^2_{conti}(\tilde{\mathcal{D}})$ is the continuous part of the spectrum.

The operator L_{φ} is, on $L^2(\tilde{\mathscr{D}})$, an integral operator with the kernel function $\tilde{K}(z, z')$, where

(2.15)
$$\widetilde{K}(z, z') = \sum_{\sigma \in \widetilde{\Gamma}} k(z, \sigma z').$$

If we put $K(z, z') = \sum_{\sigma \in \Gamma} k(z, \sigma z')$ and $K'(z, z') = \sum_{\sigma \in \Gamma} k(z, \sigma \omega z')$, then from (2.13), we have

(2.16)
$$\tilde{K}(z, z') = K(z, z') + K'(z, z').$$

For $z \in H$, $s \in C$, the Eisenstein series with respect to Γ is defined by

(2.17)
$$E(z, s) = \sum_{\sigma \in \Gamma_0 \setminus \Gamma} \operatorname{Im} (\sigma z)^s,$$

where $\Gamma_0 = \left\{ \begin{pmatrix} 1 & n \\ 1 \end{pmatrix} \middle| n \in \mathbb{Z} \right\}$. This series converges absolutely and uniformly

for Re (s) > 1 and therefore defines a holomorphic function in s which is real-analytic and Γ -invariant in z. The function (2.17) can be continued meromorphically to the whole complex s-plane, which has a simple pole at s=1, and satisfies a functional equation

(2.18)
$$E^{*}(z, s) = E^{*}(z, 1-s),$$

where

(2.19)
$$E^{*}(z, s) = \pi^{-s} \Gamma(s) \zeta(2s) E(z, s) = \zeta^{*}(2s) E(z, s),$$

and $\zeta(s)$ is the Riemann zeta-function. The residue at s=1 is

(2.20)
$$\operatorname{res}_{s=1} E(z, s) = \frac{6}{\pi} \operatorname{res}_{s=1} E^*(z, s) = \frac{3}{\pi}.$$

Now we put

(2.21)
$$H(z, z') = \frac{1}{4\pi} \int_{-\infty}^{\infty} E(z, \frac{1}{2} + ir) E(z', \frac{1}{2} - ir) h(r) dr.$$

Then we see that the continuous spectrum of L_{φ} on $L^2(\tilde{\mathscr{D}})$ can be expressed by 2H(z, z'). Actually we have the following

Proposition 2. Let $\tilde{K}^*(z, z')$ be the kernel function defined by

(2.22)
$$\widetilde{K}^*(z,z') = \widetilde{K}(z,z') - 2H(z,z').$$

Then, it is bounded on $\tilde{\mathscr{D}} \times \tilde{\mathscr{D}}$.

Proof. From the definition of $\tilde{K}^*(z, z')$ and (2.16), we have

$$\tilde{K}^*(z, z') = (K(z, z') - H(z, z')) + (K'(z, z') - H(z, z')).$$

It follows from [3: Theorem 5.3.3] that K(z, z') - H(z, z') is bounded on $\tilde{\mathscr{D}} \times \tilde{\mathscr{D}}$. Moreover, we can obtain the boundedness of K'(z, z') - H(z, z') by a similar consideration as in the proof of [3: Theorem 5.3.3]. Namely it is sufficient to observe the following two cases:

(a) z is in a compact subset of $\tilde{\mathscr{D}}$ and z' tends to ∞ ,

(b) both z and z' tend to ∞ .

Separating the terms with $\sigma \in \Gamma_0$ and $\sigma \notin \Gamma_0$, we have

$$K'(z, z') = \sum_{n \in \mathbb{Z}} k(z, \omega(z'+n)) + \sum_{\substack{\sigma \in \Gamma \\ \sigma \notin \Gamma_0}} k(z, \sigma \omega z').$$

Since k(z, z') has a compact support by (2.5), $\sum_{\substack{\sigma \in \Gamma \\ \sigma \notin \Gamma_0}} k(z, \sigma \omega z')$ is bounded

in both cases (a) and (b). Furthermore, as in the proof of [3: Theorem 5.3.3], $H(z, z') - \sqrt{yy'}g(\log y - \log y')$ is also bounded in both cases (a) and (b). Hence it is enough to show that

(*)
$$\sum_{n \in \mathbb{Z}} k(z, \omega(z'+n)) - \sqrt{yy'} g(\log y - \log y')$$

is bounded.

From [3: Theorem 5.3.2], we have $\int_{-\infty}^{\infty} k(z, z'+b)db = \sqrt{yy'}g(\log y - \log y')$, and we easily find that $\int_{-\infty}^{\infty} k(z, z'+b)db = \int_{-\infty}^{\infty} k(z, \omega z'+b)db$. Therefore, (*) is equal to

$$(**) \qquad \sum_{b \in \mathbb{Z}} k\left(\frac{z+x'}{y'}, \ i+\frac{b}{y'}\right) - y' \int_{-\infty}^{\infty} k\left(\frac{z+x'}{y'}, \ i+t\right) dt.$$

However, in general, if f(t) is any C^{∞} function of a real variable with compact support of euclidean measure M, then f satisfies

$$\left|\frac{1}{y}\sum_{b\in\mathbb{Z}}f\left(\frac{b}{y}\right)-\int_{-\infty}^{\infty}f(t)dt\right|\leq \frac{M}{y}\max\left|\frac{d}{dt}f(t)\right|.$$

Applying this fact to k((z+x')/y', i+b/y'), we have

$$\frac{1}{y'} \sum_{b \in \mathbb{Z}} k\left(\frac{z+x'}{y'}, \ i+\frac{b}{y'}\right) - \int_{-\infty}^{\infty} k\left(\frac{z+x'}{y'}, \ i+t\right) dt = O\left(\frac{1}{y'}\right)$$

uniformly for z as $y' \rightarrow \infty$. This implies that (**) is bounded in both cases (a) and (b).

Let $L^2(\mathscr{D})$ be the Hilbert space consisting of square-integrable functions on \mathscr{D} . (For a detailed definition, which is essentially identical with that of $L^2(\widetilde{\mathscr{D}})$, see for example [3: Chap. 5]). Let $L^2_0(\mathscr{D})$ be the space of cusp forms in $L^2(\mathscr{D})$. Then, the space $L^2(\mathscr{D})$ also has the spectral decomposition with respect to D,

(2.23)
$$L^{2}(\mathcal{D}) = L^{2}_{0}(\mathcal{D}) \oplus C \oplus L^{2}_{conti}(\mathcal{D}),$$

where C is the space of constant functions, and $L^2_{conti}(\mathcal{D})$ is the continuous part of the spectrum given by integrals of Eisenstein series. As is well known, we can take *Mass wave forms* $\{f_j\}_{j\geq 1}$ as an orthogonal (but not orthonormal) basis of $L^2_0(\mathcal{D})$ ([3: Theorem 5.2.2]), i.e.,

$$f_{j}(z) = \sum_{n \neq 0} y^{1/2} a_{j}(n) K_{ir_{j}}(2\pi |n| y) e^{2\pi i n x}, Df_{j} = -(\frac{1}{4} + r_{j}^{2}) f_{j}, r_{j} > 0,$$

where $K_{\nu}(z)$ is the K-Bessel function defined by

$$K_{\nu}(z) = \int_{0}^{\infty} e^{-z \cosh t} \cosh \nu t dt, \qquad (\nu, z \in C, \operatorname{Re}(z) > 0).$$

On the other hand, the space $L^2(\mathcal{D})$ has the direct sum decomposition in accordance with the operation of ω

$$L^2(\mathcal{D}) = V_e \oplus V_o,$$

where $V_e = \{f \in L^2(\mathcal{D}) | f(\omega z) = f(z)\}$ and $V_o = \{f \in L^2(\mathcal{D}) | f(\omega z) = -f(z)\}$. We call the spaces V_e and V_o even and odd spaces respectively. Now if we put

$$\begin{split} L^2_{0,e}(\mathcal{D}) = & L^2_0(\mathcal{D}) \cap V_e, \quad \{f_{j_1}\}_{j_1 \geq 1}; \quad \text{orthogonal basis of } L^2_{0,e}(\mathcal{D}), \\ & L^2_{0,o}(\mathcal{D}) = & L^2_o(\mathcal{D}) \cap V_o, \quad \{f_{j_2}\}_{j_2 \geq 1}; \quad \text{orthogonal basis of } L^2_{0,o}(\mathcal{D}), \end{split}$$

where $\{j\}_{j\geq 1} = \{j_i\}_{j_1\geq 1} \cup \{j_2\}_{j_2\geq 1}$, then, on account of $C \oplus L^2_{conti}(\mathcal{D}) \subset V_e$, we have

(2.24)
$$V_e = L^2_{0,e}(\mathcal{D}) \oplus C \oplus L^2_{conti}(\mathcal{D}), \qquad V_0 = L^2_{0,o}(\mathcal{D}).$$

Moreover, since $L^2(\tilde{\mathscr{D}}) = V_e$ is clear from the definition of $L^2(\tilde{\mathscr{D}})$, we obtain

(2.25)
$$L^2_0(\tilde{\mathscr{D}}) = L^2_{0,e}(\mathscr{D}), \qquad L^2_{conti}(\tilde{\mathscr{D}}) = L^2_{conti}(\mathscr{D}).$$

Therefore, we can take $\{f_{j_1}\}_{j_1 \ge 1}$ as an orthogonal basis of $L^2_0(\tilde{\mathscr{D}})$.

Let L_{φ}^{*} be an integral operator on $L^{2}(\tilde{\mathscr{D}})$ with a kernel function $\tilde{K}^{*}(z, z')$. From the fact that L_{φ}^{*} is completely continuous on $L^{2}(\tilde{\mathscr{D}})$, which comes from Proposition 2, and from the fact $L_{\varphi}^{*}f_{j_{1}} = h(r_{j_{1}})f_{j_{1}}$, we have

(2.26)
$$\widetilde{K}^{*}(z, z') = \sum_{j_{1}=0}^{\infty} \frac{h(r_{j_{1}})}{(f_{j_{1}}, f_{j_{1}})_{\tilde{\omega}}} f_{j_{1}}(z) \overline{f_{j_{1}}(z')},$$

where $f_0 \equiv 1$ (constant), $r_0 = i/2$ (since $Df_0 \equiv 0$), and $(f_{j_1}, f_{j_1})_{\tilde{s}} = \int_{\tilde{s}} |f_{j_1}(z)|^2 dz$. Consequently, the above results imply the following trace formula

(2.27)
$$\sum_{j_1\geq 0} h(r_{j_1}) = \int_{\tilde{\mathfrak{g}}} \tilde{K}^*(z, z) \, dz.$$

Venkov [8: § 6.4, § 6.4] presented the calculation of an integral in (2.27) by Selberg's original method in more general discontinuous groups including Γ . Here, according to Zagier [10], we will consider the integral (2.27) by the Rankin-Selberg method.

Let $\widetilde{K}_0(z, z')$ be a kernel function on $L^2(\widetilde{\mathscr{D}})$ such that

(2.28)
$$\widetilde{K}_0(z,z') = \widetilde{K}^*(z,z') - \frac{h(i/2)}{(f_0,f_0)_{\widetilde{g}}} = \sum_{j_1 \ge 1} \frac{h(r_{j_1})}{(f_{j_1},f_{j_1})_{\widetilde{g}}} f_{j_1}(z) \overline{f_{j_1}(z')},$$

and put

(2.29)
$$\widetilde{I}(s) = \int_{\widetilde{g}} \widetilde{K}_0(z, z) E(z, s) dz,$$

and

(2.30)
$$\widetilde{I}^*(s) = \int_{\widetilde{g}} \widetilde{K}_0(z, z) E^*(z, s) dz.$$

By(2.28), we see that $\tilde{K}_0(z, z')$ is of rapid decay, hence both $\tilde{I}(s)$ and $\tilde{I}^*(s)$ can be continued to the whole complex s-plane, and have a simple pole at s=1. Then, by making use of $(f_0, f_0)_{\tilde{\omega}} = \frac{1}{2}(f_0, f_0)_{\omega}$ and (2.20), the residue of $\tilde{I}^*(s)$ at s=1 can be given by

$$\operatorname{res}_{s=1}^{\operatorname{res}} \tilde{I}^{*}(s) = \frac{1}{2} \int_{\tilde{s}} \tilde{K}_{0}(z, z) dz$$
$$= \frac{1}{2} \left\{ \int_{\tilde{s}} \tilde{K}^{*}(z, z) dz - h\left(\frac{i}{2}\right) \right\}.$$

Namely, we have

(2.31)
$$\int_{\widetilde{g}} \widetilde{K}^*(z,z) dz = 2 \operatorname{res}_{s=1} \widetilde{I}^*(s) + h\left(\frac{i}{2}\right).$$

If we put

(2.32)

$$K_{0}(z, z') = K(z, z') - \frac{3}{\pi} h\left(\frac{i}{2}\right) - H(z, z'),$$

$$K_{0}'(z, z') = K'(z, z') - \frac{3}{\pi} h\left(\frac{i}{2}\right) - H(z, z'),$$

then from (2.16), (2.22), (2.28) and $(f_0, f_0)_{g} = \pi/3$ we have

$$\tilde{I}(s) = \int_{\tilde{\mathfrak{g}}} K_0(z, z) E(z, s) dz + \int_{\tilde{\mathfrak{g}}} K'_0(z, z) E(z, s) dz$$
$$= \frac{1}{2} \left\{ \int_{\mathfrak{g}} K_0(z, z) E(z, s) dz + \int_{\mathfrak{g}} K'_0(z, z) E(z, s) dz \right\}.$$

Furthermore set

(2.33)
$$I(s) = \int_{\mathfrak{g}} K_0(z, z) E(z, s) dz, \qquad I'(s) = \int_{\mathfrak{g}} K'_0(z, z) E(z, s) dz,$$

then, we easily obtain

(2.34)
$$\operatorname{res}_{s=1}^{\tilde{I}}(s) = \frac{1}{2}(\operatorname{res}_{s=1}^{I}I(s) + \operatorname{res}_{s=1}^{I'}I'(s))$$

Similarly, if we put

(2.35)
$$I^*(s) = \int_{\mathscr{D}} K_0(z, z) E^*(z, s) dz, \qquad I'^*(s) = \int_{\mathscr{D}} K'_0(z, z) E^*(z, s) dz,$$

then we have

(2.36)
$$\operatorname{res}_{s=1}^{\tilde{I}^*(s)} = \frac{1}{2} (\operatorname{res}_{s=1}^{I^*(s)} + \operatorname{res}_{s=1}^{I^{**}(s)} I^{**}(s)).$$

§ 3. Computation of $\tilde{I}(s)$ and its residue at s=1

3.1. Computation of I'(s)

From the definition of I'(s), we have

(3.1)
$$I'(s) = \int_0^\infty \mathscr{K}'(y) y^{s-2} dy \quad \text{for } \operatorname{Re}(s) > 1,$$

where

(3.2)
$$\mathscr{K}'(y) = \int_0^1 K'_0(z, z) dx.$$

According to Zagier [10: p. 323 or p. 352], we decompose $\mathscr{K}'(y)$ into four parts, i.e.,

$$\mathscr{K}'(y) = \sum_{i=1}^{4} \mathscr{K}'_i(y)$$

with

$$\begin{aligned} \mathscr{H}'_{1}(y) &= \int_{0}^{1} \sum_{\sigma \in \Gamma_{0}} k(z, \sigma \omega z) dx, \\ \mathscr{H}'_{2}(y) &= \int_{0}^{1} \sum_{\sigma \in \Gamma_{0}} k(z, \sigma \omega z) dx - \frac{y}{2\pi} \int_{-\infty}^{\infty} h(r) dr, \\ \mathscr{H}'_{3}(y) &= -\frac{y}{2\pi} \int_{-\infty}^{\infty} y^{2ir} \frac{\zeta^{*}(1+2ir)}{\zeta^{*}(1-2ir)} h(r) dr - \frac{3}{\pi} h\left(\frac{i}{2}\right), \\ \mathscr{H}'_{4}(y) &= -\frac{2y}{\pi} \int_{-\infty}^{\infty} \frac{1}{\zeta^{*}(1+2ir)\zeta^{*}(1-2ir)} \left(\sum_{n=1}^{\infty} \tau^{2}_{ir}(n) K^{2}_{ir}(2\pi ny)\right) h(r) dr, \end{aligned}$$

where

$$\tau_{\nu}(n) = |n|^{\nu} \sum_{\substack{d \mid n \\ d > 0}} d^{-2\nu}, \qquad (n \in \mathbb{Z} - \{0\}, \nu \in \mathbb{C}).$$

If we write $I'_i(s) = \int_0^1 \mathscr{K}'_i(y) y^{s-2} dy$ $(i=1, \dots, 4)$, then $I'(s) = \sum_{i=1}^4 I'_i(s)$ follows easily, and if we furthermore set $I'_i(s) = \zeta^*(2s)I'_i(s)$ $(i=1, \dots, 4)$, then we get $I'^*(s) = \sum_{i=1}^4 I'_i(s)$.

Now, we will calculate $I'_i(s)$ $(i=1, \dots, 4)$ separately. (i) $I'_2(s)$. Since $\sum_{\sigma \in \Gamma_0} k(z, \sigma \omega z) = \sum_{n=-\infty}^{\infty} \varphi(|2x-n|^2/y^2)$, we have

$$\int_{0}^{1} \sum_{\sigma \in \Gamma_{0}} k(z, \sigma \omega z) dx = \int_{-\infty}^{\infty} \varphi \left(\frac{x^{2}}{y^{2}} \right) dx.$$

However, in view of (2.9), (2.7) and (2.6), we find that

$$\frac{1}{2\pi}\int_{-\infty}^{\infty}h(r)dr=\frac{1}{y}\int_{-\infty}^{\infty}\varphi\left(\frac{x^2}{y^2}\right)dx.$$

This implies that $\mathscr{K}'_2(y) \equiv 0$, namely

(3.3) $I'_2(s) \equiv 0.$

(ii) $I'_3(s)$ and $I'_4(s)$.

By definition, $I'_3(s)$ and $I'_4(s)$ are equal to $I_3(s)$ and $I_4(s)$ in [10: Theorem 2], respectively. Hence, we have by [10: (3.4)]

Fig. 2

for Re (s) > 1. Next, let P be a smooth curve which is sufficiently close to the real axis such that all zeroes of the Riemann zeta-function on the left of 1+2iP and $\zeta(1+2ir)^{-1}=O(|r|^{\epsilon})$ for $r \in P$, $\epsilon > 0$, and put

$$J_{P}(s) = \int_{P} \frac{\zeta^{*}(s+2ir)\zeta^{*}(s-2ir)}{\zeta^{*}(1+2ir)\zeta^{*}(1-2ir)} h(r)dr.$$

Then, from [10: (4.8)], $I'_{4}(s)$ can be continued holomorphically to a sufficiently small neighbourhood U of the point s=1 by the following identity:

$$I_4^{\prime*}(s) = -\frac{1}{4\pi} \zeta^{*2}(s) J_P(s) - \frac{1}{4} \frac{\zeta^{*}(s) \zeta^{*}(2s-1)}{\zeta^{*}(s-1)} h\left(i\frac{s-1}{2}\right) \quad \text{in } s \in U.$$

Thus, considering an expansion

(3.4)
$$\zeta^*(s) = (s-1)^{-1} + \frac{1}{2}(\gamma - \log 4\pi) + O(s-1)$$
 (γ : Euler constant),

we obtain the Laurent expansion of $I'_4(s)$ at s=1:

(3.5)
$$I_{4}^{\prime*}(s) = -\kappa(s-1)^{-2} + \left\{-\kappa(\gamma - \log 4\pi) + \frac{h(0)}{8} - \frac{1}{4\pi} \int_{-\infty}^{\infty} z(r)h(r)dr\right\}(s-1)^{-1} + O(1),$$

where

$$\kappa = \frac{1}{4\pi} \int_{-\infty}^{\infty} h(r) dr = \frac{1}{2} g(0)$$

and

$$z(r) = \frac{\zeta^{*'}}{\zeta^{*}} (1+2ir) + \frac{\zeta^{*'}}{\zeta^{*}} (1-2ir),$$

([10: p. 340]).

As for $I'_{3}(s)$, we see by [10: (3.5)] that

$$I'_{3}(s) = -\frac{1}{2} \frac{\zeta^{*}(s)}{\zeta^{*}(s+1)} h\left(\frac{is}{2}\right) \quad \text{for } \operatorname{Re}(s) > 1.$$

Since h(r) is a holomorphic function in the whole complex *r*-plane, $I'_3(s)$ can be continued meromorphically to the whole complex *s*-plane by the right hand side of the above equality. Therefore, we obtain

(3.6)
$$\operatorname{res}_{s=1} I'_{\mathfrak{s}}(s) = \operatorname{res}_{s=1} \left(\zeta^{*}(2s) I'_{\mathfrak{s}}(s) \right) = -\frac{1}{2} h\left(\frac{i}{2}\right), \quad ([10: p. 340]).$$

(iii) $I'_{1}(s)$.

It can be seen that $I'_1(s)$ coincides with the case of m = -1 in [10: (5.6)], hence we obtain

(3.7)
$$I'_{1}(s) = \sum_{t=-\infty}^{\infty} \frac{\zeta(s, t^{2}+4)}{\zeta(2s)} V_{-}(s, t) \quad \text{for } \operatorname{Re}(s) > 1,$$

where

Trace Formula

$$V_{-}(s,t) = \int_{H} \varphi \left(\frac{(|z|^{2} - (\varDelta/4))^{2}}{y^{2}} + t^{2} \right) y^{s} dz, \qquad (\varDelta = t^{2} + 4),$$

and $\zeta(s, t^2+4)$ is a zeta-function defined by Zagier [10: (1.12)] or [9: (6)]. To explain $\zeta(s, t^2+4)$ more precisely, consider a binary quadratic form

$$Q(u, v) = au^2 + buv + cv^2, \qquad (a, b, c \in \mathbb{Z}),$$

on which the group SL(2, Z) operates by

$$(\gamma \circ Q)(u, v) = Q(au + cv, bu + dv), \qquad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z}),$$

and let $|Q|=b^2-4ac=D$ be the discriminant of Q. Then, the zeta-function $\zeta(s, D)$ is defined by

(3.8)
$$\zeta(s, D) = \sum_{\substack{[Q] \\ |Q| = D \\ Q(m, n) > 0}} \sum_{\substack{(m, n) \in \mathbb{Z}^2 / \operatorname{Aut} Q \\ Q(m, n)^s}} \frac{1}{Q(m, n)^s} \quad \text{for } \operatorname{Re}(s) > 1,$$

where the first sum ranges over SL(2, Z)-equivalence classes of quadratic forms Q with discriminant D, and

(3.9) Aut
$$Q = \{ \mathcal{T} \in SL(2, \mathbb{Z}) | \mathcal{T} \circ Q = Q \}.$$

Transforming z into $(\sqrt{\Delta/4})(z+1)/(-z+1)$, we find

$$\begin{aligned} V_{-}(s,t) &= \Delta^{s/2} \int_{H} \varphi \left(\frac{\Delta x^{2} + t^{2} y^{2}}{y^{2}} \right) \frac{y^{s}}{|1 - x - iy|^{2s}} \frac{dx dy}{y^{2}} \\ &= \Delta^{s/2} \int_{-\infty}^{\infty} \frac{\varphi (\Delta u^{2} + t^{2})}{(1 + u^{2})^{s/2}} \cdot \int_{0}^{\infty} \frac{v^{s-1}}{\left(1 - \frac{2u}{\sqrt{u^{2} + 1}} v + v^{2} \right)^{s}} dv du, \end{aligned}$$

putting $u=\frac{y}{x}, v=\sqrt{x^2+y^2}.$

By using [1:2.12(10), 2.1.5 (28)], we get

$$(3.10) \quad V_{-}(s,t) = \frac{1}{2} \frac{\Gamma(s/2)^2}{\Gamma(s)} \Delta^{s/2} \int_{-\infty}^{\infty} \frac{\varphi(\Delta u^2 + t^2)}{(1+u^2)^{s/2}} F\left(\frac{s}{2}, \frac{s}{2}; \frac{1}{2}; \frac{u^2}{u^2+1}\right) du,$$

where $F = {}_{2}F_{1}$ is a hypergeometric function. The integral in (3.10) converges absolutely for all $s \in C$, and by a similar consideration as in [10: p. 335], $I'_{1}(s)$ can be continued meromorphically to the whole complex s-plane, which has at most a 2-order pole at s = 1.

Further computation of $V_{-}(s, t)$. In view of (2.12) and (3.10), we can write

(3.11)
$$V_{-}(s,t) = \frac{\Delta^{s/2}}{8\pi} \frac{\Gamma(s/2)^2}{\Gamma(s)} \int_{-\infty}^{\infty} r \tanh \pi r h(r) \int_{0}^{1} P_{-(1/2)+ir} \left(-1 + \frac{\Delta}{2(1-\xi)} \right) \times (1-\xi)^{(s-3)/2} F\left(\frac{s}{2}, \frac{s}{2}; \frac{1}{2}; \xi\right) \frac{d\xi}{\sqrt{\xi}} dr.$$

From [1:3.2 (18)] or [10: p. 353], we have

$$\begin{split} P_{-(1/2)+ir} &\Big(-1 + \frac{\varDelta}{2(1-\xi)} \Big) \\ &= \mathscr{S}_r \Big[\frac{\Gamma(2ir)}{\Gamma(\frac{1}{2}+ir)^2} \Big(\frac{4}{\varDelta} \Big)^{(1/2)-ir} F \Big(\frac{1}{2} - ir, \frac{1}{2} - ir; 1-2ir; \frac{4(1-\xi)}{\varDelta} \Big) \Big], \end{split}$$

where $\mathscr{G}_r[f(r)] = f(r) + f(-r)$ for any function f. Thus, using the hypergeometric series, we find that

$$\begin{split} \int_{0}^{1} P_{-(1/2)+ir} \left(-1 + \frac{\Delta}{2(1-\xi)} \right) (1-\xi)^{(s-3)/2} F\left(\frac{s}{2}, \frac{s}{2}; \frac{1}{2}; \xi\right) \frac{d\xi}{\sqrt{\xi}} \\ &= \mathscr{P}_{r} \left[\frac{\Gamma(2ir)}{\Gamma(\frac{1}{2}+ir)^{2}} \left(\frac{4}{\Delta}\right)^{(1/2)-ir} \int_{0}^{1} (1-\xi)^{(s/2)-1-ir} \right. \\ &\quad \times F\left(\frac{1}{2}-ir, \frac{1}{2}-ir; 1-2ir; \frac{4(1-\xi)}{\Delta}\right) F\left(\frac{s}{2}, \frac{s}{2}; \frac{1}{2}; \xi\right) \frac{d\xi}{\sqrt{\xi}} \right] \\ &= \mathscr{P}_{r} \left[\frac{\Gamma(2ir)\Gamma(1-2ir)}{\Gamma(\frac{1}{2}+ir)^{2}\Gamma(\frac{1}{2}-ir)^{2}} \sum_{n=0}^{\infty} \frac{1}{n!} \frac{\Gamma(n+\frac{1}{2}-ir)^{2}}{\Gamma(n+1-2ir)} \right. \\ &\quad \times \left(\frac{4}{4}\right)^{-n-(1/2)+ir} \int_{0}^{1} (1-\xi)^{(s/2)+n-1-ir} F\left(\frac{s}{2}, \frac{s}{2}; \frac{1}{2}; \xi\right) \frac{d\xi}{\sqrt{\xi}} \right]. \end{split}$$

Then, by [1: 2.4 (2)]

$$\int_{0}^{1} (1-\xi)^{(s/2)+n-1-ir} F\left(\frac{s}{2}, \frac{s}{2}; \frac{1}{2}; \xi\right) \frac{d\xi}{\sqrt{\xi}}$$
$$= \frac{\Gamma(\frac{1}{2})\Gamma((s/2)+n-ir)}{\Gamma((1+s)/2+n-ir)} F\left(\frac{s}{2}, \frac{s}{2}; \frac{1+s}{2}+n-ir; 1\right)$$

for Re (s) > 0, also by [1: 2.8 (46)]

Trace Formula

$$F\left(\frac{s}{2}, \frac{s}{2}; \frac{1+s}{2} + n - ir; 1\right) = \frac{\Gamma((1+s)/2 - ir + n)\Gamma((1-s)/2 - ir + n)}{\Gamma(\frac{1}{2} - ir + n)^2}$$

for $\operatorname{Re}(s) < 1$.

Therefore, we show that

$$\int_{0}^{1} P_{-(1/2)+ir} \left(-1 + \frac{\Delta}{2(1-\xi)} \right) (1-\xi)^{(s-3)/2} F\left(\frac{s}{2}, \frac{s}{2}; \frac{1}{2}; \xi\right) \frac{d\xi}{\sqrt{\xi}}$$

$$(*) \qquad = \mathscr{S}_{r} \left[\frac{\coth \pi r}{2i\sqrt{\pi}} \frac{\Gamma(s/2-ir)\Gamma((1-s)/2-ir)}{\Gamma(1-2ir)} \left(\frac{\Delta}{4}\right)^{ir-1/2} \times F\left(\frac{s}{2}-ir, \frac{1-s}{2}-ir; 1-2ir; \frac{4}{\Delta}\right) dr \right]$$

for 0 < Re(s) < 1 (c.f., [10: p. 353]). Substituting (*) into (3.11), we obtain finally

(3.12)
$$V_{-}(s,t) = \frac{\Delta^{s/2}}{8\pi i \sqrt{\pi}} \frac{\Gamma(s/2)^2}{\Gamma(s)} \int_{-\infty}^{\infty} rh(r) \frac{\Gamma(s/2 - ir)\Gamma((1-s)/2 - ir)}{\Gamma(1-2ir)} \times \left(\frac{\Delta}{4}\right)^{ir-(1/2)} F\left(\frac{s}{2} - ir, \frac{1-s}{2} - ir; 1-2ir; \frac{4}{\Delta}\right) dr$$

for 0 < Re(s) < 1.

In view of (3.7), we have

$$I_{1}^{\prime*}(s) = \sum_{t=-\infty}^{\infty} \pi^{-s} \Gamma(s) \zeta(s, t^{2}+4) V_{-}(s, t).$$

From now on, we will investigate the residue or the Laurent expansion of the above series at s=1, separating the terms with $t\neq 0$ and t=0.

1) In the case of $t \neq 0$, it follows from [9: Proposition 3] that $\zeta(s, t^2+4)$ has a simple pole at s=1, thus

(3.13)
$$\operatorname{res}_{s=1} \left(\sum_{t \neq 0} \pi^{-s} \Gamma(s) \zeta(s, t^2 + 4) V_{-}(s, t) \right) = \frac{1}{\pi} \sum_{t \neq 0} V_{-}(1, t) \operatorname{res}_{s=1} \zeta(s, t^2 + 4).$$

Then, by (3.10)

$$V_{-}(1, t) = \frac{\pi}{2} \Delta^{1/2} \int_{-\infty}^{\infty} \frac{\varphi(\Delta u^{2} + t^{2})}{(1+u^{2})^{1/2}} F\left(\frac{1}{2}, \frac{1}{2}; \frac{1}{2}; \frac{u^{2}}{u^{2}+1}\right) du.$$

By making use of [1: 2.1.4 (22)], i.e., $(1+u^2)^{-1/2}F(\frac{1}{2}, \frac{1}{2}; \frac{1}{2}; u^2/(u^2+1)) = F(\frac{1}{2}, 0; \frac{1}{2}; -u^2)$, F(a, 0; c; x) = 1 and (2.6), we obtain

(3.14)
$$V_{-}(1, t) = \frac{\pi}{2} \int_{t^2}^{\infty} \frac{\varphi(x)}{\sqrt{x - t^2}} dx.$$

2) In the case of t=0, clearly $\Delta=4$, thus we have by (3.12)

$$V_{-}(s,0) = \frac{4^{s/2}}{8\pi i \sqrt{\pi}} \frac{\Gamma(s/2)^2}{\Gamma(s)} \int_{-\infty}^{\infty} rh(r) \frac{\Gamma(s/2 - ir)\Gamma((1 - s)/2 - ir)}{\Gamma(1 - 2ir)}$$
$$\times F\left(\frac{s}{2} - ir, \frac{1 - s}{2} - ir; 1 - 2ir; 1\right) dr.$$

Utilizing [1: 2.8 (46)], we see that

$$F\left(\frac{s}{2} - ir, \frac{1-s}{2} - ir; 1-2ir; 1\right) = \frac{\Gamma(\frac{1}{2})\Gamma(1-2ir)}{\Gamma(-s/2 - ir + 1)\Gamma(s/2 - ir + \frac{1}{2})}$$

Hence, we obtain

(3.15)
$$V_{-}(s, 0) = \frac{4^{s/2}}{8\pi i} \frac{\Gamma(s/2)^2}{\Gamma(s)} \int_{-\infty}^{\infty} \frac{\Gamma(s/2 - ir)\Gamma((1 - s)/2 - ir)}{\Gamma(-s/2 - ir + 1)\Gamma(s/2 - ir + \frac{1}{2})} rh(r) dr$$

for 0 < Re(s) < 1.

To derive a Laurent expansion of $\pi^{-s} \Gamma(s)\zeta(s, 4)V_{-}(s, 0)$ at s=1, we must settle the analytic continuation of $V_{-}(s, 0)$ to a neighbourhood U of the point s=1, and to do this, we use a similar method as in the case of $I'_{4}(s)$. Put

Fig. 3

Let P_0 be a smooth curve which is sufficiently close to the real axis and let

$$J(s) = \int_{-\infty}^{\infty} F(s, r) dt, \qquad J_{P_0}(s) = \int_{P_0} F(s, r) dr.$$

Trace Formula

Then, as is easily seen, F(s, r) has a pole with respect to r in the region enclosed by P_0 and the real axis if and only if s lies in the domain between $2iP_0$ and the imaginary axis or in the domain between $1-2iP_0$ and the line $\sigma = \operatorname{Re}(s) = 1$ as in Fig. 4. Thus,

$$J(s) = J_{P_0}(s)$$
 in 0 < Re(s) < 1.

On the other hand, $J_{P_0}(s)$ is holomorphic in the region $2iP_0 < \operatorname{Re}(s) < 1 - 2iP_0$, therefore putting

$$J(s) = J_{P_0}(s) \quad \text{in } U,$$

we can give the analytic continuation of J(s) to a neighbourhood U of the point s=1. Furthermore it follows from [9: Proposition 3] that $\zeta(s, 4) = \zeta^2(s)(1+2^{1-2s}-2^{-s})$. Hence, we have

(3.16)
$$\pi^{-s}\Gamma(s)\zeta(s,4)V_{-}(s,0) = \frac{1}{8\pi i}\zeta^{*s}(s)(-1+2^{s}+2^{1-s})J_{P_{0}}(s)$$
 in U.

Laurent expansion of $\pi^{-s}\Gamma(s)\zeta(s, 4)V_{-}(s, 0)$ at s=1. By (3.4), we have

$$\zeta^{*2}(s) = (s-1)^{-2} + (\gamma - \log 4\pi)(s-1)^{-1} + O(1),$$

and also

$$(-1+2^{s}+2^{1-s})=2+\log 2 \cdot (s-1)+O((s-1)^{2}).$$

Moreover, for $J_{P_0}(s)$, we find

$$J_{P_0}(1) = \int_{P_0} \frac{\Gamma(-ir)}{\Gamma(1-ir)} rh(r) dr = -\frac{1}{i} \int_{P_0} h(r) dr$$
$$= -\frac{1}{i} \int_{-\infty}^{\infty} h(r) dr = 2\pi i g(0),$$

and

$$J_{P_0}'(1) = \frac{1}{i} \int_{P_0} \left\{ \frac{\Gamma'}{\Gamma} (1 - ir) - \frac{\Gamma'}{\Gamma} \left(\frac{1}{2} - ir \right) \right\} h(r) dr - \frac{1}{2} \int_{P_0} \frac{h(r)}{r} dr.$$

Using $\int_{P_0} (h(r)/r) dr = -\pi i h(0)$ and h(r) = h(-r), we see that the last expression is equal to

$$\frac{1}{i}\int_{-\infty}^{\infty}\left\{\frac{\Gamma'}{\Gamma}(1+ir)-\frac{\Gamma'}{\Gamma}\left(\frac{1}{2}+ir\right)\right\}h(r)dr+\frac{\pi i}{2}h(0).$$

It follows from these facts that the Laurent expansion of $\pi^{-s}\Gamma(s)\zeta(s, 4) \times V_{-}(s, 0)$ at s=1 can be written as

$$(3.17) \qquad \pi^{-s} \Gamma(s) \zeta(s, 4) V_{-}(s, 0) = \frac{1}{8\pi i} \{ (s-1)^{-2} + (\tilde{\tau} - \log 4\pi)(s-1)^{-1} \} \times \{ 2 + \log 2 \cdot (s-1) \} \times \{ 2\pi i g(0) + J'_{P_0}(1)(s-1) \} + O(1) = \frac{1}{2} g(0)(s-1)^{-2} + \frac{g(0)}{4} \{ \log 2 + 2 (\tilde{\tau} - \log 4\pi) \} (s-1)^{-1} + \frac{1}{8} h(0)(s-1)^{-1} - \frac{1}{4\pi} \int_{-\infty}^{\infty} \left\{ \frac{\Gamma'}{\Gamma} (1+ir) - \frac{\Gamma'}{\Gamma} \left(\frac{1}{2} + ir \right) \right\} \times h(r) dr \cdot (s-1)^{-1} + O(1).$$

Now, since $\operatorname{res}_{s=1} I'^*(s) = \sum_{i=1}^4 \operatorname{res}_{s=1} I'^*_i(s)$, adding up (3.3), (3.5), (3.6), (3.13) and (3.17), we obtain the following

Proposition 3. Let $K'_0(z, z')$ be the kernel function defined by (2.32), and put $I'^*(s) = \int_{\mathscr{D}} K'_0(z, z) E^*(z, s) dz$. Then, $\operatorname{res}_{s=1} I'^*(s)$ can be expressed as

$$\operatorname{res}_{s=1} I^{*}(s) = \frac{\log 2}{4} g(0) + \frac{1}{4} h(0) - \frac{1}{2} h\left(\frac{i}{2}\right)$$

Trace Formula

$$-\frac{1}{4\pi}\int_{-\infty}^{\infty} \left\{ z(r) + \frac{\Gamma'}{\Gamma}(1+ir) - \frac{\Gamma'}{\Gamma}\left(\frac{1}{2}+ir\right) \right\} h(r) dr$$
$$+\frac{1}{\pi}\sum_{t\neq 0} V_{-}(1,t) \operatorname{res}_{s=1} \zeta(s,t^{2}+4),$$

where $z(r) = (\zeta^{*'}/\zeta^{*})(1+2ir) + (\zeta^{*'}/\zeta^{*})(1-2ir)$ and $V_{-}(1, t)$ is as in (3.14).

3.2. Computation of I(s)

According to its definition, I(s) coincides with that of Zagier [10] completely, thus we have the following

Proposition 4 ([10: p. 342]). Let $K_0(z, z')$ be the kernel function defined by (2.32), and put $I^*(s) = \int_{\mathcal{D}} K_0(z, z) E^*(z, s) dz$. Then, $\operatorname{res}_{s=1} I^*(s)$ can be expressed as

$$\operatorname{res}_{s=1} I^*(s) = -\frac{\log 2}{2} g(0) + \frac{1}{4} h(0) - \frac{1}{2} h\left(\frac{i}{2}\right) - \frac{1}{4\pi} \int_{-\infty}^{\infty} \left\{ z(r) + \frac{\Gamma'}{\Gamma} (1+ir) \right\} h(r) dr + \frac{1}{24} \int_{-\infty}^{\infty} \tanh \pi rrh(r) dr + \frac{1}{\pi} \sum_{t^2 \neq 4} V(1, t) \operatorname{res}_{s=1} \zeta(s, t^2 - 4),$$

where

(3.18)
$$V(1,t) = \begin{cases} \frac{\pi}{2} \int_{0}^{\infty} \frac{\varphi(x)}{\sqrt{x+4-t^{2}}} dx & |t| < 2, \\ \frac{\pi}{2} \int_{t^{2}-4}^{\infty} \frac{\varphi(x)}{\sqrt{x+4-t^{2}}} dx & |t| > 2. \end{cases}$$

§ 4. Trace formula

We have by [10: (4.13)]

(4.1)
$$\operatorname{res}_{s=1} \zeta(s, D) = \begin{cases} \frac{2\pi}{\sqrt{|D|}} \sum_{\substack{Q \mod SL(2, Z) \\ |Q| = D}} \frac{1}{|\operatorname{Aut} Q|} & D < 0, \\ \frac{1}{\sqrt{|D|}} \sum_{\substack{Q \mod SL(2, Z) \\ |Q| = D}} \log \varepsilon_Q & D > 0, \end{cases}$$

where Aut Q is the group defined by (3.9) and ε_Q is the largest eigenvalue of the matrix M which is a generator of Aut Q up to $\{\pm 1\}$ with positive trace, i.e, Aut $Q = \{\pm M^n | n \in Z\}$.

To make the correspondence between Selberg's method and Zagier's method clear in the computation of the integral in (2.27), we will calculate $V_{-}(1, t) \operatorname{res}_{s=1} \zeta(s, t^2+4)$ and $V(1, t) \operatorname{res}_{s=1} \zeta(s, t^2-4)$ in a more explicit form. Since t^2+4 is always positive, using (3.14) and (4.1), we can write

$$V_{-}(1, t) \operatorname{res}_{s=1} \zeta(s, t^{2}+4) = \frac{\pi}{4} \frac{1}{\sqrt{t^{2}+4}} \sum_{\substack{Q \mod SL(2, Z) \\ |Q|=t^{2}+4}} \log \varepsilon_{Q}^{2} \cdot \int_{t^{2}}^{\infty} \frac{\varphi(x)}{\sqrt{x-t^{2}}} dx.$$

Then, from the fact that M is a generator of Aut Q up to $\{\pm 1\}$, it follows that there exists a positive number $l (= l_q \in \frac{1}{2}Z)$ such that $\varepsilon_q^l - \varepsilon_q^{-l} = t$ corresponding to each Q. Thus, using (2.6) and (2.7), we have

(4.2)
$$V_{-}(1, t) \operatorname{res}_{s=1} \zeta(s, t^{2}+4) = \frac{\pi}{4} \sum_{\substack{Q \mod SL(2, Z) \\ |Q|=t^{2}+4 \\ \varepsilon_{Q}^{l}-\varepsilon_{Q}^{-l}=t}} \frac{\log \varepsilon_{Q}^{2}}{\varepsilon_{Q}^{l}+\varepsilon_{Q}^{-l}} g(l \log \varepsilon_{Q}^{2}).$$

In the case of $t^2 - 4 > 0$, a similar consideration as for $t^2 + 4$ is possible, namely there exists a positive integer $l (= l_q \in \mathbb{Z} \ge 1)$ such that $\varepsilon_q^l + \varepsilon_q^{-l} = t$ corresponding to each Q, therefore it follows from (3.18) and (4.1) that

(4.3)
$$V(1, t) \operatorname{res}_{s=1} \zeta(s, t^2 - 4) = \frac{\pi}{4} \sum_{\substack{Q \bmod SL(2, Z) \\ |Q| = t^2 + 4 \\ \varepsilon_{Q}^{L} + \varepsilon_{Q}^{-1} = t}} \frac{\log \varepsilon_{Q}^{2}}{\varepsilon_{Q}^{L} - \varepsilon_{Q}^{-1}} g(l \log \varepsilon_{Q}^{2}).$$

As for $t^2 - 4 < 0$, further calculations after (3.18) yield

(4.4)
$$V(1, t) \operatorname{res}_{s=1} \zeta(s, t^{2} - 4) = \frac{\pi}{\sqrt{4 - t^{2}}} \sum_{\substack{Q \bmod SL(2, Z) \\ |Q| = t^{2} - 4}} \frac{1}{|\operatorname{Aut} Q|} \cdot \int_{-\infty}^{\infty} \frac{e^{-2\alpha r}}{1 + e^{-2\pi r}} h(r) dr,$$

where $|t| = 2 \cos \alpha$, $0 < \alpha \leq \pi/2$.

Combining (2.27), (2.31) and (2.36), we find that

(4.5)
$$\sum_{j_1 \ge 0} h(r_{j_1}) = \int_{\tilde{\mathscr{D}}} \tilde{K}^*(z, z) dz = \operatorname{res}_{s=1} I^*(s) + \operatorname{res}_{s=1} I'^*(s) + h\left(\frac{i}{2}\right).$$

Hence, by using Propositions 3, 4, we obtain a trace formula on the even space V_e .

Theorem 2 (Trace formula on V_e). Let $L_{0,e}(\mathcal{D})$ be the space of cusp forms in V_e , and let $\{f_{j_i}\}_{j_i \geq 1}$ be the orthogonal basis of $L_{0,e}(\mathcal{D})$ consisting of

Maass wave forms. If the eigenvalue of each f_{j_1} with respect to D is given by $Df_{j_1} = -(\frac{1}{4} + r_{j_1}^2)f_{j_1}$, then we obtain

$$\begin{split} \sum_{j_1 \ge 0} h(r_{j_1}) &= -\frac{\log 2}{4} g(0) + \frac{1}{2} h(0) + \frac{1}{24} \int_{-\infty}^{\infty} \tanh \pi r r h(r) dr \\ &- \frac{1}{2\pi} \int_{-\infty}^{\infty} \left\{ z(r) + \frac{\Gamma'}{\Gamma} (1 + ir) \right\} h(r) dr + \frac{1}{4\pi} \int_{-\infty}^{\infty} \frac{\Gamma'}{\Gamma} \left(\frac{1}{2} + ir \right) h(r) dr \\ &+ \sum_{|t| < 2} \frac{1}{\sqrt{4 - t^2}} \sum_{\substack{Q \bmod SL(2, Z) \\ |Q| = t^2 - 4}} \frac{1}{|\operatorname{Aut} Q|} \cdot \int_{-\infty}^{\infty} \frac{e^{-2\cos^{-1}(|t|/2)r}}{1 + e^{-2\pi r}} h(r) dr \\ &+ \frac{1}{4} \sum_{\substack{|I| > 2 \\ t \in Q \bmod SL(2, Z) \\ t \in Q = t^2 - t}} \sum_{\substack{Q \bmod SL(2, Z) \\ t \in Q = t^2 - t \\ t \in Q = t^2 - t}} \frac{\log \varepsilon_Q^2}{g(l \log \varepsilon_Q^2)} g(l \log \varepsilon_Q^2), \\ &+ \frac{1}{4} \sum_{\substack{|I| = t^2 + 4 \\ t \in Q \oplus SL(2, Z) \\ t \in Q \oplus T = t^2}} \sum_{\substack{Q \bmod SL(2, Z) \\ t \in Q \to t^2 - t \\ t \in Q \to T = t^2}} \frac{\log \varepsilon_Q^2}{g(l \log \varepsilon_Q^2)} g(l \log \varepsilon_Q^2), \end{split}$$

where $z(r) = (\zeta^{*'}/\zeta^{*})(1+2ir) + (\zeta^{*'}/\zeta^{*})(1-2ir)$ and Aut Q is as in (3.9).

As is proved in Zagier [10], the trace formula on $L^2(\mathcal{D})$ is

$$\sum_{j\geq 0} h(r_j) = 2 \operatorname{res}_{s=1} I^*(s) + h\left(\frac{i}{2}\right).$$

Thus, we have by (4.5)

$$\sum_{i_2 \ge 1} h(r_{i_2}) = \sum_{j \ge 0} h(r_j) - \sum_{j_1 \ge 0} h(r_{j_1}) = \operatorname{res}_{s=1} I^*(s) - \operatorname{res}_{s=1} I^{\prime*}(s).$$

Again, by using Propositions 3, 4, we have a trace formula on the odd space V_o .

Theorem 3 (Trace formula on V_o). Let $\{f_{j_a}\}_{j_a \ge 1}$ be the orthogonal basis of the space V_o consisting of Maass wave forms. If the eigenvalue of each f_{j_a} with respect to D is given by $Df_{j_2} = -(\frac{1}{4} + r_{j_a}^2)f_{j_a}$, then we obtain

$$\begin{split} \sum_{j_2 \ge 1} h(r_{j_2}) \\ &= -\frac{3}{4} \log 2 \cdot g(0) + \frac{1}{24} \int_{-\infty}^{\infty} \tanh \pi r r h(r) dr - \frac{1}{4\pi} \int_{-\infty}^{\infty} \frac{\Gamma'}{\Gamma} \left(\frac{1}{2} + ir\right) h(r) dr \\ &+ \sum_{|t| < \sqrt{4 - t^2}} \sum_{\substack{Q \bmod SL(2,Z) \\ |Q| = t^2 - 4}} \frac{1}{|\operatorname{Aut} Q|} \cdot \int_{-\infty}^{\infty} \frac{e^{-2\cos - 1(|t|/2)r}}{1 + e^{-2\pi r}} h(r) dr \end{split}$$

$$+\frac{1}{4}\sum_{\substack{|\ell|>2\\ Q \mod SL(2,Z)\\ \varepsilon_Q^l = \varepsilon_Q^2 - 4\\ \varepsilon_Q^l + \varepsilon_Q^{-l} = t}} \frac{\log \varepsilon_Q^2}{\varepsilon_Q^l - \varepsilon_Q^{-l}} g(l \log \varepsilon_Q^2)$$
$$-\frac{1}{4}\sum_{\substack{l\neq 0\\ Q \mod SL(2,Z)\\ |Q| = t + 4\\ \varepsilon_Q^l - \varepsilon_Q^{-l} = t}} \sum_{\substack{|Q| = t + 4\\ \varepsilon_Q^l + \varepsilon_Q^{-l}}} \frac{\log \varepsilon_Q^2}{\varepsilon_Q^l + \varepsilon_Q^{-l}} g(l \log \varepsilon_Q^2),$$

where Aut Q is as in (3.9).

The formula of Theorem 3 is just the same as the formula of Venkov [8: Theorem 6.5.4] in the case of $\Gamma = PSL(2, \mathbb{Z})$.

References

- [1] Erdelyi, A. et al., Higher transcendental functions, Vol. I, McGraw-Hill, New York 1954.
- [2] —, Tables of integral transforms, Vol. I, McGraw-Hill, New York 1954.
- [3] Kubota, T., Elementary theory of Eisenstein series, Kodansha and John Willey, Tokyo-New York 1973.
- [4] Rankin, R., Contribution to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions I, Proc. Camb. Phil. Soc., **35** (1939), 351–372.
- [5] Selberg, A., Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Arch. Math. Naturvid., 43 (1940), 47-50.
- [6] —, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Ind. Math. Soc., 20 (1956), 47–87.
- [7] Szmidt, J., The Selberg trace formula for the Picard group SL(2, Z[i]), Acta. Arith. XLII, (1983), 391-424.
- [8] Venkov, A. B., Spectral theory of automorphic functions, Proc. Steklov. Inst. Math., (1982), no. 4.
- [9] Zagier, D., Modular forms whose Fourier coefficients involve zeta functions of quadratic fields, in Modular functions of one variable VI, Lect. Notes in Math., no. 627, Springer Verlag, Berlin 1977, 107-169.
- [10] —, Eisenstein series and the Selberg trace formula I, Proc. Symp., Representation theory and automorphic functions, Tata Inst., Bombay 1979, 303-355.

Department of Mathematics Faculty of Science Kyushu University 33 Fukuoka 812, Japan