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A Stratification Theoretical Method ¢f Construction
of Holomorphic Vector Bundles

Nobuo Sasakura

In this paper, we propose an explicit method of construction of
holomorphic vector bundies over a complex variety. In the construction,
our guiding model is the universal quotient bundle over Grassmann
variety. The content of this paper is rather provisional and experimental,
but may be used as a general method for treatments of bundles.

Introduction

1. Letting X be a normal complex variety, the purpose of this
paper is to construct holomorphic vector bundles over X, by the following
two steps:

() To find a bundle E; over X=X —{a codimension two subvariety
of X'}, which is endowed with a suitable “stratification theoretical represen-
tation’, and

(I) to investigate structure of the direct image Ey=i,Ey, i being
the injection: X=—>X, by giving a similar representation to the one in (I).
(See Section 0 for more details of (I) and (II).)

Encouraging facts for our proposed approach are: (i) If X is a quasi
projective or a Stein variety, then each bundle over X is obtained in the
manner (I), (I), and (ii) the procedure (I), (II) may be regarded as a
generalization of classical methods in treatments of bundles over a
Riemann surface [Bir], [Weil] and [Tj] (cf. § 0).

2. The content of this paper is briefly as follows: In Section 1 we
give some explicit coherent sheaf theoretical expressions of the bundle Ey
as in (I). 1In Section 2, we introduce the notion of ‘type (G)’ for such a
bundle and give some basic properties of the bundle. A bundle E; of
type (G) is, in our context, an abstraction of a bundle obtained as the pull
back of the universal quotient bundle over a Grassmann variety. The main
results of this paper are given to such a bundle E, and are as follows:
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(i) An explicit determination of the local structure of its direct image Ey
(Theorems 3.1 ~3.4), (ii) that of I'(Ey) and I'(End Ey) (Theorems 4.1 ~
4.5) and (iii) a type of residue formula for the characteristic classes of
Eyx (Theorem 5.1), which is based on the Cech theoretical treatment of
the classes due to Atiyah ([At]). The basic tools for getting (i) (iii) are:

(a) Some subvarieties of X and a coherent sheaf (cf. § 2.1), where the
former is gotten by taking Schubert subvarieties of Grassmann variety as
our model and the latter is gotten by applying the arguments in Section 1.

Actually, investigations of the above two data and uses of them in
the proof of (i) ~ (iii) are, the author feels, the central part of this paper.

As an application of (i), (ii) we give a criterion in order that the
direct image sheaf Ey is locally free and simple (§ 4). This criterion
gives a general method to get simple bundles over a smooth variety of
dimension >2 (Theorem 4.6), and is our main results for the original
purpose of the construction of bundles.

3. Very many important results have been known for constructions
of vector bundles. (See, for example, the surveys in [Har-1] and [Schn],
[Ok-Schn-Sp]). In connection with our proposed approach, we like to say
that many important results on the constructions seem to be concentrated
to the projective space ([Har-1] and [Schn]). On the other hand, in [Mar],
Maruyama developed a general algebraic argument on elementary trans-
formation, and got, among others, a basic result which says that there are
a ‘lot of” simple bundles over a smooth projective variety of any charac-
teristic and of dimension >2. (For more precise formulation, see [Mar].
See also a recent work of Sumihiro ([Sum]) generalizing [Mar].) From a
general character of the result of Maruyama, it seems, to the author, to
be suitable to take his result as a starting point for the constructions in
general situation. Now, our result mentioned above may be an analytic
analogue of the above result of Maruyama, and will be also a starting
point for further considerations.

Remark. In getting ‘starting data’ for the constructions of bundles,
there are some similarities between the view point in the theory of the
elementary transformation ([Mar] and [Sum]) and ours. Some relations
between them are discussed in Section 2.2 (cf. Remark 2.6).

As was stated in the beginning of this paper, the content should be
regarded as provisional, and some speculations arise concerning how to
push the present results further. We list them in the form of Question in
the course of the arguments. Good parts of them concern singularity
problems arising naturally in the construction of bundles. We hope that
they may be interesting for readers.
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Remark. This paper is a continuation of our previous works on
stratification theory and cohomology with growth and division ([Sa 1-4]).
We hope to write a survey paper for this and previous papers elsewhere.

Remark. The author does not present the proof of Theorem 5.1
and Lemma 2.5 in this paper (chiefly because of its length). The proof
will be given elsewhere in a near future. The other parts of the present
paper is read independently from the above two results.

A fact on morphisms to a Grassmann variety ([Hir] and [Ka]) (cf.
(2.6.4)) was informed by Kazama, by answering to my question. The
author expresses his thank to Professor Kazama for his kindness.

Notation and Terminologies

Here we summarize notation and terminologies, which are used
throughout this paper: First we make the convention:

complex variety = complex reduced space
( bundle=holomorphic vector bundle

For a complex variety X, we use the symbol Oy for its structure sheaf
without mentioning it. Letting §z be a coherent sheaf over X and U an
open set of X, we use the following notation:

(2) GLT(U7 DX)=GLT(F(U7 QZ&U))» and Mr(Us %X)zMr(F((L L?}XIU))
where, for an abelian group 4 and a commutative ring B, we mean:

M,(A)=the abelian group of r X r-matrices with coefficients in 4

3 GL,.(B)=group of rXr-matrices with coefficients in B, whose
determinant is a unit in B.

By a Cartier (resp. set theoretical Cartier) divisor of X, we mean a codi-
mension one subvariety Y of X such that, for each point p ¢ ¥, there is
an open set U of p (in X) with which we have:

@ There is an element fe I'(U, ) which generates the ideal of YN U
(resp. whose reduce divisor (), ..q coincides with (UNY).

As usual C and Z are the field of complex numbers and the ring of
integers. Also we mean by Z, the set of positive integers and we set
Z,,=Z, U{0}.

§ 0. Preliminaries

Here we add some remarks to the line (I), (IT) in Introduction.
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1. First of all, letting X be a complex variety and Ey a bundle®
over X, what we have in mind by ‘stratification theoretical treatment’ of
the bundle Ey is:

(*~1) To stratify X, to attach an open neighborhood to each stratum
and to form a frame of Eg over each neighborhood, and

(*<2) to use the stratification, the neighborhoods and the frames for
investigations of the bundle.

Thus our treatment is based on the Cec¢h cohomology theory, to which
methods of stratification theory are applied. Now the following defini-
tion is used throughout this paper.

Definition 0.1.1. In this paper we mean, by a prebundle over X, a
pair D,=(X? E,) consisting of a codimension two subvariety X* and a
bundle E; over X:=X—X2

Definition 0.1.2. (1) By an s-representation of D,, we mean a datum
D,=(X', N, ¢°, ¢') as follows: :
X'=(reduced) divisor of X, which contains X2,
N,=open neighborhood of X':=X'—X?in X,
e'=(el, - - -, e!), r=rank of Ey, is a frame of Ey,, (i=0, 1),
where we set Ny=X— X,

0.1)

(2) By an s-prebundle over X, we mean a pair D=(D,, D,) as above.
When there is no fear of confusions, we call E, also a prebundle (or
an s-pre bundle) over X.

\\ Xz// Xl
N
- ~
- ~
S~
_____//// \\\__________,—-No
Figure 1.

The datum D, is stratification theoretical, because writing N, also as
X°, we have a stratification %’ = (X", X?) of X and the frames e:=(¢e’, ¢')
(#=0, 1) are attached to the system of neighborhoods A4"/:=(N,, N,) of
&’. Now we sharpen the line (I), (IT) in Introduction as follows:

(II1) To find an s-pre bundle E, over X, and investigate its direct
image Ey by the stratification theoretical method.

In connection with (III), let A,, € GL(N,N N,, Oz) be the transition

*) Bundle=holomorphic vector bundle (cf. Introduction).
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matrix for the frames (e’, e'): e’=e'h,. Then our basic technique for the
investigations of Ey will be (cf. § 1):

(IV) Analysis of growth properties of 4,, with respect to the first
and second boundaries X! and X? of X°=N,,.

Remark 0.1. In Definition 0.1, the neighborhood N, of X'=X'— X?
is not determined ‘uniquely by (X', X?). As a type of such a neighbor-
hood, what we have in mind is a ‘tubular neighborhood’ of X* in the
stratification theory (cf. [Th] and [Mat]. See also [Sa-1].) Zariski open
neighborhoods of X! are also important. In this paper, we check what a
type of neighborhoods are used, according to arguments in question.

2. Here we check that our approach to bundle theory along the
line (I), (I1) have generalities. For this letting Ey be a locally free sheaf
over X, we make: .

Definition 0.2. We say that Ey is of type (e), if there is an s-pre
bundle D=(D,, D,) as in Definition 0.1 such that Ey is the direct image
sheaf of the prebundle appearing in D.

Lemma 0.1. Assume that X is normal and is a quasi projective variety.
Then an algebraic bundle Ex over X is of type (e).

Proof. First take a codimension one subvariety X' of X so that
Eg 0, X°=X—X}, is a product bundle, and we fix a frame ¢° of it. Next
take a codimension two subvariety X? of X which is also contained in X
Then one can assume that the restriction of Ey to X':=X'—X? is a
product bundle, and take a frame e of it. Assume that X' is an affine
variety, and take an open neighborhood N, of X' in X:=X—X?2 Then
we have elements e' C I'(N,, Ex) whose restriction to X* coincides with e’'.
Assuming that N, is small enough, we can assume that ¢' is a frame of
Ez v, Now we set D,=(X? Ey:=Eyy) and D,=(X", N, €, e'). Because
X is normal, we see that the direct image i Ey of Ey, i=injection: X=—>
X, coincides with Ey, and we finish the proof of this lemma. qg.e.d.

Assume that X is a normal Stein variety, and take a bundle E; over
X. Then, by the similar reasoning to the proof of Lemma 0.1, we see
that Ey is of type (e).

3. Now assume that dim X=1 and X is compact. Then we see
easily that ‘to give an s-pre bundle Ey over X’ is equivalent to give data
as follows:

(o finite points p,, ---,p, on X, neighborhoods N, of p, and
matrices 4, € GL(N,—p,, Oy) 1 <a=Zu).
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Repeating the arguments below Definition 0.1, we set N,=(_J,N, and
Ny=X—_J.p.. Then the bundle Ey is defined by the element:

(**-2) h(:=1{h,},) € GL(N,N N,, Og).

Though we do not enter into details of (**~1,2), we like to point out that
the procedure (**-1,2) has many similarities to classical treatments of
bundles over a Riemann surface ([Bir], [Weil] and [Tj]). In particular, the
notion of ‘matrix divisor’ in [Weil] and [Tj] is essentially equivalent to our
notion of s-prebundle in the present situation. .This observation is a
starting point of the present paper (cf. Introduction).

§ 1. Explicit expressions of E

In the remainder of this paper, we fix a normal complex variety X.
Also we fix an s-pre bundle D=(D,, D,) over X, with D,=(X?, E;) and
D,=(X', N, ¢, ¢'), once for all, where

neighborhoods N, and the frames e’=(él, - - -, e%) of Eyy,, r=rank
of Ex (i=0,1)

has the similar meaning to (0.1). ‘
In Section 1 we assume that there is an element y ¢ I'(5) such that

the subvarieties: X'DX? the bundle E; over X:=X—X? the
o

(1'0) Yiz(y)o,red in X

1. First we check that if the transition matrix A, for (¢, e') e
GL,(N,NN,, Oy): e=e'h,,in N, N,, has a suitable growth property with
respect to X!, then E is imbedded into £%.

Proposition 1.1.  Assume that hy :=hy' admits the following expres-
sion: :

(1.1)  hy=y °h}, with elements ae Z,, and hy, ¢ M,(N,, Oy). Then
Ey is imbedded into 7.

Proof. Define an O -homomorphism z: E;—O% by the following:

Ty Exly, 2 € 'Cl_‘_‘)ﬁofvl 3 g

Txo: Exly, 2 € —>0%, 2 y*-¢°

(1.2) {

where {*= (i, - - -, (%) is an element of Of, and e{‘'=37_,(i-¢!. Note
that (1.1) implies zy, =7y, in N, N,. Because X is normal, we see that
7 is injective. q.ed.
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Denote by Ly and L the determinant bundles of Ey and E%:=¢(Ey).
Then we have the following commutative diagram:

Q7
EY——SE®

(1.3) /\Tl lAT

I ’
LX’ WL‘Y
where /\" denotes the r-th exterior product morphism. Note that, by
taking f*:= /\"e’ to be a frame of Ly, (i=0, 1), the isomorphism (A "z)
is explicitly as follows:

{(/\ "t Lxly, 31 §'—>Oy, 3 (det 715,)- &',

(1.9
(Aot Laly, 3f°-C—>Op, 3 y*- L,
where {* is an element of O, (i=0, 1).

For an element ¢ € I""(Ey) we mean by the divisor of ¢ the one of
N'¢eI'(Ly). Letting D, and D,, be the divisors of ¢ and ¢'=1(p) ¢
I'"(E%), we have the following from (1.4):

(1.5) D,.=D,+ D, where D, is defined as follows: D,|,,=locus of
det hf; and Dy|y,=that of 1.

Note that -D,, is the divisor of A\7¢’ € I'(X, Oy), and treatments of it
are easier than those of D, in general. Divisors like D, will play basic
roles in our arguments henceforth (cf. § 2).

2. Next we check that a suitable growth property of A,, with respect
to X2, in addition to (1.2), will insure a more explicit expression of Ej.
For this letting x be an element of I'(y) which does not vanish on N,
we assume the following for the matrix Aj,: = hi7'(cf. (1.1)).

(1.6) hy=y2-(x W +y*-h"), where b and ¢ are elements of Z,,,
and A’ and A are respectively elements of M,(Oy) and M, (N, D). (We
may say that (1.6) claims that the main part of the matrix 4, is meromor-
phic with respect to ¥ and x.) Now let ¢ and @ denote the $g-morphism:
0% 3 {—O% » ¢ and the quotient morphism: O%—0%/1*O%. Then
we have:

Lemma 1.1. E'(=1(Ey)C Q%) is the kernel of the O x-homomorphism
w-p: Oy—O% /Y- 0%,  (We write w, p also for their restrictions to X.)

Proof. Take a point pe X' and an element { e O% ,. Then we
easily have the following equivalence:

(@) (e EY ,=h L e 05, =N ey Of b
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and we have E% ,=kernel of (w-s),. On the other hand, for a point p ¢
Ny(=X—X"), we obviously have: E; ,=kernel of w-p,=O%,,. q.e.d.

Lemma 1.2. The direct image sheaf Ex(:=1i,Ey, i being the injection:
X=—>X) is coherent.

Proof. 1t suffices to check the coherency of E%=i,E%. But, the
normality of X implies that E% coincides with the kernel of w-p: OF—
%V O%. q.e.d.

Remark 1.1. The above explicit form of E%:

(*) E%=the kernel of the Oy-homomorphism «-p: OF—O%/y*O%
will be used frequently in later arguments (cf. § 2 and § 3). Moreover,
remark that the isomorphism z: E; = E% is extended to the isomorphism:
E; 3 E%(C9O%). In later arguments we use 7 also for its extension.

3. Coherency conditions. Let X”* be a codimension two subvariety
of X and Fy, a locally free sheaf over X':=X—X". Recall that a basic
condition of Serre ([Se]) for the coherency of the Fy:=i, Fy,, i being the
injection X’: =X, is as follows:

(L.A) For each p ¢ X’ there is an open neighborhood U of p in X
such that I'(X’ N U, ¥y) generates Fy. , for each g e UNX".

Next we say that Fy, satisfies condition (L.G) if, for each p ¢ X”? there
are an open neighborhood U of p in X and a codimension two subvariety
X" of U containing X”2N U with which the following holds:

(L.G) There are an s-representation D,=(X*, N,, ¢°, e') (cf. (0.1)) of
D;:=(X"", Fy.ly _x») and an element y ¢ I'(U, Ox) with which the follow-
ing holds:

(1.7)  X':=(3"),.ea and the transition matrix 4,, for the frames ¢°, e!
of Fy over U—X', N, (=open neighborhood of X*:=X'—X""* in U~
X'"*) admits the expression of the form (1.1) and (1.6).

Lemma 1.3. The following three conditions are equivalent.
(1.8) (a) Fy is coherent (b) Fy. satisfies (L.A) and (c) Fy. satisfies
(L.G).

The equivalence of (a) and (b) is in ([Se]). The condition (c) is given
in terms of the growth properties of the matrix 4,,, and is concordant to
our stratification theoretical approach to bundle theory. Here we give
a simple proof of Lemma 1.3, by emphasizing the role of the growth
properties.

Proof. The implication: (a)c>(b) is obvious and (c)c>(a) follows
from Lemma 1.2. We check (b)>(c) as follows. For a point p e X/,
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take an open neighborhood U of p in X and sections e’ ¢ I'"(U— X", Fy)),
r=rank of Fy, such that /\"e¢’ does not vanish identically on U—X"2
Take an element y e I'(U, Ox) which vanishes on X, and the extension of
(A\7€Y0,rea to U, and we set X'=(1),..s- Next take an element e'e

I'"(U—X", Fy.) such that /\"e' does not vanish identically on any irreduc-
ible component of X!. Take a codimension two subvariety X’ of X
satisfying the following: X'DX”*OX72U(X'NX"), where X' is the
extension of (/\"e"), ..o to U. Then, by a simple observation, we have the
following relation in U— X"**:

(1.9) y*.e'=eh), with aeZ,, and hj e M, (U, Oy).

Thus setting D, =(X""?, Fy|z_z~) and D,=(X", N,, €’, e'), with a suitable
open neighborhood N, of X'=X'—X"?, we get an s-pre bundle D=
(D,, D,), where the transition matrix A, for (¢°, e') clearly satisfies (1.1)
and (1.6). q.e.d.

§ 2. Bundles of type (G)

The most important property of the s-pre bundle in the title is the
existence of (rank of the prebundle 4 1)-sections of the prebundle satisfy-
ing suitable conditions (Definition 2.1). This section is divided into three
parts according to the nature of the arguments.

§ 2.1. Key definitions
1. First we make:

Definition 2.1. We say that the s-pre bundle D=(D,, D,), where
D,=(X?, Ey) and D,=(X", N,, €, ¢') (cf. the beginning of § 1), is of type
(G), if there are sections e=(e, - - -, e,,,) of Ey, r=rank of Ey, with
which the following hold:

(2.1.1) The frames e° (i=0, 1) are of the form: &"=(e,, - - -, €, _1, €,)
and elz(el, cs gy er+1)-

2.1.2) (A€, (CX:=X—X? is a reduced divisor and its closure
in X coincides with X

(2.1.3)  (A7€)orea (CX) is a (reduced) divisor, and letting X”* be its
closure in X, the codimension two subvariety X2 is of the form: X?=
Yl n Y/l.

Remark 2.1. Note that N:=(X—X")(=(X—X"")) and X'':=X"
— X7 satisfy: (1) N/DX':=X'—X? and (2) ¢' is a frame of Ey over Nj.
Note that they are the conditions imposed on the open set &, of X, which
appears in D, (cf. (0.1), § 0). In order to fix our idea, unless we say
otherwise, we assume the following for an s-pre bundle D of type (G):
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(2.1.4-1) The neighborhood N, of X* is taken to be Ni{(=(X—X"")).
In connection with this, we remark the following immediate consequence
of (2.1.1-3):

(2.14-2) X'NX"=¢,and N, DX, N,DX".

Remark 2.2. One can check easily that the most important property
of an s-pre bundle of type (G): ‘it admits (r-+ 1)-sections as in Definition
2.1’, characterizes also such a bundle in the sense that the following equi-
valence holds:

(*) To give an s-pre bundle over X of type (G)& To give an s-pre
bundle over X, which admits (r-+1)-sections e of the prebundle such that the
frames €® and e', formed in the manner as in (2.1.1), satisfy (2.1.2, 3), where
r is the rank of the prebundle.

Next, for convenience of later arguments, we add the following to
Definition 2.1:

Definition 2.2. D is said to be of type (W.G.), if (2.1. 1, 2, 4) and the
following weaker form of (2.1.3) holds.

(2.1.3Y X*=X'NX", where X" is a divisor of X such that X":=
X" —X*is a set theoretical Cartier divisor and (/\’e"),..a " X"". (Note
that X" is not, in general, determined uniquely by e!. When we are
concerned with an s-prebundle of type (W.G), we fix a divisor X”! as above
and the open set N, defined as in (2.1.4-2).)

2. Now, letting D=(D,, D,) be the s-pre bundle of type (W.G) as
in Definition 2.2, we have:

Proposition 2.1. The following holds for D.

(2.1.5) X'=X'—X*and X"=X"—X* are, respectively, Cartier and
set theoretical Cartier divisors of X. '

(2.1.6) The transition matrix hy for (&', e'): e=e'hy, in N,N\N,, is
explicitly as follows:

Ir-l fl
(2.1.7) th= e
(U
where f,, - - -, f, are meromorphic functions over X with the pole X".
(2.1.8) (1), is reduced and coincides with X* (in Ny=X—X").

2.1.9) 1)f, and filf, 1<jZr—1) are holomorphic in N, (DX")
(cf. (2.2.4-2)).

Remark 2.3. Note that (2.1.8) gives a defining equation of X' in N,.
In later arguments, we discuss such an equation of X' in X (cf. Lemma
2.6 and Proposition 3.1. Also see Remark 2.5.) - :
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Proof of Proposition 2.1. First (2.1.5) is a direct consequence of
(1.1.2) and (2.1.3y. Next we check (2.1.6, 9) as follows: * Remark that '
is a frame of E, over N, and €° is an element of I'"(Ey). Then, from
(2.1.1), we obviously have:

(@) Ay, is of the form (2.1.7), by understanding that f;, - - ., f, are
holomorphic functions on N,.

On the otherhand, it is checked easily that &, = h;;* is of the form:

]101= [Ir—l —f;/fr
0 1/f,

But ¢° is a frame of E; over N,, e' is an element of I'"(Ey) and e'=e’hy,

in N,. Thus the coefficients of &, are holomorphic in N, and we have

(2.1.9). Next, from (a) and (2.1.9) (cf. also (2.1.4-2)), we see easily that

fi» - -+, f» are meromorphic functions over X with the pole X' and we

have (2.1.6). Finally, from (2.1.7), we have:

®) (Ae)=f(\"€)in N,.

From this we have (2.1.8), and we finish the proof of this proposition.

g.e.d.

(2.1.10) ] (gigr—0.

Remark 2.4. Assume that X is smooth. Then, in (2.1.6), we have
the unique extensions f; of f; to X. Thus, in that place, one can assume
that f;, - - -, f; are meromorphic functions over X with the pole X"

3. Basic tools. The arguments here are divided into three parts,
according to their nature.

3.0. Letting D=(D,, D,) be the s-prebundle of type (W.G) as in
Definition 2.2, we assume that there are elements s} (1<j<r-+1) and
Sra10 S7.1 € I'(©yg) such that (2.2.0-1, 2, 3) soon below hold:

(22.0-1) fi=ss; 1Lj=r—1) and f,=s,,,/s;, where f; are the
coefficients of the matrix 4, (cf. (2.1.7)).

(22.0-2) X"'=(5Dorc0r

(2.2.0-3) (5,.,), is reduced and coincides with X*. Moreover, s}, =
Sra1 's;',-l-l a‘nd (s;'/+1)0,redcy,1-
Define matrices 4, and A, by h,=hy' and h,=s;1,-#),. Also we set
hy="hy . Then, by a simple computation, we have:

(2.2.1) h('n———[s”blm gl], where g'=(g})j-, with gj= —s}/s7.,
(I=jsr—1) and g;=s7/s7,..
/
222) My=(s,,,-s7)""- I, where W= [s’{)’" g], and the vector
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g=(g,);-, is as follows: g,=s} (1<j<r—1) and g,=s,,,. (Remark that
(2.1.9) and (2.2.0) imply:
(2.2.1y g (1Lj<r) are elements of I'(Oy).

Remark 2.5. If X is smooth, then (2.2.0-1, 2, 3) are legitimate in
the local situation. Namely, for a point p ¢ X, take a suitable open
neighborhood U of p in X. Then, by restricting the data X2, Ey, -- -, to
U, we check easily that f; and X!, X”* admit the expression given in
(2.2.0-1, 2, 3)in U. In the global case, we see easily that a similar expres-
sion to (2.2.0-1, 2, 3) holds by understanding that s{, - - - are sections of
a suitable line bundle over X.

3.1. Our first tool is the imbedding of Ey into % as in (1.2) (cf.
also Remark 1.1) and some resulting explicit expressions of Ej.

Proposition 2.2. (1) The imbedding r: Exy=——>E(:=1(Ex)C Q%)
(as in (1.2)) is as follows:

1
@23-1) {TI”‘: Eiln 2600528 o[ ]
Tl xo: Exly, 2 €0°—>0%, 3 5,,,- L.

(2) We have:

(2.2.3-2) (e)=s,,u; 1<j<r) and (e, ,)=q’, where u,= the j-th
unit vector of O% (i.e., the i-th component of u;=3é,, (1<i<r)) ande,, - - -,
e,.,areas in (2.1.1).

(3) E%(:=1t(Ey)) is the kernel of wp:O 5—Ok., where w is the quo-
tient morphism: O%—O%, and the Oz-homomorphism y is given by:

2.2.4) 1 O% 3 L=>Df 5 Lig+s, - [%]

(In (2.2.3-1) and (2.2.4), {* and { are the elements of Of, (i=0, 1) and
O%. Moreover, {i and ¢, are the r-th components of {* and &, and ¢, ¢’
are the subvectors of (', { consisting of the first (r— 1)-components.)

Proof. (1) and (3) are just a rewritten form of Propositions 1.1 and
1.2 in the present situation, while (2) follows easily from (1). q.e.d.

Now, we give a simple but quite useful expression of E%. For this
let A be the submatrix of 4’ consisting of the first (r— 1)-rows of it, and
we set h”’ = w(k’’) with the quotient morphism w: Oz—>O,:=Oy,.

(22.5-1) h"=[§I,_,, §l, where §,=w(s}) and §=(2,);=} with &,= w(g,).

Let X denote the O,-homomorphism: 7 5 07~ 5 4”.Z, and we define
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an O,-module ¥z, (COI) to be the kernel of X. Thus an element &=
€));-1 € £ is in Fy., if and only if

(2.2.5-2) -g+35.-8'=0, with =)zl
Lemma 2.1. We have the following exact sequence:

(2.2.6) 0

i @
>S5, 4 130% E% Fxi—>0,

where w is the restriction of w: OF—07 to EY(C0%) and i is the injection
of s, Q% into OF.

i
Proof. First remark that (2.2.6) is reduced to s,,,0y——>E% in N,.
Next take a point p € X* and an element { ¢ O% ,. Then we easily have:

(@) e By &l Les, Op & h 0(0)=0
Thus we have: Fz: ,=w(E%,,). Because Fz.is the submodule of O, we
obviously have: kernel of X=1s,, O%. q.e.d.

By Lemma 2.1, investigations of E% are reduced to those of Ty
The sheaf Fy, and the exact sequence (2.2.6) will play basic roles in later
arguments (cf. § 3.2).

3.2. Next, from the sections e=(e,, - - -, e,,,) € I""**(Ey) (cf. Defini-
tion 2.1), we form some subvarieties of X. First we set:

(2.2.7-1) X!:=the closure of (A e’),.a( CX) in X, where we set:
e=(e, &g s ) (er+1—j is omitted) (0= j <r).
(Thus we have: :

(22.7-2) Xi=X'and X!CX’'. Moreover, if D is of type (G), then
Xi=X" (cf. (2.1.2, 3) and (2.1.3)).
Also we have:

ProPOSition 2.3. A_/;Z (g;%l—j)o,red (1 é.] gr) and Yé= (sr+1)0'

Proof. First assume that 2<j<r. Then, by a simple computation,
we have:

(2.2.8-1) {Arej:grwtl—j(/\re) in N,

Ne= T+1—j(/\TeI) in N,
From the explicit form of f,,,.; and g7,,_; (cf. (2.2.0, 1)) we get this

proposition for 2<j<r, once we see that s, and s/, are units in N, and
N,. On the other hand, from (2.2.0, 1), we have:

(22.8-2) N'e'=f(/\"€) in N, and \"e'=(g;/s,..)(/\"¢") in N,.
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Thus remarking that s, and s,,, are units in N, and N,, we see that
g r

(2.2.8-3) (N7€)=(s,.1)o and (A’e)y=(g}), in X.
(For the case of j =0, we also use (3) in (2.2.0).) q.e.d.

Now, using the varieties X} (0<j <r), we form the following subvarieties
of X:

(229-1) Y'=(Nj-,X3}), and Y=the union of the irreducible
components of Y’ that are not contained in X},,.

(229-2) Z=YNXi,.

Then we obviously have:

(2.2.9-3) X(=X'NXHDY>Z

Moreover, we define a closed subvariety Y, in the following manner:

(2.2.9-4) Y,=the union of the irreducible components of (X' N X%)
that are not contained in (Y U X1,,) (1<j <r).

Thus we have:

(2.2.9-5) (X'NXH=Y UY,U (X%, N X))

XoX'DX)oY>Z
U
Y, < j<r)
Figure II.

These varieties admit a clear interpretation from a view point of Schubert
calculus, when the s-pre bundle D is obtained from the universal quotient
bundle over a Grassmann variety (§ 2.3 and Appendix I).

§ 2.2. A remark on finding an s-pre bundle of type (G)

1. First, let us start with a datum U= (X", X", £) as follows:

(2.3.1) X*'and X" are reduced divisors of X such that X?=X'N X"
is of codimension two in X and X*:=X'—X?as well as X"':=X"—X?
are Cartier and set theoretical Cartier divisors of X.

(2.3.2) f=(fi, -+-,f,) consists of meromorphic functions f; (1<)
<r) over X with the pole X!, and (f}), is reduced and coincides with X
in Ny=X—-X"\.

Then we set:

*) Dy, =(X?, Ey) and Dy,=(X', N, ¢, e'),

where the bundle E, over X:=X—X* is characterized by (1) Ey|y, has a
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frame e’ (i=0, 1), with Ny=X—X*, and (2) the frame relation ‘between
fi
e’ and ¢' is: e=e'h,, in N, N N;, with the matrix ,,= |/ :
o
Proposition 2.4. D, :=(Dy,, Dy,) is an s-pre bundle and satisfies the
Sfollowing :

(2.3.3) The components ¢} (1<j<r) of € are sections of Ey and
the first (r— 1)-components of e° and e' coincide, and

(2.3.4) the last element é. of €' is @ meromorphic section of Ey over
X with the pole X",

Proof. This is straightforward from (2.3.1, 2). g.e.d.

Note that, in general, e} is not a (holomorphic) section, and D is, in
general, not of type (W.G). But it is easy to see that

(2.3.5) e} is a (holomorphic) section of Ey, if and only if f satisfies
(2.1.9), and we clearly have:

(2.3.6) Dy is of type (W.G), if and only if f satisfies (2.1.9). Now,
let % be the collection of all data U=(X*, X!, ) as in (2.3.1, 2), which
also satisfy (2,1.9). Then, by Proposition 2.4, D, is an s-pre bundle of
type (W.G). Moreover, we have:

Proposition 2.5. (1) The map:

(24.1) %> U=(X", X", {)—{s-pre bundles of type (W.G)} > Dy is
surjective, where Dy, is defined in the manner (*).

(2) Dy is of type (G), if and only if

(2.4.2) (A7€yzea cOincides with X.

Proof. (1) follows easily from Proposition 2.1, while (2) is a direct
consequence of (2.1.3). q.e.d.

Thus, in order to find s-pre bundles of type (W.G) and (G), it suffices
to find a more naive datum U. S

2. Now, a simplest (but a most important) method in getting a
datum U just above may be as follows: Start with a line bundle Ly over
X and sections s=(s;, - - -, 5,,,) € I'"*/(X, Ly) satisfying the following:

2.5.1) (s,,), is reduced and (s,,,); N (5,),rea 18 Of codimension two
in X.

Then setting

(252) X'=(s,.0)0 X'=(5)oma and fi=s;ls, I<j<r—1), f,=
Sr+1/sr> )
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one checks easily that the datum U(s)=(X", X!, f=(f));.,) satisfies
(2.3.1,2). Also it is easily seen that the s-pre bundle D,= Dy, is of type
(G). Some discussions for such an s-pre bundle D, will be given later

(cf. § 4).

Remark 2.6. In the construction of algebraic vector bundle in [Mar]
(cf. Introduction), Maruyama starts with a smooth divisor D of a smooth
quasi projective variety X (of any characteristic) of dimension >2. Then
he takes sections s, - - -, 5, € I'"(L,), L, being a line bundle of D, such that
M21(87)0,ea=¢ (cf. Principles 2.5 and 2.6, [Mar]. See also [Sum] where
the smoothness condition for D and (s;, - - -, s,) is dropped to certain
degree). Assume that X is defined over C. Then, letting Ly and
s=(s, +++, 85,)0CI(X, Ly) be as in (2.5.1, 2), we have the divisor
D(=(5,.1),ra) and the sections s;, - - -, s, of L,, where L,:=0,QLy and
S;, + - - are the restrictions of s,, --- to D. Thus we have similar datum
(D, (s, - - -, 5,)) to the one in the theory of Maruyama (though we do no
assume the corresponding conditions for D and (s, - - -, 5,)). Conversely,
starting with a datum (D, (s, - - -, 5,)) as in [Mar], take a line bundle M,
over D suitably so that N,=L,®M, has an extension to X. Then it
looks like that one can get our datum (Lyg, (s, - - -, s,,,)) by regarding
S, + -+, 8, as sections of N, and extending them to X. (We like to discuss
relations more precisely in an another place.) From what are mentioned
just above it seems to be better that our theory is giving an another
treatment of the results of Maruyama, when the conditions on the smo-
othness of the divisor and on the disjoince of the loci of the sections are
satisfied. How to treat bundles without the above conditions may be an
open problem (from either view point- of the elementary transformation
([Mar] and [Sum]) or of Cech-stratification method in this paper). In spite
of the above similarities between the starting data for the constructions
of bundles, we point out that our view point and techniques differ largely
from the ones in [Mar].

§ 2.3. Relations to Grassmannian geometry

1. Let Fbe a vector space of dimension # over C, and let V be the
Grassmann variety of d-dimensional subspaces of F, where 1<d<n—1.
Then letting F denote the product bundle ¥ x F, we have the exact
sequence of the universal bundles:

(2.6.0) 0—>G7-—>F7—0>EV—>0, where G and Ej are the sub and
quotient universal bundles over V. (Recall that G, is defined to be:
Gy ,=tautological subspace G,(CF) of peV.) Takea basis ¢, - - -, €,
of F, and we write ¢’, ---, also for the corresponding sections of Fy.
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Setting e,= w(e¢}) (1< j <n), we form the following subvarieties of V:

2.6.1) V'=(\"€"), and V"'=(\"e"),, and V*=V'N V", where we
set: e0=(€1, trrs gy er) and elz(ela s €y er+1)'

Lemma 2.2. The s-pre bundle D={(D,, D,), where D,=(V?, Ey|,) and
D,=(V', N, e e), V=V—-V?and Ny=V—-V", is of type G.

The proof is given in Appendix I, where we summarize some explicit
computations for Ep which are obtained from Schubert calculus or
elementary direct computations.

Next, returning to our original variety X, we will give a corresponding
fact to Lemma 0.1 for the s-pre bundle of type G. For this we say that
a bundle Fy over X is of type G, if there is an s-pre bundle D=(D,, D,)
of type G such that Fy is the direct image of the pre bundle which appears
in D,

Lemma 2.3. Assume that X is normal and a quasi projective variety
and that Ex is an algebraic bundle over X. Then letting L be the line bundle
corresponding to the hyperplane cut, we have:

(2.6.2) E,QL™(m>0)is of type (G).

Proof. It is well known that Ex@L™ is the pull back of the universal
quotient bundle of a Grassmann variety (cf., for example, [F]). Then
from the generic position argument in [KL-2], we have this lemma. q.e.d.

When X is a Stein variety and Fy is a bundle over X, the following
stronger form of Theorem A of H. Cartan holds ([Hir] and [Ka]).

(2.6.3) There are finitely many sections s==(s,, -- -, s)CI'(Fy)
which generate Fy , for each p € X.

Thus the bundle Fy is induced from the universal quotient bundle of
a Grassmann variety. Lemma 2.3 and (2.6.4) are supporting facts for
our introduction of the notion of type (G). In connection with (2.6.4) we
make:

Question 2.1.1. Is any bundie over a Stein variety of type (G)?

Question 2.1.2. (1) Is any bundle over a Stein variety induced
from the universal bundle over a Grassmann variety? An affirmative
answer to Question 2.1.1 seems to follow from 2.1.2 and a corresponding
fact to the generic position argument in [KI1-2].

Remark 2.7. Lemma 2.2 is a starting point for our introduction of
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the notion of type (G). As a matter of fact, our idea in introducing the
notion of type (G) may be given as follows:

(**) To form bundles over a complex variety, which have similar
properties to the universal bundle over a Grassmann variety, by direct com-
putations (assuming only the facts for line bundles) '

4. Here we check that the ‘notion of type (G) appears also in analysis
of singularities of coherent sheaves. Namely, start with a coherent sheaf
Fy over X and a subvariety Y of X of codlmenswn =2, Wthh satlsﬁes
the following:

(2.7.0) Fy:=Fx|y, X=X—7Y, is locally free and Fy coincides with
the direct image sheaf of Fy. .

Then what we want to do is:

(*) To attach a suitable s-pre bundle of type (G) to Fy and to use it
for analysis of properties (like local freeness) of Fg.

For this we first recall the following basic fact concerning the smgularltnes
of coherent sheaves:

Lemma 2.4 (Scheja [Sc] and Siu-Trautmann [S-T]). Assume that X
is smooth. Then the singular set S(Fy):={qe X; Ff . is not O, . -free} is
of codimension =3 in X.

Next take integers (1<) r<<t. For each index I=(i, ---,i,): 1<
i <---<i,Zt take an element f; € ['(0g). Then for an ¢ X r-matrix
A e M,.(C), we form an element f, € I'(Oy) by R

(2.7.1) f,=>,det A”-f;, where A’ is the submatrix of A4 consisting
of I(=(i, - - -, i,))-TOWS. .

We denote by D, the divisor of f,. Also setting f:=(f,),, let B,
denote the base locus of £: ' '

272 B=; (Foes -

Take a matrix 4;e M(C) and a point pe X. Then choosing a
suitable open neighborhood U of p (in X) and ¥V of A, (in M,.(C)), we
have the following

Lemma 2.5. Take a proper subvariety W of V. Then, for each A e
V—W, we have:

(2.7.3)  (Dysi0g— (BN X))\ 18 of codimension =4 in X.

This may be an analogue of the theorem of Bertini (on the moving
singularities of the divisors in a linear system) to our ‘Grassmannian
system’ of divisors D,; A € M,,(C). The proof is given by reducing it to
the original Bertini’s theorem, by a certain induction argument. The
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proof requires some pages, and is given in an another place (see also an
algebraic analogue of Lemma 2.5 in [Sa-3]).

Now, take a point p e Y and an open neighborhood U of p in X,
and we choose sections e=(e,, - - -, e,,)CI'(U, Eg) suitably. Then, sett-
ing &=(e, -+-,e,_,,¢)and e=(e, - - -, e,_,, e,,,), we form subvarieties
of U as follows:

(2.8.1) X*'and X" are the closures of (A\"¢") and (/A "e") (C UﬂX)
in U, and X’=X'NX", N\=X—X".

Lemma 2.6. Assume that X is smooth. Then the s-pre bundle D=
(D,, D,), where ' »

(2.8.2) D,=(X" Fy|y), X=X—X?, and D,=(X', N,, ¢, &")
is of type (G). Moreover, we have:

(2.8.3) X! is irreducible and codimy X sing23

Proof. Take sections s,, - - -, s, € I'(U, Fy), which generates Fy over
U. For a general matrix 4 e M, (C), we set:e,=s-A and D, =the
closure of (/\"e,), in X. Then Lemmas 2.4 and 2.5 imply: codim X% ,=>3.
This also implies that X, is reduced and irreducible. Moreover, taking
a suitable section e,,, € I'(U, Fy), we see easily that (e, e,,;) satisfies
(2.1.1 ~3), and we have this lemma. q.e.d.

For our s-pre bundles (in particular, those of type (G)), a quite. basic
problem is to discuss properties of the varieties X!, X2 (and Y, Y, - - - as
in (2.2.9)). Lemma 2.6 concerns the singularity of the divisor X!, and we
are led to make the following

Question 2.2, Letting sections e=(e,, - - -, e,,,)- have the similar
meaning to the one in Lemma 2.6, discuss the nature of the singularity of
the divisor X!. Also discuss the similar things for the varieties X% Y and
Y, (1<j<r) (of. (2.2.9)). The above question seems to have relations
to the theory of Le-Teisser-Navaro ([Le-Te] and [Nav]) on treatments of
singularities of coherent sheaves (and underlying theories of Nash modi-
fications).

§ 3. Local structures of the direct image Ey
In Section 3 we assume:
(*) X is smooth, and the s-pre bundle D= (D,, D,) is of type (W.G).

We use freely the notations for D, which were introduced in the
beginning of Section 1 and in Section 2.1.
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§ 3.1. Plans for investigations

1. The arguments in Section 3 will be done, by using the Og.-
module Fy, and the varieties ¥, Z and Y, (1<j<r) (cf. (2.2.5,9) and
Figure II, § 2.1). Our arguments will be basically divided into the follow-
ing three steps:

(*~1) Those for (X—Y),(Y—Z) and Z.
The first step is done by an entirely elementary argument. The main
subject in the second step is:

(*-2) To construct explicitly frames of Fy, and Ex, by using structures
of x: and the variety Y (Theorems 3.1 and 3.2). Now the third step of
the investigation of ¥z, and Ey over Z concerns the singular locus of the
divisor X' (cf. (2.2.9)), and the arguments become substantially harder
than the ones in the first two steps. Our main idea in the third step is
then stated as follows:

(*=3) To make a full use of the explicit form of the frames in (*-2)
for the investigations of Ex over Z.

The main result in the third step describes the germ Fy. , (pe Z)
explicitly in terms of the ideals of Y, (cf. Theorem 3.3).

2. Here, using the assumption of the smoothness of X, we sharpen
the arguments in (2.2.0) ~(2.2.9). First, recall that the explicit form of the
transition matrix 4, for the frames e°, ' is as follows (cf. (2.1.6)):

S
(3.0) h,=|4 - |, with meromorphic functions f;, - - -, f, over X
0 fr
with the pole X”* (:=the closure of (/\ "e"), ..a (CX) in X).

For the divisor X”* of X, we assume:

(3.1.1) X" has the finite irreducible components (and we write the
irreducible decomposition of X" as: X"'=X'U --- UX L)

(3.1.2) There are elements s,,, ---, S, , € F(sDX), which generate
the ideals of X7, - .., X/

Moreover, we assume the existence of data as follows:

(3.1.3-1) s, ---,5_, and s,,.,€ I'(Oy) such that none of them
vanishes identically on X7* (1<t <u), and

(3.1.3—2) m(j)=(m(j, 1), - - -, m(j, u) e Z* (1<j<r), with which
fi» -+ - f, are expressed in the following form:

(3 1.4) fi=s;/sm9 (1<j<r—1) and f, _sH,/s"‘(’), where we set
SEDN = gmD L gmiw (1< <r).

Remark 3.1.1. Because X is smooth, (3.1.1) ~(3.1.4) are valid in the
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local situation (cf. Remark 2.5) and are ligitimate for the investigations of
the local structure of Ey.

Remark 3.1.2. For t=1, - - -, u, we set:
(3.1.5) m,=max (1, max’_, m(j, t)), and set:
G.LO)  si=[lism, si=[[Lstmo0 (I<j<r—1) and
spa=([Ti 7™ ") 5,00

Then the elements si, .- -, s;,, satisfy (2.2.0). The arguments below
follows easily from (2.2.1~9).

3. First we set:
(3.2.1) n(j)i=mr)—m(j)e Z* (I<j<r—1),
and define vectors as follows:
(322 g=(g);.., with g;/=—s5;57 (1<j<r—1) and g,=s7".
Then the matrices Ay :=hy', by :=s,..hy and Aj,=hi7' are explicitly as
follows:

hsl=[s”b’” g]a and  Hy=(s,,,s}")l, with
(3.2.3)
h/=|:gr(l)r—1 ""gj] a<gj<r—1.

Sy

Proposition 3.1. We have the following.

(B.3.1) (A"€)y=(s,.1) in X (and so (s,.,), is reduced and coincides
with X' (in X)).

(3:3.2) (A"€)=(8) (=(s7™),) (in X), and s0 m(r) € Z%,

(3.3.3) The elements n(j) are in Z*, (1<j<r—1).

Proof. The first two facts follow directly from (2.2.8), and the last
follows from the explicit form of 4, (cf. (3.2.3)) and (2.1.9). q.e.d.

The varieties X}, Y- - - ars as follows:
(334)  ¥'=(joi()oma on X', and Xi=(g s Joves (1S =1).
For completeness we rewrite Figure II, Section 2.1:
3342 D=(gu e Q<j=r), Xi=fi=X"
(3.3.5) Y =521 (g)o,rea ON X7

For completeness we rewrite Figure 11, Section 2.1.
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. (XoX'oX)DYDZ ((=YNXL,)
(3.3.6) O
Y] agj=sr)

4. Thirdly, letting the injection z: Ex=—>E%(=1(E)C0%) be as
in (2.2.3), we have:

341D cle)=s,.u, 1<j<r) and (e, ,,)=g, where u; is the j-th
unit vector of Of (cf. (2.2.3)).

Let A” be the submatrix of #’ consisting of its first (r— 1)-rows, and
we set /1’ = w(h”’) with the quotient morphism w: Oy—Oy.

(342 B'=I[g-1,_,, (—§)] (1 <j<r—1), with &= o(g,).

Then the basic Og,-module Fy, is defined as follows:

(3.4.3) An element =({,)}., € O%: is in Fygi,, if and only if it
satisfies: §,-,=§,-C, (1<j<r—1).

Moreover, the exact sequence (2.2.5) takes the following form:

(3.4.9) 0—>s,,. Or—>Es—>Fgi—>0.

§ 3.2. Frame constructions
In Section 3.2 we write Oy, and Fz: as O, and F,.

5. First we check that £% and , have very simple properties
outside Y (cf. (3.3.5)). For this setting N,=X—X?% (0</j <r), we obvi-
ously have:

B51D) X—Y'={J;.,N,

Lemma 3.1.1. Ejy is locally free over (X—Y), and we have:
(3.5.2) ¢ isaframe of Ex|y, (0<j<r) (cf. (3.3.4)).

Proof. Recalling the definition of X% (cf. (3.3.4)), it is clear that e’
is a frame of Ey over (N,—X?%). This implies also that, for a point p e
(N,NX?), Eg,, is Og ~free and e’ is a base of it. Thus we have this
lemma. . q.ed.

Next, take a point p ¢ X'—Y’. Then for §=(§,);., (= wrle,,,)) (cf.
also (3.4.2)), we have:

Lemma 3.1.2. Assume that each g, (1< j<r) is not a zero divisor in
Oi,p-  Then the O, ,-module F, , is spanned by §.

Proof. Take an element e §,, (CO7). Then, from the explicit
form of F, (cf. (3.4.3)), we see easily the following:

(3.5.3.1) If one of the j-th component {; of {=0 in O,, 1Lj<r),
then £=0 in %,

From this we see easily the following:
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(3.5.3.2) If there is an element ¢ ¥,, such that one of its compo-
nent, say {;, does not vanish at p, then the ©O,,-module %,, is generated
by Z. '

On the other hand, from (3.3.5), we see that one of g, (1< <r)
does not vanish at p, and we have this lemma. qg.e.d.

Remark 3.2. We take e’ to be a standard frame of Eg|y, (0= <r).
Also, if ©,, does not contain a zero divisor for each p e X' —Y’, we take
g to be a frame of the invertible sheaf &, over X'—Y’. Assume that

(3.5.3.3) gj does not vanish identically on X* (1< <r)

Then, if X* is normal, we have: .

(3.6.0Y g, (1<j<r)isnot a zero divisor in O,
and § is a frame of &, over (X'—Y’). In the remainder of Section 3, we
assume:

(3.6.0) the generic condition (3.5.3.3) for g, (1< <r) holds.

6. Here we examine the local structure of &, and E% over Y —Z.
For this, in the remainder of n.6, we fix a point pe Y—Z(C XL,) and
we write the irreducible decomposition of g, (1< j<r) as follows:

(3.6. 1—0) g=1f0...i2™ and g =HOH. .. {30087 (1<j<r—1).
where 7, - -+, §, vamshes at p and irreducible in O, ,,. Moreover the
elements a(l), -+, a(k) and b(j, D), - - -, b(j, v) are elements of Z, and

Z ., respectively, and g/ € 9, , is not d1v1ded by i, (1<Zi Zv).

Next, for purpose of explicit computations here, define a subset I; of

{t, -, v} (AZj<r—1) by:

(3.6.1-1) IL={ie{l, ---,v}: b(j, )<a(j)},
and we set:

(3.6.1-2) I=UJjzi ({1, - - -, v}) (or, alternatively, I={ie{l, - - -,
v}; b(j, i)<a(j) for an element j e {1, -+, r}}), and

(3.6.1.3) b,=minjz1b(j, i) (for i e I).

Then the following lemma determines explicitly the £, ,-module §,,,.

Lemma 3.2.1. Define an element jj=(3,);-, € 7, by
Go=I,ep 9009 and  §i,= (I, t29D-7®)
‘(Hiez t'?”'“‘““))-g'&’ agjgr—0.

(When I=¢ we understand that 3, and the first factor of ;=1 (1<j<
r—1).)

The the element 7 is in F,,,. and generates the O, ,-module , ,.

(3.6.2)

Proof. Recall that an element {=(£,);_, € Of, is in §,,,, if and only
if
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(a-1) 85,—85=0 (IZjsr—1) (cf (343)).
But, by a simple computation, we have:
(a-2) gj'ﬁrzgr'%:([]iez FEO-r@0 DY ([], £299)- 87,

and we have: 7 e ¥, On the other hand, if £=({);., is in §, , then,
from (a-1) and the definition of I (cf. (3.6.1-2)), we have easily: £, =0
(mod F*®-*®) (i e I) and {,=@-7, with an element @ ¢ O, ,. By (3.5.3.1)
and (3.6.0), we have {=a&-7, and we are done. g.e.d.

Take an element 5 e E% , such that o(y)=7. Then, from Lemma
3.2.1 and (3.3.5), (3.4.1), we have:

Lemma 3.2.2. The Oy ,-module E% , is generated by s,.,-u=
(=2(e?) 1< j<r) and 5, where u, is the j-th unit vector (cf. (2.2.3-2)).

From this lemma and (3.3.4), (3.6.2) we have:
(3.7 g(—_—wf(ern)) =(;¢,17) (Hiel {39y

Now, we give a condition for the Oy ,-freeness of Ey , in the follow-
ing form:

Theorem 3.1.1. Ey , is O, -free if and only if there is an element
je{l, .-, r}such that

(3.8) 8:=0(modg;) inQ, forallk=1, .-, r.
Next define a vector 7(j) (1< j<r) by

(3.9.1) 7()=(1/8,8.
Theorem 3.1.2.  Assume that (3.8) holds for an element je {1, - - -, r}.
(1) We have:

(3.9.2) g/ does not vanish at p, and (j)= (187, if j%r, i(r)=7, if j=r.
(@) We can take i(j) to be an O, ,-basis of F ,-

Remark 3.3. The base 7(j) as above is given in a global form in
comparison to the one 7 in Lemma 3.1.2.

Proof of Theorems 3.1.1. and 3.1.2. (i) It is obvious that (2) in
Theorem 3.1.2 follows from Lemma 3.1.2, Theorem 3.1.1 and (1), Theorem
3.1.2.

(i) 'We prove Theorem 3.1.1 and (1), Theorem 3.1.2 as follows:

(ii-1) First, letting 7 ¢ E% , be as in Lemma 3.2.1, we define the
germ X3, . of a divisor at p as follows:

(a-1) X}, ,=the closure of (e,,...\é;n...n€rn7 (P(CX,) in X,
where X, - - - are the germs of X, - - - at p.
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Then, from Lemma 3.2.2, we eas11y have the following equlvalence

(a-2) Eg,,is O, freecM;., X5, ,=¢.

But, from (1.5), we have:

(3—3) Y‘lj’,p=(det (7.'(6'1), ) ‘Z'(ej)’ T T(er)9 0)/*9::} 0,red*

On the other hand, by (3.5.2), we see that the right hand side of
(a—3)=1;, (=the j-th component of 7), and we rewrite (a-2) as follows:

(a—4) Ey,,is Oy ,-freeSy; does not vanish at p for an element j e
{1’ cee r’}~

(ii-2) Next we analyze the right hand side of (a—4) as follows:
First assume that /=¢. Then, from a simple observation, we have:

(b-1) 5,(=1) does not vanish at p, and &,/g.(=7,) € Og,, 1 <j<r).
Thus we have the following for j=1, - - -, r—1 (cf. also (3.2.3)):

(b-2) 75, does not vanish at p& g,=0(mod §,)o8,=0(mod g,
(1<k<r).

Next assume that I=¢. Then, by (3.6.2), we obviously have:

(b-3) 7, vanishes at p.

On the other hand, for an element je {1, --.,r—1}, we also have
the following from (3.8):

(b—4) 7, does not vanish at p&(1) g7 does not vanish at p and (2)
b(j,)=b@); icIand b(j, i)=a(i);i¢ L

On the other hand, we obviously have the following from (3.5.1):

(b-5-1) g,=0(modg)s(1) a,;=b(j,i) for any ie{l, ---,r} and
(2) g7 does not vanish at p,

(b—5—2) &=0(mod &) (1=k+j=r—1)&b(k, i)=b(j, i) for any
ie{l, -, r}and (2) g/=0(mod g7).

Combining (b-4) with (b-5-1, 2), we clearly have (cf. also (3.5.4)):

(b—6) right hand side of (b-4)=g,=0(mod &) (1<k<r).

We summarize (b—1)—(b—6) in the following manner:

(b=7-1) 7, does not vanish at p&g,=0(mod &) (1<k<r) (&1=4¢).

(b-7-2) 7, (1<j<r—1) does not vanish at p&=g,=0(mod g,) (1=
k<r). (In (b-7-2), the both cases: I=¢ and I+ ¢ can occur.)

Clearly, we have Theorem 3.1.1 from (a—4) and (b-7). Moreover,
we see easily that if (b—7-1) holds, then we have:

(1) 7,(=8/8)=1, 9=, 8107 °D)- 27 (=§)/g) IS j<r—
1), and, if (b-7-2) holds, then we have the following from (b—4) and
(3.5.3):

(c-2) 7=(&/8)- 8¢ (1=k=r).

From (c~1, 2) we have (1) in Theorem 3.1.2. q.e.d.

‘From Theorem 3.1.1 we easily have:

Corollary 3.1. If Ex , is Oy, ,-free, then the germ Y, of Y at p is that
of a divisor.
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This will show that the local freeness of Ey gives a very strong con-
dition for the s-pre bundle D.

7. Here, we summarize some consequences of the arguments
hitherto in Section 3.2: First define the following subvarieties, which are
supplementary to the ones in (2.2.9) and (3.3.6)):

(3.10.1) Z’'=Y’'N X}, and Y”=the union of the irreducible com-

ponents of Y’ that are contained in X}, (cf. (2.2.9-1, 2)).
Thus we have:

(3.10.2) Z'=ZUY" (cf. (2.2.9-2)).

Theorem 3.1.3. The direct image Ex is locally free over X—Z', if
and only if one of the following holds:

(3.10.3) Y=¢, or Y(s£¢) is a divisor of X* and (3.8) holds for each
peY—Z. '

Proof. This is clear from Lemma 3.1.2 and Theorem 3.1.1.  q.e.d.

Remark 3.3. Theorem 3.1.3 and Lemma 3.1 determine completely
the local structure of Ey over X—2Z’(D X1%,). A more global version of
Theorem 3.1.3 will be given in Theorem 3.4.1.

Corresponding to our basic diagram (3.3.6), we make: -

o v o Z
N
Ey is locally free The generator of F; (and so of Ey)
is given explicitly

Figure III.

8. Now we investigate the structure of E; for a point pe Z’. This
differs according to whether

(3.11.0) Ey is locally free over Y —Z(DX1,)
or not. The latter case is more complicated than the former. In the
remainder of Section 3.2, we assume that (3.11.0) holds. This assumption
is legitimate for the discussions of the local freeness of E;. For the
investigation of Eg , (p € Z), we first do the following:

(*) To write Y:=Y—Z as a union of locally closed varieties of ¥
and to attach a frame of &, to each locally closed variety.

Remark 3.4. This is a little weaker form than the one required in
(*~1, 2), Section 0 in the point that Y is not stratified. But it may give
hints for stratifying Y.

Now, remark that (3.11.0) and Theorem 3.1.3 imply:

(3.11.1) Y=¢, or Y is a divisor of X' and (3.8) holds.
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In the second case, without losing generality for mvestlgatxons of
Ey (p € Z), we assume the following:

(3.11.2) Y has the finite irreducible components (and we write the
irreducible decomposition of ¥ as: Y=1_J;_, ¥,).

Setting Y,=Y,—Z, we define a multiplicity m(j, §) of g, along Y, as
follows:

(3.11.3) g,;=0(mod J7?) but == 0 (mod J75>»+") for each p € Y,
where ;. , is the stalk at p of the ideal J; (C£,) of Y.
(The divisor Y, (C X7%,) is connected, and one checks easily that m(j, g) is
independent of the point p ¢ Y,.)

For a subset 8=(B(1), - - -, B(?)) of (1, - - -, 5), we set:

(3.11.4) Yo=(Voes Yoruy and Yp=Y,— XL..

Proposition 3.4.1. We have the disjoint union:
(3.12.1) Y=][,Y,, where Y, satisfies: Yy—(\_),25 Y,)# -

Proof. Take a point pe Y, and we define a-subset 8(p) of {1, - - -, s}
by: B(p)={B; Y, 2 p}. Then it is clear that 8(p) satisfies the condition
in (3.12.1) and that Y is the finite disjoint union of such Y, ; pe Y.

g.e.d.

Next, for an index B8=(g(1), - - -, A(¢)) satisfying the condition in
(3.12.1), we set:

(3.122-1) m(j, H=(m(j, D)), - - -, m(j, f0))) (1<) <r) and m(8)
= (m(B(D), - - -, m(B(1))) with m(8(1))=min7_, m(j, B(1)), - - -, and

(3.12.2-2) Ys,=Y;—7Y,. (For the variety Y, see (3.3.5).)

Proposition 3.4.2. (1) Yz=\J, Y, ,;, where je{l, ---,r} must sat-
isfy:
(3.12.3) Yy, ;7 ¢ and m(j, B)=m(p).

(2) The element #(j) (cf. (3.9.1)) is an O, ,-basis of §,,, for each p €
Yﬂ’jn

Proof. First take a point p € Y. Then from the assumption (3.11.0)
and Theorem 3.1.1, we see that there is an element j such that ¥, 5 p and
m(j, B=m(B). From this we have (1). Also we get (2) easily from (2),
Theorem 3.1.2. g.e.d.

Now we summarize Propositions 3.4.1 and 3.4.2 as follows:

Theorem 3.2. Writing Y as the union of their locally closed varieties
in the form:
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(3.13.1) Y=Jg,; Yp,;, where the indices (B, j) must satisfy the con-
ditions in (3.12.1) and (3.12.4), we see that

(3.13.2) #(j) is a frame of [, over Yy ;.

Here we add a remark to Theorem 3.2, which says that 7(j) is a
frame of &, in a Zariski open neighborhood of Y, ; in X&,.

Remark 3.5. Take a subset 8=(B(1), - - -, B(t)) of (1, ---,s) such
that Y,+¢ and we assume:

(3.14.1) m(j, By>m(B). (Namely, for an element u e {1, - - -, t}, we
have: m(j, B))>m(B(w)).)

Then, for a subset 7 of {1, - - -, s} satisfying 7 D 8, we obviously have:

(3.14.2) m(j, )>m(y).

Now, for an element j e {1, - - -, r}, we define a closed subvariety W,
of X! as follows:

(3.143) W,=Y,U(U,Y,), where Y, (+¢) satisfies (3.14.1).

From the explicit form of 7(j) (=(1/g7)7 or =3}, according as jz=or
=r) (cf. Theorem 3.1.2 and (3.14.1, 2)), we easily see:

(3.14.49) 7(j) generates F, , for each p € XL, —W,.

Moreover, from (3.13.2), we have the following for a locally closed
subvariety Y, ; in Theorem 3.2:

(3.14.5) The frame 7(j) of &, over Y, ; is actually defined on
(Yieg_ Wj) (D Yﬁ,])‘

Example. The simplest form of the expression (3.14.5) is obtained
in the case where the following holds:

(3.15.1) Y is irreducible and the multiplicity of &, along Y (=Y —Z)
is independent of j=1, - - -, r.

Actually, we see easily that (3.14.3) then takes the following form:

(3.15.2) Y=Uj., (Y-7),

and (3.14.4) is read as follows:

(3.15.3) 7(j) generates §,, for each p e (X1,,— Y ).

Thus, in this case, the frame construction in Theorem 3.2 takes a
simple form. Also note that, if the s-pre bundle D is obtained from the
universal bundle over a Grassmann variety (Lemma 2.2), we have (cf.
Appendix I): ;

(3.15.4) The condition (3.15.1) holds with a stronger form that the
multiplicity in question = 1.

In connection with this, we make:

Question 3.1. . Confirm conditions for the s-pre bundles D, to which
(3.15.4) holds.
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8. Now, we will examine the structure of &, , (p € XL,,). First we
check that if Y=g (cf. (3.11.1)), then the structure is very simple.

Lemma 3.3. [If X' is normal and Y=g, then we have:
(3.16.1) ¥, is generated by § over O,, for any p e X', where we
regard § (= wt(e,,,)) as the element of I'(X*, §,).

Proof. By Lemma 3.1.2, the element § generates §, over X%, On
the other hand, because &, is an O,-submodule of £7 (cf. (3.4.3)), the
normality of X' implies:

(@) Fy=ii*F,, with the injection i: XL, =—>X",
and we have this lemma. g.e.d.

Next assume that Y=¢. In this case our arguments will be done
under the following strong condition.

(3.16.2) The condition (3.15.1) holds.

Now, for an element j e {1, - - -, r}, we define an ©, ,-submodule ¥, ;
of ©,,, as follows:

ap,j:{a € Dl,p; “77(]) € Qf,p}-

Theorem 3.3.1.  Assume that X' is normal. Then we have an isomor-
phism of O,,-module for a pointpe Z:

(3.16.3) W, = Fy e

Proof. Take a small open neighborhood U of p in X*. Then, from
the explicit form of §, (cf. (3.4.3)) and from that 7(j) is a frame of ¥,
over Xi.—Y, (cf. (3.14.4)), we have:

(@ I'UNXi, F)={ai(j); « is an element of I'(UN X% —
Y;, ©,) such that a7(j) is extended to I'(UN X, OF).

But the j-th component of 7(j)=1 (cf. (3.9.1)), and we have:

(b) the right hand side of (a)={af(j); « is an element of
IUN Xk, ©)) and ay(j) is extended to I'(UN X iy, OF).

Thus, from the similar reasoning to the proof of Theorem 3.1, we
have this theorem. g.e.d.

The above theorem may insure:

(**)  the structure of §, , is ‘determined’ by the boundary behavior of
7(j) along the divisor (Y ;N X o).
We give some consequences of Theorem 3.3.1, in which (**) appears
explicitly. For this, we assume:

(3.17.0) Y, consists of the finite irreducible components and we
write the irreducible decomposition of ¥, as ¥;=J, ¥, ..

(This does not lose generalities in local investigations of %, and Ey.)
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Now, for each Y, ,, we let m(j; @) (€ Z,) be the multiplicity of g, along
Y, ..=Y, N X}, which is defined in the similar manner to (3.11.3). We
then define an ©,-submodule B, of O, to be the one which is associated
to the following pre sheaf:

(317.1) U-B(U)={ae'(U,DO); aisin ['(UNX:,, I7¢),
where 3, , denotes the ideal sheaf of Y, , (C,).

Theorem 3.3.2. Assume that X' is normal. Then we have the follow-
ing isomorphism of O, ,-module for a point p e Z:

(3.17.2) B;,,= B,

(a) anelement we O, ,is in B, ,&(g:/g)x € O, , 1 ZkZr).

But the definition of the divisor Y, of X* (cf. (2.2.9-5)) implies the
following for each irreducible component Y, ,:

(b) There is an element k € {1, - - -, r} such that =0 (mod Y, ,).

Then we see easily that the present theorem is nothing more than the
rewritten form of Theorem 3.3.1, by using (a) and (b). q.e.d.

Theorem 3.3.3, Assume that X is normal and that the multiplicity
m(j, «)=1 for each Y, ,. Then we have:

(3.17.3) Frr—>;,, (=ideal of Y)) (CcD)); peZ.

This follows directly from Theorem 3.3.2. See also Appendix, where
corresponding facts to (3.17.3) are given for the universal bundle on a
Grassmann variety, by using Schubert calculus.

A natural question may be:

Question 3.2.1. Give conditions for the local freeness of Ey. In
particular, give the conditions, when Ey arises from geometric situations
like foliations ([Ba-Bo] and [Suwa]) and monodromy representations
([De)).

When Ey is not locally free, it is desirable to analyze the singularities
of Ey. As in the end of Section 2, we make a question in this direction:

Question 3.2.2. Discuss possible relations between the treatments of
the singularities of coherent sheaves by Le-Teisser-Navarro ([Le-Te] and
[Nav]) and ours as in Section 3 hitherto.

Finally, the arguments in the hardest part (Theorems 3.2 and 3.3) in
Section 3.2 were done under the local freeness assumption of Er over
Y—Z (cf. (3.11.0)). The following question then naturally arises:
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Question 3.2.3. Discuss the local structure of Ey also in the case
where we do not assume (3.11.0).

Remark 3.8. Quite recently, Sumihiro ([Sum]) gives some treatments
of singularities which arise in the elementary transformation.

§4. Structure of I'(Ey) and I'(&nd Ey)

Here we start with a line bundle Ly over X and sections s=(s,, - - -,
s, (Ly) satisfying (2.5.1), and we assume that our s-pre bundle
D (=D,) is obtained in the manner of (2.5.2) (cf. also (2.3.1,2). Thus D
is of type (G) and we have:

(4.0) X'=(8,, )0 X" =(5),rea a0d f;=5,/5, 1<j<r—1) and f,=
S04/ (For X', X*and f;, - - -, f,, see (2.5.2).)

By (3.3.1), we see that Ly:=Lg|y, with X=X—(X'N X"!) coincides
with the determinant bundle of the s-pre bundle E,. Our arguments here
will be given by reducing the structure in the title to that of certain sub-
spaces of I'(Ly). In doing it, the varieties formed from s as in (2.2.1~9)
will be basic.

Part A. Structure of 7'(E;)
1.1. First, for the frames e’ of Ey|,, (i=0, 1), we take £:= /\"¢
to be a frame of Ly|y, (i=0, 1), and we form a frame £'=(£%(1), - - -, £%(r))

e N—
of Ly, (=Lygly,®- - - D Lyly,) as follows:

(4.1.1-1) The k-th component of £(j)=0 (k=) and 4* (k= ).
Then letting @ denote the quotient morphism: Ly—Lyz,: =Ly QO y,
we have the following (cf. also Proposition 1.1 and Lemma 1.1):

Proposition 4.1. (1) We have an injection ¢: Ex—>L% as follows:

{TINu: Eyl|y, 3 —>Ly|y, 2 AN

(4.1.1-2) i
Tl]\h: EX!N: El elcl'—>L:Y|N1 E} ‘e : (f;—hmc])

where (' is an element of O, (i=0, 1).
(2) Define an Qx-submodule E% of L% as follows:

(4.1.1-3)  E%|y,=L%ly, and E%|y,=kernel of (0- p): L%|y,— L7,

r

where p is the Oy-morphism: L%|y, 3 {—L%|y, 2 [(I)T“ ;J] AL r—1)

and we set L= Ly..
Then, we have:
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(4.1.1-4) ¢ Ey—">E’,.

Proof. (1) is checked by a simple observation. To see (2), remark-
ing that

(4.1.1-5) ﬁhm=[ﬁ"g"‘ (‘113)] (a<j<r—1)

we easily have the following for {"(=({/)7-.):=(fhy)-{ (in (4.1.1-2)).
@11-6)  f=0-f—-0f; (Sj=r—1) and {P=(.
From this we easily have (2). q.e.d.

1.2. Next, we form a C-morphism (=homomorphism of C-mod-
ules) X: I'(Ex)—I'(X*, L,) by the following commutative diagram:

T
I'(Ex)—>I'(L%)
4.1.2-1) 1\ / op  with L,=Ly.
Ir'x:,Ly)

with the projection p: L% 3 {=({,)j.,—its last factor Ly >¢,. The C-
morphism X is useful for analysis of I'(Ey). In order to examine X, we
define a C-subspace [ of I'(X*, L,) by

(4.12-2) I"={5e I'(X', L); sand 45 (1<j<r—1) are in ol'(Ly)},

with f;= w(f;). (Here we use o also for the projection: Oz—O, (:=Dy1)).
Also letting I, (COy) denote the ideal of X', we define a C-subspace
of I'(Ey) as follows:

(4.1.2-3) I'(Ex)=7""T'(X, 3:L%).
Lemma 4.1. We have the following exact sequence:
(4.1.3) 0——>I (Ex)—>I(Ex)—2>I"—>0.

Proof. The desired fact for X follows easily from (4.1.1-4).

A little more precisely, take an element {=({;)j., € [""(Ly). Then,
by (4.1.1-3), we have:

(@) ¢ is in the image of X&{,+f;-{, =0(mod f,) (1< Zr—1).
From this and (4.1.3-5), we have: XI'(Ey)=1". Also, from (4.1.1-2) and
(4.1.3-5), we have: (kernel of X)=1I",(Ey). g.e.d.

In the remainder of Part A we examine [ and I',(Ey).

2. Here we determine the structure of I",(Ey) as follows:
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Lemma 4.2. Assume that

(4.2.0) (Cx)T'(X, Cy)=I'(Dy), where Cy is the constant sheaf with
the stalk C.

Then we have:

dimgy I" (Ey)=r and I" (Ey) is spanned by (e,, - - -, e,), and

4.2.1) . .
r41<dim, I'(Ey) (=dimg I +r).

Proof. Letting ©,[X"] be the sheaf over X of meromorphic func-
tions over X with the pole X', we define an obvious C-isomorphism:

4.2.2-1) 0: I'(Ly)—>I(X, O4X"),

where @ is characterized by: #(£°)=1 (=constant function over X with
the value 1).

Then, for the injection: O,=——>8;[X'], we have the commutative
diagram:

9
I(L)—>I'(X, Ox[X']

(4.2.2-2) ,

I'(X, 3:.Ly)—>I'(Dx)

The first assertion in (4.2.1) follows from (4.2.2-2) and (4.2.0). The
second is insured by checking z(e,,,)+#0. q.e.d.

3. Here, in order to determine 7, we define a C-subspace I of
(x4, L) as follows:

@4.3.1-1) I'"={s§e (X, L); f; 5|z (e (X', L)) are also in
(X', L)), with L, := Ly®Dgx1}.

The relation of I to I is:

(43.1-2) I"={5eI”; 5and f,-5 1<j<r—1) are in ol'(Ly),
where we identify f;- § with its extension to I'(X", L,)}.

The key point for 77 is that it is defined by L, and fj asijsr—-1
and concerns only the structure of the divisor X*.

Now, letting the varieties ¥, ¥, (1<j <r) be the ones formed in the
manner (2.2.9), we describe I explicitly in terms of them, under the
following conditions:

(4.3.2-1) Y=g, or is a divisor of X"

In the second case we also assume:

(4.3.2-2) 5,=0 (mod §, along Y,) for each Y, (1 £k<r), where Y,=
Y,N X%, with an irreducible component Y, of Y. Also §=u(s,) e
rx., L.

Remark 4.1. By Theorem 3.1.1 and Corollary 3.1, the condition
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(4.3.2-1) holds if Ey is locally free. (4.3.2-2) is a sharpened form of
(4.3.2-1) and may be mild. (For example, if X’* intersects simply with
X' along each Y, then (4.3.2-2) holds.)

Now, recalling (2.2.9-5), we have:

X'NXie(=X'NXip)=YNY, where Y=YNX.,
and Y,=Y,NX.

reg»

(4.3.3-1)

and, for each irreducible component Y, ,, Y, of Y}, Y, we set:

433-2) m(3;; c)=the order of §; along Y, , (:=7Y, ,N X1;)
o n(§,, B)=the order of 3, along ¥, (:=Y,N X%,)

Then, setting m(a)=min’_, m(5;, @) € Z,,, we define divisors Y}, ¥* and
X*2 of X! by

(433-3) Y¥=X.m) Y, Y*=3,n(5;p)Y,and X*=YF4+7*

Then letting £,[X**] be the sheaf over X}, of meromorphic functions
with the pole X**:=X** X}, we have:

Theorem 4.1.  Assume that X' is normal. Then we have:
4.3.4) I =I(X}g O[X*)).
Proof. (1) First we define a C-isomorphism:
X', L)~=I'(X", Ogl5))

in the similar manner to (4.1.1-3):

(4.3.5-1) 6:I'(X', L) (XY, O[5,]), which is characterized by
6(5,)=1. (Here £,[5,] denotes the sheaf over X' of meromorphic func-
tions with the pole §,.)

Take an element §e I'(X*, L,) and we write §=§(1)-§, with an ele-
ment §(1) e I'(X", O,). We let m(5; «) and n(5; ) be the order of the pole
of §(1) along Y, , and Y,. Then remarking that (4.3.2-2) is equivalent to

(4352 f ; are holomorphic along each ¥, (1< <r—1),
we see that §is extendable to I'(X?, L,) if and only if:

(@) m(5; @) =m(3,, ) and n(s, B)<n(3,, ) for each Y, , and Y.

On the other hand, by a simple computation, we have:

(b) the order of the pole of f;-5(1) along Y, ,=m(3, a)+m(5,, o) —
m(3;, o) (resp. along Y,=n(3; B)+n(3,, f)—n(5;, p)).

Remark that f,-§is in I'(X?, L,) if and only if the orders in (b) satisfy
the similar inequalities to (a). But (4.3.0-2) implies the inequalities for
Y,. (When Y=¢ one can dispense with this argument. Thus we have
this theorem. q.e.d.
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Corollary 4.1.1. . (1) Assume that X is compact and X' is normal.
Then we have:

4.3.5) r+1<dimg I'(Ey) (=r+dimg ") < r+dimg I'( X, ©,[X*?)).

(2) Ifwl'(X, Ly)=1I'(X", L)), then the second inequality in (4.3.5) is
actually the equality.
The following corollary is also useful for investigations of I'(Ey).

Corollary 4.1.2. Assume that

(4.4.0) X**=Y* (or, equivalently, the multiplicity m(a)=0 for each
Y, (cf. (4.3.2-2)).
Then we have:

(4.4.1) I'"=I'(X}g OY*]), with the sheaf O,[Y*] of meromorphic
Sunctions over X%, with the pole Y*(=Y*NX.,). (Note that if Ey is
locally free, then Theorem 3.1.3 insures the condition (4.4.0).)

Proof. Obvious from Theorem 4.1. The structure of ['(Ey) is, of
course, very basic for the bundle E;. By taking account into Corollary
4.1, we make:

Question 4.1.1. Evaluate dim¢/'(Ey) and dimg ["(X L, O,[X*%]) as
well as dimg I'(XL,q, O,[Y*]).

It looks like that the structure of £,{Y*] seems to be very interesting
in connection with theories of special divisors and treatments of zero
cycles as in [G-H] (cf. Introduction). Here we only show that the
equality:

(4.4.2) dim I'(X, Ex)=r+1
is checked in general situations:

Theorem 4.2.1.  Assume that X is compact and X* is normal. More-
over, assume that (4.3.2-1,2) and (4.4.0) hold. Then we have the implication:
(4.4.3) dime (X1, O\ Y*])= 1 dimg [E)=r+1.

(Recall that (4.3.2-1) and (4.4.0) hold if Ey is locally free. Also (4.3.2-2)
is mild under that condition.)

Proof. Obvious from Corollary 4.1.
The simplest case, where the condition in (4.4.3) is checked, may be
given as follows:

Theorem 4.2.2. Assume that X is compact and that the following
holds:
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(4.4.4-1) (351 (50, rea=9 and (s,,,), is reduced and normal.
Then we have:

(4.4.4-2) dimg I"(Ey)=r+1.

Proof. First remark that (4.4.4-1) implies the first condition of
(4.3.2-1) (and it is not necessary to assume (4.3.2-2)). Also (4.4.4-1)
implies (4.4.0). Moreover, it implies: O,[Y*]~O, (over X1,), and we
have the present theorem. q.e.d.

We finish part A, by adding the following to Question 4.1.1.

Question 4.1.2. Discuss structures of HX, Ez) (¢ =1), hopefully,
by generalizing the arguments in part A.

B. Structure of I" (&nd Ey)
Our argument here will be done similarly to the one in part A.

5. First, take an element ¢ ¢ ["(6nd Ey) and we set ¢, =gy, (i=0,
). Then we have the ‘matrix representation’ of ¢, as follows:

@4.5.1-1)  ofe)=e' A, with 4, ¢ M(N, Dy (i=0, 1),

and we obviously have the foliowing relation:

{I’ (6nd Ex)={A4, ¢ M.(N,, Oy) such that:

(4.5.1-2) ]
Ay:=hy - A;- by, is extended to M (N, O)}.

Now, let a,,(k) denote the (i, j)-component of 4, (k=0, 1) and 1 <i, j<r).
Then, from a simple computation, we see easily that the relation between
A, and A4, just above is equivalent to the following:

arj(o)z arj(l)[f;’ (1 é] ér_ 1): arr(o): arr(1)+ Z;;i ar;(l)(f;/f;)

and aij(o):aij(l)'_(.ﬂ/fr)arj(l) (lélsjér— 1)9

a;,(0)= 23721 (@ (D) — (filfda, (D) + (@i, (D) — (filf a. (1) £,
(aZigr—1.

(4.5.2)

From this, we easily have:
Proposition 4.5. We have a C-morphism as follows:

(4.53)  I'(&nd Ex) 3 o—>M,(X, Ly) 3 B=[b,] (1<i,j<r)

where the element b;; e I'(X, Ly) is given by the following manner: Setting
bijlw,=€"-by (k) with b;yk) e I'(Ny, Ox) (k=0, 1), the element b, (k) is
defined to be:
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@54-1)  b,0=a,0) (=ij<r),

(4.54-2) b, (V)=f, X (right hand side in the equality (4.5.2) for the index
@)

Next we set:

(4.5.5-1) I (End Ex)=1""(M(X, J,Ly)) (cf. (4.1.3)).

Then we obviously have the commutative diagram:

[ (6nd Ex)——>M,(X, Ly)
A
(4.5.5-2)
T.(énd Ex)——>M,(X, $,Ly)

Moreover, we define a C-morphism y: ['(€nd Ey)— ['(X?, L)) by the
following commutative diagram:

I'(énd Ey)——>M (X, Ly) > B

(4.5.5-3) 1\ /op

FT_I(XI: Ll) 3 b‘:(brly Y brr-l)

where p is the projection: M.(X, Ly) > B—1"""(X, Ly) 3 (b4, -+, byr_y)
=(r, 1), ---, and (r, r—1)-components of B. In order to analyze X, we
define C-subspaces I and I"”" of I'""'(X*, L,) by:

b=(b,, ---, b,_)e I''"*(X', L) is in I, if and only if:
b~j (1<j<r—1) and the following elements of I'(X*, L,) are

(4.5.6-1) extendable to I'(X, Ly):
fib, (i j<r—1), fuo5zifib) 1<i<r—1) and
5‘;#15]'
and by

(4.5.6-2) b=(b, ---,b,_) e I'""Y(X", L) is in I'”, if and only if b,
(1<j<r—1) and all the elements formed in the manner in (4.5.6-1) are
extended to I'(X*, L)). Similarly to (4.1.4), we have:

(4.5.6-3) I"={b=(b,---,b,_)eI"; b, (1<j<r—1) and all the
elements f;b,, - - - in (4.4.6-1) are extendable to I'(X, Ly)}.

Lemma 4.5.1. (1) We have the following:

4.5.7-1) I'(EndyycI"cI” and (kernel of X)=1 (&nd Ey).
2 I'(énd Ex)=C, if:

4.5.7-2) I'=0 and I (ndEx)=C.
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Proof. This follows easily from (4.5.5-1) ~(4.5.6-3).
Next we determine the image of X explicitly. For this take an ele-
ment b= (b, - - -, b,_)) e I""'(X*, L).

Lemma 4.5.2. The element b is in the image of ¥, if and only if there
are elements b;; € I'(Ly) (1=, j<r) such that

(4.5.8-1) (b, )=b,(1<j<r—1)and o(b, )= fib,, - - - for the other
indices (i,j). Moreover, the elements f,b; in the right hand side and the
element

(4.5.8-2) b, —>T5_ byy-fi—fi- b, AKi<r—1) are in I'(X, $,Ly).

Proof. The first condition is the consequence of that be . In
order to see the second, for the elements b;; as in (4.5.8-1), we define
elements a,,(0) € I'(N,, Oy) by (4.5.2). Then we have unique eclements
a,,(1) e I'(Ny, Oy) by (4.5.2) except for the indices (7, r) (1=ZiZr—1).
Finally, from the last equation in (4.5.2), we get (4.5.8-2). q.e.d.

6. Here we determine the structures of I and [ ,(6nd Ey). Asin
Part A, we assume here (4.2.0) and (4.3.2-1, 2). First we give a corres-
ponding fact to Theorem 4.1. For this take an element b=(b,, - - -, b,_)
e I'Y(X', L,) and we write b,= b,(1)- 5, with b,(1) e I'(X*, O,). We then

define: . 3
(4.6.1) {ng’aa){)}zthe order of the pole of { b1 } along

Py Ej(l)ff
Y., (cf. (4.3.1)).

Moreover, let n(b,, 8) be the order of the pole of l;j(l) along Y, (cf.
(4.3.1)). Then letting the multiplicities m(;, &) and a(5;, f) (1<j<r) be
as in (4.3.1), we have:

Theorem 4.3.  An element b=(b,, - - -, b,_) e I'""Y(X', Ly) is in I
if and only if the following holds for each Y, , and Y;:

max, n(l;j’ .B)én(sr’ IB)
(4.6.2)  {max,m(b,, @) <min (min, m(5;, ), m(3,, @) (1<j<r—1)
m(b) <min, m(3, ,).

The proof is similar to that of Theorem 4.1, and is omitted.

Next, we define a C-subspace § of I ':=1"" (X1, O[Y*]) as
follows: R 3 3 3 3

@.63) 9={bM)=G,W) (=j<r—1) eI fi- (Db -F) s
holomorphic along each Y, ,} (cf. (4.3.1-1)).

Then, corresponding to Theorem 4.1, we have the following charac-
terization of I,
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Lemma 4.6.1. Assume that X' is normal and that (4.3.2-1,2) and
(4.4.0) hold. Then we have a C-isomorphism as follows:

(4.6.4) I"=9.

Proof. Take an element b=(b,, ---,b,_) e I'""'(X!, L,), and we
write 5j:b~j(1)§r over X' (1<j<r—1). Then the condition for ﬁ-l;j in
(4.5.6-1) implies: 51(1) € '(Xtog, O[Y*]) (cf. the proof of Theorem 4.1).
Moreover, the condition for > 723 5,(1) 7 , in (4.5.6-1) is equivalent to the
one (4.6.2). Thus we see easily that the attachment: 5—»5(1):(51(1))§;}
gives the C-isomorphism in this lemma. g.e.d.

In connection with the condition (4.6.3), we make the following
condition for an element 5(1):(51(1)) (Zj<sr—1) e [ (X, O[Y*]):

(4.6.5 The condition in (4.6.1) for 5(1)=>b(1) are in I'(X%,, Cx)
(1<j<r—1. N

The following will be useful as a condition for the vanishing of 1.

Lemma 4.6.2. Assume that X is compact, X' is normal and that
(4.3.2-1, 2) hold. Then if (4.6.5) and

(4.6.6) 3, ---, §,. are linearly independent over C
holds, we have I’ =0.

Proof. Remark that (4.6.5) implies > 7} b ;D 7 i=0 where the
elements & 1) and c are in C. Then (4.6.5) implies that b,(1)=0 (1<;<
r—1), and we have this lemma. q.e.d.

In arguments soon below, we will check that (4.6.4) (and so the
vanishing of I"”’) holds in a general situation. Here we give an explicit
description of I",(End E,). For this we define a C-submodule of M,(C)
as follows:

4.6.7)y C={(c,)) (1=i,j<r); the elements c;; e C satisfy:
cor=>nte, fi— e ot izt e ) (<Ki<r—1}
Lemma 4.6.3. Assume that X is compact. Then we have:
(4.6.8) I'(énd Ex)~E (as C-modules).

Proof. Take an element ¢ e ['(§nd Ey), and let a,,(0) e I'(N,, Oy)
(14, j<r) have the similar meaning to (4.5.2). Then, from (4.5.2), we
see that ¢ is in I" (&nd Ey) if and only if:

(a) a;,(0) are in C and satisfy (4.6.7).

Thus we have this lemma. g.e.d.

We check that the condition /" ,(End E;)=C holds in general.
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Theorem 4.4. Assume that X is compact, X' is normal and (4.3.2-1, 2)
as well as (4.4.0) hold. Then if (4.6.6) holds, we have:

(4.6.9) T'(Ey)=C.

Proof. Take an element (c;;)e@ (1<i,j<r). Then we have:
Strte,, f;€ C. (Actually, checking the order of the each summand of
the expression (4.6.7), we see that (4.4.0) implies that 3521 ¢,,f, is holo-
morphic along each Y; ,. This and (4.3.3-2) imply that the assertion just
above.) Because of (4.6.6), we see that ¢,,=0 (1<j<r—1). Then, from
(4.6.6), we also see that (4.6.7) implies: ¢,;,=0 (i#j) and ¢,=c¢,, (1Zi
<r), and we have this theorem. g.e.d.

In this paper, we give a condition for the simpleness of E; in the
following form:

Theorem 4.5.1. Assume that

(4.7.1) X is compact, X" is normal, and (4.3.2-1, 2) as well as (4.4.0)
holds.
Then, if (4.6.5) and (4.6.6) hold, we have:

4.7.2) I'(énd Ey)=C.

(As in the case of Theorems 4.2.1 and 4.4, the assumption (4.7.1) does not
loose generalities, when E is locally free.)

Proof. This is an immediate consequence of Lemma 4.6.2 and
Theorem 4.4. g.e.d.

The condition (4.6.6) for the linearly independence of §,, - - -, §, is
quite mild. The key point is the validity of (4.6.5). Here we see that
one can check (4.6.5) in a rather general condition.

Theorem 4.5.2. Assume that (4.4.4-1) and (4.6.6) hold. (Namely:
(4.8.0) MN521(55,0a=¢s 51 - - -, 5, are linearly independent over C,
and (S, 1)o,rea 1S reduced and irreducible.)
Then we have:

(4.8.1) I'(6nd Ex)=C.

Remark 4.2. By Remark 3.2, the above theorem seems to be valid
under the assumption that X is normal.

Remark 4.3. In [Mar], Maruyama gave a condition for the sim-
pleness of the bundles (constructed by the method of elementary trans-
formation), by algebro-geometrical method. His result contains group
theoretical (or invariant theoretical) studies of the endmorphisms (§ 2 and
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§ 3, [Mar]), corresponding facts to which do not exist in the present paper.
Our point in the investigations of énd Ey (as hitherto in part B) is, as in
part A, that the stratification theoretical data (attached to Ej) appears
explicitly in our discussions.

7. Here we quickly summarize our arguments for bundles of type
(G) (in § 2~8§4) and discuss some possibilities about generalizations of
our arguments. The discussions here will be devided into three parts in
a concordant manner to our basic diagram of the varieties in Figure II,
Section 2.1.

7.1. First from Theorem 4.5.2 and Theorem 3.1.3, we have:

Theorem 4.6. Assume that X is smooth and compact. Also assume
that (4.8.0) holds. Then Ex is locally free and is simple.

Remark that, if dim X >2 and X is a projective variety, then one can
find arbitrary many pairs (Ly, s=(s,)7:1) (consisting of a line bundle Ly
and sections s of Ly satisfying (4.8.0). (For example, taking an ample
bundle Ly over X. Then a pair (L, s), where m»0 and s=(s;, - - -, 5,.,)
is a generic element of I'""* (L) (r=dim X), satisfies (4.8.0).) This also
insures:

(*) For a smooth projective variety X of dimension >2, there are
arbitrary many simple bundles (whose rank >dim X) over X. At the
present moment, we regard (*) as our analogue of the basic theorem of
Maruyama (cf. Introduction), which was given for a smooth projective
variety (of any characteristic) of dimension >2 in an elegant manner.

Remark 4.4. By Remarks 3.2 and 4.2, it seems that Theorem 4.6 is
true if X is normal.

In the remainder of Section 4, we discuss about how to generalize
(and sharpen) Theorem 4.6 and (¥).

7.2. Here, assume that, for our s-pre bundle E; of type (G), the
direct image Ey is locally free. Taking a ‘generic’ element e=(e,, - - -, €,,,)
e ['"*'(Eg), we make the following:

(4.9.1) The divisor (e;,...,e,), is smooth, but the variety Y:=(%_,

(el/\'--/\érwtl-j/\---/\er+l)0,red=¢‘

Question 4.2.1. Discuss general methods to find a bundle of type
(G), which satisfies (4.9.1).

Thirdly, using the similar notation to (4.9.1), we make:

(4.9.2) the divisor X' has singularities and the variety Y= ¢.

Question 4.2.2. Discuss some general methods to find a bundle of
type (G), which satisfies (4.9.2).
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In connection with Questions 4.2.1 and 4.2.2, we like to make the
following (rather vague) question.

Question 4.2.3. Give interpretations (from our view points of s-pre
bundles of type (G)) of known examples of bundles (as in [Har-2], [Mu-
Ho], [Ta] and [Mar]).

Finally, we like to add the following questions, which arise naturally
from our arguments hitherto in the main body of the present paper.

Question 4.3.1. Discuss the condition for the simpleness of £, more
closely (and discuss (4.6.3) in more general). (This seems to be much
easier than the corresponding one in Question 4.1.1.)

Question 4.3.2. Discuss structures of HYX, &nd Ex) (g=1), hope-
fully, by generalizing the arguments in Section 4.

Also recall that the simpleness of a bundle implies the indecom-
posability of it. But the simpleness fails for the case where X is a Stein
variety, and we add the following to Question 4.1.1:

Question 4.3.3. Give some criterions for the indecomposability of
bundles over a Stein variety.

§ 5. A type of residue formula

In this section we will be concerned with some explicit representations
of the characteristic class (in the sense of Atiyah ([At]).

1. First we quickly recall the characteristic class of Atiyah (cf. [At]
and [Bo-2]). Let M be a complex manifold and E, a bundle over it.
Moreover, let A4 ={N,}, be an open covering of M such that E,|,, has a
frame, denoted by e, We denote by #,, e GL(N,N\ N, ©,) the transition
matrix for (e, e,). Letting e denote the collection {e,},, we have an
element:

(5.1.1-1) 6=6(A", e) e Z'(N, &nd E,;Q8%;), where £% is the sheaf
of holomorphic differential one form over M and, for each N;N\ N, (¢)
the component §,, of ¢ is as follows:

- (5.1.1-2)  6,,=dh,,-h;} e T(N;N\ N,, End (Ex)Q2%).
(For the intrinsic meaning of such an element 4, see [At] and ([Bo-2}).
Here we only recall the following two facts:

(*~1) The element § e H(M, &nd E,,®@02%), which is determined
by 4, is the obstruction for the existence of the holomorphic connection
for E,.

(*-2) Through the Dolbeaut isomorphism, the element § corres-
ponds to the curvature form k(e H"'(M, &nd (E,))) of a suitable c¢>-
differentiable connection of E,,.
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Now, let I,: M,(C)—C be the basic invariant symmetric polynomial
of degree p. (Thus I}, gives the (r— p)-th coefficients of the characteristic
polynomial of each element of M,.(C).) Then, letting I, be the corres-
ponding ©,,-morphism:

»

m————
(5.1.2) End Exy®- - - @End Ey——>Oy,

one attaches to an element o?=w?(N, e) € Z*(N, 2%) as follows:

ZY(N, énd EM®Q V205 Z2(N, End ESPQ(2L,)7)

(5.1.3) \ J / LRA?

Z?(N, 22)

where | J? and A? are the p-th cup and exterior products. Then the
characteristic class of Atiyah is defined to be:

(5.1.4) &* e H?(M, 2%), which is determined by w?= p(f)) In our
context, the pair (A", e) is a basic stratification theoretical datum for
investigations of E,,, and our interest is the element w? € Z?(N, 2%, rather
than its class &?”.

2. Now we return to our original situation: We start with a
stratification # of M and its neighborhood system A"={N,;S,¢e ¥},
where N, is an open neighborhood of .S,. We then assume that E,|y, is
a product bundle and we fix a frame ¢, of it. Setting e=(e,),, we have an
element w® € Z?(N, £%), which is an invariant of (&, 4", e). Now we let

NUE (=nerve of &) to be: #=(S,, ---,5); S, e ¥ (0<j<p) such that
S,< -+ <S8, where §,<S, --- means that Slcgo—So, -++. We then
take an element #=(S,, - - -, S,) € Nv% such that
(5.2.1) codimySt=i (0Z1<p)

and we will concentrate our attention to the lowest stratum S,: We set
N o={NY5_, with N;= N . Then letting i, be the injection: A", =>4,
we define:

(52.2) wi=ik¥w® e Z*(N,, %) e I'(|AN ]|, 2%), where [A,|=}-0 N

(For the open set /", see Figure I, Section 0 for the case of p=1. The
general case of p=>2 will be figured, by extending Figure I). Now we
introduce a condition for the element %, which may be regarded as a
‘boundary value’ of % around the lowest element S? of U. For this
we set: A7 =4, —{Ng}, and we define a relative cochain complex
Cio(AN o, £25) by the following exact sequence:
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(52.3)  0——>Cip(N g, 25)—>C (N, 25)—>C (N}, 25)—>0.
Remarking that N, consists of (p+1)-elements, we have:

Cg’?(Nw’ 'QII;[)—_—>CP(N4U QII:I)
(5.2.4) lz lz
ZgP(Nqu .Q%)-——)ZP(N,,,, AQill’l)

and we regard % as the relative p-cocycle:
(5.2.5) @b € Z%,(N,, 2%).

Now assume that there are elements f=(f,, - - -, f,) C['(Ns», Oy) such that
(5.2.6-1) S? (c Ng,) is the (set theoretical) locus of f

and
(5.2.6-2) f; (1<j<p) does not vanish in | A", ;=2 N;.

Then setting d log f=d logfi...., dlog f, € Z%,(N,, %), we make:

Definition 5.1. We say that o? satisfies residue condition with res-
pect to £, if one can write:

(5.2.7) wi=a-dlog f+dw: ', with an element a € C and an element
o} e CHY(AN g, O5).

Thus, as we said earlier, the residue condition concerns a boundary
behavior of w? along the stratum S?. Remark that, from its construction,
we may regard that w? is an invariant of (¥, A, e), and we may regard:

(*) The residue condition is a basic condition for (&, 4, e).
Besides the above naive interpretation of the residue condition, we remark
that it also insures a topological meaning to w%. Actually, let 2%, be the
(abelian) sheaf of d-closed holomorphic differential forms over M. Then

we have the following diagram:

H?(A'y, O1) 5 a-dlog f— s H™ (A", O2)
(5.3.1) «
H?(AN o, 25) 2 @)

where H denotes the symbol of ‘hyper cohomology’. Note that the two
cohomology groups in the top line (5.3.1) are of topological nature, while
the one in the bottom is of complex analytic nature. Now, letting @2 e
H?(N,, %) be the element defined by wZ, the residue condition implies:

(6.3.2) @% eimage of o (and w? is endowed with (at least one)
topological meaning.

Moreover, if the condition:

(5.3.3) kernel of ackernel of 8
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holds, then one can attach to &% the unique element of H%(A",, 25),
and @% is endowed with a true topological meaning. (We like to make
clear (5.3.3) in another place.) In this connection, we remark that the
Atiyah characteristic class is, in general, of complex analytic nature ([At]
and [Bo-1, 2]), and the insurance of the topological meaning is given by
using some global properties (like Kahlerian property) (cf. [At]). We like
to emphasize that our residue condition concerns only the local behaviors
of w? (or, tracing back to the definition, of the pair (&, e). The above
fact would justify our emphasize of the residue condition (5.2.7).

3. Now assume that E, is of type (G). (In other words, there is
an s-pre bundle D of type (G) such that E,, is the direct image of the
prebundle appearing in D.) We assume that E,, (or the s-pre bundle D)
comes from the (local) geometric situation as in (2.2.0). Namely, we start
with elements 55 e I'(©y) (1<j<r+1) satisfying (2.2.0-1,2,3). We
then assume the following generic condition for the sections s:

(54.0) X'tti=(sl,1, -+, 8012y (057 <d), with d=min (r, dim M),
is of codimension j+41. Setting
(541) XM=X"1_X* (0<j<r) and X'=M-—X'

we have a stratification of & :={X7}4_, of M. Also take a neighborhood
N, of X7 suitably (0<j<d). (We take N,=2X") Moreover, letting
e=(e, ---,e,.,) be the sections of the bundle E, of type (G) (as in
(2.1.1) and (2.3.1~4)), we take e’:=(e, -+, €,.4_; -+, €,,,) to be a
frame of E,|y,. Now, for each p=1, . .-, d, we set %(p)=(X", - - -, X?).
Then, setting N(p):=(\2_, N, we have the element

(5.4.2) o® e T(N(p), 2%)

as in (5.2.2). Recall that the residue condition for w? concerns the main
part of the boundary value of w? around the subvariety X? (cf. Definition
5.1).

Theorem 5.1. For each p=1, ---,d, the element w, satisfies the
residue condition with respect 10 (S,1, ++ 5 Shpa_p)-

The proof takes some pages, and will be given elsewhere. )

Remark 5.1. In the main part a,-dlog (s,  x...n87+2-p) Of @l (cf.
(5.2.7)), the element a, € C is actually in Z, and is interpreted as a certain
multiplicity of the (r41—p)-vector: e{A - .- Ae},,_,. (This will be also
given elsewhere.)
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Question 5.1. To globalize the definition for the residue condition
(in Definition 5.1) and the result in Theorem 5.1. If M is a Grassmann
variety and E, is its universal quotient bundle then Definition 5.1 and
Theorem 5.1 are checked to be applied only to the generic open part of
the Schubert subvariety (representing the Chern class of E,). Thus a
good answer to Question 5.1 must be applied to the singular part of the
Schubert varieties. We finish Section 5, by adding the following (naive)
question to Question 5.1:

Question 5.2. Generalize Definition 5.1 and Theorem 5.1 for an
element (S;«, - * -» Si(») € N, where the stratification % is as in Defini-
tion 5.1, where we do not assume: (i(0), -- -, i(p))=(, - - -, p). (For
Question 5.2, it seems to be necessary to drop the (set theoretical) com-
plete intersection condition from Definition 5.1 and Theorem 5.1.

Appendix. Grassmannian computations

Here we summarize explicit computations for the quotient universal
bundle over a Grassmann variety, which correspond to the ones for ‘s-pre
bundles of type G’ (cf. § 2 and § 3).

Standard facts for Grassmann variety will be found in Bott ([Bo])
Griffiths-Harriths ([G-H]), Hodge-Pedoe ([H-P]), Kleiman ([K1-1, 2])
Kleiman-Lundoff ([KL-Lu]), Laskov ([La]) and Musili ((Mu-1, 2]).

1.1. Let the complex euclidean space F (of dimension #), the Gras-
smann variety V of d-dimensional subspaces of F (1<<d<n), the exact
sequence of the universal bundles:

(1.1.0) 0—>Gy—>Fp(=FXV)—25E,——>0

and the basis ¢’= (e, - - -, ¢) of F be as in Section 2.3. As in that place,
we write e, ---, also for the corresponding sections of F, and we set
e;=w(e)) (1<i<n). A most theoretical approach to the Grassmann
variety may be the one from the group theoretical view point (cf. [Bo] and
[Mu-1]). Here we do not enter into this view point. Instead, for purpose
of explicit computations, we work with the Stiefel variety W corresponding
toV:

I.1.D W={f=(fi, -~ f) € F: fiN--- N\ fa#0}.

Recall that V7 is the quotient variety of I by the right action of the general
linear group GL,(C):

(1.1.2) . Wa f—>V=W|GL, 5 p,
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where p==(f) is also characterized by that the tautological subspace Gy,
for p(C F) (=the fiber of Gy at p) is spanned by {.
For the Stifel variety W, the corresponding exact sequence to (1.1.0)

takes the form:
(1.1.3) 0—>Gp——> Fy(=F X W)—> Ep——>0,

where the fiber Gy, of Gy at f e W is the subspace of F spanned by /.
(Note that Gy has a tautological frame: Ws f—f, and Gy is a product
a

bundle.) Next identify F? with C"*(=C"X---XC") by the basis
e F's f(=(f, -, f)=¢€-Y,~>C" 5%, Foranindex I=(i(l), - - -,
i(d): 1<i(h<- - - <i(d)<n, let P,(Y); Y e C** be the Pliicker function
for I: ,
(I.1.4) p(Y)=det Y’, where Y'=J-submatrix of M, (C), with

J=(m+1—i(d), - - -, n+1—i(1)).

Then one can identify W with the Zariski open set (C™* —((M;(p;)o) of C™*.

1.2. Next let A; be the subspace of F spanned by (e, - - -, ) (110
<n). Recall that, for an element I=(i(1)<---<i(d)), the closed
Schubert variety S, (for 1) is defined to be:

(L.1.5-1) S;={peV;dim(Gy,N4,,)=j} (1=j=d),

where G , is the tautological subspace of F for p. In addition to the

closed variety S;, let 7} be the Pliicker divisor for I: Vi=(/\"e”),, where

J=(j()< - - <j(r)) is the complement of 7 in (1, - - -, n) and e’=(e,q,
-, €;n). Then, setting V;=V —V7%, the open Schubert variety S, (for

I) is defined to be:

(1.1.5-2) S,=38,NV,.

Among very many important facts on the closed and open Schubert
varieties (as in the references in the beginning of this appendix), we recall
here two facts as follows: First we have:

Theorem L.1. (1) The Chow group A(V) of V is isomorphic to
®; Z[c(S))] as Z-module, where the element c(S;) € A(V') is defined by S;.

(2) (Schubert-Bruhat stratification) The following expression gives a
stratification of V:

(L1.5-3) V=1[,S..
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(For the proof, see [H-P], [K1-1] and [Mu-1].) Next, letting ¢,(4,) denote
the special Schubert variety ([KI-1]):

1.1.6) o (4d)={peV;dim(4,NGr )=k} (IZKiZr,k=1)
(=S, withI=(@G+1—Fk, ---,i,r+k+1, - - -, n), we have:

Theorem 1.2. (1) o¢,(A4;) represents the (r-+1—i)-th Chern class
¢r1-{(Ey) of Ep, and a,(A;) (k=2) describe completely the singular locus

of 6,(A4,):
(L17) 0,(4)D0x(4)D - Da(4)D- - -,

where 0,(A,) is the singular locus of a,_,(4,) (k=2, -- ).

(2) The Chow ring A(V) of V is generated by the Chern classes ¢,(Ey)
(1<i<r). (For the above, see [H-P], [La] and [KI-1].)

Now, remark that the special Schubert varieties just above are defined
in terms of the r-sections e’=(e,, - - -, ¢,) (and, for notational reason, we
write 0,(A4;) also as g, ,(¢°)). On the other hand, recall that a most basic
property of our ‘s-pre bundle’ is the existence of (r+ 1)-sections (Defini-
tion 2.1) (and that the basic varieties in our frame construction are formed
from those sections. (cf. Figure II, § 2.1)). Taking account into this, let
us start with the (r-+ 1)-sections é=(e,, - - -, e,,,)CI'(Ey). Then setting
el=(e, 81 g 0,1 (0=Zj<r), we form a closed variety o, .(e%)
(1=j<r) in the similar manner to o, ,(e’). Also we attach to e a closed

subvariety of ¥, which may be an analogue of ¢, ,(e°) for é:

(11.8-1) 0. ,(O=j=00,. (¢) (=peV;dim(4,.,NGCGp)=2)

Recall that, in our arguments in Section 2 ~ Section 4, the corresponding
variety Y to the above one (cf. (2.2.9)) plays very basic roles. In light of
this the fact that

(1.1.8-2) ¢, .(e) is the Schubert variety (more precisely, =S;, with
I=r—k+1,---,r+1,r+p+2, ---,n),
may be worthwhile pointing out (because that the variety like Y has a
corresponding fact in the Schubert calculus is an encouraging support for
our present experimental stage.) Next, in comparison with the main part
of this paper, we write here the corresponding diagram to the one in
Figure II, Section 2.1 for the universal bundle Ey (cf. also Lemma 2.2):

(V D)ar,ljdr—l,l U 0-;,130';,130‘7,2

U
07’—1,1(ej) (j:o’ 25 ) r)
Figure I.
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where we write: ¢, ,=g,,(¢°) --- and o},=0,,(€). (That this corres-
ponds to Figure II, Section 2.1 is checked from the definition of ¢/, as in
(I.1.8-1) and (1.1.10-1, 2) soon below:

1.1.10-1) ¢,,Na,(e)=0,_,,Ua;, and the Schubert varieties in
the right hand side are of codimension two in ¥ (cf. [Mu-1]).

(1.1.10-2) o, ,=the singular locus of ¢, ,, and ¢, ,=("7_o0,, (e’)
(cf. (1.1.8)). '

In connection with the above arguments, we quickly check the
validity of Lemma 2.2: From its formulation, it is clear that it suffices
to see the following for the check:

(1.1.10-3) The divisors (/\ e’), is reduced and irreducible (0 <r),
and (A e%),N(Ae), is of codimension two.

But this is well known from the Schubert calculus (cf. [K1~1, 2] and
[Mu-1, 2)).

2. Next recall that a main result in the present paper is the explicit
construction of the frames as in Section 3 (Theorem 3.1 ~3.3). Here we
will check that the corresponding fact for the universal bundle Ey is
obtained in a very clear form from the Schubert calculus.

2.0. First take an open Schubert variety S;, I =(i,<---<i,;). Then
we give the explicit form of the standard frames of the universal bundles
Gy and E; over the ambient space V; of S; (cf. (I.1.5-2)). For this we
quickly recall the standard affine structure of ¥V, ([KI-1] and [Mu-1]):
Corresponding to V;, we set W,=="'(V;) (=W —(p,),). Then we easily
have the following commutative diagram:

(C™D)W, 5 Y=X(I)-g—=>V,GL, 5 (X(I), g)
(1.2.1) nl lz
V,———>C™"3 X()

Here 2 is the projection, and we identify C"¢ with the linear subspace
of C*? defined by the following condition: The i(d), - - -, i(1)-rows are:
d d

/—/b-—“ /-—.-’\-—-ﬂ . )
(1,0, ---,0), ---,(0, ---,0, 1), and we write the coordinates X(I) of C™*
in the following form:

| 36(j(r)) N
(122) x=g D
x(j(1)

(=nX d-matrix whose i(1), - - -, i(1)-rows are just as above, and we write
j(@)-, - - -, -rows as follows: x(j(1))=(x(j(1), d), - - -, x(j(1), 1)), - - -.
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Next, recall that the exact sequence (I.1.0) turns out to be the direct

sum over V,([KI-1]):
(1.2.3) Fp|;=Gy|;+E¢|;, where Fy|,, - - - are the restriction of Fp

toV,, .-
and we take, as standard frames of E7|; and Gy|;, the following:

(1'24) eI::(ej(lb AR ej(r)) and fI(':(f;’ A afd)):':e,' X(I)‘

2.1. Next we give an explicit form of the transition matrix A, for
the frames (€% e') and some resulting sheaves (cf. § 2 and § 3). Our
arguments will be done for the open Schubert varieties as follows:
S0:=Sr+1 ,,,,, ns Sl:‘_—Sr,r+2,u-,n’ Sz:zsr—l T2y eeynd

2 __ 4o
S?=S8, ri1reaen and  St=S8,_ o

(1.3.0) {

Remark that these open varieties are, respectively, the generic open parts
of 7, St:=g,,(e"), S*:=0a,_,,(€%), S"*:=0,,(8) and S*:=a, ,(°). (For the
roles of the Schubert varieties, see Figure I and Theorem 1.2. We write V'
for the ambient affine space (cf. (I.1.5-2)) for each open Schubert variety
in (1.3.0). Moreover, for each V, the standard coordinates x(J, i) are the
ones in (I.2.4). From the explicit form of the d and (d+ 1)-th components
of the frame f; (cf. (1.2.4)), we have the following relation for ¢, - - -, e,,,
CF(Ev):

e+ 5 x(Js 1)'ej=0, for S°,
(L3 {x(r+ D e, e+ 52z x(j, 1)-e,=0, for S,

x(r‘l' 1’ 1)'er+1+x(r7 1)'€7+37_1+Z§;% x(j9 1)'@120, for §*.
Moreover, for S* we have:

{x(r+2, 1)'er+2+er+2§;11~x(j, 1)'ej=0’
X(r+2’ 2)'er+z+er+1+z;;i X(j, 2)'ej:O’
and for S* we have:

x(r+2,i)-e, .o+ x(r+1, i)'er+1+er-2+i+2§j x(J, i)'ej=0
(i=1,2).

(13.2)

(1.3.3)

In a concordant manner to the arguments in Section 2 ~Section 4, we will
be here concerned with S?, S’ and S*.

3.1. First, for 8%, we have:

1.3.4-1) S*=locus of x(r+1, 1), x(r, 1), and the standard frame
for S? (cf. M.2.4))is (e, - - -, ,_y, €, €,,,). (Moreover, S'N V=locus of
x(r+1,1).)
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Thus the transition matrix Ay, for (€', e') is explicitly as follows:

Ir—l (—X(j, 1)/X(I', 1))
0 (=x(r+1, D/x(r, 1))
S | St
| x(r+1, 1)/

x(r, 1)

[ e

(1.3.4-2) /7,0=| ] (<j<r—1.

This gives the explicit growth properties of the matrix 4,, with respect to
S2.

3.2. Next we will be concerned with S, which coiresponds to our
basic variety Y in the frame construction (cf. § 3.1). First, from (1.3.3),
we have the following relation for (e;, - - -, e,,,)?

(1.3.4-3) —x(r+2,1)-€,.,+x(r+2,2)-e,4+ > 5215,6;,=0, with
d [x(r+2, 2) x(r4-2, 1)]
S, =
’ XG: D) % 2)

Also we have: ‘
(13449 A" =ex(r+2, D(N\7€), NTe'=ex(r+2,2)(/\"e’) and
N7e'=¢e;5,(\"e"), where e;=1 or —1 and e'=(e,, - - -, e,.,, €,,,)-
Remark that, from the explicit form of s;, we have: x(r+2, I)=
x(r+2,2)=0=s5,=0 (1< j<r—1), and, from (1.3.2-6) and (1.1.8, 9), we
have:
(1.3.4-5) S’*is the locus of (x(r+2, 1), x(r+2, 2)).
(Also note that S*( V is the locus of x(r+2,1).) The explicit form of
the matrix /1,4:

I (sj/x(r+ 2,2))

(1.3.4-6) hm_—_l
0 (x(r+2, 1)/x(r+2,2))

] (I=j=r—1

also gives the explicit growth property of A, with respect to the codimen-
sion two subvariety S’”>. Moreover, remark that the restriction of 4, to
S'N V is of the form:

>Ir—1 x(j, 1)
(1.3.4-7) hyy=
[0 (x(r+2, D/x(r+-2, 2))

and the coefficients of it are holomorphic over S'N V except the (r, r)-
component. The similar fact fails for S* (cf. (1.3.4-2)).

] (l=j=r—1
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Remark. The explicit form of the matrix #,, for S* and S* and the
difference mentioned soon above are used in the explicit residue computa-
tions (in the form of Theorem 5.1) for the universal bundle Er. (This will
be given elsewhere.)

Now, define an (r—1) X r-matrix A’ by #'=x(r+2, 2)-[I,_,, x(j, 1)]
(1<j<r—1). Then, corresponding to (2.2.5), we define an ©O,-module
%, where O, is the structure sheaf of S, to be the kernel of X: Of 3 {—
§£7-' 3 K'¢. Then, corresponding to the basic fact for the frame construc-
tion in Lemma 3.1 and Theorem 3.1, we easily have:

(1.3.4-8) F, is an invertible sheaf and has 7=(7,) (1< <r), where
=1 7,=x(, 1) (1<j<r—1) as its frame.

Also defining an injection z: Ey|,—O% in the manner in (1.1), by a
simple computation, we have:

(1.3.4-9) wz(e,,,)=7, where o is the quotient morphism: O%—>O5..

Remarking that (e,, - - -, e,_;, e,,,) is the standard frame of Ej|, (cf.
(1.2.6)), the two facts just above may be worthwhile pointing out in con-
nection with our frame constructions in Section 3.

Now, in the arguments as above for S* and S”, the singularity of
the divisor S* does not appear. But, in the argument soon below for S*,
the singularity will enter into.

3.3. First from (1.3.3) we have:

€42 x(r+ 19 2)9 _x(r+ 15 1) €r_1
assv s R e o]

N [s,-z(l), - -,sl(l)]‘ e
5r-o(2), -0+, 8(2) e;

x(j, 1) x(J,2) ]
x(r+1,7) x(r+1,9)
(gjsr—-2,i=1,2).

where we set:

so=d [x(r—\—l, D x(r+1,2)] and sj(i)=det[
x(r4+2,1) x(r42,2)

Also from a simple computation we have:
(L3.52) A'e=¢,-51 2Ae) B<j<r), and Nrei=e;-s,(\"e)
0L £2), with s,=x(r+2,j) (j=1,2). (Heree;=1or —1.)
From this we easily have:
(1.3.5-3) S'NV=(s))y S*NV=(s(l),5(2), and S*=(x(r+1i,))),
G,j=1,2).
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Moreover, letting e} be the (r—1)-sections: (e;, - -+, &1 4 -+, €,)
(1<j<r—1), we have (cf. [Mu-1]):
(135—4) SN (/\ ’ef)0= Sy (/\ r-1e(})0.

Now, define the imbedding z: Ey|,—O% as in (1.1). Then, from (1.3.5-1),
we have:

(13.5-5) G(:=wrle,,))=(&)(1<j=<r), where g =052 (1<j<r—2),
g i=ox(r+2,2) and §,= —ox(r+2, 1).

Moreover we define a meromorphic vector 7(j) in the manner (3.9.1):

(1.3.5-6) 7N=01/g)-g.

Then, corresponding to Theorem 3.3, we have:

Theorem 1.3. We have:

(1.3.5-7) a-9(1) is an element of F, (COX) for any a e J, (:=the
ideal of (/\"7'€5), (C£,), and

(1.3.5-8) @: 3, 2 a—F, 2 ai(l) is an O,-isomorphism.
(Here the ©,-module ¥, is defined similarly to the one in (I.3.4-8) (cf.
also (2.2.5)).

Proof. First, by a simple computation, we have:

el/\ . /\er_1 )
=(51x(r+2s 1)'e1+1+52x(r+ 19 l)'er+2)/\e1/\ tee /\er—za

where ¢;=1or —1 (i=1,2). and:

(a-2) (el/\ e /\er—l)oz(‘x(r+2a ])9 x(r+ 1: 1))0'

(a-1)

On the otherhand, we obviously have:

(b-1) x(r+2, 1)-9(1)=wz(e,.,), with the quotient morphism: O7Q5%,.
Also from (I.3.5-1) we easily have:

(b-2) x(r+1,1)-7(D) = wrle, ).

From (b-1, 2) we have (I.3.5-7). On the otherhand we have (cf. (3.4.4)):
© 00— 5,05 ——>(Ep|y)—>F—>0,

and wr(e;)=0(1=<j=<r) (cf. (2.2.6)). From this and that (e, - - -, e, ,,
€..1, €,,5) is a frame of Ey|,, we have (1.3.5-8). g.e.d.
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The proof of Theorem 1.3 would show that the isomorphism: J, =%
is natural and also would be a supporting fact for our frame constructions
in Section 3.)
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