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Eisenstein Series on Semisimple Symmeiric Spaces
of Chevalley Groups
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§ 0. Introduction

0.1. In recent years a remarkable progress has been made in the
theory of harmonic analysis on (not necessarily Riemannian) semisimple
symmetric spaces by Oshima, Flensted-Jensen and others (cf. [7], [15]).
It is also interesting to investigate semisimple symmetric spaces from
the arithmetic point of view. For example, in a previous paper [21],
we associated with an arbitrary indefinite rational symmetric matrix a
family of Dirichlet series satisfying certain functional equations which can
be regarded as Eisenstein series on the non-Riemannian symmetric space
SL(n; R)/SO(p, n—p). This result, along with the recent development in
the theory of semisimple symmetric spaces, leads us to the problem of
constructing an analogue of Eisenstein series for arbitrary semisimple
symmetric spaces with Q-structure. Though it seems fairly difficult to
solve the problem in its full generality, we are able to find a solution in
some special cases. In the present paper, we treat the case of symmetric
spaces of e-involution type (which was introduced by Oshima and Seki-
guchi [15]) of Chevalley groups.

0.2. Now we shall sketch the result in this paper. Let G be a
connected and simply connected semisimple algebraic group defined and
split over Q and ¢ be an involutive automorphism of G defined over Q.
Denote by H the fixed point group of ¢. A torus T of G is said to be
g-anisotropic if o(t)=t"' for any te 7. We consider the symmetric
space X=G/H under the assumption that G has a Q-split s-anisotropic
maximal torus. Then every Gp-orbit in X is a semisimple symmetric
space of e-involution type in the sense of Oshima and Sekiguchi [15]. In
particular, the Riemannian symmetric space GR/K appears among Gp-
orbits in X, for an appropriate choice of a.

Fix a Q-split g-anisotropic maximal torus T and let B be a Borel
subgroup of G such that BNa(B)=T. Let @* (resp. 4) be the set of
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positive (resp. simple) roots of (G, T') corresponding to B. Denote by W
the Weyl group of G with respect to 7. Fix a W-invariant inner product
{5, Yon X(T)*=X(T)®zR, where X(T) is the group of rational char-
acters of 7. We extend the inner product to a C-bilinear form on X(7)°
=X(T)®,C in an obvious manner. For each & € @*, put a¥=2a/{a, ).
Since G is assumed to be simply connected, there exists a 4, € X(T') for
each simple root « € 4 such that
A gy 1 if B=aq,
Ao B > {0 if Bed, B#a.

The characters {4,; « € 4} forms a Z-basis of the free abelian group X(T)
and are called the dominant fundamental weights. The group X(B) of
rational characters of B can be canonically identified with X(T).

We are mainly concerned with the action of B on X, especially with
B-relatively invariant rational functions on X. It is known by Vust [26]
that X has a Zariski-open B-orbit X,. Moreover, we can prove that
there exist algebraically independent regular functions f, indexed by simple
roots « € 4 such that

Jfob-x)=A,b)"(x) (beB,xeX)
and .
Xo={xeX; .,DA Jo(x)=0}.

Every non-zero rational function on X relatively invariant under the
action of B is written uniquely as a monomial of f,’s.
Take a Gg-orbit X, in Xz and let

XN X=XP U+ UXP

be the By-orbit decomposition of X; N X,. These orbits X{® are open in
X, and each of them is characterized by the signs of the values taken by
fo (@ e d)onit.

Let I'=G be the standard unit group of G (cf. § 1) and I',, be the
intersection of I" and the unipotent radical of B. For an x, e X;N Xy,
we consider the Dirichlet series

Ey(xo; =2, l_[Alfa(x)l‘“"”'*”2 (2e X(T)%, 1=i<),

where x runs through a complete system of representatives of all I” .-orbits
in I'-x,NX§{". We call the series E/(x,; ) (1<Zi<y, x,e X,N Xy the
Eisenstein series on X, with respect to I'. If X, is a Riemannian symmetric
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space, then we have v=1 and our series E;(x,; 4) is nothing but the usual
Eisenstein series. The Eisenstein series generalized as above have analytic
properties very similar to those of Eisenstein series on Riemannian sym-
metric spaces. In fact we shall prove the following theorem.

Theorem. (1) For any x,e X,N Xy, the series E(xy; 2) (1<i<y)
are absolutely convergent for Re {2, aV>>1/2 (a € 4) and have analytic
continuations to meromorphic functions of 2 in X(T)°.

(2) The functions

L1, K& 55— 1/2°02¢4, 675 + DE(x0; D

are entire functions of A.
(3) (Functional equations) Put

Axo; =TT ez T 22 B¥)+DExo: ),

where p(z)=z"*"I'(z/2){(2) and c, (« € 4) are positive real numbers depend-
ing only on the involution ¢. Then for any we W, there exists av by v
matrix C(w, 2) whose entries are meromorphic functions of 2 with elementary
expressions in terms of trigonometric functions such that

Ay(xy5 w2) Ay(xy; A
( ):C(w;l)( ) (we W).
A (xy; wd) A (xe; A

For the reflection w, with respect to the hyperplane orthogonal to a
simple root &, the matrix C(w,; 1) can be easily computed and has a very
simple form,

As is seen in Section 6, the theorem includes the main result of [21]
([21, Theorem 7]) as a special case of G=SL(r+1). In this special case,
the - Eisenstein series can be related to zeta functions associated with
certain prehomogeneous vector spaces and we have proved the theorem
for G=SL(n--1) with the aid of the general theory of prehomogeneous
vector spaces developed in [20]. For Chevalley groups other than
SL(n+1), we can not interpret the Eisenstein series as zeta functions
associated with prehomogeneous vector spaces. However the same idea
as employed in [20] works well also in the present general situation
without any essential modification. A similar technique has been used
previously by Godement [9].

In [15, § 5.3], Oshima and Sekiguchi indicated a method for con-
structing an analogue of Eisenstein series for a semisimple symmetric
space of e-involution type. The construction is based upon their theory
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of joint eigen-hyperfunctions of invariant differential operators on such a
symmetric space, and their analogue of Eisenstein series is a family
of ['-automorphic hyperfunctions on the symmettic space depending
meromorphically on the parameter 1 ¢ X(7)°. Though it satisfies the
same functional equations as in the theorem above, the relation between
the Oshima-Sekiguchi Fisenstein series and ours is not clear at present.

0.3. The present paper is arranged as follows. After some prelim-
inaries on Chevalley groups in Section 1, we investigate the structure of
the symmetric space X=G/H in Section 2. In Section 3, we introduce
the Eisenstein series and examine their convergence property. In Section
4, we give integral representations of the Eisenstein series which play a
key role in the proof of the theorem. The theorem is proved in Section
5. We devote Section 6 to a discussion of examples.

Acknowledgement. The author wishes to express his gratitude to
Professor A. Orihara who kindly sent to the author a copy of Godement’s
unpublished manuscript [9].

Notation. We denote by Z, Q, R and C the ring of rational integers,
the rational number field, the real number field and the complex number
field, respectively. For any prime v of Q, @, is the completion of Q with
respect to v. For a finite prime v=p of Q, Z, is the ring of p-adic
integers in @,. For an affine algebraic variety X defined over a field X,
the set of K-rational points of X is denoted by X. Moreover, we denote
by X, the adelization of X over Q. For an algebraic matrix group G
defined over Q, let G, (resp. Gz,) be the subgroup of G, (resp. Gp,) con-
sisting of integral matrices whose determinants are units in Z (resp. Z,,).
Let w be a Q-rational algebraic gauge form on an affine algebraic variety
X defined over Q. Then, for any prime v of Q, we denote by [w|, the
measure of X, induced by w. The space of compactly supported C=-
functions on a smooth manifold M is denoted by Cy(M). The space of
rapidly decreasing functions on a real vector space V is denoted by #(V).
We denote by I'(s) and (s) the gamma function and the Riemann zeta
function, respectively.

§1. Chevalley groups over Q

As preliminaries, we recall some results on Chevalley groups and the
Bruhat decomposition.

Let G be a universal Chevalley group over Q, namely, a connected
and simply connected semisimple algebraic group which is defined and
split over Q. Let T be a Q-split maximal torus of G. Take a Borel sub-
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group B of G containing T and denote by B, the unipotnet radical of B.
The groups B and B, are defined over Q. Moreover, B is a semi-direct
product of T and B,: B=T-B,. Let B~ be the Borel subgroup of G
containing 7" opposite to B. The unipotent radical of B~ is denoted by
B;. Then B~ and B are also defined over Q and B~ =T- B (semi-direct
product).

Let X(T) (resp. X(B), X(B")) be the group of rational characters of
T (resp. B, B~). Every element in X(T) can be uniquely extended to a
rational character of B (resp. B~) which takes 1 on B, (resp. B;). Con-
versely every character of B (resp. B~) is obtained in this manner. So
we may identify X(7T') with X(B) and X(B~). Since T is assumed to be
split over Q, all the characters in X(7T') are defined over Q.

Let @ be the root system of G with respect to T and 4 (resp. @+, @-)
the set of simple (resp. positive, negative) roots determined by B. For
each b e @, there exists a unique faithful Q-morphism 8, of the additive
group G, onto a subgroup U, of G normalized by T such that 6,(b(¢)x)=
t0,(x)t ' (xe Gy, t eT). Let W be the Weyl group of G, which is, by
definition, the quotient of the normalizer N.(T) by the centralizer Z,(T)
of T. The group W acts on X(T'), and hence on X(T)¥=X(T)Q;R and
on X(T)°=X(T)®,C in an obvious manner. We may identify X(T)®
and X(7T)°¢ with the dual space of the Lie algebra of T and its complex-
ification, respectively. Furthermore, we write the multiplication in X (T)%
and X(7T)¢ in additive form. Let { , > be a W-invariant inner product
on X(T)E.. We extend the inner product to X(7)¢ as a C-bilinear form.
For any be @, we put bV =2b/{b,b>. For any ae 4, let A, be the
element in X (7)% such that

N 1 if B=e,
A B >‘{o if Bedand f+a.

Since we are assuming that G is simply connected, 4,’s are in X(7T') and
they form a system of generators of the free abelian group X(7). These
A.’s are called the fundamental dominant weights, A rational character
X € X(T) is called dominant if (X, «V>=0 for all « € 4, equivalently,

X= 1—[ AZL“

agd

for some non-negative integers m,.
Denote by g and t the Lie algebra of G and T respectively. Let
{H,, X,; a e 4, be 0} be a Chevalley basis of g. We have then

[H’ Xb]=b(H)Xba [Xw X—a]=Ha9 Is(Ha)=<‘8’ a\/>,
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0 if b4+ ¢ @, b+b'+0,
[sz Xb']= . ,
NyoXooy if b4+ €,
Nyw=—Noy s Nip=(p+1p (Het b b e, a ped),

where p is the largest integer such that b—pb’ € @. Moreover, H, (« € 4)
form a basis of t.

Let p: G—GL(V) be a faithful Q-morphism where ¥V is a finite
dimensional vector space defined over Q. A lattice L in ¥V, is called
admissible if it satisfies the conditions

(i) L has a basis formed by eigenvectors of p(T), and

(ii) for every a € 4 and every positive integer J, the linear transforma-
tion (j1)'dp(X,)! leaves L stable.

An admissible lattice always exists (cf. [5, § 4], [25, § 2, p. 17 Corollary 1]).
Taking an admissible lattice L, we set

I'=G,={geG; p(g)L=L}.

The group I is a discrete subgroup of G and is independent of the choice
of L (cf. [5, § 41, [2, p. 84]). We call I" the standard unit group of G.
The double coset decomposition

G= ) BwB~- (disjoint union)
weEW
is known as the Bruhat decomposition. Set £2=B-B-. Then £ is a
Zariski-open subset of G and the product map B, X T X B;—2(cG) is
an isomorphism. Consider the action of BX B~ on G defined by

g—>b.gb;' (geG,b, e B, b, e B).

The set £ is an open BX B -orbit in G and the Bruhat decomposition
gives the orbit decomposition of G under the action of BX B~.

In general, suppose that a connected linear algebraic group H
operates on an algebraic variety X morphically. Then a non-zero rational
function f on X is called a relative (H-) invariant if there exists a rational
character X of H such that

fhx)=1h)f(x) (heH, x e X).

The character X is called the character corresponding to f.

We shall investigate relative B X B~ -invariants on G. In the present
case, since G has an open B X B~-orbit, a relative invariant is determined
by its corresponding character uniquely up to a constant multiple. Notice
that the group X(BXB~) is canonically identified with X(T") X X(T).



Eisenstein Series 301

For any X € X(T), define a regular function f, on Q by setting
1.1 Sflutu)=%(t)"" (e B, u,e By, teT).

Then f; can be extended uniquely to a rational function on G and satisfies
the invariance property

(1.2)  fulbighs)=2(b)""b,)f(g) (bieB,beB",geG).

Lemma 1.1. (1) The function f, (X ¢ X(T)) is a regular function on
G if and only if X is dominant.
(2) Any relative invariant f can be written uniquely as

f=c-I] fiz (ce C*v,eZ).
acd

() 2={geG; [lacafr, 70}

Proof. (1) Let C[G] be the ring of regular functions on G and we
consider C[G] as a G-module by the formula: (gf)(x)=f(g"'x) (g, x € G).
If f; is in C[G], then f, is a highest weight vector of highest weight .
Hence X is dominant. Conversely assume that % is dominant. Let (p, ¥)
be the irreducible representation of G of highest weight X. Take a basis
{vy, -+, 0} (¢=dim V) of ¥V consisting of weight vectors. We may
assume that v, is a highest weight vector. We denote by V’ the subspace
spaned by v,, - --,v,. Then ¥V’ is a p(B;)-stable subspace of ¥ and we
have

P(“)Ulzvl (mod V') (ue B’;)’
P(b)01=X(b)Ul (beB).

Let p,,(g) (g € G) be the matrix element of p(g) with respect to the fixed
basis:

t
p(gv;= Jle 0:(&)V;-
It is easy to check that

ou((uytu) y=%(t)" (u,e B, u, e B, teT)
and

Pu((blgbz_l)_l):X(bx)—lx(bz)(on(g—l) (b,e B, b,c B, ge ().

These equalities imply that f,(g)=p;(g ') and f; is a regular function on
G.
(2) Let X be the character of BX B~ corresponding to /. Consider
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the morphism 4: T—B X B~ defined by 4(¢)=(¢, t) for te€ T. Then the
group A(T) is the isotropy subgroup of BX B~ at the identity element e
of G: A(T)={(b, b;) e BXB~; byeb;'=e}. Hence X is trivial on 4(T") and
there exists a X, € X(T) such that %(b,, b,)=1Xy(b,) Xy(b,) (b, € B, b, € B™).
The character X, is written as

Yo=1T] L= (vae Z).
agd
The rational function f] [ .e,f5e is a relative B X B--invariant which cor-
responds to the trivial character. Hence it is a non-zero constant. This

proves the second assertion.
(3) In the proof of [25, § 5, Theorem 7 a)], it is shown that

2={geG; ] f,#0}.
beo+
Since [[yeco+fo=[1acsfi,» We get the third assertion. q.e.d.

In the rest of this paper, we simply write f, for f;, (¢ € 4). Since
the relative invariant corresponding to a simple root « does not appear in
the subsequent sections, this abbreviation will not cause any confusion.

§2. The structure of symmetric spaces

2.1. Let G be a universal Chevalley group over Q and ¢ an involu-
tive automorphism of G defined over Q. By definition, ¢* is the identity
mapping of G. Denote by H the fixed point group of ¢: H={ge G;
d(g)=g}. The group H is known to be a connected reductive Q-group
(cf. [26, § 11, [24, 8.1]). A torus T of G is said to be g-anisotropic if o(t)
=t"!for every 1 e T. A parabolic subgroup P of G is said to be g-aniso-
tropic if PNo(P)is a Levi subgroup of both P and ¢(P). Throughout
this paper, we assume that

.1 G has a g-anisotropic maximal torus.

Lemma 2.1. There exists a g-anisotropic Q-split maximal torus T
and a o-anisotropic Borel subgroup B defined over Q such that T= B a(B).

Proof. By the assumption (2.1), there exists a g-anisotropic maximal
torus T, of G. Take a g-anisotropic Borel subgroup B, of G such that
Ty=B,No(B,). Such a B, exists by the results in [26, § 1]. Let B, be a
Borel subgroup defined over Q and put Z=G/B,. We can identify %
(resp. %,) with the set of all Borel subgroups (resp. all Borel subgroups
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defined over Q) of G. Denote by %’ the subset of # consisting of all
g-anisotropic Borel subgroups. By [26, Theorem 1], %’ is a Zariski-open
and Zariski-dense subset of #. Therefore, if G has no g-anisotropic
Borel subgroup defined over Q, then %, is contained in the closed subset
F=#—%'. Let n: G be the orbit map defined by n(g)=g-B,. Itis
known that z: Gy—%, is surjective (cf. [3, Theorem 4.13 a)]). Hence G,
is contained in a proper closed subset z'(F). This contradicts the fact
that G, is Zariski-dense in G. Thus we conclude that there exists a
g-anisotropic Borel subgroup B defined over Q. Set T=BNo(B). Since
B is g-anisotropic, T is a maximal torus of B, and hence of G. It is clear
that T'is defined and split over Q. By [26, Proposition 5], B is H-conjugate
to B,. This implies that 7 is H-conjugate to 7,. Hence T is g-aniso-
tropic. q.e.d.

We fix such T and B as in the lemma and put B~ =g¢(B). Whole
results in Section 1 can be applied to this choice of T, B and B-.
Now we define a twisted action of G on G by

gxx=gxa(g)™' (g, xeG).

Then we have H={g ¢ G; gxe=e} where e is the identity element of G
and the morphism of G/H into G given by g- H+~>gxe induces a G-equi-
variant isomorphism of the homogeneous space G/H and the closed
twisted G-orbit Gxe ([16, Lemma 2.4]). Put X=G+e and X,=XN£0.
Here we put 2=B-B~=B-¢(B) as in Section 1.

Lemma 2.2, The set X, is a Zariski-open dense subset of X and
coincides with the twisted B-orbit Bxe.

Proof. Let x be an element in X,. Then x is written as x=—utu’
for someu e B,, ¥’ € B; =0d(B,) and t e T. Since o(x) '=x and o(t)=1"",
we get ut’ =o(u’) 'to(u)~'. Hence u'=0(u)~*. Therefore, takinga t'e T
such that t =(¢')?, we obtain x=utw’ = (ut’)- g(ut’y"*=(ut)xe. This proves
that X, is included in Bxe. The opposite inclusion relation is obvious.
It is also obvious that X, is Zariski-dense and Zariski-open in X.  q.e.d.

We denote the restriction of the regular function f, (cf. the remark
at the end of § 1) on G to X by the same symbol. By (1.2), we have

2.2) F((tiyx)=A)(x) (teT, ueB, xeX).

Lemma 2.3. Any non-zero rational function f on X relatively invariant
under the twisted B-action is written uniquely as
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f=c- Tl fr (ceC*v,€2Z).
acd

Proof.- Let X be the rational character of B corresponding to
[ f(bxx)=X(b)f(x) (b e B, x e X). Since fis a non-zero rational function
on the Zariski-open set X,=Bxe, f(x) does not vanish at x=e. Fora
te T, if t*=1, then we have X(¢)=1 by f(e)=f(txe)=X(t)f(e). Therefore,
X is written as = [[ 4;*= for some integers v,. Then f-[].esf "% is a
non-zero constant on the Zariski-dense subset X, and hence on X. This
proves the assertion. ’

2.2. Let B* and T+ be the identity components of the real Lie
groups By and Ty, respectively. Then B* is a semi-direct product of T'*
and (B,)g. Since G is simply connected, G5 is a connected Lie group.
Set Xp=XNGg and (Xp)p=X,NGg. The set X3 (resp. (X,)g) is stable
under the twisted action of Gy (resp. B*).

The B *-orbit structure of (X,)g is fairly simple and is given by the
following lemma, which is an immediate consequence of the Bruhat
decomposition of Gg.

We denote by 2 the set of all mappings of 4 to {+1}.

Lemma 2.4. Foree X, put X,={x € Xp;sgn f,(x)=¢, (e € A)}. Then
the sets X, (¢ € 2) are twisted B*-orbits in (X)g and we have

Xo)r= U X. (disjoint union).
-9

Moreover, the action of B* on X, is free for any e € 3.

Next consider the G-orbit structure of X;. Notice that each con-
nected component of X5 is a twisted Gg-orbit.

For any x € Xj, the isotropy subgroup H, of G at x coincides with
the fixed point group of the involutive automorphism ¢, of Gy defined
by ¢,(g)=x0(g)x~'. By Lemma 2.4, each Gy-orbit in X contains some
of X.’s. Let ¢, be the element in T such that 4,(¢,)=e¢, (« € 4). We can
take ¢, as a representative of X,. We shall study the behaviour of the
involution ¢, =g, on the Lie algebra g of G.

Let {H,, X,; «ed,be®} be a Chevalley basis of g. The Lie
algebra g, of Gy conicides with the subspace of g spanned by {H,, X}
over R. Since the differential do of ¢ maps RX, onto RX_,, there exists
a non-zero real number ¢, such that do(X;)=c,X_, (b € ). Moreover,
since T is o-anisotropic, we have do(H,)=—H, (¢ ¢ 4). It is clear that
c,c_y=1and ¢,,po=—c,-c, if b, b', b+b" ¢ @. For the involution o,,
we get the relation '
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a€d

do.(X)= ] e, X,
2.3)

do(H)=—H, (be®, acd).
Let df be the involution of g defined by

{dﬁ(Ha)= —H, (aed),
do(X,)=—|c,| X, (be D).

Then df and do, commute and the restriction of df to gp, which we
denote also by 46, is a Cartan involution of gz. Let p(b)=sgn(—c;) and
0:(B)=TTacs =" -9(b) for be ®@. The mapping z,:P—{+1} is a
signature of roots and do, is the 7.-involution of g in the sense of [15,
§ 1.2]. This shows that the connected components of X5 are in the class
of semisimple symmetric spaces treated in [15].

Let 4 be the Cartan involution of G, whose differential coincides
with df defined above. - The fixed point group K of 4 in G is a maximal
compact subgroup of Gr. Take a ¢, in T such that a(t,)=7(a) for all
a ¢ 4. Note that ¢, is not always in Tp. It is easy to check that ¢.(g)=
(t.t.)0(g)(t.t,)~*. 1In particular, we have o(g)=1,0(g)t; "

For the description of the Gg-orbit structure of Xg, we need to
define an action of Won 2. For each w in W, we choose a representative
n, of win Nx(Tp)={k e K; kTpk '=Tg}. Since n,xt,=n,(t.t.)n;' 15",
the element n,x¢, is in Ty and f,(n,xt.)=A.(n,xt.)'+#0. Put (we),=
sgn f.(n,xt.). Itis easy to see that we is independent of the choice of a
representative »n,. Thus we get an action of W on X. For a simple
root e, it is easy to see that

&5, if B+, e 4,
2.4 (wae)ﬂ={ T :
gt [] & pla), if f=a,

red
where w, is the reflection in the hyperplane orthogonal to a.

Lemma 2.5. (1) Foreand ¢ in 2, X, and X,. are contained in the
same G g-orbit in Xy, if and only if ¢ and & are in the same W-orbit in %.

(2) Forance X let W.={we W; we=e}. Then W, is the subgroup
of W consisting of elements whose representatives can be. taken from
H, NN (Tg), where H.={g e Gg; g«t,=t,}.

(3) For a W-orbit w in 3, let X, be the closure of | J.co X. in Xg.
Then the Gg-orbit decomposition of Xy, is given by

Xp= U X,

WEWNY
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Proof. (1) Ifeand ¢ are in the same W-orbit in X, then, by the
definition of the W-action on X, X, and X, are contained in the same
Gg-orbit. Conversely assume that X, and X,. are contained in the same
Ggorbit. Takeate X,NTgand t' € X, Tp such that «(t)*=+1 and
a(t)~=+1 for any e e 4. Let g be an element in G, such that /=g«
Since ¢, and # commute, we have the generalized Cartan decomposition
Gr=K-T*.H, (cf. [6, Theorem 4.1]). Therefore, we may write g=kt,h,
where k € K, t, € T* and A satisfies ixt =¢t. Then

1 =kx(t- 1) =k(t- 13- t)k 5%

Hence t’t,=k(t-t2-t)k™. Since a(t’t;)=1 for any aed, k is in the
normalizer of 7. Write k=n,t, with wé W and t,€ T;. Thus we get
t'=n,xt-(t,t,)". This shows that ¢'=ws.

(2) Suppose that w is in W,. Then n,xt, is in TN X,. Hence
n,xt,=t,-t? for some t, ¢ T*. Since o(t)=17!, we have t;'n, xt.=t..
This proves that #7'n,, is a representative of w in N (T)N H,. Now the
second assertion is obvious.

(3) The third assertion is an immediate consequence of the first.

q.e.d.

Remark. More precise information on the orbit-structure of semi-
simple symmetric spaces under the action of minimal parabolic subgroups
is given in [14] and [17}. (See also [15, Proposition 1.10].)

We can carry out the Gg-orbit decomposition of Xy for each almost
simple algebraic group G, by using the classification of symmetric spaces
of e-involution type [15, Appendix]. The result is summarized in the
following table, where we denote by (g, §) the symmetric Lie algebra
corresponding to each Gp-orbit and the notation with respect to real
simple Lie algebras is the same as employed in [10, Chapter X, § 6, Table
V]. Moreover the numeral attached to each symmetric Lie algebra (g, §)
indicates the number of open B*-orbits contained in the corresponding
semisimple symmetric space.

G Gr\Xr

1+1

4 U GUI+1; B), 80— +1,/)

(I: even) i oaa (1—1—1)
J
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Gr\Xg

{: odld)

I+1
U GU+1; B, 20— j+1,/)
L

g e;en (l+1>
J

U GL0+15 B), 50— j+1,))

j{idd l+1
('7)

2X(3o(I+1, 1), 3o(l + 1)@ 30(I)) U
1

U Go(l+1, 1), 30— j+1, /) ®30(—Jj, /)

Jji even 2<l>
J

U Go+1,1), 80— +1,/) @2 — ], /)

i=
jrodd 2(1)
J

) (0 R), u(l—5.7)

9

(8p(; R), gll; R))
21

(I: 0dd)

2% (80(l, 1), 30(1) D s0(l)) U
1

U (et 1, 80—, @501 —1,J)

2(3)

2X 3o, 1), 30(; C))
21 -1
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G G\ X
4 (80(l, 1), 3o() D 30()) U
1
u @o(, 1), 80U —J, /) ®50(I—j, /)
Jjieven l
()
D,
(F: even) U ot 1), 00—,/ @50 —5,)
J: odd l
2(1)
2 (3o(l, 1), 80(l; C))
2l -1
E (Cacers 30(D) U (e507» 80(2, 2)) U (€495 30(4; R))
’ 1 27 36
2 X (erny» su(8)U2x (67(7), 3u(4, 4))
1 63
E,
(37(7)’ §[(8; R)) U (67(7)5 gu*(S))
72 56
E (eser> 30(16)) U (eq(e, 30*(16)) U (es(s)’ 80(8, 8))
e 1 120 135
(Faewr» 80(3) D 3u(2)) U (Fac» 89(2, 1) D 3u(2))
1 3
F,
U (fuw» 30(3; RYD3((2; R)
12
G (@2w» 51 ©5U(2) U (G200, 825 RYDSI(2; B)
2 1 3

§ 3. Eisenstein series

In the following we fix a W-orbit w in 3. Let X, be the twisted
Gg-orbit in X}, corresponding to w: X, =the closure of |, ., X..
Let I" be the standard unit group of the Chevalley group G (for the
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definition, see §1) and put I'.=I"NB,. For an xe (X,)o=X,N Gy,
denote by I \(I'xxNX,) the set of twisted I'.-orbits in (I'xx)N X,
(e € w). Define Dirichlet series E(x, ¢; 1) (¢ € ») by

G Ewed=3 [ ILOF Qe XT)),

where 6= _,., 4, and the summation with respect to 7 is taken over a
complete system of representatives of I" \(I"'«+x N X,). We call the series
E(x, e; A) the Eisenstein series on the symmetric space X,, since it coincides
with the usual Eisenstein series if X, is a Riemannian symmetric space

(cf. § 6 (A)).

Proposition 3.1. The series E(x, ¢; 2) (¢ € w) are absolutely convergent
Jor Re {4, &V>>3/2 (w e 4).

Now we introduce another Dirichlet series D(g; 1) (g € Gp) which
plays an important role in the proof of Proposition 3.1.

For a ge Gy, put I'y(g)="gl")NL2. Then D(g; A) is defined by
the following formula similar to (3.1):

(32 Dig; D=3 TLILDI* Qe XTY),

where 7 runs through a complete set of representatives of double cosets
belonging to I' \["o(g)/'z ("'z=I"Na(B,)). Set ', =I'Na(I")N B, and
Fz=I'Ne(INa(B,). Then I, (resp. I'7) is a subgroup of I"., (resp.
I'7) of finite index. Moreover we have o(I"..))=1"7.

Lemma 3.2. Ifge (Xp)o=X,N Gy, then F.gl-NX=I_xg.

Proof. Suppose that ngn’ (ne ., n’ e ['Z)isin I'.gl'zNX. Then
ngn' =a(ngn’)"'=0(m’) 'go(n)~'. Hence o(n)ngn’oc(n)=g. Since g is in
X, and the action of B, X B; on £ is free, this implies that o(n)n=1.
Therefore, ngn’=ngo(n)"'=nx+g. This shows that fwgf; nx cfm*g.
The opposite inclusion relation is obvious. g.e.d.

By the lemma, we easily obtain the inequality
E(x,e; D[ I]-D(x;2—5/2) (x € Xp, e e 3),

if {4, &) is real for any « € 4. Hence Proposition 3.1 follows immedi-
ately from the convergence of D(g; 2) for Re {4, aV)>1 (« € 4).

We shall check the convergence of D(g; A) by finding its explicit
expression in terms of the Riemann zeta function and the zonal spherical
functions on the p-adic group Gy, (Proposition 3.3 below). In order to



310 F. Sato

formulate the result on D(g; 4), we need some preliminaries.
For any (finite or infinite) prime v of Q, put G,=G,, T,=Ty,,
U,=(B.)g, U;=(B}),, and

v

Gz, if v=a finite prime p,
"~ |k if v=the infinite prime oo,

where K is the maximal compact subgroup of Gp introduced in Section
2.2, For a finite prime p, we also put T,,=7,,. Then we have the
Iwasawa decomposition for the p-adic group G,: G,=K,T,U,. Fora
ge G, let g=k(g)t(g)u(g) (k(g) e K,, 1(g) e T, v(g) € U;) be its Iwa-
sawa decomposition. Then the coset #(g)T,,, is uniquely determined by
g

Let du, du~ and d*¢ be the Q-rational invariant gauge forms on B,,
B, and T, respectively, which are normalized so that

.[ ldulpz‘[ ‘du_lpz(l—p—l)—dimT.I ldxtlpzl'
UpNKp Up NKp Tp,0
We define a guage form » on £ by
o(tu™)=T] A()dud*tdu-.
acd

It is easy to see that o is invariant under the B X B~ -action on 2: w(b,xb; ")
=w(x) (b, e B, b, e B~). Since the restriction of any invariant gauge form
dg on G to the open set £ is also BX B~ -invariant, it is a constant
multiple of . We assume that the restriction of dg to £ coincides with

w.
We may define the zonal spherical function o (1 e X(7)°) on G,
by the integral

(@)= T 140D dk (g6,

where dk is the Haar measure on K, normalized by dk=1. We put
Kp

o=, 1del, /[ idal,

Proposition 3.3. When Re {4, a¥>>1 (x e 4), the Dirichlet series
D(g; 2) (g € Gy) is absolutely convergent and is equal to

2dimr,{g vp(g)w(_p;(g)}bg+ {C(A, BV)[E((A, bV )+ 1)},



Eisenstein Series 311

where the product with respect to p is taken over all finite primes of Q.

Remarks. (1) Since v,(g)w®)(g) is equal to 1 for almost all p, the
infinite product with respect to p is actually a finite product.

(2) The explicit formulas for v,(g) and w®)(g) are given in [13,
Prop. 3.2.5] and [13, § 4], respectively. (See also [4].)

Proof. Let L(G,, K,) be the set of K,-biinvariant smooth functions
on G, with compact support. For a ¢, in L(G,, K,), we consider the
following local zeta function:

P(@o; D= ] LG40 2 [0(x)l,
0 ag€d

where 1,=(1—p~)%=7T or 1 according as v=p or v=o0. The integral
DP(,; A) is absolutely convergent for Re (4, V> >1 (e e 4). In fact,
the convergence is obvious for v=o0. When v is a finite prime, such an
integral has been considered by Casselman [4, § 3, p. 398] in a more
general setting and the convergence of the integral follows immediately
from [4, Lemma 3.2]. Moreover, from [4, Theorem 3.1] and the Iwasawa
decomposition of G,, we can easily derive the formula

G 0P D=0Bg)- [T (=p o (1 =po7),

where c;?”(gzsp) is the Fourier transform of ¢, and is defined by

@) ={[ 1} [ s 1dgl,

For a g e G,, denote by ¢, , the characteristic function of K,gK, in G,.
Then

3.4) 0B pe ) =0,(8)0BN(2).

Let L,=®, L(G,, K,) be the restricted tensor product of L(G,, K,) with
respect to {¢,, .}, where e is the identity element of G,. Fora ¢ e L,, we
put

0@ D= T

where 0, is the adelization of 2 over Q and |1~ 'w(x)|, is the measure on
£, defined by [A'e(x)|,=], ;" |w(x)|,. Then, by (3.3), the integral
O (p; 2) (¢ & L,) converges absolutely for Re{4, &> >1 (« ¢ 4), and, if
¢ is of the form ¢.Q(®, ¢,) (4, € L(G,, K,)), we get
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(3.5 (g5 =11 23, D).

Therefore, the proposition is an immediate consequence of the formulas
(3.3), (3.4), (3.5) and Lemma 3.4 below.

Lemma 34. Forage Gyanda ., € L(Gg, K), put $=¢.(Q,9,, ).
Then we have

OP(p; =277 D(g: DO(g: )
Jor Re (2, &V>>1 (a € 4).
Proof. Since 2,=B,,-T,-B;, and 2,=B,,-T,- B;,, wWe have

e[ ] 1AOE |
A/BuQ T 4/T

Qaed

05 D=,

xj > P(tuxuz")|du_| 4.
BEA/BEQ JJEQQ

We can take the sets (B,g/l'.) X [[,(U,NK,), T* X [],T,, and
(B r/I'2) X [1,(U, NK,) as fundamental domains of B, 4/B,g, T4/T, and
B ,/B,,, respectively. Here we denote by T'* the identity component of
Tr. Moreover, notice that an element x in Gy is in I'gI" if and only if x
is in K, gK, for all p. Hence

D(p; 1)=J [1 14042 3 gu(tuxuZl)|dul.|d*t|.|du_|.,
a€d z€lG(g)
where the integral in the right hand side is taken over T+ X B g/l X
B p/I'z. Put 2,={x e Qg; sgn f(x)=¢, (e e A} foranyein 3. Also put
I'.(g)=Ty(g)NL.. Denote by ~\I".(g) the I',, X I';-equivalence classes
in I'.(g). Then the right hand side of the equality above is rewritten as

TS IIA@Ee=} 1 IL@ R g @lo@]

e xTeE~\I:(g) acd Q¢ a€d
Let ¢, be the element in T such that A,(t)=e, and denote by ¢* the
element in X defined by ¢} =1 for any @ € 4. The mapping of I'..(g)
onto [',(g) defined by x—t,-x induces a one to one correspondence
between ~\I"..(g) and ~\I".(g). Hence the infinite series in the bracket
above do not depend on ¢ and are equal to 2-%™7 D(g; 2). Consequently,
we obtain

PP D=2 (g D T [, TR lao).
=2-9mT D(g; DS (..; 7). q.ed.
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§ 4. Integral representations

4.1. Fix a simple root @ € 4. Let M, be the subgroup of G gener-
ated by the subgroups U, and U_, (for the definition of U,,, see § 1.1).
Then there exists a unique Q-morphism z,: SL(2)—M, such that

01 0 0 1 0
dz‘a<0 O)=Xa, d‘L‘a<1 0>=X_a, dra(o _1)=H,,.

Since G is simply connected, 7, is an isomorphism. Moreover, 7, induces
an isomorphism of SL(2; Z) onto M, ,=M,NI". For any m e M,, we
put m=rz;'(m). The group M, is o-stable and we define an involution ¢,
of SL(2) by ¢,=1;'00]|y, o, Then, by (2.3), we have

@.1) o () =J, h-J -, J,,=<’7("‘)(1)"a|‘1 (1’) (h e SL(2)).

Denote by T, the connected component of the identity element of
Kera={te T; a(t)=1}. Let Z,(T,) be the centralizer of T, in G. Then
Z(T)=T, -M,. We consider the parabolic subgroup P,=Z4(T,)-B.
Denoting the unipotent radical of P, by U,,,, we have the decomposition
P,=TM/U,. Letp: P,—~GL(2) be the representation defined by

o(P)=A)'m™, p=tmu (teT,meM,ueUpy).

It is easy to check that p(p) is independent of the decomposition of p and
well-defines a Q-rational representation.

Let P¥*=P,XGL(1) and X*=XXM(2,1; C). The group P} acts
morphically on X* as follows:

(p, @) (x, »)=(p*x, ap(p)y) (peP,aecGL(),xeX,ye M2, 1;C)).

For an xe XN P, -0(U,), we write x=utmu' (ue U,,teT,, meM,
W ea(Uy,)) and set S,(x)=A4,)"'mJ,. The matrix S,(x) is a non-
degenerate 2 by 2 symmetric matrix and the mapping x> S,(x), which is
defined originally on P,-o(U,,) N X, can be extended to the whole of X
as a rational mapping. If x is in XzNP,-0(U,,), then S,(x) is real
symmetric and

det S,(x)=—c;* ] fo(x) ="
“.2) { pei-te)

sgn det S,(x)=ne) [] &%,
ped—{a}

where e;=sgn fy(x) (8 € 4—{a}). By (2.4), S,(x) is definite or indefinite
according as w,e=¢ or weze. Setf®(x, y)="'pS.(x)y for (x,y)e X*
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and X{(p, @)=a’ for (p, a) € P}. Also set, for B e d—{a}, f(x, p)=[f:(x¥)
((x,») € X*) and X{(p, a)=A(t)* (p=tmu, t e T,,me M,, ue Uy).

Lemma 4.1. (i) - For any B e 4, the function f(x, y) is a relatively
P -invariant regular function on X* corresponding to the character X§":

[, @ (x, ) =27(p, Af (%, y).

(ii) Any relative PZ¥-invariant rational function f on X* is written
uniquely as

S, y)=c- ﬁl;[df,%")(x, e (ceCX v eZ).

Proof. (i) For a simple root B different from «, the assertion is
obvious. Now we consider the function £, It follows from the defini-
tion that £ is a relative PX-invariant corresponding to the character
19(p, a)=a*. We need to show that f¥ is a regular function on X*.
First we shall prove the identity

4.3) F&x, (0, 1))=f().

Consider the mapping p: B—P} defined by p(tuy=(tu, 4,()™") (teT,
ue B,). Then it is easy to check that u(b)(x, ‘(0, 1))=(bxx, (0, 1)).
Hence f(x, (0, 1)) is a relative B-invariant on X corresponding to the
character A% This implies that f(x, (0, 1)) is a constant multiple of
JAx). Since f&(, 40, 1))=f(e)=1, we obtain the identity (4.3). It
follows immediately from (4.3) that f((x, y) is a regular function on
{(x,y) € X*; y=£0}. It is obvious that f(x, y)=0 if y=0. This proves
that £{* is a regular function on X*.

(i) Since the proof of the second assertion is quite similar to that
of Lemma 2.3, we omit it. q.e.d.

Put X¥={(x, y) e X*; f{”(x, y)70 for all B e 4},
X De=XFN(XXMQ2, 1; R)),
and fore e 3,
X¥.={(x,») e XDr; sgn f7(x, Y)=¢;, (Be D}

Let (T,)5, (P.)% and (P¥)3 be the identity components of realyLie
groups (T,)g, (P.)r and (P¥)g, respectively. Then (P¥)z=(P )z X R} =
(Ta)loi : (Ma)R * U(a))z X Ri.

Lemma 4.2. (i) The set X¥ is a Zariski-open P ¥-orbit in X'*.
(ii) The (P¥)z-orbit decomposition of (X ¥)y is given by
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(X*)R U Xa,s

Proof. It is obvious that X¥ (resp. (X¥)g) is P¥- (resp. (P¥)z-)
stable. If (x, ») is in X} (resp. (X¥)g), there exists an m in M, (resp.
(M ,)r) such that (m, 1)-(x, y)=(x', ¥(0, 1)) for some x’ ¢ X. Since

4.4 (x5 40, 1))=fi(x") forany fed,

the first (resp. second) assertion follows immediately from Lemma 2.2
(resp. Lemma 2.4). q.e.d.

4.2. In this paragraph, we fix a simple root « € 4 and a W-orbit w
in 2. Let dx be a Gg-invariant measure on X, and dy the standard
Euclidean measure on M (2, 1; R)=R’. We normalize a right invariant
measure dp on (P¥)p such that

[ T @G )dp L
(P §x R

.5) =j  fGe ) [ 1f9Ge ) dsdy

(cco, (xo, Yo e X¥, fe L(XE, H | f§ 17 dxdy)).

Note that the normalization of dp is independent of ¢ and (x,, y,) € X ..

Let #F(X%) be the subspace of C~(X}%) consisting of all functions ¢
satisfying the following two conditions:

(1) There exists a compact subset D of X such that the support of
¢ is contained in D X R®.

(2) For a fixed x e Xz, ¢(x, y) is a rapidly decreasing function of y
in R%

Foran x e X;NX, and a ¢ ¢ F(X}), set

Z9(x, ¢; z)=j (T 1% (o, @8

(P0)Q/TaceX Ry '8

X Z #((p, a)- (@, Y} —dp,

where I,.=(P)zNI" and (7, y) runs through all the elements in
TsxxXZHYNX¥.  Also set

00 D=[ L1094, dedy
e FXP,cca).
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The integrals @ (¢$; 1) are absolutely convergent for Re <2, 8¥)>0
(B & 4) and have analytic continuations to meromorphic functions of 2 in
X(T)° (cf. [1]).

Lemma 4.3. When Re (2, 8¥>>3/2 (8 € 4), the integral Z{(x, ¢; )
is absolutely convergent and the following identity holds:

Z(x, 3 A=L2AA+3[2, a*)) 2, E(x, 5 2)- D($3 21— 0/2).
Proof. Note that {5, ¥>=1for any B e 4. By (4.5), we have
Z00, 3 D=2, £(x; 1) (g5 2—0/2),

£ )= 3 LI Do,

(r,y) Bed

where (7, y) runs through a complete system of representatives of I,..-
equivalence classes in (I"+x X Z*) N X¥.. By (4.4), we can take

{,°0, 9)); Te I'\I'«xN X.), g € Z, >0}

as a complete set of representatives. Then we see that the series £(x; 2)

is equal to L(2{A+6/2, aV))E(x, e; ) and is absolutely convergent for

Re {4, B> >3/2 (B e 4) (cf. Proposition 3.1). This proves the lemma.
q.e.d.

§5. Functional equations

5.1. Fora ¢e F(X%), we put

de )= 8.3 exp Cav=T iy, T=(_7 o)

We first prove a functional equation relating @(4; 2) with @2(g; 2).
Theorem 5.1. Letce X, ¢ € F(X}) and « be a simple root.
(1) Ifwe=e, then
O3 23/ ==L, @'Y+ 1/2F e+
X cos (z(4, aV))O@(; wA—0/2).

Q) If wee, then

JSICF 1—5/2)> - (haVy-2aaVy -1 2

& A’ =|e, ya s & F 2’ v 1 2
R

1 —sin (@4, aV)) (O(g; Wl —5/2)
X (— sin (72, a¥)) 1 > <@$‘2€(¢; waz—5/2)>'
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Proof. By the principle of analytic continuation, it suffices to prove
the theorem under the assumption that {2, BV)>1/2 for all Be 4.
Moreover, the same argument as in the proof of [20, Lemma 5.5] allows
us to reduce the theorem to the case ¢ ¢ Cy(X¥ ,UX¥, ). Notice that
these assumptions assure the convergence of the integrals appearing in
the following calculation. Set

X/={x e Xg; sgn fy(x)=¢; for ped, f+a}
and
Y(x,e)={ye M2, 1; R); sgn f{"(x, y)=¢e.} (x¢& Xp).

By (2.4), we have X=X/, .. Moreover, we set

U(x, &0 63 2)=f | yS(x)y |32 g(x, y)dy.
Y (x,ea)
Then

G e0Gia—a) = [TV e 6 D

Recall that S,(x) is definite or indefinite according as w,e=e¢ or w,e=e.
By [8, Chapter III 2.6], we get the following identities:
If w,e=e, then

U(x, e,y ¢; D) =|det S,(x)[@aVg-2a+oma’>
XT'({240/2, a¥))* cos (w2, @V ))U(X, &4y ¢ Wad).

If w,e=~e, then

(5.2)

W'(x, €as 55; 2) — 2a V) =232 0V Ve
(53) @@¢¢J‘M&WV> e L2432, aV))

1 —sin (72, aVD)\ (T (x, eas b5 Wad)
. (— sin (72, V) 1 ) (@'(x, s b3 wal))

where e, =(W.)s=1n(a)e, [ scsef?". First assume that w,e=e. Then,
by (4.2), (5.1) and (5.2), we have

BD(f; A—3[2) = -2 DT ((A4812, V)| ca|-#* cos (w(2, &)
xj TT 1,00 (=m0 (x, e, b wad)dx.
X! B#a

The last integral is clearly equal to & (é; w,A—5/2). Using (4.2), (5.1)
and (5.3), we can prove the functional equation for the case w,es¢ in the
same manner. q.e.d.
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Let @ be the Cartan involution of Gp introduced in Section 2.2 and
K the fixed point group of  in Gz. Put

(% jee)

Then ;KN M, )=S0(,). For an fe F(R?), set
L(fs)=[ 191110y
where dy is the standard Euclidean measure on RE.

Lemma 5.2. Let ¢, be a K-invariant function in C7(X,) and ¢, a
Sunction in P(R?). Then ¢(x, y)=¢(X)¢(y) is in F(X}) and we have

D3 2— /D) =ea| @ PL (B3 (A—8]2, &V (s ),

where

Vg D=[ T 1A g (.

Proof. Let X, and Y(x, ¢,) be the same as in the proof of Theorem
5.1. For ke KNM,, let k=17 (k). We normalize a Haar measure dk
on KN M, such that

dy=rdrdk, y=k-'(0,r), r>0.
Since S, (kxx)=kS, (x) *k, we have by (5.1)
0@ 1-02)= [ TT 1A, ()
X! p#a
X o, Ml e [ rne o (R0, ),
(MaNK)e, o 0
where (M,NK).,,={k e M,N K; sgn f(kxx)=¢,}. By the assumption,

the function ¢, is K-invariant. Moreover, fy(x) (3 «) are M, K-invar-
iant. Hence we obtain

Qe(:a)(¢; 2.__.5/2)____‘[‘ n |f;g(X) ](1—6/2,ﬂv>¢l(x)dx
Xo ped
xj dk j " prnaig (k- (0, r))dr.
MoNK 0
The first and the second factors of the right hand side are equal to

¥ (¢s; A) and |c,|"**V*2L,(¢,; {A—5/2, @V)), respectively. Thus we get
the lemma. g.e.d.
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Now we are able to rewrite the functional equations in Theorem 5.1
into the following form.

Theorem 5.3, Let w={c", - .., "} be a W-orbit in 3.
(1)  For each we W, there exists a v by v matrix C,(w; 2) whose
entries are meromorphic functions of A such that

ws“’(?‘l; W'D we(l)(¢l; 2)
=C,(w; A)
¥ ogs; wA) Toor(ps D
Sfor any K-invariant function ¢, in C3(X,).
2@ Cww; H=C,(w; wDC,(w; ) (w,w e W).
(3) For the reflection w, in the hyperplane orthogonal to a simple
root a, the functional equation reads

CPi; w =" (p; ) if we=¢
and

( ¥ (413 w'LJ) >_ sec i{d, ¥y —tanadld, a"D\ [ T(dy; D)
T (ds wd)) (—~tan (A avy  sec n{A, on>> (WWE(QSI; z))

if weee.

Proof. Notice that the following functional equation holds for any
&, € S(RY):

Lo(fs; (GA—5/2, a¥d)=a~23+ma>[((A+5[2, a¥ D)
X 008 (4, &S L(; {wad— /2, a¥'»)

where ,(y*) =I #:(») exp 2z +/ — 1 *yJy*)dy. Now the theorem follows
R2
immediately from Theorem 5.1 and Lemma 5.2. g.e.d.

Remark. Theorem 5.3 is equivalent to the functional equations of
K-invariant spherical functions on the symmetric space X, of e-involution
type, which are proved in [15, § 4, Proposition 4.6 and Theorem 4.10}.

5.2, In order to state our main theorem, we need some notational
preliminaries. Let ¢, (b e @) be as in §2.2. Recall that c,c_,=1 and
Cprp=—CyCpy if b, b’ and b+ b’ are all in @. Hence we are able to extend
the mapping |c|: ®—R?} defined by |c|(b)=]|c,| to a homomorphism of
X(T) into R?. We denote the extension also by |¢|. For any 2 ¢ X(T')°,
put



320 F. Sato
lel)= T lel(4#"

If 2=2is in X(T), then the right hand side of the equality above coincides
with |c|(X). Hence the notation will not cause any confusion. Set

A, &5 D=lcl(—=2) [T 5242, bVY>+1E(x,¢; 2)
beo+
(xe Xy eeld, 2e X(I)°),
where 5(s)=r"""2'(s/2)¢(s).
Theorem 5.4. (1) The Dirichlet series E(x, ¢; Z)V(x € Xy, e€ ) are
absolutely convergent for Re {2, aV>>1/2 (a € 4) and have analytic contin-

uations to meromorphic functions of 2 in X(T)°.
(2) The functions

T K4 b5 —1/2)"- L2, b5+ DE(x, &5 2)

are entire functions of A.

(3) Let w={e®, - - -, ™} be any W-orbit in 3. Then the following
Jfunctional equations hold for any we W:

Ax, eV; wa) A(x, e 2)
: =Cy(w; ) : (xe X,
A(x, & ; wi) A(x, ) 2)

where C,(w; 2) (W e W) are the same as in Theorem 5.3.

Proof. Set DO ={21e X(T)° Re{d, aV)>3/2forallec d}. Fixa
simple root & and denote by D, the convex hull of the union of D and
w,D®, First we shall prove the functional equations for w=w,. For
this purpose, we need the following lemma. Its proof is quite similar to
that of [20, Lemma 6.1], hence omitted.

Lemma 5.5. Let ¢ be a function in F(X3}) such that both ¢ and ¢
vanish on the complement of (X¥)g. Then the integrals Z{(x, ¢; ) and
Z(x, ¢; A) have analytic continuations to holomorphic functions of 2 in D,
and satisfy the functional equation Z(x, §; A= Z(x, ¢; w,d).

In order to construct functions satisfying the assumption of Lemma
5.5, we use the differential operator

0 0 9 i)
9 X ¥ :( ] _“—‘>Sa(x < s _—>'
( ) ayz ay1 ) ay2 ayl
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It is easy to check the following two relations:

D*(x, y) exp 2z« — 1 yJy*)
=Qr« — 1)’ f(x, y*) exp Qr+/ — 1 tpJy*),

53 DA A=A DI ] S,

(5.4)

where e, =(W.e).=n(a)e, []srae§?">. By (5.4), the function 9°g, satisfies
the assumption in Lemma 5.5 for every ¢, € C5(X¥,). Assume that ¢, is
in C3(X}%). Then, using Theorem 5.1 and Lemma 4.3, we can rewrite

the functional equation Z(x, @ s =Z(x, D°¢y; w,A) in Lemma 5.5
as follows:
LW A, V> +1)E(x, e; w,A)
T, 4 G @y Dl
cos w{A, aVYE(x,e; 2) if we=e,
{E(x, e; )—sin n{d, a"DE(x, we; A)  if wee,

(5.6)

where the both sides of the identity are extended to meromorphic func-
tions of 4 in D,. Since |c|(—w,D)=|c{(—D)|c.|*#=">, the identity (5.6) is
easily transformed into the form

le|(— W )p(2wah, ¥y + DE(x, &5 w,A)=|c[(— Dn(2{4, &)+ 1)
E(x,¢; 2) if we=¢,
sec 7l VY E(x, e; )—tan nld, aVYE(x, we; A) if wee.
Since @*—{a} is w,-stable, the function [[,co+-( 7244, BV)>+1) is
invariant under 2—w,4. Maultiplying it to the both sides of the equality

above, we get the functional equation for w=w, (cf. Theorem 5.3 (3)).
We have, by Lemma 4.3 and (5.5),

ZP(x, D°¢y; N=4e({4, @) —1/2)C(242, V) +1)
X E(x, e; DO (dy; A—6/2+ A, — )
for any ¢,e Cy(XF%). Since there exists a ¢ e Cy(X*,) such that
O (¢y; 21— 08/2+ A,— )0, Lemma 5.5 implies that
(4, a")—=1/2)°C2<4, ) + DE(x, &5 )

is holomorphic in D,. Since {4, b¥>>3/2 for any b ¢ @*—{a} and any
A in D,, the function ({4, aV)> —1/2)* []seo+ £(2{A, V> + DE(x, ;5 2) is
also holomorphic in D,. For any a, 8 € 4, D,N D, includes D®. Hence
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TL&& a">=12) ] €@¢H b+ DEGs € )

is continued holomorphically in the convex hull of {J,c, D, (cf. [11,
Theorem 2.5. 10]). For any b e @*, we put /(b)=min {{(w); wbe 4, we W}
where /(w) is the length of w e W with respect to {w,; @ € 4}. Let D®
(k=1,2, ---) be the convex hull of |_J;(y<, w-D®. Itis clear that the
domain D™ coincides with the convex hull of (\U,es w.- D*-2)U D*-9,

Lemma 5.6. For every k (=1), the functions

I, K& 6—172) 1 LR 6D+ DEM, ;4 (e )

L)<k
beo+

are holomrophic in D®,

Proof. We prove the lemma by induction on k. For k=1, the
statement has just been proved. Assume that k=2. For any ae 4,
W, D®=D N DD contains the domain D,. Hence w,- D~V N DE-D g
a non-empty connected convex tube domain. Therefore, by (5.6), the
functions E(x, e; 1) can be continued to meromorphic functions in
w,-DE-DJD¥-D - To see the holomorphy, we rewrite the functional
equation (5.6) as follows:

E(x, e; =n%4=""1T(— (2, ")+ 1/2)|c,|*="
3.7 cos = {2, a"YE(x, e; w,) if we=e,
E(x, e; wD)+sin a2, " YE(x, we; w,d)  if wete,

where we put E(x, ¢; )= []sc0+ 8242, bVY+1)E(x, e; 2). By the induc-
tion hypothesis, the left hand side of (5.7) multiplied by

1 «ab"H>—1/2

WD)k -1
beo+

is holomorphic in D*-P, On the other hand, the right hand side of
(5.7) multiplied by

I €2 )= 112 (A, = 1727

is holomorphic in w,D*-Y, Since w(D*—{a})=0*—{a} and the left
hand side of (5.7) is holomorphic in {2, @¥)+1/2=0, these observations
imply that

1 (& b6Y)—1/2yE(x, ; 2)

)=

WD)Zk
beo+
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is holomorphic in D®=Y (U ey Ww,D¥*"). Since any holomorphic
function on a connected tube domain D can be continued holomorphically
to the convex hull of D ([11, Theorem 2.5.10]), this proves the lemma.
Now we are able to complete the proof of Theorem 5.4. Since the
convex hull of |}, . w- D@ is X(T)¢, the second assertion is implied by
the lemma above. The first assertion is an' immediate consequence of
the second. We have already proved the functional equations for the
reflections with respect to simple roots. Since the Weyl group W is
generated by them, the functional equations hold for any we W.  q.e.d.

It frequently happens that the function E(x, ¢; ) has a simple pole
in the hyperplane {2, b¥)=1/2 for some b e @®*. In this connection, we
can easily derive the following proposition from the functional equations.

Proposition 5.7. For ance X, let 4,={a € 4; w,e=¢} and denote by
W.., the subgroup of W generated by {w,; a € 4.}. If a positive root b is
written as b=wa for some we W, and some a € A,, then the Eisenstein
series E(x, ¢; ) has a simple pole in the hyperplane {1, b¥)=1/2.

Remarks. 1. Theorems 5.3 and 5.4 reveal an intimate relation
between spherical functions and Eisenstein series on X,. Some special
cases of this relation already appeared in the study of zeta functions of
quadratic forms. In [23], Siegel proved the functional equation of his
zeta functions of indefinite quadratic forms by reducing it to the functional
equation of certain hypergeometric functions. Those hypergeometric
functions are obtained as a special case of the spherical functions on the
pseudo Riemannian symmetric space SL(n; R)/SO(p, n—p) (cf. [18]). We
can also understand Siegel’s zeta functions of indefinite quadratic forms
as Eisenstein series on SL(n; R)/SO(p, n—p) corresponding to some
maximal parabolic subgroup of SL(z; R). In the proof of [22, Lemma 1],
Shintani used the functional equations of the Legendre functions of 1st
and 2nd kind, which are the spherical functions on SL(2; R)/SO(2) and
SL(2; R)/S0(1, 1), respectively. He derived from [22, Lemma 1] certain
functional equations of zeta functions in two variables related to binary
quadratic forms.

2. It is an interesting problem to extend our result to not necessarily
minimal parabolic subgroups. For example, Eisenstein series correspond-
ing to the parabolic subgroup P, will be obtained as the residue of
E(x,¢; A) at {1, «¥>=1/2. However the calculation will become rather
complicated because of the same difficulty as encounterd in the study of
zeta functions of ternary zero forms (cf. [19]).

3. Recall that the group G itself can be viewed as a semisimple
symmetric space in the following manner. Consider the involutive
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automorphism ¢ of G X G defined by o(g;, 8:)=(8: &) Then the quotient
space of G X G by the fixed point group of ¢ can be identified with G and
we are able to consider the Dirichlet series D(g; 1) (g € Gp) introduced in
(3.2) as the FEisenstein series for (GX G, ¢). The following theorem can
be easily proved by Proposition 3.3, the functional equation of the
Riemann zeta function and the functional equations of the zonal spherical
functions w{P(g) on Gy,

Theorem. Put
D*(g; H=D(g; Hx I {(1—=<45%)%) <2 b%)*
X Qm)~®* (2, BYD)(1 444, b))}
Then the function D*(g; 2) is a W-invariant entire Sfunction of 2 in X(T)°:
D*(g; H=D*(g; wd) (we W).

Conversely, if the theorem can be proved directly, the functional
equations of w{?(g) are its immediate consequences. Actually, by imitating
the argument in Section 4 and Section 5, we can give a proof of the
theorem independent of the explicit expression in Proposition 3.3. Thus
we obtain a proof of the functional equations of the zonal spherical func-
tions on universal Chevalley groups over Q,.

§ 6. Examples

We retain the notation in the preceding sections.

(A) Riemannian symmetric spaces.

Assume that ¢ induces a Cartan involution on Ggz. Then y(a)=1
for any e € 4. Let e* be the element in ¥ such that ef =1 for all « ¢ 4.
By (2.4), w,={e*} is a single W-orbit in 3’ and X,, is the Riemannian
symmetric space Gg/K. Our Eisenstein series E(x,e*; 1) (x € X, o) is
nothing but the usual Eisenstein series on the Riemannian symmetric
space and the functional equations take the following simple form:

Alx, e¥; w)=A(x,e*;0) (we W).

Let 4., and W., be as defined in Proposition 5.7. It is clear that
4..=4 and W.,=W. Hence, by Proposition 5.7, the Eisenstein series
E(x, ¢*; 2) multiplied by [[;co+ ({2, B> —1/2)2(2{4, b¥)>+1) is an entire
function of 2 in X(T)¢. Notice that our assumption that x is a rational
point is needed only for ensuring the convergence of E(x,e*; ). It is
known that the Eisenstein series E(x, ¢*; 1) (x € X,,) is absolutely con-
vergent for Re {1, «V>>1/2, even if x is not a rational point. Hence the
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result above is valid also for any x e X,,. (For the general theory of
Eisenstein series on Riemannian symmetric spaces, see Langlands [12].)
(B) SL(n; R)/SO(p, n—p).
Let G=SL(n). Assume that ¢ is the involution defined by

a, a;?
ol el )
a, a;!

where a,, - - -, a, are non-zero rational numbers. Let B be the subgroup
of lower triangular matrices in G, Since T=B(a¢(B) is the group of
diagonal matrices in G, the group B is a g-anisotropic Borel subgroup of
G. The root system & =0@(G, T) is as follows:

@z{af“ € X(T); léi,jé_n, l:#j},

4
e
tﬂ

The positive system @* and the simple system 4 corresponding to B are
given by

0* ={ay € X(T); 1<j<i<n)
and

d={a;=0at;s1,;i=1,2, -+, n"‘l}-

The fundamental dominant weights 4,=4,, (1<i<n-—1) are the char-
acters of T defined by

4
Ai(( R . ))=(t1' )Tt (IZiZn—1).
t,

The Weyl group W of G can be identified with the symmetric group &,
in n letters in such a manner that w,, corresponds to the transposition
(i,i41). The symmetric space X =Gxe is isomorphic to the space S of
n by n symmetric matrices with determinant a,- - - @, via the mapping

a,
Xax»—r—n(x):x-( )eS.
an

We have (g+x)=gr(x)'g (g € G, x € X).
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For any matrix 4, denote by d;(4) the determinant of upper left i by
i block of 4. Then

foX)=d(x)=(a,- - -a)'d(z(x)) (xe X, 1<i<n-—1).
The Gg-orbit decomposition of X, is given by
Xp= M X@o, X @0 =-Y(§@ ),

(-1)Z=sgn ai-+-an
prg=n

where S @ stands for the set of n by n non-degenerate real symmetric
matrices with signature (p, q) and determinant a,---.a,. The identity
component B* of By is the group of real matrices in B with positive
diagonal entries. The B*-orbit decomposition of X9 N X, is given by

XeonX,=X,, X.=77S.),
Se={YeS;sgnd(Y)=¢,- -, (ISi<n—1)},

where ¢ runs through all n-tuples e=(e,, - - -, ¢,) of &1 such that exactly
q of &;’s are equal to —1.

The standard unit group of G coincides with I'=SL(n: Z), and I,
is given by the group of all » by n lower triangular integral matrices with
diagonal entries 1. For any Ye S® 2N M(n; Q), put

I'Y,e)={rel';7Y‘reS,} and I'y=I"NSO(Y).
Then the Eisenstein series at ¢ ~'(Y) are given by
n—1 ‘v v . n—1 v
E(T—I(Y), 5; 1);-— l—[ lail<1,ai Ferebay D+ (m-1+1)/2 Z 1—[ ‘di(rytr)l—d,ai >-172
{=1 7 i=1 :

where the summation is taken over a complete set of representatives of
'’ \['(Y,¢)/I'y. The Dirichlet series in.the right hand side are just the
Eisenstein series for Y considered in [21].
We put z,,,—z; —<2 ay> (1Zign—1). Then |c|(—A)=]]%|ai|*,
where aj=a,f|a,- - -a,]"". Hence the function A(z~(Y), ¢; 4) is equal to

n ial (234~ +zn)/n+(n 1+1)/2 |det len

f=1

X T 9Qz—2z,4+1) 3 [1 |4y Cresenm,
7 =1

1=i<jsn
The action of s e ©,~ W on 1 (resp. ¢) is given by
($-hayy=zun—zZ, (ISiZn—1)

(resp. s-e=(es> 5 Es(m))-
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Now it is easy to check that Theorem 5.4 agrees with [21, Theorem 7,
p- 207).

(C) Sp(n; R)/U(p, n—p).

Let G=Sp(n)={g e GL(2n); gJ'g=J} with

)

Consider the involution ¢ defined by o(g)=’g~' (g€ G). Put, for
tl’ ‘s tn € CX,

D(tls M "tn)=

tt

.t-l

\ nJ

We may take T={D(t,, - -+, 1,); t,, -+ -, t, € C*} as a Q-split g-anisotropic
maximal torus of G. The subgroup

rtl

t!

0

*

.t,jl
is a g-anisotropic Borel subgroup of G satisfying BN a(B)=17. Under
the choice of (B, T), the sets @, §*, 4 are given by

O={a}, fiis 1<i<j=n, 1=k<I<n},

0* ={ay, Puus 1<I<j<n, 1<k<I<n),

A={a{1=0{1,2, Ug= g3, ***y Oy _1==Wy_1,n5 anzﬁn,n}’

where a;,(D(t,, - - -, t,)=1,/t; and B, (D(t,, -- -, t,))=1,t,. Moreover we
have Aai(D(tl, ) tn))ztl' <ol (lélén)’

The symmetric space X determined by ¢ is realized as the space of
symmetric matrices contained in G:

X=G*e={g € Gé g="'g}
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For any p (0< p<n), denote by X, the intersection of G and the set of
2n by 2n real non-degenerate symmetric matrices with signature (2p, 2n—
2p). Then the Gg-orbit decomposition of X=X NGy is given by Xp=

X,U---UX,. Put
0 1,] ©
y L= — .
1,0 0] —1,,

(199"‘1’
x(® =

0
Also put U(p,n—p)={he GL(n; C); hl,,_,'h=1,, ,}. The element
x® is in X, and the isotropy subgroup G, g of G at x» is isomorphic
to U(p, n—p). The isomorphism is given by

Gopp ® g=<‘é g)r—>A+B- 1,. V=1eU(p, n—p).

Hence X,~Sp(n; R)/U(p, n—p).
Set

n n
-

X’—_—{ =<"1 "2)}” X,: det 0}
» X x, xs}"e ps det X,
and

P ={ZeM(n;C); ‘' Z=Z, sgn (Im Z)=(p, n—p)},

where sgn (Im Z) denotes the signature of the symmetric matrix Im Z.
We can define a diffeomorphism z: X;—%® by

7(x)= T((‘il iz)) =xx; v — 1 x57%
2 3

For x e X7, and for g=(‘é g) € G, g+x is in X, if and only if

det (C-z(x)+ D)0,
and then we have

t(gxx)=(A4-7(x)+B)(C-7(x)+ D)™".

For Z e §® and g=(‘é IB)) € G such that det (CZ+ D)=+ 0, we put
8{Z)=(AZ+B)CZ+D)™*. Note that g(Z> is always defined if g is in
B.
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Remark. If p=0, then $© is the Siegel upper halfplane of degree n
and X,=X;=7"(H?).
Let f,=f,, be the relative B-invariant on X such that

fibsx)=A,(B)*f(x) (beB, xeX),
{ﬁ(e)=1 (1gi<n).

For Ze ™, we have f(z '(Z)=d(Y ") (Y=ImZ, 1<i<n). The
B*-open orbits in X, are contained in X}, and = maps them to

P ={Z e H; sgn d(Y N =¢,- - ¢, 1Zi<n)},

where e=(e,, - - -, ¢,) are n-tuples of =41 such that exactly p (resp. n—p)
of ¢;’s are equal to 1 (resp. —1).

In the present case, the standard unit group I” of G coincides with
the Siegel modular group Sp(n; Z) and I, is the subgroup of BNI
consisting of all elements with diagonal entries 1. The set X7, , of rational
points in X7 is in one to one correspondence to

P =9 NM@n; QW —1))

through the mapping z. For Z e 7 —,, put

A B
r, {r (c D)eF,AZ—l— (cz+ )}

Then ', is an arithmetic subgroup of the isotropy subgroup of G at
z7Y(Z). Also put

I(Z, &)= {r — (‘é g) e I'; det (CZ+ D)0, 1{Z) ¢ @yv}.

Now the Eisenstein series at z%(Z) (Z € § =) are given by

E@NZ), e; )=E(Z, ;3 )=3 [ |d(¥ )@=,
Tot=1

where Y,=Im (7{Z}) and the summation is taken over a complete system
of representatives of I" \I'(Z, &)/ .

Remark. For any x € X, N X, there exists a 7 ¢ [" such that 7+x is
in X7. Since the Eisenstein series depend only on I"-equivalence class of
X, we may restrict our consideration to the Eisenstein series corresponding

to the elements in X7, o =7"(OF =)
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As in the example (B), we introduce a new variable z=(z, - - -, z,)
which is connected to A by the formula

z,—2.={4 afy (Zign—-1),
z,={, ay>.

The Weyl group W with respect to (G, T) is isomorphic to the semi-direct

product of {+1}" and &,. Here we consider {+1} as a multiplicative

group. The action of w=(e, s)=(e;, - -+, €,, §) € {+1}" XS, (=W) on
A is expressed in terms of z as follows:

w
Z2=(2Zy + ++, ZI—>W-Z=(€1Z,—101)s * * 5 €xZs—1(n))-
Moreover
W'Ez(e, S)'6=(Es_1(l), Tt es-l(n))-

In particular, for simple roots «, - - -, ,, we have

wai'zz(zla c s 21y 241524y Zians Zn)a

Wai'€=(61, Cr s €1 €1 €5 € T 0y En)
fori=1,-..-,n—1, and

rE=E.

an

Wop Z2=(Z1y +* 5 Znoty —Zp)s w
Set |
MZ, e;2)=MzYZ), ¢; 2)
= [ {#»Q2z,—2z;4+1)-7(2z,42z;+ 1)}

1gi<jsn

X [1 72+ DX EZ, & ).

Now we can write down the explicit form of the functional equations in
Theorem 5.4 for each w,, (1 <i<n).

Theorem. (1) (Functional equations for w,)) The functions A(Z, ¢; z)
are invariant under z,—> —z,.

(2) (Functional equations for w,, (1<i<n—1))

(i) Ife;=e,.1, then A(Z, ¢; 2) is invariant under the transposztzon of
z, and z, ..

(ii) Ife;=e;.1, then we have

(A(Z, g; 2)) _ (sec m(z,.,—2z,) tan n(zm——z,-)> (A(Z, &; z))

AZ, & 5)) \tana(z,,,—z,) sec m(z;,.,—2)) \MZ, &; 2
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Where éz(el’ s €15 €ia10 Egy Eguny T 0y sn) and 2‘_’(21’ Cr s Zi15 24415 2
Zives "0 s zn)'

Remark. Let K be an arbitrary imaginary quadratic field. Then,
by modifying the involution ¢ suitably, we can obtain the same result as
above for any Z € P =9 N M(n; K).
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