Advanced Studies in Pure Mathematics 5, 1985 Foliations pp. 295-323

Every 3-Manifold Admits a Transverse Pair of Codimension One Foliations Which Cannot be Raised to a Total Foliation

Atsushi Sato

§ 1. Introduction

Let M be an *n*-dimensional C^{∞} manifold with or without boundary and let \mathscr{F} be a C^r foliation of codimension k of M $(r \ge 1)$. If $\partial M \ne \emptyset$, then for each connected component $(\partial M)_i$ of ∂M , each leaf of \mathscr{F} is assumed to be *transverse* to $(\partial M)_i$, that is, $T_x \mathscr{F} + T_x \partial M = T_x M$, $x \in (\partial M)_i$, or assumed to be *tangent* to $(\partial M)_i$, that is, $T_x \mathscr{F} \subset T_x \partial M$, $x \in (\partial M)_i$, where $T_x \mathscr{F}$ denotes the tangent space of \mathscr{F} at x. In the former case, the restriction of \mathscr{F} to $(\partial M)_i$,

$$\mathscr{F}|_{(\partial M)_i} = \{L \cap (\partial M)_i; L \in \mathscr{F}\}$$

is a C^r foliation of codimension k (in this case we say \mathscr{F} is *transverse* to $(\partial M)_i$), and in the latter case, $\mathscr{F}|_{(\partial M)_i}$ is a C^r foliation of codimension k-1 (in this case we say \mathscr{F} is *tangent* to $(\partial M)_i$). Let \mathscr{G} be another C^r foliation of codimension l. We say \mathscr{G} is *transverse* to \mathscr{F} if at every point $x \in M$, dim $(T_x \mathscr{F} \cap T_x \mathscr{G}) = \max\{n-k-l, 0\}$. In this case we say \mathscr{G} is a *transverse foliation* for \mathscr{F} or $(\mathscr{F}, \mathscr{G})$ is a *transverse pair* of M. If $(\mathscr{F}, \mathscr{G})$ is a transverse pair, let $\mathscr{F} \cap \mathscr{G}$ denote $\{F \cap G; F \in \mathscr{F}, G \in \mathscr{G}\}$. Then $\mathscr{F} \cap \mathscr{G}$ is a C^r foliation of codimension m, where $m = \min\{k+l, n\}$. For each leaf F of \mathscr{F} (resp. G of \mathscr{G}), the restriction of $\mathscr{F} \cap \mathscr{G}$ to F (resp. G) is a C^r foliation of codimension $k' = \min\{n-k, l\}$ (resp. $l' = \min\{k, n-l\}$).

In [13] we classified codimension one foliations transverse to the Reeb component of $S^1 \times D^2$, and using this result we proved that the 3-sphere S^3 has a codimension one foliation which does not admit a transverse foliation of codimension one. Following this result, in [8] and [9] Nishimori investigated foliations transverse to a wider class of foliations of 3-manifolds containing the Reeb component, and he showed many other examples of foliations which admit no transverse foliations. Using a result in [8], Tamura showed that every 3-manifold has a codimension

Received June 1, 1983.

one foliation which admits no transverse foliations ([12, Theorem D]).

Let $\mathscr{F}_1, \dots, \mathscr{F}_n$ be C^r foliations of codimension one of an *n*-dimensional manifold M such that for each $j = 1, \dots, n, \mathscr{F}_j$ is either tangent or transverse to each connected component $(\partial M)_i$ of ∂M . Then we call $(\mathscr{F}_1, \dots, \mathscr{F}_n)$ a *total foliation* of M if for every point $x \in M$, dim $(T_x \mathscr{F}_1 \cap \dots \cap T_x \mathscr{F}_n) = 0$. In contrast with the results stated above, for every closed orientable 3-manifold Hardorp [5] constructed a total foliation.

In these contexts the purpose of this paper is to prove the following theorem.

Theorem 1.1. Let M be a C^{∞} closed orientable 3-manifold. Then there exists a transverse pair $(\mathcal{F}, \mathcal{G})$ of transversely orientable C^{∞} foliations of codimension one of M satisfying the following condition;

(*) There does not exist a C^1 foliation \mathcal{H} of codimension one such that $(\mathcal{F}, \mathcal{G}, \mathcal{H})$ is a total foliation of M.

We say a transverse pair $(\mathcal{F}, \mathcal{G})$ of a compact 3-manifold M with or without boundary *cannot be raised to a total foliation* if $(\mathcal{F}, \mathcal{G})$ satisfies the condition (*) of Theorem 1.1. Then we see easily that a transverse pair $(\mathcal{F}, \mathcal{G})$ cannot be raised to a total foliation if and only if the one dimensional foliation $\mathcal{F} \cap \mathcal{G}$ admits no transverse foliations of codimension one.

In Section 2 we construct a model transverse pair. In Section 3 we present a criterion which will be used in Section 4 to show that the model in Section 2 cannot be raised to a total foliation. Section 5 is devoted to the proof of Theorem 1.1.

In the following sections, manifolds are assumed to be orientable and of class C^{∞} , and foliations are assumed to be transversely orientable and of class C^{∞} unless otherwise stated. We sometimes call a leaf of a one dimensional foliation an *orbit*.

The author wishes to thank Professor I. Tamura for his valuable advice and encouragement. He is also grateful to T. Nishimori and K. Yano for their helpful comments.

§ 2. A construction of a model

Let $A_k: T^2 \rightarrow T^2$, $k \in \mathbb{Z}$, be an orientation preserving C^{∞} diffeomorphism of the two dimensional torus $T^2 = \mathbb{R}^2/\mathbb{Z}^2$ defined by

$$A_k((x, y)) = (x + k \cdot y, y), \quad (x, y) \in \mathbb{R}^2/\mathbb{Z}^2.$$

Let ξ be the one dimensional foliation of T^2 all leaves of which are parallel to x-axis:

 $\boldsymbol{\xi} = \{\boldsymbol{\lambda}_c; c \in S^1\},$

where $\lambda_c = \{(x, y) \in T^2; y = c\}.$

We see A_k preserves ξ :

 $A_k^*\xi = \xi.$

Then by constructing an isotopy which preserves ξ , we easily obtain a C^{∞} diffeomorphism $A'_k: T^2 \to T^2$ satisfying the following conditions:

(1) A'_k is isotopic to A_k ,

(2) A'_k preserves ξ , and

(3) the support of A'_k is $\{(x, y) \in T^2; 1/4 \le y \le 3/4, x \in S^1\}$,

where the support is the closure of the open set $\{(x, y) \in T^2; A'_k(x, y) \neq (x, y)\}$ (see Fig. 2.1).

Let P_k be the total space of the T^2 -bundle over S^1 with A'_k as monodromy:

 $P_k = T^2 \times [0, 1]/(x, y, 1) \sim (A'_k(x, y), 0), \quad (x, y) \in T^2.$

In what follows, when there is no confusion, we use the coordinate (x, y, t) of $T^2 \times [0, 1]$ to specify a point of P_k . Let $\pi: P_k \to S^1 = \mathbf{R}/\mathbf{Z}$ be the projection map defined by

$$\pi((x, y, t)) = t \pmod{1},$$

and $q: T^2 \times [0, 1] \rightarrow P_k$ be the quotient map. Let \mathscr{F}_0 be the bundle foliation of P_k :

$$\mathcal{F}_0 = \{\pi^{-1}(t); t \in S^1\},\$$

and let \mathscr{G}_0 be the codimension one foliation of P_k obtained by the suspension of ξ by A'_k :

$$\mathscr{G}_0 = \{q(\lambda_c \times [0, 1]); c \in S^1\}.$$

Since A'_k preserves ξ , \mathscr{G}_0 is well defined. Then all leaves of \mathscr{F}_0 and \mathscr{G}_0 are diffeomorphic to T^2 , and \mathscr{G}_0 is transverse to \mathscr{F}_0 . Furthermore, all leaves of $\mathscr{F}_0 \cap \mathscr{G}_0$ are circles. Since \mathscr{F}_0 and \mathscr{G}_0 are foliations without

holonomy, we have a locally trivial S^1 -bundle η over T^2 whose fibers are the leaves of $\mathscr{F}_0 \cap \mathscr{G}_0$. Then by calculating the obstruction to the existence of a cross section of η , we easily have the following lemma.

Lemma 2.1. The Euler class $\chi(\eta)$ of η is equal to $k \cdot [T^2] \in H^2(T^2; \mathbb{Z})$ with a suitable orientation.

Remark. From Lemma 2.1 and a result of Milnor [7] and Wood [14], we see that for $k \neq 0$, the transverse pair $(\mathcal{F}_0, \mathcal{G}_0)$ cannot be raised to a total foliation.

In the following, we will modify \mathscr{F}_0 and \mathscr{G}_0 . Let b and c: $S^1 \rightarrow P_k$ be oriented simple closed curves in P_k defined by

 $b(y) = (1/8, y, 1/8), y \in S^1$, and $c(t) = (7/8, 1/8, t), t \in S^1$.

We denote the image $b(S^1)$ (resp. $c(S^1)$) also by b (resp. c). We see b is transverse to \mathscr{G}_0 and c is transverse to \mathscr{F}_0 (Fig. 2.2). Let

$$N(b) = \{(x, y, t) \in P_k; (x - (1/8))^2 + (t - (1/8))^2 \le (1/16)^2\}$$

and

$$N(b)' = \{(x, y, t) \in P_k; (x - (1/8))^2 + (t - (1/8))^2 \le (3/32)^2\}$$

be two solid tori containing b as their core circle. Let

$$N(c) = \{(x, y, t) \in P_k; (x - (7/8))^2 + (y - (1/8))^2 \le (1/16)^2\}$$

and let

$$N(c)' = \{(x, y, t) \in P_k; (x - (7/8))^2 + (y - (1/8))^2 \le (3/32)^2\}.$$

By the condition (3) of A'_k , these are also solid tori containing c as their

Fig. 2.2.

core circle (Fig. 2.2).

Now we modify \mathcal{F}_0 and \mathcal{G}_0 in two steps as follows.

Step 1. First we recall the notion of turbulization briefly according to [8]. Let $K_1: S^1 \times S^1 \times [0, 1] \rightarrow P_k - \text{int } N(b)$ (resp. $K_2: S^1 \times S^1 \times [0, 1] \rightarrow N(b)$) be a collar of $\partial N(b)$ defined by

$$K_{1}(\theta, y, s) = (((1/32) \cdot s + (1/16)) \cdot \cos 2\pi\theta + (1/8), y, ((1/32) \cdot s + (1/16)) \cdot \sin 2\pi\theta + (1/8)) \in P_{k} - \text{int } N(b)$$

(resp. $K_{2}(\theta, y, s) = (((1/16) - (1/32) \cdot s) \cdot \cos 2\pi\theta + (1/8), y, ((1/16) - (1/32) \cdot s) \cdot \sin 2\pi\theta + (1/8)) \in N(b)).$

Let $f: [0, 1] \rightarrow [0, \infty[$ be a C^{∞} function satisfying the following conditions: (f1) f(t)=0 for all $t \in [1/2, 1]$,

- (f 2) $\lim_{t \to 0} f(t) = +\infty$,
- (f 3) df/dt < 0 in [0, 1/2], and
- (f4) the submanifolds $\mathbf{R} \times \{0\}$ and

$$F_c(f) = \{(f(t)+c, t); t \in [0, 1]\}, c \in \mathbf{R}, \text{ of } \mathbf{R} \times [0, 1]\}$$

form a C^{∞} foliation of $\mathbf{R} \times [0, 1]$.

Let \mathscr{H}_1 (resp. \mathscr{H}_2) be a codimension one foliation of $K_1(S^1 \times S^1 \times [0, 1])$ (resp. $K_2(S^1 \times S^1 \times [0, 1])$) defined as follows: \mathscr{H}_1 consists of a compact leaf $K_1(S^1 \times S^1 \times \{0\}) = \partial N(b)$ and non-compact leaves

$$\{K_1(\theta, [f(t)] + w, t); \theta \in S^1, t \in [0, 1]\}$$

for $w \in S^1 = \mathbb{R}/\mathbb{Z}$, where [z] means z mod 1. \mathscr{H}_2 consists of a compact leaf $K_2(S^1 \times S^1 \times \{0\}) = \partial N(b)$ and non-compact leaves

$$\{K_2(\theta, -[f(t)] + w, t); \theta \in S^1, t \in [0, 1]\}$$

for $w \in S^1 = \mathbf{R}/\mathbf{Z}$.

Now let us remove $\mathscr{G}_0|_{K_1(S^1 \times S^1 \times [0,1]) \cup K_2(S^1 \times S^1 \times [0,1])}$, and put \mathscr{H}_1 and \mathscr{H}_2 instead. Then we have a codimension one foliation \mathscr{G}'_0 described in Fig. 2.3. We call \mathscr{G}'_0 a foliation obtained by turbulizing \mathscr{G}_0 around $\partial N(b)$. Note that $\mathscr{G}'_0|_{N(b)}$ is a Reeb component.

We can easily see that there are points on $\partial N(b)$ at which \mathscr{F}_0 is not transverse to \mathscr{G}'_0 . Next we wish to modify \mathscr{F}_0 so that it becomes transverse to \mathscr{G}'_0 . Let $S_1, S_2: S^1 \times S^1 \times [0, 1] \rightarrow P_k$ be embeddings of $S^1 \times S^1 \times [0, 1]$ defined by

$$S_{1}(x, y, s) = (x, y, (1/8) - (3/32) \cdot s),$$

$$S_{2}(x, y, s) = (x, y, (1/8) + (3/32) \cdot s),$$

$$(x, y, s) \in S^{1} \times S^{1} \times [0, 1].$$

Let $g: [0, 1] \rightarrow [0, 1]$ be a C^{∞} diffeomorphism of [0, 1] satisfying the following conditions:

(g1) t < g(t) for all $t \in [0, 1[,$

(g2) g is infinitely tangent to the identity at t=0 and t=1. Let $a: S^1 \rightarrow P_k$ be an oriented simple closed curve defined by

$$a(x) = (x, 0, 1/8) \in P_k$$
.

Let

$$F_b = \{(x, y, 1/8) \in P_k; x \in S^1, y \in S^1\}$$

be a leaf of \mathscr{F}_0 . Let \mathscr{S}_1 (resp. \mathscr{S}_2) be a codimension one foliation of $S_1(S^1 \times S^1 \times [0, 1])$ (resp. $S_2(S^1 \times S^1 \times [0, 1])$) such that \mathscr{S}_1 (resp. \mathscr{S}_2) is transverse to all [0, 1]-factors $S_1(\{(x, y)\} \times [0, 1])$ (resp. $S_2(\{(x, y)\} \times [0, 1]))$, $(x, y) \in S^1 \times S^1$, and the total holonomy homomorphism $h_1: \pi_1(F_b)$

Fig. 2.4.

 $\rightarrow \text{Diff } [0, 1] \text{ (resp. } h_2 : \pi_1(F_b) \rightarrow \text{Diff } [0, 1] \text{ is given by } h_1([a]) = \text{id}, h_1([b]) = g, \\ h_2([a]) = \text{id}, \text{ and } h_2([b]) = g. \text{ Now remove } \mathscr{F}_0|_{S_1(S^1 \times S^1 \times [0,1]) \cup S_2(S^1 \times S^1 \times [0,1])} \\ \text{and put } \mathscr{S}_1 \text{ and } \mathscr{S}_2 \text{ instead. Then we have a codimension one foliation } \\ \mathscr{F}_0' \text{ described in Fig. 2.4 such that } \mathscr{F}_0' \text{ is transverse to } \mathscr{G}_0'.$

Step 2. Since $\mathscr{F}'_0|_{N(c)'}$ is a product foliation by 2-disks, we obtain a codimension one foliation \mathscr{F}''_0 by turbulizing \mathscr{F}'_0 around $\partial N(c)$ as in Fig. 2.5. Next we modify \mathscr{G}'_0 . From the construction of the step 1, we see $\mathscr{G}'_0|_{P_k-\operatorname{int} N(b)'} = \mathscr{G}_0|_{P_k-\operatorname{int} N(b)'}$. Let

$$D = \{(x, t) \in T^2; (x - (1/8))^2 + (t - (1/8))^2 \le (3/32)^2\}$$

be a 2-disk in T^2 . Let S'_1 and S'_2 : $(T^2 - \text{int } D) \times [0, 1] \rightarrow P_k - \text{int } N(b)'$ be embeddings defined by

$$S'_{1}(x, t, y) = (x, (1/8) - (3/32) \cdot y, t),$$

$$S'_{2}(x, t, y) = (x, (1/8) + (3/32) \cdot y, t),$$

$$(x, t) \in T^{2} - \text{int } D \text{ and } y \in [0, 1].$$

Then we can define a codimension one foliation \mathscr{G}'_1 (resp. \mathscr{G}'_2) of $S_1((T^2 - \operatorname{int} D) \times [0, 1])$ (resp. $S_2((T^2 - \operatorname{int} D) \times [0, 1])$) similar to the one in the step 1 as described in Fig. 2.6. Let \mathscr{G}'_0 be the codimension one foliation obtained by removing $\mathscr{G}'_0|_{S_1((T^2 - \operatorname{int} D) \times [0, 1]) \cup S_2((T^2 - \operatorname{int} D) \times [0, 1])}$ and putting \mathscr{G}'_1 and \mathscr{G}'_2 instead. Let $a': S^1 \to P_k - \operatorname{int} N(b)'$ be an oriented simple closed curve defined by

$$a'(x) = (x, 1/8, 0), x \in S^1.$$

Then the foliations \mathscr{G}'_1 and \mathscr{G}'_2 have trivial total holonomy along a' and

Fig. 2.5.

Fig. 2.6.

have infinite cyclic total holonomy along c. Hence \mathscr{S}'_1 and \mathscr{S}'_2 have trivial total holonomy along the circle

$$S_1'(\partial(T^2 - \operatorname{int} D) \times \{0\}) = S_2'(\partial(T^2 - \operatorname{int} D) \times \{0\}).$$

In fact using a suitable isotopy of \mathscr{S}'_1 (resp. \mathscr{S}'_2) as in Fig. 2.7, we can assume

$$\mathscr{G}_1'|_{S_1'(\partial D \times [0,1])} = \mathscr{G}_0'|_{S_1'(\partial D \times [0,1])},$$

and

.

$$\mathscr{S}_{2}'|_{S_{\delta}(\partial D \times [0,1])} = \mathscr{G}_{0}'|_{S_{\delta}(\partial D \times [0,1])}.$$

Thus we can glue \mathscr{G}_0'' to $\mathscr{G}_0|_{N(b)'}$ along $\partial N(b)'$ to obtain a codimension one foliation \mathscr{G}_0''' of P_k . We see easily that \mathscr{G}_0''' is transverse to \mathscr{F}_0'' . Let

 $P = P_k - (\operatorname{int} N(b) \cup \operatorname{int} N(c))$

and let \mathscr{F}_1 (resp. \mathscr{G}_1) be the restriction of \mathscr{F}_0'' (resp. \mathscr{G}_0'') to *P*. Let T_b be the leaf of \mathscr{F}_1 containing the circle

$$\{(0, y, 1/8) \in P; y \in S^1\}$$

and T_e the leaf of \mathscr{G}_1 containing the circle

$$\{(0, 1/8, t) \in P; t \in S^1\}.$$

 T_b and T_c are diffeomorphic to the 1-punctured annulus $S^1 \times [0, 1] - p_i$. In the following sections, we only consider P for k=1.

Fig. 2.7.

§ 3. The infinitely approximating null closed orbit property

The purpose of this section is to give a criterion for the non-existence of transverse foliations for a given one dimensional foliation (Theorem 3.3) which is a modified version of the one used in [12].

Let N be a (possibly non-compact) 3-manifold and let ϕ be an oriented C^1 foliation of dimension one tangent to ∂N . We choose a Riemannian metric g on N. Let ε be an arbitrary positive number.

Definition 3.1. Let (N, ϕ, g) be as above. Let $C: [0, 1] \rightarrow N$ be an oriented smooth curve (resp. an oriented smooth closed curve). Then C is called an ε -orbit segment (resp. ε -closed orbit) of (N, ϕ, g) if the following condition holds:

(*) For every point x of C([0, 1]), we have

 $|1-g_x(u,v)| < \varepsilon,$

where g_x is the metric on the tangent space T_xN at x, u and v are the positively directed unit vectors tangent to ϕ and C at x respectively.

An ε -closed orbit C is called an ε -null closed orbit if C is homotopic to zero in N.

Definition 3.2. (N, ϕ, g) has the *infinitely approximating null closed* orbit property (0-N.C.O.P. for short) if for every positive number ε , there exists an ε -null closed orbit C of (N, ϕ, g) .

Theorem 3.3. Let M be a compact 3-manifold and let \mathcal{F} be an oriented C^1 foliation of dimension one tangent to ∂M . Let $E(\phi)$ denote the

union of all closed orbits with infinite holonomy of ϕ . If $(M - E(\phi), \phi|_{M-E(\phi)})$, $g|_{M-E(\phi)}$ has 0-N.C.O.P., then ϕ does not admit a transverse C¹ foliation of codimension one.

Remark. Since *M* is compact, the statement that $(M - E(\phi), \phi|_{M - E(\phi)}, g|_{M - E(\phi)})$ has 0-N.C.O.P. is independent of a choice of *g*.

For the proof, we need some lemmas.

Lemma 3.4. Let $(S^1 \times D^2, \mathcal{F}_R)$ be a Reeb component of $S^1 \times D^2$ and let ϕ be an oriented C^1 foliation of dimension one transverse to \mathcal{F}_R and pointed inward along $\partial(S^1 \times D^2)$. Then there exists a closed orbit with infinite holonomy of ϕ .

Proof. Let T be a solid torus in int $(S^1 \times D^2)$ such that ∂T is parallel to $\partial(S^1 \times D^2)$, ∂T is transverse to \mathscr{F}_R , and ∂T is near enough to $\partial(S^1 \times D^2)$ such that ϕ is still pointed inward along ∂T . Since $\mathscr{F}_R|_T$ is a product foliation by 2-disks, we have a projection map $p: T \to S^1$ such that $\{p^{-1}(t); t \in S^1\}$ is $\mathscr{F}_R|_T$. For each closed orbit I of ϕ , we associate an integer k such that $p_*[I] = k \cdot [S^1]$, where [I] is the homology class of I. We call k the *degree* of I. Choosing an orientation suitably, we can assume the degree is a positive integer. Let $D_0 = p^{-1}(0), 0 \in S^1$, be a leaf of $\mathscr{F}_R|_T$. By considering the first return map of ϕ on D_0 , we have a diffeomorphism f of D_0 into itself. By applying the Brouwer fixed point theorem for f, we have a closed orbit I_0 of ϕ whose degree is equal to 1. If the holonomy group of I_0 is infinite, we are done.

Consider the case when the holonomy group of l_0 is finite. Let U be the union of all closed orbits with finite holonomy and let U_0 be the connected component of U containing l_0 . Since the holonomy group of an orbit with finite holonomy is conjugate to a cyclic subgroup of **SO**(2) (see for example [1]), we have

(i) U is an open subset of int T, and

(ii) the closed orbits with non-trivial holonomy are isolated in U. Moreover

(iii) if l is a closed orbit with holonomy of order k and the degree of l is m, then the orbit l' near l is a closed orbit without holonomy and the degree of l' is $k \cdot m$. Let d be the degree of a closed orbit without holonomy in U_0 . d is well defined from (ii). Then from (iii), we have

(iv) the order of the holonomy of each closed orbit in U_0 divides d. Let $\pi: (\tilde{\phi}, \tilde{T}, \tilde{U}_0) \rightarrow (\phi, T, U_0)$ be the *d*-fold covering and let $\tilde{f}: \tilde{D}_0 \rightarrow \tilde{D}_0$ be the first return map of $\tilde{\phi}$, where \tilde{D}_0 is a connected component of $\pi^{-1}(D_0)$. Note that \tilde{f} is conjugate to f^d via the covering projection. Let l_1 be an orbit through a point of $bd(U_0) = cl(U_0) - U_0$ and \tilde{l}_1 be a connected com-

ponent of $\pi^{-1}(l_1)$. From (iv), $\tilde{f}|_{\tilde{U}_0 \cap \tilde{D}_0}$ is the identity map and hence \tilde{f} also fixes the point $\tilde{l}_1 \cap \tilde{D}_0$. Thus l_1 is a closed orbit. Since l_1 contains a point of bd(U_0), the holonomy of l_1 cannot be finite. Thus l_1 is a desired orbit.

Proof of Theorem 3.3. Suppose that there exists a codimension one C^1 foliation \mathcal{F} transverse to ϕ . We will have a contradiction later. We may assume $\partial M = \emptyset$. For, if $\partial M \neq \emptyset$, then we consider the double $(DM, D\mathcal{F})$ of (M, \mathcal{F}) , where $DM = M \cup_{\partial M} M$ and $D\mathcal{F} = \mathcal{F} \cup_{\mathcal{F} \mid \partial M} \mathcal{F}$ which is transverse to $D\phi = \phi \bigcup_{\phi \in \partial M} \phi$, and we can apply our argument to $(DM, D\mathcal{F})$. Since M is compact, there exists a positive number ε small enough such that every ε -closed orbit is transverse to \mathcal{F} . Thus the assumption that $(M - E(\phi), \phi|_{M - E(\phi)}, g|_{M - E(\phi)})$ has 0-N.C.O.P. implies that there exists an ε -null closed orbit C: $S^1 \rightarrow M - E(\phi)$ which is transverse to \mathscr{F} . That is, we have a continuous map $F: D^2 \rightarrow M - E(\phi)$ such that $F|_{a_{D^2}} = C$. Then by a well-known method (see [3], [10], [11] and [2] for the C¹-case), for any positive number δ , we have a C¹ map \overline{F} : D² $\rightarrow M$ satisfying the following conditions:

 $(\overline{F}1) \quad \overline{F}|_{\partial D^2} = F|_{\partial D^2}.$

 $(\overline{F}2)$ \overline{F} is an immersion.

 $(\overline{F}3)$ \overline{F} is in general position with respect to \mathcal{F} ; that is, for every point $x \in D^2$ there exists a foliation chart (U, π) of \mathcal{F} around $\overline{F}(x)$; $\overline{F}(x) \in \mathcal{F}(x)$ $U, \pi: U \rightarrow \mathbf{R}$, such that $\pi \circ \overline{F}$ is a Morse function.

 $(\overline{F}4)$ \overline{F} is δ -near to F, that is, $d(\overline{F}(x), F(x)) < \delta$ for every point $x \in$ D^2 , where d is the distance on M induced from g.

We choose δ so that for every Reeb component $(R, \mathscr{F}|_R)$ of $\mathscr{F}, R \cong$ $S^1 \times D^2$, every point which is δ -near to ∂R is contained in a tubular neighborhood of ∂R .

By the simply-connectedness of D^2 and the condition (\overline{F} 3), we see that the Haefliger structure $\overline{F}^* \mathscr{F}$ defines a C^1 vector field X on D^2 whose singular points are a finite number of centers and saddles (Fig. 3.1).

From $(\overline{F}1)$ and the fact that $C = \overline{F}|_{\partial D^2}$ is transverse to \mathcal{F} , we see X is transverse to ∂D^2 . We assume X is pointed inward on ∂D^2 . Furthermore, by choosing \overline{F} suitably, we can assume that for distinct singular

saddle

Fig. 3.1.

points x, x' of X, $\overline{F}(x)$ and $\overline{F}(x')$ are on distinct leaves of \mathscr{F} . Then X has no saddle connections; that is, there are no orbits with the α -limit set and the ω -limit set being two distinct saddle points.

Then by the Poincaré-Bendixson theorem, the α -limit set or the ω -limit set of an orbit of X is one of the following types;

- (a) a center
- (b) a non-singular closed orbit
- (c) a union of a saddle and a non-compact orbit
- (d) a union of a saddle and two non-compact orbits.

We divide (d) into (d_1) and (d_2) according to Fig. 3.2; that is, (d_2) is the case that a non-compact orbit is surrounded by the circle consisting of the saddle and another non-compact orbit, and (d_1) is otherwise.

Fig. 3.2.

Then from the Novikov compact leaf theorem ([10]), we have the following statements:

(N1) There exists a vanishing cycle, that is, a continuous family of maps $f_t: S^1 \rightarrow M, 0 \le t \le 1$, such that

(i) $f_t(S^1)$ is contained in a leaf $L_t \in \mathcal{F}$,

(ii) $f_0: S^1 \rightarrow L_0$ is not null homotopic, and

(iii) $f_t: S^1 \rightarrow L_t, 0 < t \le 1$, is null homotopic.

Furthermore $f_t(S^1)$ ($0 \le t \le 1$) is contained in $\overline{F}(D^2)$ and $\overline{F}^{-1}(f_t(S^1))$ is a union of a finite number of circles of type (a), (b), (c) and (d) above.

(N2) For every vanishing cycle $f_t: S^1 \rightarrow L_t \in \mathcal{F}, 0 \le t \le 1$, such that f_0 is not null homotopic in L_0 and $f_t(0 \le t \le 1)$ is null homotopic in L_t , the leaf L_0 is the boundary leaf of a Reeb component $(R, \mathcal{F}|_R)$ and L_t is an interior leaf of $(R, \mathcal{F}|_R)$.

We will show that the immersed disk $\overline{F}(D^2)$ intersects $E(\phi)$. For this, we need the following assertion which is proved by considering an "inner-most" vanishing cycle on $(D^2, \overline{F}^*\mathscr{F})$ (see [4] and [10]).

Assertion. There exists a subset D_0 of D^2 which is a disk or a disk glued at two points on its boundary (Fig. 3.3) satisfying the following conditions:

(i) ∂D_0 is a circle of type (b), (c) and (d₂), and int $D_0 = \bigcup_{\lambda} l_{\lambda}$, where l_{λ} is a circle of type (a), (b) and (d).

(ii) $\overline{F}(\partial D_0)$ is not null homotopic in L_0 , and $\overline{F}(l_{\lambda})$, $l_{\lambda} \subset \operatorname{int} D_0$, is null homotopic in L_{λ} , where L_0 (resp. L_{λ}) denotes the leaf of \mathscr{F} containing $\overline{F}(\partial D_0)$ (resp. $\overline{F}(l_{\lambda})$).

disk glued at two points on its boundary

Fig. 3.3.

We show that for D_0 in the assertion, the image $\overline{F}(D_0)$ intersects $E(\phi)$. By the condition (ii) of the assertion, there exists a collar N of ∂D_0 in D_0 such that $N - \partial D_0$ is a union of circles of type (b) and the restriction $\overline{F}|_N: N \to M$ gives us a vanishing cycle. Hence by (N2) of the statements of Novikov's theorem, there exists a solid torus $R (\cong S^1 \times D^2)$ in M such that $\mathscr{F}|_R$ is a Reeb component and $\overline{F}(\partial D_0)$ is contained in ∂R . Furthermore we easily see that the homology class $[\overline{F}(\partial D_0)]$ in $H_1(\partial R; \mathbb{Z})$ represented by $\overline{F}(\partial D_0)$ is equal to a multiple of the meridian;

$$[\overline{F}(\partial D_0)] = k \cdot [\{*\} \times \partial D^2] \in H_1(\partial R; Z),$$

where we identify R with $S^1 \times D^2$ and $k \in \mathbb{Z} - \{0\}$. By Lemma 3.4, there exists a closed orbit l of ϕ such that $l \subset \operatorname{int} R \cap E(\phi)$. Moreover the homology class $[l] \in H_1(R; \mathbb{Z}) \ (\cong \mathbb{Z})$ of l is not zero.

Assume $\overline{F}(D_0)$ does not intersect *l*. First consider the case $\overline{F}(D_0) \subset R$. Then since $[\overline{F}(\partial D_0)]$ is a non-zero multiple of the meridian in $H_1(\partial R; \mathbb{Z})$, $\overline{F}_*[D_0, \partial D_0]$ represents a non-zero element in $H_1(R, \partial R; \mathbb{Z}) \cong \mathbb{Z}$. Thus the intersection number of [l] and $\overline{F}_*[D_0, \partial D_0]$ is non-zero and this contradicts the assumption. Next consider the case $\overline{F}(D_0) \subset R$. Take the connected component S of $\overline{F}^{-1}(\overline{F}(D_0) \cap R)$ which contains ∂D_0 . Let ∂S denote S - int S. $\overline{F}(\partial S)$ is contained in ∂R . By the condition (i) of the assertion, $\partial S - \partial D_0$ is a union of a finite number of circles of type (b), (d). By (ii) of the assertion, \overline{F} maps these circles to null homotopic circles on ∂R . Then we can extend $\overline{F}|_S : S \to R$ to a continuous map $\overline{F}' : D_0 \to R$ such that $\overline{F}'|_S = \overline{F}|_S$ and $\overline{F}'(D_0 - S)$ is contained in ∂R . If $\overline{F}'(D_0)$ does not intersect *l*, then we have a contradiction by the same way as in the case $\overline{F}(D_0) \subset R$. This shows that $\overline{F}(S)$ intersects *l*. Hence $\overline{F}(D_0)$ intersects *l*. A. Sato

By $(\overline{F}4)$ and the choice of δ , the same argument shows that $F(D_0)$ or F(S) intersects *l*. Since *F* is a map into $M - E(\phi)$ and $l \subset E(\phi)$, we have a contradiction. This completes the proof.

Proposition 3.5. Let (M, ϕ, g) be a triad of a (possibly non-compact) 3-manifold, a C¹ foliation of dimension one tangent to ∂M and a Riemannian metric on M. Let $p; \tilde{M} \to M$ be a finite covering and let $\tilde{\phi} = p^* \phi$ (resp. $\tilde{g} = p^* g$) be the induced one dimensional foliation (resp. the induced metric) by p. If (M, ϕ, g) has 0-N.C.O.P., then $(\tilde{M}, \tilde{\phi}, \tilde{g})$ also has 0-N.C.O.P.

Proof. If C_{ε} is an ε -closed orbit of (M, ϕ, g) , then each lift \tilde{C}_{ε} of C_{ε} is an ε -closed orbit. If C_{ε} is null homotopic, then each lift \tilde{C}_{ε} is also null homotopic. Thus for every positive number ε , we have an ε -null closed orbit \tilde{C}_{ε} of $(\tilde{M}, \tilde{\phi}, \tilde{g})$.

§ 4. Main lemma

Let $P = P_1 - (\text{int } N(b) \cup \text{int } N(c))$ in Section 2 and let ϕ be the one dimensional foliation determined by the intersection of leaves of \mathscr{F}_1 and \mathscr{G}_1 :

$$\phi = \mathscr{F}_1 \cap \mathscr{G}_1.$$

We will choose an orientation of ϕ later. Let $E(\phi)$ be the union of closed orbits with infinite holonomy of ϕ . Choose a Riemannian metric g of P. The following lemma is important to the proof of our result.

Lemma 4.1. $(P - E(\phi), \phi|_{P-E(\phi)}, g|_{P-E(\phi)})$ has 0-N.C.O.P.

In order to prove Lemma 4.1, we need to observe the behavior of ϕ near $\partial N(b)$ and near $\partial N(c)$. We observe it according to five cases (O-1) to (O-5) (Fig. 4.1).

(O-1) Let L_1 be a leaf of \mathscr{F}_1 containing a point $(1/8, 0, t) \in P$, $0 \le t \le 1/32$. Then L_1 is diffeomorphic to a 1-punctured torus $T^2 - pt$, and the foliation $\mathscr{G}_1|_{L_1}$ of L_1 is described in Fig. 4.2.

(O-2) Let L_2 be a leaf of \mathscr{F}_1 containing a point (1/8, 0, t), 1/32 < t < 1/8. Then L_2 is diffeomorphic to ∞ -punctured $S^1 \times \mathbb{R} - U$, where U is diffeomorphic to]0, $1[\times \mathbb{R}$, and $\mathscr{G}_1|_{L_2}$ is described in Fig. 4.3.

(O-3) Let $L_3 = T_b$ be the leaf containing the point (1/8, 0, 1/8). L_3 is diffeomorphic to 1-punctured annulus $S^1 \times [0, 1] - pt$ and $\mathscr{G}_1|_{L_3}$ is described in Fig. 4.4.

(O-4) Let L_4 be a leaf of \mathscr{F}_1 containing a point (1/8, 0, t), 1/8 < t < 7/32. L_4 is diffeomorphic to ∞ -punctured $S^1 \times \mathbb{R} - U$ as in (O-2) and $\mathscr{G}_1|_{L_4}$ is similar to $\mathscr{G}_1|_{L_2}$.

(O-5) Let L_5 be a leaf of \mathscr{F}_1 containing a point (1/8, 0, t), $7/32 \le t \le 1$. L_5 is diffeomorphic to 1-punctured torus $T^2 - pt$ and $\mathscr{G}_1|_{L_5}$ is similar to $\mathscr{G}_1|_{L_1}$.

The behavior of ϕ near $\partial N(c)$ is similar to (O-1) to (O-5).

Lemma 4.2. $E(\phi) = (T_b \cap \partial N(b)) \cup (T_c \cap \partial N(c)) = \{(x, y, 1/8) \in P; x = 1/16, 3/16, y \in S^1\} \cup \{(x, 1/8, t) \in P; x = 13/16, 15/16, t \in S^1\}$. Therefore $E(\phi)$ is a union of four closed orbits on $\partial N(b) \cup \partial N(c)$. In particular, $\pi_1(P - E(\phi))$ is isomorphic to $\pi_1(P)$.

A. Sato

Fig. 4.4.

Proof. Leaves of \mathscr{F}_1 (resp. \mathscr{G}_1) with non-trivial holonomy are $\partial N(c)$ (resp. $\partial N(b)$), T_b (resp. T_c) and two leaves which are diffeomorphic to $T^2 - pt$. By the observation (O-1), (O-3) and (O-5) of this section, we see that closed orbits with non-trivial holonomy are only on $T_b \cup T_c$, and then we have $E(\phi) = (T_b \cap \partial N(b)) \cup (T_c \cap \partial N(c))$. This completes the proof.

The following is a presentation of the fundamental group of *P*. For two loops α and β , $\alpha\beta$ denotes the loop β followed by α .

Lemma 4.3. Let $p_0 = (0, 1/8, 1/8) \in T_b \cap T_c$ be a base point of $\pi_1(P)$. Let α , β , γ , μ and ν be the homotopy classes of loops based at p_0 in Fig. 4.5. Then we have a presentation of $\pi_1(P)$ as follows:

(1) $\{\alpha, \beta, \gamma, \mu, \nu\}$ is a set of generators.

(2) the fundamental relations are as follows:

- (I) $\beta^{-1}\alpha^{-1}\beta\alpha = \nu$,
- (II) $\mu\beta = \beta\mu$,
- (III) $\gamma^{-1}\alpha^{-1}\gamma\alpha = \mu$,
- (IV) $\gamma^{-1}\alpha\beta\gamma = \beta$.

Fig. 4.5.

Proof. Let P' be the compact 3-manifold with corner obtained [by cutting P along $T = \{(x, y, 0) \in P\}$, and let $T_0 = \{(x, y, 0) \in P'\}$ and $T_1 = \{(x, y, 1) \in P'\}$. T is diffeomorphic to $T^2 - \operatorname{int} D^2$. By moving p_0 along a path to $p'_0 = (0, 0, 0)$ and applying the HNN construction (see [6]) repeatedly, we have the following presentation of $\pi_1(P)$. Let α, β, μ and ν be the homotopy classes of loops in P' described in Fig. 4.5. Then,

(1) $\{\alpha, \beta, \mu, \nu\}$ is a set of generators.

- (2) the fundamental relations are;
 - (I) $\beta^{-1}\alpha^{-1}\beta\alpha = \nu$,
 - (II) $\mu\beta=\beta\mu$.

We see that the generators of $\pi_1(T_0)$ are α and β , and that the generators of $\pi_1(T_1)$ are the homotopy classes $\alpha' = [a']$ and $\beta' = [b']$, where $a', b': S^1 \to T_1$ are defined by

$$a'(s) = (s, 0, 1),$$

 $b'(s) = (0, s, 1), \qquad s \in S^1 = \mathbf{R}/\mathbf{Z}.$

Let $c: [0, 1] \rightarrow P'$ be a path defined by

$$c(s) = (0, 0, s), \quad s \in [0, 1].$$

Then we have

 $c_*\alpha' = \alpha \mu^{-1}$, and $c_*\beta' = \beta$,

where c_{\sharp} denotes the isomorphism $c_{\sharp}: \pi_1(P', p''_0) \rightarrow \pi_1(P', p'_0), p''_0 = c(1) = (0, 0, 1)$, defined as follows:

$$c_{*}[a] = [c^{-1} \circ a \circ c], \qquad [a] \in \pi_{1}(P', p_{0}''),$$

where $c^{-1} \circ a \circ c$ denotes the loop based at p'_0 obtained by the conjugation of a loop a by the path c. Since the monodromy map is $A'_1: T^2 \to T^2$ of Section 2, we have

$$f_*\alpha' = \alpha, \qquad f_*\beta' = \alpha\beta,$$

where $f: T_1 \rightarrow T_0$ is the gluing map. Then by the HNN construction, we have;

(1) $\{\alpha, \beta, \mu, \nu\} \cup \{\gamma\}$ is a set of generators.

(2) the fundamental relations are;

- (I) $\beta^{-1}\alpha^{-1}\beta\alpha = \nu$,
- (II) $\mu\beta=\beta\mu$,
- (III)' $f_{\sharp}\alpha' = \gamma(c_{\sharp}\alpha')\gamma^{-1}$,
- (IV)' $f_{\sharp}\beta' = \gamma(c_{\sharp}\beta')\gamma^{-1}$.
- (III)' is rewritten as $\alpha = \gamma \alpha \mu^{-1} \gamma^{-1}$, and then
- (III) $\gamma^{-1}\alpha^{-1}\gamma\alpha = \mu$.
- (IV)' is rewritten as $\alpha\beta = \gamma\beta\gamma^{-1}$, and then
- (IV) $\tilde{\gamma}^{-1}\alpha\beta\tilde{\gamma}=\beta$.

This completes the proof.

Lemma 4.4. For every positive number ε , the following homotopy classes in $\pi_1(P - E(\phi)) = \pi_1(P)$ can be represented by ε -closed orbits, where m and n are arbitrary integers;

(0) α , (1) $\alpha(\gamma\mu)^{m}\beta^{n}$, (2) $\alpha(\gamma\mu)^{m}\mu^{-1}\beta^{n}$, (3) $\alpha\nu^{-1}(\gamma\mu)^{m}\beta^{n}$,

(4) $\alpha \nu^{-1} (\gamma \mu)^m \mu^{-1} \beta^n$.

Proof. (I) First we prove (0). Let

$$\sigma = \{(x, 1/8, 1/8) \in P; 1/4 \le x \le 3/4\}$$

be a segment with its end points $p_1 = (1/4, 1/8, 1/8)$ and $p_2 = (3/4, 1/8, 1/8)$. By the construction of \mathscr{F}_1 and \mathscr{G}_1 in Section 2, we have $\sigma \subset T_b \cap T_c$. We construct an ε -closed orbit representing α by joining the following five ε -orbit segments.

(i) Choose a point

$$p_{b,\varepsilon} = (1/32, 1/8, t_{b,\varepsilon}), \quad 0 < (1/8) - t_{b,\varepsilon} < (1/2) \cdot (1/32) \cdot \varepsilon,$$

so that the linear segment $p_0 p_{b,\varepsilon}$ is an $\varepsilon/2$ -orbit segment. Let L be the leaf of \mathscr{F}_1 containing the point $p_{b,\varepsilon}$. $L=L_0-U$, where L_0 is ∞ -punctured $S^1 \times \mathbb{R}$ and U is an open disk in L_0 (Fig. 4.3). Let $\lambda_{0,\varepsilon}$ be an ε -orbit segment joining p_0 to $p_{b,\varepsilon}$ obtained by smoothing $p_0 p_{b,\varepsilon}$ near p_0 and $p_{b,\varepsilon}$ so that $\lambda_{0,\varepsilon}$ is contained in the slice $\{(x, 1/8, t) \in P\}$ and is tangent to T_b (resp. L) at p_0 (resp. $p_{b,\varepsilon}$) (Fig. 4.6 (i)).

(ii) Let $\lambda_{b,\varepsilon}$ be the orbit segment of ϕ on L which starts from $p_{b,\varepsilon}$ and hits the slice $\{(7/32, y, t) \in P\}$, and let $q_{b,\varepsilon} = (7/32, 1/8, t'_{b,\varepsilon})$ be the other end point of $\lambda_{b,\varepsilon}$ (Fig. 4.6 (ii)). By the symmetry of the construction in Section 2, we have $t'_{b,\varepsilon} = t_{b,\varepsilon}$.

A. Satu

(iii) By (i) and (ii), we can assume the linear segment $q_{b,\varepsilon}p_1$ is also an $\varepsilon/2$ -orbit segment. Let $\lambda_{1,\varepsilon}$ be an ε -orbit segment joining $q_{b,\varepsilon}$ to p_1 similar to $\lambda_{0,\varepsilon}$ so that $\lambda_{1,\varepsilon}$ is contained in the slice $\{(x, 1/8, t) \in P\}$ and is tangent to L (resp. T_b) at $q_{b,\varepsilon}$ (resp p_1) (Fig. 4.6 (i)).

(iv) We join p_1 to p_2 by σ .

(v) We construct an ε -orbit segment joining p_2 to p_0 by using \mathscr{G}_1 near $\partial N(c)$ instead of \mathscr{F}_1 . Choose points $p_{c,\varepsilon} = (25/32, y_{c,\varepsilon}, 1/8)$, and $q_{c,\varepsilon} = (31/32, y_{c,\varepsilon}, 1/8), 0 < (1/8) - y_{c,\varepsilon} < (1/2) \cdot (1/32) \cdot \varepsilon$. Let $\lambda_{2,\varepsilon}$ and $\lambda_{3,\varepsilon}$ be ε -orbit segments obtained similarly to (i) so that $\lambda_{2,\varepsilon}$ (resp. $\lambda_{3,\varepsilon}$) is contained in the slice $\{(x, y, 1/8) \in P\}$ and is tangent to the leaves of \mathscr{G}_1 at its end points. Let $\lambda_{c,\varepsilon}$ be the orbit segment joining $p_{c,\varepsilon}$ to $q_{c,\varepsilon}$ similar to (ii).

By joining the ε -orbit segments $\lambda_{0,\varepsilon}$, $\lambda_{\delta,\varepsilon}$, $\lambda_{1,\varepsilon}$, σ , $\lambda_{2,\varepsilon}$, $\lambda_{c,\varepsilon}$ and $\lambda_{3,\varepsilon}$ in that order, we have an ε -closed orbit representing the homotopy class α .

(II) Next we construct an ε -closed orbit representing $\alpha\beta^n$ for arbitrary $n \in \mathbb{Z}$. Fix n and ε . Let $p_b = (1/32, 1/8, 1/8)$ be a point on T_b and let $\beta' \colon S^1 \to T_b$ be a loop on T_b defined by

$$\beta'(s) = (1/32, s+(1/8), 1/8) \in P, s \in S^1.$$

Let $J = \{(1/32, 1/8, t) \in P; 3/32 \le t \le 1/8\}$ be an arc one of whose end point is p_b . By the construction of \mathscr{F}_1 in Section 2, we see that the leaf $T_b \in \mathscr{F}_1$ has holonomy along β' and that the holonomy map $f_{\beta'}: (f_{\beta'})^{-1}(J) \to J$ associated with β' is an expanding diffeomorphism:

$$f_{\beta'}(1/32, 1/8, t) = (1/32, 1/8, t'),$$

 $t' < t \text{ for } (1/32, 1/8, t) \in (f_{\beta'})^{-1}(J) - \{p_b\}, \text{ and }$
 $f_{\beta'}(p_b) = p_b.$

(i) If we choose a point $p'_b \in J - \{p_b\}$ near enough to p_b , then the point $(f_{b'})^k(p'_b)$, for every $k \in \mathbb{Z}$ satisfying $|k| \leq |n|$, is contained in J.

(ii) Let L be the leaf of \mathscr{F}_1 containing $p'_b \in J$. If we choose $p'_b = (1/32, 1/8, t_b) \in J - \{p_b\}$ near enough to p_b , then a point of $o(p'_b)$ and a point of $o((f_{\beta'})^n(p'_b))$ is joined by an ε -orbit segment on L, where o(p) denotes the orbit of ϕ through p (Fig. 4.7).

(iii) Let $\lambda'_{b,\epsilon}$ be an ϵ -orbit segment on L constructed as above so that $\lambda'_{b,\epsilon}$ starts at p'_b , moves on $o((f_{\beta'})^n(p'_b))$ and hits the slice $\{(7/32, y, t) \in P\}$ on $o((f_{\beta'})^n(p'_b))$. Let $q'_{b,\epsilon} = (7/32, 1/8, t'_{b,\epsilon})$ be the end point of $\lambda'_{b,\epsilon}$ different from p'_b . If $n \neq 0$, then $t'_{b,\epsilon} \neq t_b$. But if we choose t_b near enough to 1/8, we have $t'_{b,\epsilon}$ arbitrary near to 1/8. Thus, if p'_b is near enough to p_b , then there exists an ϵ -orbit segment $\lambda_{1,\epsilon}$ in (iii) of (I) joining $q'_{b,\epsilon}$ to p_1 .

(iv) Let $p_{b,\epsilon} = (1/32, 1/8, t_{b,\epsilon}), t_{b,\epsilon} < 1/8$, be a point of J near enough to p_b satisfying the following conditions:

(a) there exists an ε -orbit segment $\lambda_{0,\varepsilon}$ in (i) of (I) joining p_0 to $p_{b,\varepsilon}$,

(b) $p_{b,\varepsilon}$ satisfies the conditions of p'_b in (i), (ii) and (iii) of (II).

Let σ , $\lambda_{c,\varepsilon}$ be orbit segments and let $\lambda_{2,\varepsilon}$, $\lambda_{3,\varepsilon}$ be ε -orbit segments in (I). By joining the ε -orbit segments $\lambda_{0,\varepsilon}$, $\lambda'_{b,\varepsilon}$, $\lambda_{1,\varepsilon}$, σ , $\lambda_{2,\varepsilon}$, $\lambda_{c,\varepsilon}$ and $\lambda_{3,\varepsilon}$ in that order, we have an ε -closed orbit representing $\alpha\beta^n$.

(III) By changing an orbit segment $\lambda_{r,\varepsilon}$ for an ε -orbit segment $\lambda'_{c,\varepsilon}$

similar to $\lambda'_{b,\varepsilon}$ in (iii) of (II), we have an ε -closed orbit representing $\alpha(\gamma\mu)^m\beta^n$ for an arbitrary pair $(m, n) \in \mathbb{Z}^2$.

(IV) In order to represent $\alpha \mu^{-1}$, we choose $\bar{p}_{b,\epsilon} = (1/32, 1/8, \bar{t}_{b,\epsilon})$, $0 < \bar{t}_{b,\epsilon} - (1/8) < (1/2) \cdot (1/32) \cdot \epsilon$ instead of $p_{b,\epsilon}$. Then we construct an ϵ -orbit segment on the opposite side of T_b to (I), and we have an ϵ -closed orbit representing $\alpha \mu^{-1}$.

By a construction similar to (II) and (III), we have an ε -closed orbit representing $\alpha(\gamma\mu)^m\mu^{-1}\beta^n$. If we construct an ε -orbit segment on the opposite side of T_c to (I), then we have $\alpha\nu^{-1}$ and then $\alpha\nu^{-1}(\gamma\mu)^m\beta^n$. Lastly composing these constructions, we have $\alpha\nu^{-1}(\gamma\mu)^m\mu^{-1}\beta^n$. This completes the proof.

Note that a homotopy class represented by composing those in Lemma 4.4 is also represented by an ε -closed orbit.

Proof of Lemma 4.1. By the relations of Lemm 4.3, the classes of (1) and (4) of Lemma 4.4 are rewritten as follows:

(1)
$$\alpha(\gamma\mu)^{m}\beta^{n} = \alpha(\alpha^{-1}\gamma\alpha)^{m}\beta^{n}$$
 by (III)
 $= \gamma^{m}\alpha\beta^{n}.$
(4) $\alpha\nu^{-1}(\gamma\mu)^{m}\mu^{-1}\beta^{n} = \beta^{-1}\alpha\beta(\gamma\mu)^{m}\mu^{-1}\beta^{n}$ by (I)
 $= \beta^{-1}\alpha\beta(\gamma\mu)^{m-1}\gamma\beta^{n}$
 $= \beta^{-1}\alpha\beta\alpha^{-1}\gamma^{m-1}\alpha\gamma\beta^{n}$ by (III).

We set m=1, n=-2 for (4). Then $\beta^{-1}\alpha\beta\gamma\beta^{-2}$ is represented by an ε closed orbit. Set m=-1, n=2 for (1). Then $\gamma^{-1}\alpha\beta^{2}$ is represented by an ε -closed orbit. Hence the composition

$$\begin{split} \gamma^{-1}\alpha\beta^{2} \cdot \beta^{-1}\alpha\beta\gamma\beta^{-2} &= \gamma^{-1}\alpha\beta\alpha\beta\gamma\beta^{-2} \\ &= (\gamma^{-1}\alpha\beta\gamma)^{2}\beta^{-2} \\ &= \beta^{2} \cdot \beta^{-2} \qquad \text{by (IV)} \\ &= 1 \end{split}$$

is represented by an ε -closed orbit. This completes the proof.

Theorem 4.5. $(\mathcal{F}_1, \mathcal{G}_1)$ cannot be raised to a total foliation.

Proof. This follows from Lemma 4.1 and Theorem 3.3.

§ 5. Proof of the main theorem

In this section we prove Theorem 1.1. For this purpose we need some constructions used in [5].

Transverse Pair of Foliations

Fig. 5.1.

Let $\mathscr{L} = L_1 \cup L_2 \cup L_3$ be the Borromean rings in S^3 described in Fig. 5.1, where L_1 , L_2 and L_3 denote the connected components of \mathscr{L} . Let $N(\mathscr{L}) = N(L_1) \cup N(L_2) \cup N(L_3)$ denote a closed tubular neighborhood of \mathscr{L} . Let μ_i (resp. λ_i) be a simple closed curve on $\partial N(L_i)$ which represents the *meridian* (resp. the *longitude*) for i = 1, 2, 3, that is,

$$\iota_{i*}[\mu_{i}] = 0$$
 in $H_{1}(N(L_{i}); Z)$,
 $\kappa_{i*}[\lambda_{i}] = 0$ in $H_{1}(S^{3} - \operatorname{int} N(L_{i}); Z)$,

where $[\mu_i]$ (resp. $[\lambda_i]$) $\in H_1(\partial N(L_i); \mathbb{Z})$ denotes the homology class of μ_i (resp. λ_i), and ϵ_{i*} (resp. κ_{i*}) denotes the induced homomorphism of the natural inclusion

$$\iota_i: \partial N(L_i) \to N(L_i),$$

$$\kappa_i: \partial N(L_i) \to S^3 - \operatorname{int} N(L_i).$$

Let P_1 and $P = P_1 - (\text{int } N(b) \cup \text{int } N(c))$ be the 3-manifolds constructed in Section 2 for k = 1 and let

$$U = \{(x, y, t) \in P_1; (y - (1/2))^2 + t^2 \le (1/4)^2\}.$$

Then we see that $P - \text{int } U = P_1 - (\text{int } U \cup \text{int } N(b) \cup \text{int } N(c))$ is diffeomorphic to T^{3} -(int $N(u) \cup$ int $N(v) \cup$ int N(w)), where u, v and w are mutually disjoint circles parallel to three coordinate axes of the 3-dimensional torus T^3 . Let $\mu_U: S^1 \rightarrow \partial U$ and $\lambda_U: S^1 \rightarrow \partial U$ be oriented simple closed curves defined by

$$\mu_{U}(\theta) = (0, (1/4) \cdot \sin 2\pi\theta + (1/2), (1/4) \cdot \cos 2\pi\theta),$$

$$\lambda_{U}(\theta) = ((1/4) \cdot \theta, 0, 0), \quad \theta \in S^{1} = \mathbf{R}/\mathbf{Z}.$$

Let $[\mu]$ and $[\beta]$ (resp. $[\nu]$ and $[\gamma \mu]$) be the homology classes of $H_1(\partial N(b); Z)$ (resp. $H_1(\partial N(c); Z)$) defined by the homotopy classes μ and β (resp. ν and $\gamma \mu$) in Lemm 4.3. Then the following proposition holds. For a proof, see [5].

Proposition 5.1 ([5, Proposition of Part Three of Chapter 5]). *There* exists a diffeomorphism

 $h: P - \operatorname{int} U \to S^3 - (\operatorname{int} N(L_1) \cup \operatorname{int} N(L_2) \cup \operatorname{int} N(L_3))$

satisfying the following conditions:

(a) $h(\partial U) = \partial N(L_1), h(\partial N(b)) = \partial N(L_2) \text{ and } h(\partial N(c)) = \partial N(L_3),$

(b) if we choose suitable orientations of μ_i and λ_i for i = 1, 2, 3, then the following (i) and (ii) hold:

(i) $(h|_{\partial U})_{*}([\mu_{U}]) = [\lambda_{1}],$ $(h|_{\partial U})_{*}(-[\lambda_{U}]) = [\mu_{1}],$ $(h|_{\partial N(b)})_{*}([\mu]) = [\lambda_{2}],$ $(h|_{\partial N(b)})_{*}(-[\beta]) = [\mu_{2}],$ $(h|_{\partial N(c)})_{*}([\nu]) = [\lambda_{3}],$ $(h|_{\partial N(c)})_{*}(-[\gamma\mu]) = [\mu_{3}],$

(ii) the linking numbers

$$lk(\lambda_i, \mu_i) = +1,$$
 for $i = 1, 2, 3,$

with the right hand rule.

The following lemma is also contained in [5].

Lemma 5.2. (1) The closed 3-manifold obtained by the Dehn surgery with the coefficient +1 along each connected component of the Borromean rings $\mathscr{L} = L_1 \cup L_2 \cup L_3$ is diffeomorphic to the Poincaré homology 3-sphere Q^3 :

$$\left(S^3-\bigcup_{i=1}^3 \operatorname{int} N(L_i)\right)\bigcup_{\partial}\bigcup_{i=1}^3 S^1_i imes D^2_i=Q^3,$$

where $[\{*\} \times \partial D_i^2] = [\lambda_i] + [\mu_i]$ in $H_1(\partial N(L_i); Z)$.

(2) Let $l_i = S_i^1 \times \{0\}$ be a core circle of $S_i^1 \times D_i^2$ (i = 1, 2, 3), and let $p: S^3 \rightarrow Q^3$ be the universal covering of Q^3 which is of 120 sheets. Then $p^{-1}(l_i)$ (i = 1, 2, 3) is a union of 12 fibers of the Hopf fibration of S^3 :

$$p^{-1}(l_i) = \bigcup_{j=1}^{12} \tilde{l}_{ij}$$
 for $i = 1, 2, 3,$

 \tilde{l}_{ij} is a trivial knot, and $lk(\tilde{l}_{ij}, \tilde{l}_{ik}) = +1 \ (j \neq k)$.

(3) Let $\mu_i \subset \partial N(L_i)$ be the meridian curve of L_i chosen in (b) of Proposition 5.1 (i=1, 2, 3). Then $p^{-1}(\mu_i)$ is also a union of 12 fibers of the fibration, and each connected component $\tilde{\mu}_{ij}$ (j=1, ..., 12) together with $\tilde{l}_{ij'}$ (j'=1, ..., 12) forms a Hopf link such that

$$lk(\tilde{\mu}_{ij}, \tilde{l}_{ij'}) = \pm 1.$$

Fig. 5.2 (ii).

Theorem 5.3 ([5, Main Theorem]). Let M be a closed orientable 3-manifold. Then M has a total foliation $(\mathcal{F}, \mathcal{G}, \mathcal{H})$ satisfying the following conditions:

(1) $\mathcal{F}, \mathcal{G}, and \mathcal{H}$ are transversely orientable and C^{∞} .

(2) There exists a compact codimension 0 submanifold R of M such that

(a) R is diffeomorphic to $S^1 \times D^2$,

(b) $\mathcal{F}|_{R}$ is a Reeb component, and

(c) $\mathscr{G}|_{\mathbb{R}}$ (resp. $\mathscr{H}|_{\mathbb{R}}$) consists of two half-Reeb components (Fig. 5.2 (i)) (for the definition see [13]) and $\mathscr{G}|_{\partial \mathbb{R}}$ (resp. $\mathscr{H}|_{\partial \mathbb{R}}$) is a foliation described in Fig. 5.2 (ii), where the orientation of S^1 is suitably chosen.

Though the condition (2) is not stated in the main theorem of [5], we can construct such a total foliation by using a method in [5]. We omit a proof of Theorem 5.3.

Theorem 5.4. There exist C^{∞} codimension one transversely orientable foliations \mathcal{F}' and \mathcal{G}' of $S^1 \times D^2$ satisfying the following conditions:

- (a) $(\mathcal{F}', \mathcal{G}')$ is a transverse pair,
- (b) \mathscr{F}' is tangent to $\partial(S^1 \times D^2)$,
- (c) $\mathscr{G}'|_{\partial(S^1 \times D^2)}$ is a foliation as in Fig. 5.2. (ii), and
- (d) $(\mathcal{F}', \mathcal{G}')$ cannot be raised to a total foliation.

Proof. Let \mathscr{F}_1 and \mathscr{G}_1 be codimension one foliations of P with k=1 constructed in Section 2. First we extend \mathscr{F}_1 and \mathscr{G}_1 to the Poincaré homology 3-sphere Q^3 . We easily verify the simple closed curve

$$C = \{(\theta, (1/4) \cdot \cos 2\pi\theta + (1/2), (1/4) \cdot \sin 2\pi\theta); \theta \in \mathbb{R}/\mathbb{Z}\}$$

on ∂U is homotopic to zero on U. By the definition of the oriented closed curves $\lambda_{U}, \mu_{U}: S^{1} \rightarrow \partial U$ in the beginning of this section, we have

$$[C] = [\lambda_U] - [\mu_U] \quad \text{in } H_1(\partial U; Z).$$

From Proposition 5.1, we have

$$h_*[C] = -[\mu_1] - [\lambda_1] \quad \text{in } H_1(\partial N(L_1); Z).$$

Hence P is diffeomorphic to the manifold

$$(S^3-(\operatorname{int} N(L_1)\cup\operatorname{int} N(L_2)\cup\operatorname{int} N(L_3))\bigcup_{\partial N(L_1)}S^1\times D^2$$

obtained by performing the +1 Dehn surgery along L_1 and then deleting int $N(L_2)$ and int $N(L_3)$. In particular we can consider $P \subset Q^3$. By the construction in Section 2, we see $\mathscr{F}_1|_{\partial N(b)}$ and $\mathscr{G}_1|_{\partial N(c)}$ are as in Fig. 5.3.

Fig. 5.3.

From Proposition 5.1, we see $\mathscr{F}_1|_{\partial N(L_2)}$ and $\mathscr{G}_1|_{\partial N(L_3)}$ are as in Fig. 5.4.

Fig. 5.4.

Let l_i (i=2, 3) be the core circles in Q^3 defined in (2) of Lemma 5.2. Since $[\lambda_i]+[\mu_i]=0$ in $H_1(N(l_i); \mathbb{Z})$, by choosing on $\partial N(l_i)$ a meridian which is homotopic to zero in $N(l_i)$, and a longitude which is homotopy equivalent to $N(l_i)$ suitably, we see $\mathcal{F}_1|_{\partial N(l_2)}$ and $\mathcal{F}_1|_{\partial N(l_3)}$ are as in Fig. 5.5.

Fig. 5.5.

Let \mathscr{F}_R and \mathscr{G}_R be codimension one foliations of $S^1 \times D^2$ such that (α) \mathscr{G}_R is transverse to \mathscr{F}_R ,

(β) \mathcal{F}_{R} is a Reeb component, and

(7) \mathscr{G}_{R} consists of two half-Reeb components (Fig. 5.2 (i)).

Since both of foliations on the boundaries are coincident, we can glue \mathscr{F}_R (resp. \mathscr{G}_R) to \mathscr{G}_1 (resp. \mathscr{F}_1) along $\partial N(l_2)$ and also glue \mathscr{F}_R (resp. \mathscr{G}_R) to \mathscr{F}_1 (resp. \mathscr{G}_1) along $\partial N(l_3)$, and then we obtain codimension one foliations \mathscr{F}_2 and \mathscr{G}_2 of Q^3 satisfying that \mathscr{G}_2 is transverse to $\mathscr{F}_2, \mathscr{F}_2|_P = \mathscr{F}_1$ and $\mathscr{G}_2|_P = \mathscr{G}_1$. Then by Theorem 4.6, we see that $(\mathscr{F}_2, \mathscr{G}_2)$ cannot be raised to a total foliation. Let $\mathscr{F}_3 = p^* \mathscr{F}_2$ and $\mathscr{G}_3 = p^* \mathscr{G}_2$ be the foliations induced by $p: S^3 \rightarrow Q^3$. Let $\phi = \mathscr{F}_1 \cap \mathscr{G}_1$ be the one dimensional foliation

in Section 4. Let \tilde{P} denote $p^{-1}(P)$ and let $\tilde{\phi}$ (resp. \tilde{g}) be $p^*\phi$ (resp. p^*g). Since p is a finite covering, $E(\tilde{\phi}) = p^{-1}(E(\phi))$. Since $(P - E(\phi), \phi|_{P - E(\phi)})$, $g|_{P - E(\phi)}$) has 0-N.C.O.P. by Lemma 4.1, we see by Proposition 3.5 that $(\tilde{P} - E(\tilde{\phi}), \tilde{\phi}|_{\tilde{P} - E(\tilde{\phi})}, \tilde{g}|_{\tilde{P} - E(\tilde{\phi})})$ has 0-N.C.O.P.. Hence by Theorem 3.3 and the fact that $\tilde{P} \subset S^3$, we see that $(\mathcal{F}_3, \mathcal{G}_3)$ cannot be raised to a total foliation. From (2) of Lemma 5.2, $p^{-1}(N(l_3))$ is a tubular neighborhood of a union of 12 fibers of the Hopf fibration of S^3 . Let $\tilde{N}(l_3)$ be one of 12 components of $p^{-1}(N(l_3))$. Then since $\tilde{N}(l_3)$ is unknotted, $S^3 - \operatorname{int} \tilde{N}(l_3)$ is diffeomorphic to $S^1 \times D^2$. Consider $\mathcal{F}' = \mathcal{F}_3|_{S^3 - \operatorname{int} \tilde{N}(l_3)}$ and $\mathcal{G}' = \mathcal{G}_3|_{S^3 - \operatorname{int} \tilde{N}(l_3)}$, so the condition (b) is verified. The condition (a) is obvious. Since $S^3 - \operatorname{int} \tilde{N}(l_3)$ contains \tilde{P} , the condition (d) is verified. Now verify the condition (c).

Note that the homology class represented by a compact leaf of $\mathscr{G}_1|_{\partial N(c)}$ oriented as in Section 4 is $[\tilde{r}\mu] \in H_1(\partial N(c); \mathbb{Z})$. Hence by Proposition 5.1, this is equal to $-[\mu_3]$ in $H_1(\partial N(L_3); \mathbb{Z})$. Hence by (3) of Lemma 5.2, a compact leaf of $\mathscr{G}'|_{\partial \tilde{N}(l_3)}$ and the core circle of $\tilde{N}(l_3)$ form a Hopf link. This shows that a compact leaf of $\mathscr{G}'|_{\partial \tilde{N}(l_3)}$ and a core circle of the solid torus $S^3 - \operatorname{int} \tilde{N}(l_3)$ also form a Hopf link. This shows that if we choose a longitude of $\partial (S^3 - \operatorname{int} \tilde{N}(l_3))$ suitably, then $\mathscr{G}'|_{\partial (S^3 - \operatorname{int} \tilde{N}(l_3))}$ is as in Fig. 5.2 (ii), and we have (c). This completes the proof.

Proof of Theorem 1.1. Let M be a closed orientable 3-manifold. By Theorem 5.3, we have a total foliation $(\mathcal{F}, \mathcal{G}, \mathcal{H})$ of M satisfying (1) and (2). Let $\mathcal{F}', \mathcal{G}'$ be codimension one foliations of $S^1 \times D^2$ of Theorem 5.4. Since \mathcal{F} (resp. \mathcal{F}') is tagnent to ∂R (resp. $\partial (S^1 \times D^2)$) and $\mathcal{G}|_{\partial R}$ coincides with $\mathcal{G}'|_{\partial (S^1 \times D^2)}$, we can replace $\mathcal{F}|_R$ (resp. $\mathcal{G}|_R$) by \mathcal{F}' (resp. \mathcal{G}'), and then we have the desired foliations.

References

- D.B.A. Epstein, Foliations with all leaves compact, Ann. Inst. Fourier, Grenoble, 26 (1976), 265–282.
- J. Franks, Anosov diffeomorphisms, Proc. Symp. in Pure Math., 14 (1970), 61-93.
- [3] A. Haefliger, Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa, 16 (1962), 367–397.
- [4] —, Travaux de Novikov sur les feuilletages, Sem. Bourbaki 1967/68, no. 339.
- [5] D. Hardorp, All compact orientable three dimensional manifolds admit total foliations, Mem. Amer. Math. Soc., no. 233.
- [6] J. Hempel, 3-manifolds, Ann. Math. Studies 86, Princeton Univ. Press.
- [7] J. Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv., 32 (1958), 215-223.
- [8] T. Nishimori, Existence problem of transverse foliations for some foliated 3-manifolds, Tôhoku Math. J., 34 (1982), 179–238.

- [9] —, Foliations transverse to the turbulized foliations of punctured torus bundles over a circle, Hokkaido Math. J., 13 (1984), 1-25.
- [10] S. P. Novikov, Topology of foliations, Amer. Math. Soc. Transl., (1967), 268-304.
- R. Roussarie, Sur les feuilletages des variétés de dimension trois, Ann. Inst. [11] Fourier, Grenble, **21** (1971), 13–81. I. Tamura, Dynamical systems on foliations and existence problem of
- [12] transverse foliations, this volume.
- I. Tamura and A. Sato, On transverse foliations, Publ. Math. of I.H.E.S., [13] 54 (1981), 5-35.
- [14] J. Wood, Bundles with totally disconnected structure group, Comment. Math. Helv., 46 (1971), 257-273.

Department of Mathematics Faculty of Science University of Tokyo Tokyo, 113 Japan