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On the Burnside Rings of 
Finite Groups and Finite Categories 

Tomoyuki Yoshida 

§ 1. Introduction 

The Burnside rings of finite groups introduced first by L. Solomon 
[So, 67] are getting more and more important in various fields in mathe­
matics. The Burnside ring B(G) of a finite group G is simply the Gro­
thendieck ring of the category Set1° of finite G-sets and G-maps with 
respect to disjoint unions and cartesian products, but it acts on many 
Grothendieck groups about the group G. In fact, if (a, -r, p, a) is a G­
functor, for example, the character ring R(G), then B(G) acts on a(G). 
Combining this fact to the idempotent formula, we have some induction 
theorems ([Yo. 83]). 

On the other hand, finite group theory can be regarded as theory of 
categories Set1° for various G. On this standing point, we can rewrite, for 
example, transfer theorems by categorical language. So if we pick another 
category like Set 1°, we may expect to get another theory. Here it is best 
to choose categories called ( elementary) toposes, for example, the functor 
category Set I A from a finite category to the category of finite sets. In fact 
we can develop "transfer-induction theory" in such categories. 

However the existence of infinitely many connected objects in a 
locally finite topos obstructs our theory, so we need first to consider finite 
subcategories of this topos. Luckily we need little preparation to make 
abstract Burnside rings of finite categories. The following theorem is one 
of main theorems of this paper: 

Theorem A. Let A be a finite skeletal category with a unique epi­
mono factorization property and with coequalizer of these identity and any 
automorphism of each object of A. Then ZA, the free abelian group gener­
ated by Ob (A), has a ring structure with identity element such that 

is a ring homomorphism. 
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This ring ZA is called the abstract Burnside ring. If we take the 
category of transitive G-sets as A, we again get the Burnside ring B(G). 
Furthermore this ring structure induces many other ring, for example, a 
large Hecke ring (Section 7). 

The next purpose of this paper is to give an idempotent formula of 
the abstract Burnside rings. This is done in Section 5. We will construct 
posets corresponding to subgroup lattices for the ordinary Burnside rings. 
In Section 6, we give some examples. In Section 7, we state a "transfer 
theorem" for abstract Burnside rings which is a revised version of D. 
Higman's focal subgroup theorem for finite groups. 

§ 2. The Burnside ring of a finite group 

In this section we collect some known results about Burnside rings of 
finite groups without proof. The details are found in, for example, tom 
Dieck's book [Di. 79] and the author's paper [Y. 83]. 

2.1. Definition. Let G be a finite group. The set of G-isomorphism 
classes of finite (right) G-sets becomes a commutative semi-ring B+(G) 
with addition defined by disjoint unions and mutiplications defined by 
cartesian products with diagonal G-actions. The Grothendieck ring of 
B+(G) is denoted by B(G) and is called the Burnside ring of G. 

We denote by C(G) the set of G-conjugate classes (H) of subgroups 
Hof G. Then the Burnside ring B(G) is a free abelian group with basis 
[G/H], where (H) is taken over the set C(G). 

2.2. Let H be a subgroup of G. Since the map x-1xn1, where 
xn is the H-fixed point set, preserves sums and products, it extends to a 
ring homomorphism if>n of B(G) to Z. Let B(G) be the set of integral 
valued functions X: H( <G)-X(H) which are constant on every conjugate 
class, so that B(G) is a ring by pointwise multiplications. Then the 
product of if> n defines a ring homomorphism 

</>=(if>n): B(G)--:,.B(G); [X]~(jXHl)Hs;a· 

2.3. Proposition ([Di. 79; 1.3] [Yo. 83]). There is an exact sequence 

0--:,.B(G)~B(G)~ D (Z/j WHjZ)--:,.0, 
(H) 

where (H) runs over C(G) and WH=N 0 (H)/H. 

By this proposition, which is suited to be a fundamental theorem for 
Burnside rings, we can decide prime ideals ([Dr. 69]) and primitive idem­
potents ([GI. 81]). 
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2.4. Definition. For a finite poset ( =partially ordered set) P, the 
Mobius function µ: PX P-.Z is inductively defined by 

µ(a,a)=l;µ(a,b)=O unless a<b; 

I; µ(a, x)= I; µ(x, b)=oab if a<b. 
a~x~b a~x~b 

The Euler characteristic of P is defined by 

X(P): = I; µ(x, y). 
x,yEP 

2.5. Let p be a prime. Define a subring and a subgroup: 

Z<P>:={a/bla e Z, b E Z-pZ}£Q, 

QP(G):=(p'-element of G)<G. 

A finite group G is p-perfect if QP(G)=G, that is, if G has no normal sub­
group of index p. For an natural number n, we denote its p-part by nP. 

2.6. Proposition ([GI. 81], [Yo. 831). 
(i) Any primitive idempotent of Q®B(G) has the form 

1 
ea,H=-- I; IDlµ(D, H)[G/D] 

INaCH)I D~H 

for a subgroup H of G. 
(ii) Any primitive idempotent of Z<P>®B(G) has the form 

for a p-perfect subgroup Q of G. 

2.7. Corollary. Let D be a sugbroup of G and let S>D be the sub­
poset of subgroup lattice of G consisting of all p-subgroup properly containing 
D. Then the Euler characteristic 

X(S>v)= 1 mod IN0 (D): DIP' 

The case where D= 1 is well-known ([Br. 751). 

2.8. Remark. The conclusions of 2.6 (ii) and 2.7 hold even for 
"p= l", where "I-perfect", "I-subgroup", n1 means "perfect", "solvable 
subgroup", n, respectively. 

2.9. There are many other applications of the theory of Burnside 
rings in various fields. For example, the idempotent formula as above is 
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applied to induction theorems ([Dr. 71], [Yo. 83] in representation theory 
of finite groups, Wielandt order formula, class number relations for 
algebraic number fields ([RS. 83]), equations for Dedekind zeta functions 
([Hu. 79]), equivariant cohomology theory ([Di. 79], [Ar. 82]), etc. 

Open Problem. We list some open problems about Burnside rings of 
finite groups. 

(1) Determine the structure of the unit group B(G)* and the Picard 
group Pie B(G). 

(2) Does B(G)=B(H) implies G =H? 
(3) What structure does the local ring eSnZ<P>®B(G) have? 
(4) Let J(H) be the augumentation ideal of Z<P>®B(H), where H < 

G. Then what can we say about the modules I(H)nJJ(H)n+', n>O, on 
the Hecke ring Z<P>[H\G/H] (and also on the center of ZcpP) defined by 
the operation 

(HgH): xi----+indII res g-in gn n cong(x). 

(5) What about Problems 1, 3, 4 on the character ring R(G)? 

On Problem (1), refer [Di. 79]. [Ma. 82], [Yo. 86]. The local ring in 
Problem 3 is a CM ring of one dimensional but not Gorenstein in general. 
It is regular if and only if (p, IGl)=l. See [Kr. 81]. The reason why 
Hecke rings acts on factor groups of a filtrations of B(H), B(H)*, R(H), 
etc. is found in [Yo. 81]. 

§ 3. Abstract Burnside rings 

3.1. Prerequisite to the category A. In this section, we will be con­

cerned with a category A. The composition a.!b~c of morphisms in A 
is written Jg. The set of morphisms of a to b is simply written A(a, b). 
The class of objects (resp. morphisms) of A is denoted by A itself (resp. 
Mor (A)). The class of isomorphism classes of A is denoted by A/=. We 
say that 

A is finite if I Mor (A) I< oo; 
A is locally finite if I A(a, b) I< oo for each a, b; 
A is skeletal if a=b implies a=b. 

3.2. Suppose A is a locally finite category with small skeleton. Let 
ZA denote the free abelian group generated by A/=. Let Z A denote the 
set of mappings of A to Z which is constant on each isomorphism class, so 
that Z A is regarded as the ring of A/ =-indexed integers. Then there is a 
linear map 

(3.2.1) 
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Definition. The abelian group ZA is called an abstract Burnside ring 
provided ZA possesses a (unique) ring structure which makes¢, an injective 
ring homomorphism. 

3.3. Example. (a) The Burnside ring B(G) of a finite group G. 
Here A is (a skeleton of) the category of transitive G-sets and G-maps. 

(b) The rings Go(E), Ko(E) for a locally finite topos E with small 
skeleton. Here A is the full subcategory of irreducible (resp. connected) 
objects. These rings are, as abelian groups, generated by all isomorphism 
classes of E together with relations 

[XU Y]+[xn Y]=[X]+[Y], [0]=0 

[X + Y]=[X]+[Y] 

(c) The character ring R(Sn) of the symmetric group Sn. The 
category A consists of transitive Sn-sets which have Young subgroups as 
stabilizers. 

(d) The Mobius ring of a finite poset. See Section 5. 

3.4. Hypothesis FAC. The category A has a factorization system 
(E, M) in which 

(3.4.1) each morphism in E (resp. M) is an epimorphism (resp. 
monomorphism ). 

A factorization system (E, M) on A consists of two classes E and M 
of morphisms satisfying 

(3.4.2) each of E and M contains all isomorphisms and is closed 
under composition; 

(3.4.3) every morphismf: a--+b has an (E, M)-factorization 

e m 
f =(a~im(f)~b) with e e E, m e M. 

(3.4.4) The above factorization is unique up to isomorphism, that 

is, if f = (a~i' ~b) is another (E, M)-factorization, then there is a 
unique isomorphism h: im(f)--+i' such that eh=e', m=hm'. 

We then put 

E(a, b): =A(a, b) n E <;;Epi (a, b), 

M(a, b):=A(a, b) n M<;;Mon(a, b). 

In this category, the following holds: 

(3.4.5) E(a, a)=M(a, a)=Auta. 
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All results in this section hold for a category with a factorization system 
satisfying (3.4.5). 

3.5. Hypothesis CEQ. For any object i of A and any automorpihsm 
a of i, there exists a coequalizer diagram of Ii and a: 

1 
(3.5.1) t~i--+i/a. 

a 

The condition that (3.5.1) is a coequalizer diagram means that there 
is a canonical bijection 

(3.5.2) A(i/a, a)s:;.A(i, a)<•>:={f e A(i, a) I of=/}, 

where the horn-set A(i, a) is viewed as a left Aut (i)-set by cpmposition. 

Example. Let G be a finite group and let H be a family of subgroups 
of G closed under conjugation. Let A be the category of transitive G-sets 
of which stabilizers belong to H. Then CEQ holds if and only if for any 
D e Hand n e Na(D), there exists a unique minimal subgroup in H contain­
ing D and n. In this category, FAC always holds because all morphisms 
are epimorphisms. 

3.6. Main theorem of this paper. Let A be a finite and skeletal 
category. 

Theorem A. If A satisfies Hypothesis FAC and CEQ, then ZA 
becomes an abstract Burnside ring with identity. 

Theorem B. If A satisfies Hypothesis FAC, then the map 

is injective and its cokernel 

(3.6.1) Coker~:;;_ IT (Z/IAutilZ). 
iEA 

Theorem ·C. If A satisfies F AC and CEQ, then there is an exact se­
quence of abelian groups: 

(3.6.2) 0--.+ZA~ZA~ IT (Z/jAutilZ)--+0, 
iEA 

where 

(3.6.3) ,Jr: x~( I: X(i/a)+IAutilZ), 
uEAut i 
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3.7. Corollary. Let A be a locally finite category satisfying FAC. 
Then the following statements are equivalent: 

(a) x~y in A. 
(b) IA(i, x)l=IA(i, y)I for every i e A. 
(c) IA(x, i)l=IA(y, i)I for every i e A. 

The proof is easy. This corollary is applied to the categories of finite 
G-sets, finite (di-)graphs, finite posets, finite R-modules with R finite. See 
[Be. 84; 2.18.6]. 

3.8. Assume that x and y have a direct product x XY in A. Then 
xy represents the products xy in the abstract Burnside ring ZA, and so if 
A has finite products, then ZA is the semigroup ring of A. 

If A is a full subcategory of a locally finite topos E and each object 
of A is connected (resp. irreducible), then there exists a split epimorphism 
of Ko(E) (resp. Go(E)) to ZA. 

3.9. Problem. The abstract Burnside ring ZA is clearly CM-ring of 
one dimensional. When is it Gorenstein? 

§ 4. Proof of the main theorems 

In this section, we prove Theorems A, B and C. Throughout this 
section, A denotes a finite skeletal category. 

4.1. Lemma. Define AX A-matrices H, L, D, U by 

Hab==IA(a, b)I, 

Lab:=IE(a, h)I/IAut hi, 

Dab==IAut aloab, 

Uab==IM(a, h)I/IAut al. 

Then these are integral matrices and 

(4.1.1) H=LDU. 

Proof This follows from the uniqueness of the factorizations. 

4.2. Proof of Theorem B. By the lemma, it will suffice to show that 

(4.2.1) det L=det U = I. 

To prove (4.2.1) introduce a partial order ~Eon A by 

(4.2.2) a ~Eb if E(b, a) is not empty. 
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Since Laa= 1 and a ""c.Eb if Lab=l=-0, we have that Lis conjugate to a lower 
triangular matrix of which diagonal constituents are all 1. Hence det L= 1. 
By the duality principal, det U= I, proving (4.2.1). The theorem is 
proved. 

4.3. Remark. If A is a full subcategory of a locally finite topos E 
closed under image of morphism, then H=LDU in Lemma 4.1 is a so­
called LDU-decomposition. Use the partial order generated by 

(4.3.1) a~b if both of E(e, a) and M(e, b) are nonempty for some 
e e E instead of ( 4.2.2). 

4.4~ Proof of Theorem C. Define a linear map 

(4.4.1) t:: ZA--+Z; Xf----+ ~ X(i/a) 
a EAut i 

for i e A. Next make the product of them: 

(4.4.2) 

Then t is factored as 

t=proj o t': ZA--+ f1 (Z/jAut ijZ). 
iEA 

By Theorem B, <p is injective and 

Coker <p = [1 (Z/1 Aut i I Z). 
iEA 

So in order to prove the exactness, it will suffice only to show the following: 

(4.4.3) 

(4.4.4) t is surjective. 

First we will show ( 4.4.3). Let x, i e A. Then 

+; o <fa(x)= ~ jA(i/a, x)j 
u EAut i 

Let n be the permutation character afforded by the left Aut i-set A(i, x), 
so that by (3.5.2), we have that 

Since 

n(a)=jAut(i/a, x)j for a e Aut i. 

1 . ~ n(a)=the number of orbits in A(i, x) 
jAut1j,eAuti 
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by a lemma of Burnside, we have that 

which proves ( 4.4.3). 
Next we will show (4.4.4). It will suffice to show that t' is surjective. 

The matrix corresponding to ,tr': zA_,.zA isf =(f(a, b))a,beA, where 

f(a, b)=l{a e Aut a I a/a=b}I-

We have thatf(a, a)=l. Define a partial order :s::. on A by 

a >. b if there is an epimorphism of a to b. 

If f(a, b)=/=O, then a ?:...b. Thus f is conjugate to a lower triangular 
matrix of which diagonal constituents are all l, and so detf = I. Hence 
,fr' is an isomorphism, as required. Theorem B is proved. 

4.5. Proof of Theorem A. Since the injectivity of rp is proved in 
Theorem B, it remains to prove that 

(4.5.1) 

(4.5.2) 

if x, ye A, then (:=rp(x)rp(y) e Im rp; 

1 e Im rp. 

By Theorem C, it will suffice to show that (, I e Ker ,fr. The value of ( 
at i e A is 

W)=IA(i, x)l ·IA(i, Y)I. 

By the diagonal Aut (i)-action, the set Z: = A(i, x) X A(i, y) becomes a left 
Aut i-set. The number of fixed points in Z by a e Aut i equals to W/a). 
Again by a lemma of Burnside, 

,tr;(()= ~ W/a)-=-0 mod IAut il-
o-eAut i 

(Refer 4.4.1 for notation). Hence ( e Ker ,fr. Finally the fact that I is in 
Ker ,fr is obvious by the definition of ,fr. The proof is completed. 

§ 5. An idempotent formula 

In this sectin, we give an idempotent formula for the abstract Burn­
side ring of a category. 

5.1. Hypothesis. Throught this section, the category A is assumed 
to satisfy the following conditions: 
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(a) A is finite and skeletal; 
(b) A satisfies Hypothesis FAC in 3.4. 
(c) A satisfies Hypothesis CEQ in 3.5. 
Letp be a prime (or 1). We define Zcp) as in 2.5 and we put Z(ll:=Z 

for convenience. By Theorem A, Zcp)A: =Zcpl©ZA is a ring with injective 
ring homomorphisms 

5.2. For a prime p ( or 1 ), let - P be the equivalence relation on A 
generated by 

(5.2.I) a -Pb if b~a/a for some a e (Aut a)p, where (Aut a)P is a 
Sylow p-subgroup of Aut a. Here we put (Aut a),:=Aut a. 

5.3. For a subset S of A, let X8 e Z A be the characteristic function 
for S: 

{
l if a ES 

Xs(a)= 
0 otherwise. 

Since <fi gives a ring isomorphism QA~ QA by Theorem B, there exists a 
unique idempotent e8 of QA such that <fi(e8 )=X 8 • Conversely any idem­
potent of QA has this form. 

By Theorem C, we have the following result (refer to Proposition 
2.6 (ii)): 

Theorem D. The elements e0 , where C's are -P-equivalence classes, 
are the primitive idempotents of Zcp)A. 

5.4. Lemma. The primitive idempotent of QA corresponding to a in 
A is given by 

where (H:;D is the inverse matrix of the horn-set matrix H=(IA(i,j)l)ijeA· 
The proof is easy. So in order to get an idempotent formula, we 

need to know H- 1• 

5.5. If we wish an idempotent formula as in Proposition 2.6 (i), we 
need to construct posets corresponding to the subgroup lattices. It is 
always possible under our hypothesis 5,1, but in this paper, we make them 
under further restriction in order to avoid introducing furthermore new 
concept. 
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Let (A, E) (resp. (A, M)) be the subcategory of A with morphisms 
contained in E (resp. M). Let Epi (a, b) (resp. Mon (a, b)) be the set of 
epimorphisms (resp. monomorphisms) of a to b in A. 

Hypothesis. There exists objects g, g' of A such that each of Epi (g, a) 
and Mon (a, g') is not empty for every a e A. 

5.6. By Hypothesis 5.5, we have functors 

Epi (g, - ) : (A, E)---------+Set1 ; a~Epi (g, a), 

Mon(-, g'): (A, M) 0 P---------+Set1; a~Mon(a, g'). 

Remember that morphisms in E (resp. M) are all epimorphisms (resp. 
monomorphisms) by FAC. 

The discrete cofibration E on (A, E) corresponding to Bpi (g, - ) is 
the category of which object-set is 

E={(a, u) I a e A, u e Bpi (g, a)} 

and a horn-set is 

E((a, u), (b, v))={h e A(a, b)Juh=v}. 

Dually the discrete fibration M on (A, M) corresponding to Mon ( - , 
g') is defined, that is, 

There are functors 

M ={(a, u) I a e A, u e Mon (a, g')}, 

M((a, u), (b, v))={h e A(a, b) lhv=u}. 

f: E---)-(A, E); (a, u)~a, h~h, 

g: M---)-(A, M); (a, u)~a; h~h, 

which are both surjective on objects. 
Clearly, the isomorphism classes E/ = and M/ = are posets. 

Remark. Discret (co-) fibrations of which isomorphism classes make 
finite posets and which is surjective on objects suffice for obtaining the 
idempotent formula. 

5.7. Because of surjections off and g, there are maps 

f': Ob (A)---)-Ob (E)f = such thatf(f'(a))=a, 

g': Ob (A)---)-Ob (M)f = such that g(g'(a))=a. 
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Let µ. and µm be the Mobius function of the posets it and M, 
respectively. Let P be the fiber product off: E--+A and g: M--+A: 

P:={(u, v) \ u e E/2::., v e M/2::.,f(u)=g(v)} 

Theorem E. 

H-1_ ~ 
ab - L..J 

(u,v)EP 

µ.(f '(a), u)µm(V, g'(b)) 

\Autf(u)\ 

Proof We use the notation in Lemma 4.1. Since H- 1= u- 1n- 1L- 1, 

we must know L;; and u;r Define matrices P, Q and£ by 

P:=(o(f'(a), u))aeA,uEE/,a,, 

Q:=(o(f(u), b))ueE/,a,,bEA> 

L:=(\E(u, v)\)u,veE;,.,, 

where o is Kronecker's delta. Then PQ=l and QL=LQ, and so we have 
that L- 1 =p[- 1Q. By the definition of the Mobius function, [;f=µ.(u, v). 
Hence we have that 

(5.7.1) L;; = I: µ.(f'(a), v). 
veJ-l(b)/Aut b 

Taking the dual of (5.7.1), we have that 

(5.7.2) U;/= .6 µm(v, g'(b)). 
veg-l(a)/Aut a 

Now the theorem follows from (5.7.1), (5.7.2). 

§ 6. Examples 

6.1. Let A be the full subcategory of Set 1 consisting of 

[r]:={1,2, · · ·, r}, o;;=;;r;;=;;n. 

Clearly A satisfies FAC and CEQ, Note that for a permutation a on [r], 
the coequalizer [r ]/ a is the set of the orbits of a on [r ], and so it is isomor­
phic to [s ], where s is the number of orbits. 

We have that 

H =(P), 

L=(Sij), the second kind Stirling number, 

D=(oii !), 

U =([{]), the binomial coefficient. 
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Thus we have that 

det H = fft=i i !, Vandermonde's determinant, 

L- 1 =(si 1), the Stirling numbers of first kind, 

_ 1 n (-l)k-i 
Hi 1 = ~ "'(k ")' skj· k=i l. -1 . 

In the viewpoint of Theorem E, we have that 

L;J= I: µP(ni(P-1 -(n-i+I),n-), 
,:ht (•)=j 

where µP<nJ is the Mobius function of the partition lattice. 

349 

The product of [x] and [y] in the abstract Burnside ring ZA is given 
by 

n n 

[x]. [y] = I: I: H;/(xy) 1[z]. 
z=O j=O 

For complex numbers a0, ···,an, the polynomial 

n n 

f(t) = I: Gr I: H:;/ti 
r=O i=O 

is the Lagrange interpolation, that is,f(r)=ar for O<r <n. 
Let +~: zA-zA be the map defined in (4.4.1). Then it maps X= 

(xr)r, where X is an integer, to 

I: xl[rJf<•>1=r!Z(Sr; x, .. . , x)=x(x+I)· · -(x+r-I), 
aESr 

where Z is the cycle indicator ([Ai. 79]; p. 209). 
For a prime p, let - P be the equivalence relation defined in 5.2. 

Then [x]-p[y], where O<x, y::s;;.n, if and only if x=y=O, or x, y=;t=O and 
x=y mod (p-1). Thus for any O<i,j<n, the summation of H;:)-, where 
rruns over integers such that O<r<n and r:=jmod(p-1), is ap-local 
integer. 

6.2. Let A be the category of Fq-vector spaces F~, O<r :;;:;,n, and 
linear maps. Then 

H=(qi 1), L= Ut, 

U = ( [ {] J, the Gauss binomial coefficient, 
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The poset appeared in Theorem E is the subspace lattice of F~. When p 
is the characteristic of Fq, the abstract Burnside ring Zcp)A is a local ring. 

6.3. Let A be the category of cyclic groups Z/rZ, l <r ~n, and 
group homomorphisms. Then 

Hij=GCD (i,j), 

LiJ=Uj'={l if jji 
' 0 otherwise, 

Dij=o;j<p(i), the Euler function, 

detH=ql(l)q\(2)· · ·q\(n), 

u- 1 =(µ(j/i));j, L- 1 =(µ(i/j)\j, 

whereµ is the Mobius function in elementary number theory and µ(x) is 
assumed to be O if xis not an integer. 

6.4. Let P be a finite poset. As usual, we consider P as a category 
with object set P, that is, IP(a, b)I~ 1 and x~y if and only if P(x, y) is 
not empty. Then the abstract Burnside ring ZA is just the Mobius ring 
Mob (P). The multiplication is given by 

pq:= ~ ~ µ(r, i)r, p, q E P, 
rEP i~p,q 

where µ is the Mobius function. On the other hand, let P be the category 
of contravariant functors P 0 P----+Set1. Then coproducts and products in 
P make Go(P) a commutative ring. See 3.3 (b) for the definition. The 
Yoneda functor p>--+P(-,p) induces the ring isomorphism of Mob (P) to 
Go(P). See [Yo. 84]. 

6.5. Let G be a finite group with (B, N)-pair. Let S be the set of 
generators of the Weyl group. Let A be the full subcategory of SetJ 
consisting of G/P, where P is a parabolic subgroup. Then the abstract 
Burnside ring ZA is isomorphic to the Mobius ring Mob (B(S)) of the 
Boolean lattice B(S) of S. 
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§ 7. Large Hecker rings 

In this section, we argue on relations with some other rings. Through­
out this section, A denotes a finite category satisfying Hypothesis PAC 
and CEQ in 3.4 and 3.5, so that ZA becomes an abstract Burnside ring 
(Theorem A). 

7.1. Lemma. Let X be a small and locally finite category and let 
f: A-x be a functor preserving coequalizers. 

( i) There exists a unique linear map f: ZA-ZX such that 

cp(f*(x))=(IB(f(i), x)l);eA· 

(ii) If ZX is an abstract Burnside ring, then f * is a ring homomor­
phism. 

(iii) If f is fully faithful, then f * is a split epimorphism, in fact its left 
inverse is the linear map f*: ZA-ZX. 

7.2. For an object x of A, the comma category A/x consists of all 
morphisms to x in A. Similarly, the categories A/xy, A/xyz, a/x", etc. 
are defined. We can apply Lemma 7.1 to the forgetful functors (a-x)­
a, (a-x, a-y, a-z)-(a-x, a-z), etc. 

For objects x, y and z, we have the linear mapping 

(7.2.1) ZA/ xy X ZA/yz--.+ZA/ xyz X ZA/ xyz~ A/ xyz--+ ZA/ xz, 

where the first map is the product of maps defined in Lemma 7.1, the map 
µ is the multiplication map of the abstract Burnside ring ZA/xyz and the 
last map is the map induced by the forgetful functor. 

Thus we obtain the large Hecke category HecA of which objects are 
same as in A and horn-sets are the form ZA/xy with composition defined 
by (7.2.1). 

An additive functor of HecA to an additive category is called an 
abstract Mackey functor. For example, x-ZA/x is an abstract Mackey 
functor. This means that the Mackey decomposition holds, that is, the 
following diagram is commutative: 

ZA/xy--+ ZA/x 

1 1 
ZA/y--+ ZA 

7.3. By the ring homomorphism defined in Lemma 7.1, the modules 
Z<PlA/x, etc. become modules over Z<PlA. Let e8 be an idempotent of 
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Zcp,A. We put M(xn):=e 8 Zcp,A/xn. The following theorem is a version 
of D. Higman's focal subgroup theorem and the stable element theorem 
for cohomology of groups. See [Dr. 73; Theorem I, Corollary, I in 
Section 3]. 

Theorem F. Assume that x is an object of A such that A(s, x) is not 
empty for each s e S. Then there is the following exact sequence of abelian 
groups: 

7.4. Example. Suppose A is the category of transitive G-sets. Then 
abstract Mackey functors are in fact Mackey functor ([Dr. 73]). There is 
a surjective ring homomorphism of ZA/x 2 onto the Hecke ring Endz 0 (Zx). 
The large Hecke ring ZA/x 2 is isomorphic to the ring of stable G-cohomo­
topies ([Di. 79]). 

7.5. We can further continue our construction, for example, abstract 
monomial rings, abstract incidence algebra, and so on, but the present 
paper is already too long. 

Added in Proof. J. Thevenaz wrote me that there is a counter­
example for Open Problem (2) in Section 2. 
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