Every 3-Manifold Admits a Transverse Pair of Codimension One Foliations Which Cannot be Raised to a Total Foliation

Atsushi Sato

§ 1. Introduction

Let M be an n-dimensional C^{∞} manifold with or without boundary and let \mathscr{F} be a C^{r} foliation of codimension k of $M(r \geq 1)$. If $\partial M \neq \emptyset$, then for each connected component $(\partial M)_{i}$ of ∂M, each leaf of \mathscr{F} is assumed to be transverse to $(\partial M)_{i}$, that is, $T_{x} \mathscr{F}+T_{x} \partial M=T_{x} M, x \in(\partial M)_{i}$, or assumed to be tangent to $(\partial M)_{i}$, that is, $T_{x} \mathscr{F} \subset T_{x} \partial M, x \in(\partial M)_{i}$, where $T_{x} \mathscr{F}$ denotes the tangent space of \mathscr{F} at x. In the former case, the restriction of \mathscr{F} to $(\partial M)_{i}$,

$$
\left.\mathscr{F}\right|_{(\partial M)_{i}}=\left\{L \cap(\partial M)_{i} ; L \in \mathscr{F}\right\}
$$

is a C^{r} foliation of codimension k (in this case we say \mathscr{F} is transverse to $\left.(\partial M)_{i}\right)$, and in the latter case, $\left.\mathscr{F}\right|_{(\partial M)_{i}}$ is a C^{r} foliation of codimension $k-1$ (in this case we say \mathscr{F} is tangent to $(\partial M)_{i}$). Let \mathscr{G} be another C^{r} foliation of codimension l. We say \mathscr{G} is transverse to \mathscr{F} if at every point $x \in M, \operatorname{dim}\left(T_{x} \mathscr{F} \cap T_{x} \mathscr{G}\right)=\max \{n-k-l, 0\}$. In this case we say \mathscr{G} is a transverse foliation for \mathscr{F} or $(\mathscr{F}, \mathscr{G})$ is a transverse pair of M. If $(\mathscr{F}, \mathscr{G})$ is a transverse pair, let $\mathscr{F} \cap \mathscr{G}$ denote $\{F \cap G ; F \in \mathscr{F}, G \in \mathscr{G}\}$. Then $\mathscr{F} \cap \mathscr{G}$ is a C^{r} foliation of codimension m, where $m=\min \{k+l, n\}$. For each leaf F of \mathscr{F} (resp. G of \mathscr{G}), the restriction of $\mathscr{F} \cap \mathscr{G}$ to F (resp. G) is a C^{r} foliation of codimension $k^{\prime}=\min \{n-k, l\}$ (resp. $l^{\prime}=\min \{k, n-l\}$).

In [13] we classified codimension one foliations transverse to the Reeb component of $S^{1} \times D^{2}$, and using this result we proved that the 3 -sphere S^{3} has a codimension one foliation which does not admit a transverse foliation of codimension one. Following this result, in [8] and [9] Nishimori investigated foliations transverse to a wider class of foliations of 3 -manifolds containing the Reeb component, and he showed many other examples of foliations which admit no transverse foliations. Using a result in [8], Tamura showed that every 3 -manifold has a codimension

Received June 1, 1983.
one foliation which admits no transverse foliations ([12, Theorem D]).
Let $\mathscr{F}_{1}, \cdots, \mathscr{F}_{n}$ be C^{r} foliations of codimension one of an n-dimensional manifold M such that for each $j=1, \cdots, n, \mathscr{F}_{j}$ is either tangent or transverse to each connected component $(\partial M)_{i}$ of ∂M. Then we call $\left(\mathscr{F}_{1}, \cdots, \mathscr{F}_{n}\right)$ a total foliation of M if for every point $x \in M, \operatorname{dim}\left(T_{x} \mathscr{F}_{1} \cap\right.$ $\left.\cdots \cap T_{x} \mathscr{F}_{n}\right)=0$. In contrast with the results stated above, for every closed orientable 3-manifold Hardorp [5] constructed a total foliation.

In these contexts the purpose of this paper is to prove the following theorem.

Theorem 1.1. Let M be a C^{∞} closed orientable 3-manifold. Then there exists a transverse pair $(\mathscr{F}, \mathscr{G})$ of transversely orientable C^{∞} foliations of codimension one of M satisfying the following condition;
(*) There does not exist a C^{1} foliation \mathscr{H} of codimension one such that $(\mathscr{F}, \mathscr{G}, \mathscr{H})$ is a total foliation of M.

We say a transverse pair $(\mathscr{F}, \mathscr{G})$ of a compact 3-manifold M with or without boundary cannot be raised to a total foliation if $(\mathscr{F}, \mathscr{G})$ satisfies the condition $\left({ }^{*}\right)$ of Theorem 1.1. Then we see easily that a transverse pair $(\mathscr{F}, \mathscr{G})$ cannot be raised to a total foliation if and only if the one dimensional foliation $\mathscr{F} \cap \mathscr{G}$ admits no transverse foliations of codimension one.

In Section 2 we construct a model transverse pair. In Section 3 we present a criterion which will be used in Section 4 to show that the model in Section 2 cannot be raised to a total foliation. Section 5 is devoted to the proof of Theorem 1.1.

In the following sections, manifolds are assumed to be orientable and of class C^{∞}, and foliations are assumed to be transversely orientable and of class C^{∞} unless otherwise stated. We sometimes call a leaf of a one dimensional foliation an orbit.

The author wishes to thank Professor I. Tamura for his valuable advice and encouragement. He is also grateful to T. Nishimori and K. Yano for their helpful comments.

§ 2. A construction of a model

Let $A_{k}: T^{2} \rightarrow T^{2}, k \in Z$, be an orientation preserving C^{∞} diffeomorphism of the two dimensional torus $T^{2}=\boldsymbol{R}^{2} / \boldsymbol{Z}^{2}$ defined by

$$
A_{k}((x, y))=(x+k \cdot y, y), \quad(x, y) \in R^{2} / Z^{2} .
$$

Let ξ be the one dimensional foliation of T^{2} all leaves of which are parallel to x-axis:

$$
\xi=\left\{\lambda_{c} ; c \in S^{1}\right\},
$$

where $\lambda_{c}=\left\{(x, y) \in T^{2} ; y=c\right\}$.
We see A_{k} preserves ξ :

$$
A_{k}^{*} \xi=\xi .
$$

Then by constructing an isotopy which preserves ξ, we easily obtain a C^{∞} diffeomorphism $A_{k}^{\prime}: T^{2} \rightarrow T^{2}$ satisfying the following conditions:
(1) A_{k}^{\prime} is isotopic to A_{k},
(2) A_{k}^{\prime} preserves ξ, and
(3) the support of A_{k}^{\prime} is $\left\{(x, y) \in T^{2} ; 1 / 4 \leq y \leq 3 / 4, x \in S^{1}\right\}$,
where the support is the closure of the open set $\left\{(x, y) \in T^{2} ; A_{k}^{\prime}(x, y) \neq\right.$ $(x, y)\}$ (see Fig. 2.1).

Fig. 2.1.
Let P_{k} be the total space of the T^{2}-bundle over S^{1} with A_{k}^{\prime} as monodromy:

$$
P_{k}=T^{2} \times[0,1] /(x, y, 1) \sim\left(A_{k}^{\prime}(x, y), 0\right), \quad(x, y) \in T^{2} .
$$

In what follows, when there is no confusion, we use the coordinate (x, y, t) of $T^{2} \times[0,1]$ to specify a point of P_{k}. Let $\pi: P_{k} \rightarrow S^{1}=\boldsymbol{R} / \boldsymbol{Z}$ be the projection map defined by

$$
\pi((x, y, t))=t(\bmod 1)
$$

and $q: T^{2} \times[0,1] \rightarrow P_{k}$ be the quotient map. Let \mathscr{F}_{0} be the bundle foliation of P_{k} :

$$
\mathscr{F}_{0}=\left\{\pi^{-1}(t) ; t \in S^{1}\right\},
$$

and let \mathscr{G}_{0} be the codimension one foliation of P_{k} obtained by the suspension of ξ by A_{k}^{\prime} :

$$
\mathscr{G}_{0}=\left\{q\left(\lambda_{c} \times[0,1]\right) ; c \in S^{1}\right\} .
$$

Since A_{k}^{\prime} preserves ξ, \mathscr{G}_{0} is well defined. Then all leaves of \mathscr{F}_{0} and \mathscr{G}_{0} are diffeomorphic to T^{2}, and \mathscr{G}_{0} is transverse to \mathscr{F}_{0}. Furthermore, all leaves of $\mathscr{F}_{0} \cap \mathscr{G}_{0}$ are circles. Since \mathscr{F}_{0} and \mathscr{G}_{0} are foliations without
holonomy, we have a locally trivial S^{1}-bundle η over T^{2} whose fibers are the leaves of $\mathscr{F}_{0} \cap \mathscr{G}_{0}$. Then by calculating the obstruction to the existence of a cross section of η, we easily have the following lemma.

Lemma 2.1. The Euler class $\chi(\eta)$ of η is equal to $k \cdot\left[T^{2}\right] \in H^{2}\left(T^{2} ; Z\right)$ with a suitable orientation.

Remark. From Lemma 2.1 and a result of Milnor [7] and Wood [14], we see that for $k \neq 0$, the transverse pair $\left(\mathscr{F}_{0}, \mathscr{G}_{0}\right)$ cannot be raised to a total foliation.

In the following, we will modify \mathscr{F}_{0} and \mathscr{G}_{0}. Let b and $c: S^{1} \rightarrow P_{k}$ be oriented simple closed curves in P_{k} defined by

$$
b(y)=(1 / 8, y, 1 / 8), y \in S^{1}, \quad \text { and } \quad c(t)=(7 / 8,1 / 8, t), t \in S^{1} .
$$

We denote the image $b\left(S^{1}\right)$ (resp. $c\left(S^{1}\right)$) also by b (resp. c). We see b is transverse to \mathscr{G}_{0} and c is transverse to \mathscr{F}_{0} (Fig. 2.2). Let

$$
N(b)=\left\{(x, y, t) \in P_{k} ;(x-(1 / 8))^{2}+(t-(1 / 8))^{2} \leq(1 / 16)^{2}\right\}
$$

and

$$
N(b)^{\prime}=\left\{(x, y, t) \in P_{k} ;(x-(1 / 8))^{2}+(t-(1 / 8))^{2} \leq(3 / 32)^{2}\right\}
$$

be two solid tori containing b as their core circle. Let

$$
N(c)=\left\{(x, y, t) \in P_{k} ;(x-(7 / 8))^{2}+(y-(1 / 8))^{2} \leq(1 / 16)^{2}\right\}
$$

and let

$$
N(c)^{\prime}=\left\{(x, y, t) \in P_{k} ;(x-(7 / 8))^{2}+(y-(1 / 8))^{2} \leq(3 / 32)^{2}\right\} .
$$

By the condition (3) of A_{k}^{\prime}, these are also solid tori containing c as their

Fig. 2.2.
core circle (Fig. 2.2).
Now we modify \mathscr{F}_{0} and \mathscr{G}_{0} in two steps as follows.
Step 1. First we recall the notion of turbulization briefly according to [8]. Let $K_{1}: S^{1} \times S^{1} \times[0,1] \rightarrow P_{k}-\operatorname{int} N(b)$ (resp. $K_{2}: S^{1} \times S^{1} \times[0,1]$ $\rightarrow N(b))$ be a collar of $\partial N(b)$ defined by

$$
\begin{aligned}
K_{1}(\theta, y, s)= & (((1 / 32) \cdot s+(1 / 16)) \cdot \cos 2 \pi \theta+(1 / 8), y, \\
& ((1 / 32) \cdot s+(1 / 16)) \cdot \sin 2 \pi \theta+(1 / 8)) \in P_{k}-\operatorname{int} N(b) \\
\left(\text { resp. } K_{2}(\theta, y, s)=\right. & (((1 / 16)-(1 / 32) \cdot s) \cdot \cos 2 \pi \theta+(1 / 8), y, \\
& ((1 / 16)-(1 / 32) \cdot s) \cdot \sin 2 \pi \theta+(1 / 8)) \in N(b)) .
\end{aligned}
$$

Let $f:] 0,1] \rightarrow\left[0, \infty\left[\right.\right.$ be a C^{∞} function satisfying the following conditions:
(f 1) $f(t)=0$ for all $t \in[1 / 2,1]$,
(f 2) $\lim _{t \downarrow 0} f(t)=+\infty$,
(f3) $d f / d t<0$ in $] 0,1 / 2]$, and
(f4) the submanifolds $\boldsymbol{R} \times\{0\}$ and

$$
\left.\left.F_{c}(f)=\{(f(t)+c, t) ; t \in] 0,1\right]\right\}, c \in \boldsymbol{R}, \text { of } \boldsymbol{R} \times[0,1]
$$

form a C^{∞} foliation of $\boldsymbol{R} \times[0,1]$.
Let \mathscr{H}_{1} (resp. $\left.\mathscr{H}_{2}\right)$ be a codimension one foliation of $K_{1}\left(S^{1} \times S^{1} \times\right.$ $[0,1])$ (resp. $\left.K_{2}\left(S^{1} \times S^{1} \times[0,1]\right)\right)$ defined as follows: \mathscr{H}_{1} consists of a compact leaf $K_{1}\left(S^{1} \times S^{1} \times\{0\}\right)=\partial N(b)$ and non-compact leaves

$$
\left.\left.\left\{K_{1}(\theta,[f(t)]+w, t) ; \theta \in S^{1}, t \in\right] 0,1\right]\right\}
$$

for $w \in S^{1}=\boldsymbol{R} / \boldsymbol{Z}$, where $[z]$ means $z \bmod 1 . \mathscr{H}_{2}$ consists of a compact leaf $K_{2}\left(S^{1} \times S^{1} \times\{0\}\right)=\partial N(b)$ and non-compact leaves

$$
\left.\left.\left\{K_{2}(\theta,-[f(t)]+w, t) ; \theta \in S^{1}, t \in\right] 0,1\right]\right\}
$$

for $w \in S^{1}=R / Z$.
Now let us remove $\left.\mathscr{G}_{0}\right|_{K_{1}\left(S^{1} \times S^{1 \times[0,1]) \cup K_{2}\left(S S^{1} \times S^{1 \times[0,1])}\right.}\right.}$, and put \mathscr{H}_{1} and \mathscr{H}_{2} instead. Then we have a codimension one foliation \mathscr{G}_{0}^{\prime} described in Fig. 2.3. We call \mathscr{G}_{0}^{\prime} a foliation obtained by turbulizing \mathscr{G}_{0} around $\partial N(b)$. Note that $\left.\mathscr{G}_{0}^{\prime}\right|_{N(b)}$ is a Reeb component.

We can easily see that there are points on $\partial N(b)$ at which \mathscr{F}_{0} is not transverse to \mathscr{G}_{0}^{\prime}. Next we wish to modify \mathscr{F}_{0} so that it becomes transverse to \mathscr{G}_{0}^{\prime}. Let $S_{1}, S_{2}: S^{1} \times S^{1} \times[0,1] \rightarrow P_{k}$ be embeddings of $S^{1} \times S^{1}$ $\times[0,1]$ defined by

$$
\begin{aligned}
S_{1}(x, y, s)= & (x, y,(1 / 8)-(3 / 32) \cdot s), \\
S_{2}(x, y, s)= & (x, y,(1 / 8)+(3 / 32) \cdot s), \\
& (x, y, s) \in S^{1} \times S^{1} \times[0,1] .
\end{aligned}
$$

Fig. 2.3.
Let $g:[0,1] \rightarrow[0,1]$ be a C^{∞} diffeomorphism of $[0,1]$ satisfying the following conditions:
(g1) $t<g(t)$ for all $t \in] 0,1[$,
(g2) g is infinitely tangent to the identity at $t=0$ and $t=1$.
Let $a: S^{1} \rightarrow P_{k}$ be an oriented simple closed curve defined by

$$
a(x)=(x, 0,1 / 8) \in P_{k} .
$$

Let

$$
F_{b}=\left\{(x, y, 1 / 8) \in P_{k} ; x \in S^{1}, y \in S^{1}\right\}
$$

be a leaf of \mathscr{F}_{0}. Let \mathscr{S}_{1} (resp. \mathscr{S}_{2}) be a codimension one foliation of $S_{1}\left(S^{1} \times S^{1} \times[0,1]\right)$ (resp. $S_{2}\left(S^{1} \times S^{1} \times[0,1]\right)$) such that \mathscr{S}_{1} (resp. \mathscr{S}_{2}) is transverse to all $[0,1]$-factors $S_{1}(\{(x, y)\} \times[0,1])$ (resp. $S_{2}(\{(x, y)\} \times$ $[0,1])$), $(x, y) \in S^{1} \times S^{1}$, and the total holonomy homomorphism $h_{1}: \pi_{1}\left(F_{b}\right)$

Fig. 2.4.
$\rightarrow \operatorname{Diff}[0,1]\left(\right.$ resp. $\left.h_{2}: \pi_{1}\left(F_{b}\right) \rightarrow \operatorname{Diff}[0,1]\right)$ is given by $h_{1}([a])=\mathrm{id}, h_{1}([b])=g$, $h_{2}([a])=\mathrm{id}$, and $h_{2}([b])=g$. Now remove $\left.\mathscr{F}_{0}\right|_{S_{1}\left(S^{1} \times S^{1} \times[0,1]\right) \cup S_{2}\left(S^{1} \times S^{1} \times[0,1]\right)}$ and put \mathscr{S}_{1} and \mathscr{S}_{2} instead. Then we have a codimension one foliation \mathscr{F}_{0}^{\prime} described in Fig. 2.4 such that \mathscr{F}_{0}^{\prime} is transverse to \mathscr{G}_{0}^{\prime}.

Step 2. Since $\left.\mathscr{F}_{0}^{\prime}\right|_{N(c)}$, is a product foliation by 2-disks, we obtain a codimension one foliation $\mathscr{F}_{0}^{\prime \prime}$ by turbulizing \mathscr{F}_{0}^{\prime} around $\partial N(c)$ as in Fig. 2.5. Next we modify \mathscr{G}_{0}^{\prime}. From the construction of the step 1, we see $\left.\mathscr{G}_{0}^{\prime}\right|_{P_{k-i n t} N(b)^{\prime}}=\left.\mathscr{G}_{0}\right|_{P_{k}-\mathrm{int} N(b)^{\prime}}$. Let

$$
D=\left\{(x, t) \in T^{2} ;(x-(1 / 8))^{2}+(t-(1 / 8))^{2} \leq(3 / 32)^{2}\right\}
$$

be a 2-disk in T^{2}. Let S_{1}^{\prime} and $S_{2}^{\prime}:\left(T^{2}-\operatorname{int} D\right) \times[0,1] \rightarrow P_{k}-\operatorname{int} N(b)^{\prime}$ be embeddings defined by

$$
\begin{aligned}
S_{1}^{\prime}(x, t, y)= & (x,(1 / 8)-(3 / 32) \cdot y, t), \\
S_{2}^{\prime}(x, t, y)= & (x,(1 / 8)+(3 / 32) \cdot y, t) \\
& (x, t) \in T^{2}-\text { int } D \text { and } y \in[0,1] .
\end{aligned}
$$

Then we can define a codimension one foliation \mathscr{S}_{1}^{\prime} (resp. \mathscr{S}_{2}^{\prime}) of $S_{1}\left(\left(T^{2}-\operatorname{int} D\right) \times[0,1]\right)\left(\right.$ resp. $\left.S_{2}\left(\left(T^{2}-\operatorname{int} D\right) \times[0,1]\right)\right)$ similar to the one in the step 1 as described in Fig. 2.6. Let $\mathscr{G}_{0}^{\prime \prime}$ be the codimension one foliation obtained by removing $\left.\mathscr{G}_{0}^{\prime}\right|_{S_{1}\left(\left(T^{2}-\text { int } D\right) \times[0,1]\right) \cup S_{2}\left(\left(T^{2-i n t} D\right) \times[0,1]\right)}$ and putting \mathscr{S}_{1}^{\prime} and \mathscr{S}_{2}^{\prime} instead. Let $a^{\prime}: S^{1} \rightarrow P_{k}-\operatorname{int} N(b)^{\prime}$ be an oriented simple closed curve defined by

$$
a^{\prime}(x)=(x, 1 / 8,0), \quad x \in S^{1} .
$$

Then the foliations \mathscr{S}_{1}^{\prime} and \mathscr{S}_{2}^{\prime} have trivial total holonomy along a^{\prime} and

Fig. 2.5.

Fig. 2.6.
have infinite cyclic total holonomy along c. Hence \mathscr{S}_{1}^{\prime} and \mathscr{S}_{2}^{\prime} have trivial total holonomy along the circle

$$
S_{1}^{\prime}\left(\partial\left(T^{2}-\operatorname{int} D\right) \times\{0\}\right)=S_{2}^{\prime}\left(\partial\left(T^{2}-\operatorname{int} D\right) \times\{0\}\right)
$$

In fact using a suitable isotopy of \mathscr{S}_{1}^{\prime} (resp. \mathscr{S}_{2}^{\prime}) as in Fig. 2.7, we can assume

$$
\left.\mathscr{S}_{1}^{\prime}\right|_{S_{1}^{\prime}(\partial D \times[0,1])}=\left.\mathscr{G}_{0}^{\prime}\right|_{S_{1}^{\prime}(\partial D \times[0,1])},
$$

and

$$
\left.\mathscr{S}_{2}^{\prime}\right|_{S_{2}^{\prime}(\partial D \times[0,1])}=\left.\mathscr{G}_{0}^{\prime}\right|_{S_{2}^{2}(\partial D \times[0,1])} .
$$

Thus we can glue $\mathscr{G}_{0}^{\prime \prime}$ to $\left.\mathscr{G}_{0}^{\prime}\right|_{N(b)}$, along $\partial N(b)^{\prime}$ to obtain a codimension one foliation $\mathscr{G}_{0}^{\prime \prime \prime}$ of P_{k}. We see easily that $\mathscr{G}_{0}^{\prime \prime \prime}$ is transverse to $\mathscr{F}_{0}^{\prime \prime}$. Let

$$
P=P_{k}-(\operatorname{int} N(b) \cup \operatorname{int} N(c))
$$

and let \mathscr{F}_{1} (resp. \mathscr{G}_{1}) be the restriction of $\mathscr{F}_{0}^{\prime \prime}$ (resp. $\mathscr{G}_{0}^{\prime \prime \prime}$) to P. Let T_{b} be the leaf of \mathscr{F}_{1} containing the circle

$$
\left\{(0, y, 1 / 8) \in P ; y \in S^{1}\right\}
$$

and T_{c} the leaf of \mathscr{G}_{1} containing the circle

$$
\left\{(0,1 / 8, t) \in P ; t \in S^{1}\right\} .
$$

T_{b} and T_{c} are diffeomorphic to the 1-punctured annulus $S^{1} \times[0,1]-p i$. In the following sections, we only consider P for $k=1$.

Fig. 2.7.

§ 3. The infinitely approximating null closed orbit property

The purpose of this section is to give a criterion for the non-existence of transverse foliations for a given one dimensional foliation (Theorem 3.3) which is a modified version of the one used in [12].

Let N be a (possibly non-compact) 3-manifold and let ϕ be an oriented C^{1} foliation of dimension one tangent to ∂N. We choose a Riemannian metric g on N. Let ε be an arbitrary positive number.

Definition 3.1. Let (N, ϕ, g) be as above. Let $C:[0,1] \rightarrow N$ be an oriented smooth curve (resp. an oriented smooth closed curve). Then C is called an ε-orbit segment (resp. ε-closed orbit) of (N, ϕ, g) if the following condition holds:
(*) For every point x of $C([0,1])$, we have

$$
\left|1-g_{x}(u, v)\right|<\varepsilon
$$

where g_{x} is the metric on the tangent space $T_{x} N$ at x, u and v are the positively directed unit vectors tangent to ϕ and C at x respectively.

An ε-closed orbit C is called an ε-null closed orbit if C is homotopic to zero in N.

Definition 3.2. (N, ϕ, g) has the infinitely approximating null closed orbit property ($0-\mathrm{N} . \mathrm{C} . \mathrm{O} . \mathrm{P}$. for short) if for every positive number ε, there exists an ε-null closed orbit C of (N, ϕ, g).

Theorem 3.3. Let M be a compact 3-manifold and let \mathscr{F} be an oriented C^{1} foliation of dimension one tangent to ∂M. Let $E(\phi)$ denote the
union of all closed orbits with infinite holonomy of $\phi . \operatorname{If}\left(M-E(\phi),\left.\phi\right|_{M-E(\phi)}\right.$, $\left.\left.g\right|_{M-E(\phi)}\right)$ has 0-N.C.O.P., then ϕ does not admit a transverse C^{1} foliation of codimension one.

Remark. Since M is compact, the statement that $\left(M-E(\phi),\left.\phi\right|_{M-E(\phi)}\right.$, $\left.\left.g\right|_{M-E(\phi)}\right)$ has 0-N.C.O.P. is independent of a choice of g.

For the proof, we need some lemmas.
Lemma 3.4. Let $\left(S^{1} \times D^{2}, \mathscr{F}_{R}\right)$ be a Reeb component of $S^{1} \times D^{2}$ and let ϕ be an oriented C^{1} foliation of dimension one transverse to \mathscr{F}_{R} and pointed inward along $\partial\left(S^{1} \times D^{2}\right)$. Then there exists a closed orbit with infinite holonomy of ϕ.

Proof. Let T be a solid torus in $\operatorname{int}\left(S^{1} \times D^{2}\right)$ such that ∂T is parallel to $\partial\left(S^{1} \times D^{2}\right), \partial T$ is transverse to \mathscr{F}_{R}, and ∂T is near enough to $\partial\left(S^{1} \times D^{2}\right)$ such that ϕ is still pointed inward along ∂T. Since $\left.\mathscr{F}_{R}\right|_{T}$ is a product foliation by 2 -disks, we have a projection map $p: T \rightarrow S^{1}$ such that $\left\{p^{-1}(t) ; t \in S^{1}\right\}$ is $\left.\mathscr{F}_{R}\right|_{T}$. For each closed orbit l of ϕ, we associate an integer k such that $p_{*}[l]=k \cdot\left[S^{1}\right]$, where $[l]$ is the homology class of l. We call k the degree of l. Choosing an orientation suitably, we can assume the degree is a positive integer. Let $D_{0}=p^{-1}(0), 0 \in S^{1}$, be a leaf of $\left.\mathscr{F}_{R}\right|_{T}$. By considering the first return map of ϕ on D_{0}, we have a diffeomorphism f of D_{0} into itself. By applying the Brouwer fixed point theorem for f, we have a closed orbit l_{0} of ϕ whose degree is equal to 1 . If the holonomy group of l_{0} is infinite, we are done.

Consider the case when the holonomy group of l_{0} is finite. Let U be the union of all closed orbits with finite holonomy and let U_{0} be the connected component of U containing l_{0}. Since the holonomy group of an orbit with finite holonomy is conjugate to a cyclic subgroup of $\boldsymbol{S O}(2)$ (see for example [1]), we have
(i) U is an open subset of int T, and
(ii) the closed orbits with non-trivial holonomy are isolated in U. Moreover
(iii) if l is a closed orbit with holonomy of order k and the degree of l is m, then the orbit l^{\prime} near l is a closed orbit without holonomy and the degree of l^{\prime} is $k \cdot m$. Let d be the degree of a closed orbit without holonomy in $U_{0} . \quad d$ is well defined from (ii). Then from (iii), we have
(iv) the order of the holonomy of each closed orbit in U_{0} divides d. Let $\pi:\left(\tilde{\phi}, \tilde{T}, \tilde{U}_{0}\right) \rightarrow\left(\phi, T, U_{0}\right)$ be the d-fold covering and let $\tilde{f}: \tilde{D}_{0} \rightarrow \tilde{D}_{0}$ be the first return map of $\tilde{\phi}$, where \tilde{D}_{0} is a connected component of $\pi^{-1}\left(D_{0}\right)$. Note that \tilde{f} is conjugate to f^{d} via the covering projection. Let l_{1} be an orbit through a point of $\operatorname{bd}\left(U_{0}\right)=\operatorname{cl}\left(U_{0}\right)-U_{0}$ and \tilde{l}_{1} be a connected com-
ponent of $\pi^{-1}\left(l_{1}\right)$. From (iv), $\left.\tilde{f}\right|_{\tilde{U}_{0} \cap \tilde{D}_{0}}$ is the identity map and hence \tilde{f} also fixes the point $\tilde{l}_{1} \cap \tilde{D}_{0}$. Thus l_{1} is a closed orbit. Since l_{1} contains a point of $\operatorname{bd}\left(U_{0}\right)$, the holonomy of l_{1} cannot be finite. Thus l_{1} is a desired orbit.

Proof of Theorem 3.3. Suppose that there exists a codimension one C^{1} foliation \mathscr{F} transverse to ϕ. We will have a contradiction later. We may assume $\partial M=\emptyset$. For, if $\partial M \neq \emptyset$, then we consider the double $(D M, D \mathscr{F})$ of (M, \mathscr{F}), where $D M=M \cup_{\partial M} M$ and $D \mathscr{F}=\mathscr{F} \cup_{\mathscr{F} \mid \partial M} \mathscr{F}$ which is transverse to $D \phi=\phi \bigcup_{\phi \mid \partial M} \phi$, and we can apply our argument to ($D M, D \mathscr{F}$). Since M is compact, there exists a positive number ε small enough such that every ε-closed orbit is transverse to \mathscr{F}. Thus the assumption that $\left(M-E(\phi),\left.\phi\right|_{M-E(\phi)},\left.g\right|_{M-E(\phi)}\right)$ has 0-N.C.O.P. implies that there exists an ε-null closed orbit $C: S^{1} \rightarrow M-E(\phi)$ which is transverse to \mathscr{F}. That is, we have a continuous map $F: D^{2} \rightarrow M-E(\phi)$ such that $\left.F\right|_{\partial D^{2}}=C$. Then by a well-known method (see [3], [10], [11] and [2] for the C^{1}-case), for any positive number δ, we have a C^{1} map $\bar{F}: D^{2} \rightarrow M$ satisfying the following conditions:
($\bar{F} 1)\left.\quad \bar{F}\right|_{\partial D^{2}}=\left.F\right|_{\partial D^{2}}$.
($\bar{F} 2$) \bar{F} is an immersion.
($\bar{F} 3$) \bar{F} is in general position with respect to \mathscr{F}; that is, for every point $x \in D^{2}$ there exists a foliation chart (U, π) of \mathscr{F} around $\bar{F}(x) ; \bar{F}(x) \in$ $U, \pi: U \rightarrow \boldsymbol{R}$, such that $\pi \circ \bar{F}$ is a Morse function.
$(\bar{F} 4) \quad \bar{F}$ is δ-near to F, that is, $d(\bar{F}(x), F(x))<\delta$ for every point $x \in$ D^{2}, where d is the distance on M induced from g.

We choose δ so that for every Reeb component $\left(R,\left.\mathscr{F}\right|_{R}\right)$ of $\mathscr{F}, R \cong$ $S^{1} \times D^{2}$, every point which is δ-near to ∂R is contained in a tubular neighborhood of ∂R.

By the simply-connectedness of D^{2} and the condition $(\bar{F} 3)$, we see that the Haefliger structure $\bar{F}^{*} \mathscr{F}$ defines a C^{1} vector field X on D^{2} whose singular points are a finite number of centers and saddles (Fig. 3.1).

From $(\bar{F} 1)$ and the fact that $C=\left.\bar{F}\right|_{\partial D^{2}}$ is transverse to \mathscr{F}, we see X is transverse to ∂D^{2}. We assume X is pointed inward on ∂D^{2}. Furthermore, by choosing \bar{F} suitably, we can assume that for distinct singular

center

saddle

Fig. 3.1.
points x, x^{\prime} of $X, \bar{F}(x)$ and $\bar{F}\left(x^{\prime}\right)$ are on distinct leaves of \mathscr{F}. Then X has no saddle connections; that is, there are no orbits with the α-limit set and the ω-limit set being two distinct saddle points.

Then by the Poincaré-Bendixson theorem, the α-limit set or the ω-limit set of an orbit of X is one of the following types;
(a) a center
(b) a non-singular closed orbit
(c) a union of a saddle and a non-compact orbit
(d) a union of a saddle and two non-compact orbits.

We divide (d) into $\left(d_{1}\right)$ and $\left(d_{2}\right)$ according to Fig. 3.2; that is, $\left(d_{2}\right)$ is the case that a non-compact orbit is surrounded by the circle consisting of the saddle and another non-compact orbit, and $\left(\mathrm{d}_{1}\right)$ is otherwise.

Fig. 3.2.
Then from the Novikov compact leaf theorem ([10]), we have the following statements:
(N1) There exists a vanishing cycle, that is, a continuous family of maps $f_{t}: S^{1} \rightarrow M, 0 \leq t \leq 1$, such that
(i) $f_{t}\left(S^{1}\right)$ is contained in a leaf $L_{t} \in \mathscr{F}$,
(ii) $f_{0}: S^{1} \rightarrow L_{0}$ is not null homotopic, and
(iii) $f_{t}: S^{1} \rightarrow L_{t}, 0<t \leq 1$, is null homotopic.

Furthermore $f_{t}\left(S^{1}\right)(0 \leq t \leq 1)$ is contained in $\bar{F}\left(D^{2}\right)$ and $\bar{F}^{-1}\left(f_{t}\left(S^{1}\right)\right)$ is a union of a finite number of circles of type (a), (b), (c) and (d) above.
(N2) For every vanishing cycle $f_{t}: S^{1} \rightarrow L_{t} \in \mathscr{F}, 0 \leq t \leq 1$, such that f_{0} is not null homotopic in L_{0} and $f_{t}(0<t \leq 1)$ is null homotopic in L_{t}, the leaf L_{0} is the boundary leaf of a Reeb component $\left(R,\left.\mathscr{F}\right|_{R}\right)$ and L_{t} is an interior leaf of $\left(R,\left.\mathscr{F}\right|_{R}\right)$.

We will show that the immersed disk $\bar{F}\left(D^{2}\right)$ intersects $E(\phi)$. For this, we need the following assertion which is proved by considering an "inner-most" vanishing cycle on ($D^{2}, \bar{F}^{*} \mathscr{F}$) (see [4] and [10]).

Assertion. There exists a subset D_{0} of D^{2} which is a disk or a disk glued at two points on its boundary (Fig. 3.3) satisfying the following conditions:
(i) ∂D_{0} is a circle of type (b), (c) and $\left(\mathrm{d}_{2}\right)$, and int $D_{0}=\cup_{\lambda} l_{\lambda}$, where l_{λ} is a circle of type (a), (b) and (d).
(ii) $\bar{F}\left(\partial D_{0}\right)$ is not null homotopic in L_{0}, and $\bar{F}\left(l_{2}\right), l_{\lambda} \subset \operatorname{int} D_{0}$, is null homotopic in L_{λ}, where $L_{0}\left(\right.$ resp. $\left.L_{\lambda}\right)$ denotes the leaf of \mathscr{F} containing $\bar{F}\left(\partial D_{0}\right)$ (resp. $\left.\bar{F}\left(l_{\lambda}\right)\right)$.

Fig. 3.3.
We show that for D_{0} in the assertion, the image $\bar{F}\left(D_{0}\right)$ intersects $E(\phi)$. By the condition (ii) of the assertion, there exists a collar N of ∂D_{0} in D_{0} such that $N-\partial D_{0}$ is a union of circles of type (b) and the restriction $\left.\bar{F}\right|_{N}: N \rightarrow M$ gives us a vanishing cycle. Hence by ($N 2$) of the statements of Novikov's theorem, there exists a solid torus $R\left(\cong S^{1} \times D^{2}\right)$ in M such that $\left.\mathscr{F}\right|_{R}$ is a Reeb component and $\bar{F}\left(\partial D_{0}\right)$ is contained in ∂R. Furthermore we easily see that the homology class $\left[\bar{F}\left(\partial D_{0}\right)\right]$ in $H_{1}(\partial R ; Z)$ represented by $\bar{F}\left(\partial D_{0}\right)$ is equal to a multiple of the meridian;

$$
\left[\bar{F}\left(\partial D_{0}\right)\right]=k \cdot\left[\{*\} \times \partial D^{2}\right] \in H_{1}(\partial R ; Z),
$$

where we identify R with $S^{1} \times D^{2}$ and $k \in Z-\{0\}$. By Lemma 3.4, there exists a closed orbit l of ϕ such that $l \subset \operatorname{int} R \cap E(\phi)$. Moreover the homology class $[l] \in H_{1}(R ; Z)(\cong Z)$ of l is not zero.

Assume $\bar{F}\left(D_{0}\right)$ does not intersect l. First consider the case $\bar{F}\left(D_{0}\right) \subset R$. Then since $\left[\bar{F}\left(\partial D_{0}\right)\right]$ is a non-zero multiple of the meridian in $H_{1}(\partial R ; Z)$, $\bar{F}_{*}\left[D_{0}, \partial D_{0}\right]$ represents a non-zero element in $H_{1}(R, \partial R ; Z)(\cong Z)$. Thus the intersection number of [l] and $\bar{F}_{*}\left[D_{0}, \partial D_{0}\right]$ is non-zero and this contradicts the assumption. Next consider the case $\bar{F}\left(D_{0}\right) \not \subset R$. Take the connected component S of $\bar{F}^{-1}\left(\bar{F}\left(D_{0}\right) \cap R\right)$ which contains ∂D_{0}. Let ∂S denote S-int $S . \quad \bar{F}(\partial S)$ is contained in ∂R. By the condition (i) of the assertion, $\partial S-\partial D_{0}$ is a union of a finite number of circles of type (b), (d). By (ii) of the assertion, \bar{F} maps these circles to null homotopic circles on ∂R. Then we can extend $\left.\bar{F}\right|_{s}: S \rightarrow R$ to a continuous map $\bar{F}^{\prime}: D_{0} \rightarrow R$ such that $\left.\bar{F}^{\prime}\right|_{S}=\left.\bar{F}\right|_{S}$ and $\bar{F}^{\prime}\left(D_{0}-S\right)$ is contained in ∂R. If $\bar{F}^{\prime}\left(D_{0}\right)$ does not intersect l, then we have a contradiction by the same way as in the case $\bar{F}\left(D_{0}\right) \subset R$. This shows that $\bar{F}(S)$ intersects l. Hence $\bar{F}\left(D_{0}\right)$ intersects l.

By ($\bar{F} 4$) and the choice of δ, the same argument shows that $F\left(D_{0}\right)$ or $F(S)$ intersects l. Since F is a map into $M-E(\phi)$ and $l \subset E(\phi)$, we have a contradiction. This completes the proof.

Proposition 3.5. Let (M, ϕ, g) be a triad of a (possibly non-compact) 3-manifold, $a C^{1}$ foliation of dimension one tangent to ∂M and a Riemannian metric on M. Let $p ; \tilde{M} \rightarrow M$ be a finite covering and let $\tilde{\phi}=p^{*} \phi$ (resp. $\tilde{g}=p^{*} g$) be the induced one dimensional foliation (resp. the induced metric) by p. If (M, ϕ, g) has 0-N.C.O.P., then ($\tilde{M}, \tilde{\phi}, \tilde{g})$ also has 0-N.C.O.P.

Proof. If C_{ε} is an ε-closed orbit of (M, ϕ, g), then each lift \tilde{C}_{ε} of C_{ε} is an ε-closed orbit. If C_{ε} is null homotopic, then each lift $\widetilde{C}_{\varepsilon}$ is also null homotopic. Thus for every positive number ε, we have an ε-null closed orbit $\widetilde{C}_{\varepsilon}$ of $(\tilde{M}, \tilde{\phi}, \tilde{g})$.

§ 4. Main lemma

Let $P=P_{1}$ - (int $N(b) \cup$ int $\left.N(c)\right)$ in Section 2 and let ϕ be the one dimensional foliation determined by the intersection of leaves of \mathscr{F}_{1} and \mathscr{G}_{1} :

$$
\phi=\mathscr{F}_{1} \cap \mathscr{G}_{1} .
$$

We will choose an orientation of ϕ later. Let $E(\phi)$ be the union of closed orbits with infinite holonomy of ϕ. Choose a Riemannian metric g of P. The following lemma is important to the proof of our result.

Lemma 4.1. $\quad\left(P-E(\phi),\left.\phi\right|_{P-E(\phi)},\left.g\right|_{P-E(\phi)}\right)$ has $0-N . C . O . P$.
In order to prove Lemma 4.1, we need to observe the behavior of ϕ near $\partial N(b)$ and near $\partial N(c)$. We observe it according to five cases (O-1) to (O-5) (Fig. 4.1).
(O-1) Let L_{1} be a leaf of \mathscr{F}_{1} containing a point $(1 / 8,0, t) \in P, 0 \leq$ $t \leq 1 / 32$. Then L_{1} is diffeomorphic to a 1 -punctured torus $T^{2}-p t$, and the foliation $\left.\mathscr{G}_{1}\right|_{L_{1}}$ of L_{1} is described in Fig. 4.2.
(O-2) Let L_{2} be a leaf of \mathscr{F}_{1} containing a point $(1 / 8,0, t), 1 / 32<t$ $<1 / 8$. Then L_{2} is diffeomorphic to ∞-punctured $S^{1} \times R-U$, where U is diffeomorphic to $] 0,1\left[\times \boldsymbol{R}\right.$, and $\left.\mathscr{G}_{1}\right|_{L_{2}}$ is described in Fig. 4.3.
(O-3) Let $L_{3}=T_{b}$ be the leaf containing the point $(1 / 8,0,1 / 8) . \quad L_{3}$ is diffeomorphic to 1 -punctured annulus $S^{1} \times[0,1]-p t$ and $\left.\mathscr{G}_{1}\right|_{L_{3}}$ is described in Fig. 4.4.

Fig. 4.1.

Fig. 4.2.
(O-4) Let L_{4} be a leaf of \mathscr{F}_{1} containing a point $(1 / 8,0, t), 1 / 8<t<$ 7/32. $\quad L_{4}$ is diffeomorphic to ∞-punctured $S^{1} \times R-U$ as in (O-2) and $\left.\mathscr{G}_{1}\right|_{L_{4}}$ is similar to $\left.\mathscr{G}_{1}\right|_{L_{2}}$.
(O-5) Let L_{5} be a leaf of \mathscr{F}_{1} containing a point $(1 / 8,0, t), 7 / 32 \leq t$ $<1 . L_{5}$ is diffeomorphic to 1-punctured torus $T^{2}-p t$ and $\left.\mathscr{G}_{1}\right|_{L_{5}}$ is similar to $\left.\mathscr{G}_{1}\right|_{L_{1}}$.

The behavior of ϕ near $\partial N(c)$ is similar to (O-1) to (O-5).
Lemma 4.2. $E(\phi)=\left(T_{b} \cap \partial N(b)\right) \cup\left(T_{c} \cap \partial N(c)\right)=\{(x, y, 1 / 8) \in P ; x$ $\left.=1 / 16,3 / 16, y \in S^{1}\right\} \cup\left\{(x, 1 / 8, t) \in P ; x=13 / 16,15 / 16, t \in S^{1}\right\}$. Therefore $E(\phi)$ is a union of four closed orbits on $\partial N(b) \cup \partial N(c)$. In particular, $\pi_{1}(P-E(\phi))$ is isomorphic to $\pi_{1}(P)$.
A. Sato

Fig. 4.3.

Fig. 4.4.

Proof. Leaves of \mathscr{F}_{1} (resp. \mathscr{G}_{1}) with non-trivial holonomy are $\partial N(c)$ (resp. $\partial N(b)), T_{b}$ (resp. T_{c}) and two leaves which are diffeomorphic to $T^{2}-p t . \quad$ By the observation (O-1), (O-3) and (O-5) of this section, we see that closed orbits with non-trivial holonomy are only on $T_{b} \cup T_{c}$, and then we have $E(\phi)=\left(T_{b} \cap \partial N(b)\right) \cup\left(T_{c} \cap \partial N(c)\right)$. This completes the proof.

The following is a presentation of the fundamental group of P. For two loops α and $\beta, \alpha \beta$ denotes the loop β followed by α.

Lemma 4.3. Let $p_{0}=(0,1 / 8,1 / 8) \in T_{b} \cap T_{c}$ be a base point of $\pi_{1}(P)$. Let $\alpha, \beta, \gamma, \mu$ and ν be the homotopy classes of loops based at p_{0} in Fig. 4.5. Then we have a presentation of $\pi_{1}(P)$ as follows:
(1) $\{\alpha, \beta, \gamma, \mu, \nu\}$ is a set of generators.
(2) the fundamental relations are as follows:
(I) $\beta^{-1} \alpha^{-1} \beta \alpha=\nu$,
(II) $\mu \beta=\beta \mu$,
(III) $\gamma^{-1} \alpha^{-1} \gamma \alpha=\mu$,
(IV) $\gamma^{-1} \alpha \beta \gamma=\beta$.

Fig. 4.5.
Proof. Let P^{\prime} be the compact 3-manifold with corner obtained lby cutting P along $T=\{(x, y, 0) \in P\}$, and let $T_{0}=\left\{(x, y, 0) \in P^{\prime}\right\}$ and $T_{1}=$ $\left\{(x, y, 1) \in P^{\prime}\right\} . \quad T$ is diffeomorphic to $T^{2}-\operatorname{int} D^{2}$. By moving p_{0} along a path to $p_{0}^{\prime}=(0,0,0)$ and applying the HNN construction (see [6]) repeatedly, we have the following presentation of $\pi_{1}(P)$. Let α, β, μ and ν be the homotopy classes of loops in P^{\prime} described in Fig. 4.5. Then,
(1) $\{\alpha, \beta, \mu, \nu\}$ is a set of generators.
(2) the fundamental relations are;
(I) $\beta^{-1} \alpha^{-1} \beta \alpha=\nu$,
(II) $\mu \beta=\beta \mu$.

We see that the generators of $\pi_{1}\left(T_{0}\right)$ are α and β, and that the generators of $\pi_{1}\left(T_{1}\right)$ are the homotopy classes $\alpha^{\prime}=\left[a^{\prime}\right]$ and $\beta^{\prime}=\left[b^{\prime}\right]$, where $a^{\prime}, b^{\prime}: S^{1} \rightarrow$ T_{1} are defined by

$$
\begin{aligned}
& a^{\prime}(s)=(s, 0,1), \\
& b^{\prime}(s)=(0, s, 1), \quad s \in S^{1}=R / Z .
\end{aligned}
$$

Let $c:[0,1] \rightarrow P^{\prime}$ be a path defined by

$$
c(s)=(0,0, s), \quad s \in[0,1] .
$$

Then we have

$$
c_{\sharp} \alpha^{\prime}=\alpha \mu^{-1}, \quad \text { and } \quad c_{\sharp} \beta^{\prime}=\beta,
$$

where $c_{\#}$ denotes the isomorphism $c_{\sharp}: \pi_{1}\left(P^{\prime}, p_{0}^{\prime \prime}\right) \rightarrow \pi_{1}\left(P^{\prime}, p_{0}^{\prime}\right), p_{0}^{\prime \prime}=c(1)=$ ($0,0,1$), defined as follows:

$$
c_{\sharp}[a]=\left[c^{-1} \circ a \circ c\right], \quad[a] \in \pi_{1}\left(P^{\prime}, p_{0}^{\prime \prime}\right),
$$

where $c^{-1} \circ a \circ c$ denotes the loop based at p_{0}^{\prime} obtained by the conjugation of a loop a by the path c. Since the monodromy map is $A_{1}^{\prime}: T^{2} \rightarrow T^{2}$ of Section 2, we have

$$
f_{\sharp} \alpha^{\prime}=\alpha, \quad f_{\sharp} \beta^{\prime}=\alpha \beta,
$$

where $f: T_{1} \rightarrow T_{0}$ is the gluing map. Then by the HNN construction, we have;
(1) $\{\alpha, \beta, \mu, \nu\} \cup\{\gamma\}$ is a set of generators.
(2) the fundamental relations are;
(I) $\beta^{-1} \alpha^{-1} \beta \alpha=\nu$,
(II) $\mu \beta=\beta \mu$,
(III) $f_{\sharp} \alpha^{\prime}=\gamma\left(c_{\sharp} \alpha^{\prime}\right) \gamma^{-1}$,
(IV) $f_{*} \beta^{\prime}=\gamma\left(c_{*} \beta^{\prime}\right) \gamma^{-1}$.
(III) ${ }^{\prime}$ is rewritten as $\alpha=\gamma \alpha \mu^{-1} \gamma^{-1}$, and then
(III) $\gamma^{-1} \alpha^{-1} \gamma \alpha=\mu$.
(IV) ${ }^{\prime}$ is rewritten as $\alpha \beta=\gamma \beta \gamma^{-1}$, and then
(IV) $\gamma^{-1} \alpha \beta \gamma=\beta$.

This completes the proof.
Lemma 4.4. For every positive number ε, the following homotopy classes in $\pi_{1}(P-E(\phi))=\pi_{1}(P)$ can be represented by ε-closed orbits, where m and n are arbitrary integers;
(0) α,
(1) $\alpha(\gamma \mu)^{m} \beta^{n}$,
(2) $\alpha(\gamma \mu)^{m} \mu^{-1} \beta^{n}$,
(3) $\alpha \nu^{-1}(\gamma \mu)^{m} \beta^{n}$,
(4) $\alpha \nu^{-1}(\gamma \mu)^{m} \mu^{-1} \beta^{n}$.

Proof. (I) First we prove (0). Let

$$
\sigma=\{(x, 1 / 8,1 / 8) \in P ; 1 / 4 \leq x \leq 3 / 4\}
$$

be a segment with its end points $p_{1}=(1 / 4,1 / 8,1 / 8)$ and $p_{2}=(3 / 4,1 / 8,1 / 8)$. By the construction of \mathscr{F}_{1} and \mathscr{G}_{1} in Section 2, we have $\sigma \subset T_{b} \cap T_{c}$. We construct an ε-closed orbit representing α by joining the following five ε-orbit segments.
(i) Choose a point

$$
p_{b, \varepsilon}=\left(1 / 32,1 / 8, t_{b, \varepsilon}\right), \quad 0<(1 / 8)-t_{b, \varepsilon}<(1 / 2) \cdot(1 / 32) \cdot \varepsilon,
$$

so that the linear segment $p_{0} p_{b, \varepsilon}$ is an $\varepsilon / 2$-orbit segment. Let L be the leaf of \mathscr{F}_{1} containing the point $p_{b, \varepsilon} . \quad L=L_{0}-U$, where L_{0} is ∞-punctured $S^{1} \times \boldsymbol{R}$ and U is an open disk in L_{0} (Fig. 4.3). Let $\lambda_{0, \varepsilon}$ be an ε-orbit segment joining p_{0} to $p_{b, \varepsilon}$ obtained by smoothing $p_{0} p_{b, \varepsilon}$ near p_{0} and $p_{b, \varepsilon}$ so that $\lambda_{0, \varepsilon}$ is contained in the slice $\{(x, 1 / 8, t) \in P\}$ and is tangent to T_{b} (resp. L) at p_{0} (resp. $p_{b, \varepsilon}$) (Fig. 4.6 (i)).
(ii) Let $\lambda_{b, \varepsilon}$ be the orbit segment of ϕ on L which starts from $p_{b, \varepsilon}$ and hits the slice $\{(7 / 32, y, t) \in P\}$, and let $q_{b, \varepsilon}=\left(7 / 32,1 / 8, t_{b, \varepsilon}^{\prime}\right)$ be the other end point of $\lambda_{b, \varepsilon}$ (Fig. 4.6 (ii)). By the symmetry of the construction in Section 2, we have $t_{b, \varepsilon}^{\prime}=t_{b, \varepsilon}$.

Fig. 4.6 (i).

Fig. 4.6 (ii).
(iii) By (i) and (ii), we can assume the linear segment $q_{b, \varepsilon} p_{1}$ is also an $\varepsilon / 2$-orbit segment. Let $\lambda_{1, \varepsilon}$ be an ε-orbit segment joining $q_{b, \varepsilon}$ to p_{1} similar to $\lambda_{0, \varepsilon}$ so that $\lambda_{1, \varepsilon}$ is contained in the slice $\{(x, 1 / 8, t) \in P\}$ and is tangent to L (resp. T_{b}) at $q_{b, \varepsilon}\left(\operatorname{resp} p_{1}\right)$ (Fig. 4.6 (i)).
(iv) We join p_{1} to p_{2} by σ.
(v) We construct an ε-orbit segment joining p_{2} to p_{0} by using \mathscr{G}_{1} near $\partial N(c)$ instead of \mathscr{F}_{1}. Choose points $p_{c, \varepsilon}=\left(25 / 32, y_{c, \varepsilon}, 1 / 8\right)$, and $q_{c, \varepsilon}=\left(31 / 32, y_{c, \varepsilon}, 1 / 8\right), 0<(1 / 8)-y_{c, \varepsilon}<(1 / 2) \cdot(1 / 32) \cdot \varepsilon$. Let $\lambda_{2, \varepsilon}$ and $\lambda_{3, \varepsilon}$ be ε-orbit segments obtained similarly to (i) so that $\lambda_{2, \varepsilon}$ (resp. $\lambda_{3, \varepsilon}$) is contained in the slice $\{(x, y, 1 / 8) \in P\}$ and is tangent to the leaves of \mathscr{G}_{1} at its end points. Let $\lambda_{c, \varepsilon}$ be the orbit segment joining $p_{c, \varepsilon}$ to $q_{c, \varepsilon}$ similar to (ii).

By joining the ε-orbit segments $\lambda_{0, \varepsilon}, \lambda_{b, \varepsilon}, \lambda_{1, \varepsilon}, \sigma, \lambda_{2, \varepsilon}, \lambda_{c, \varepsilon}$ and $\lambda_{3, \varepsilon}$ in that order, we have an ε-closed orbit representing the homotopy class α.
(II) Next we construct an ε-closed orbit representing $\alpha \beta^{n}$ for arbitrary $n \in Z$. Fix n and ε. Let $p_{b}=(1 / 32,1 / 8,1 / 8)$ be a point on T_{b} and let $\beta^{\prime}: S^{1} \rightarrow T_{b}$ be a loop on T_{b} defined by

$$
\beta^{\prime}(s)=(1 / 32, s+(1 / 8), 1 / 8) \in P, \quad s \in S^{1} .
$$

Let $J=\{(1 / 32,1 / 8, t) \in P ; 3 / 32 \leq t \leq 1 / 8\}$ be an arc one of whose end point is p_{b}. By the construction of \mathscr{F}_{1} in Section 2, we see that the leaf $T_{b} \in \mathscr{F}_{1}$ has holonomy along β^{\prime} and that the holonomy map $f_{\beta^{\prime}}:\left(f_{\beta^{\prime}}\right)^{-1}(J) \rightarrow J$ associated with β^{\prime} is an expanding diffeomorphism:

$$
\begin{aligned}
& f_{\beta^{\prime}}(1 / 32,1 / 8, t)=\left(1 / 32,1 / 8, t^{\prime}\right) \\
& t^{\prime}<t \text { for }(1 / 32,1 / 8, t) \in\left(f_{\beta^{\prime}}\right)^{-1}(J)-\left\{p_{b}\right\}, \quad \text { and } \\
& f_{\beta^{\prime}}\left(p_{b}\right)=p_{b} .
\end{aligned}
$$

Fig. 4.7.
(i) If we choose a point $p_{b}^{\prime} \in J-\left\{p_{b}\right\}$ near enough to p_{b}, then the point $\left(f_{k^{\prime}}\right)^{k}\left(p_{b}^{\prime}\right)$, for every $k \in Z$ satisfying $|k| \leq|n|$, is contained in J.
(ii) Let L be the leaf of \mathscr{F}_{1} containing $p_{b}^{\prime} \in J$. If we choose $p_{b}^{\prime}=$ $\left(1 / 32,1 / 8, t_{b}\right) \in J-\left\{p_{b}\right\}$ near enough to p_{b}, then a point of $o\left(p_{b}^{\prime}\right)$ and a point of $o\left(\left(f_{\beta^{\prime}}\right)^{n}\left(p_{b}^{\prime}\right)\right)$ is joined by an ε-orbit segment on L, where $o(p)$ denotes the orbit of ϕ through p (Fig. 4.7).
(iii) Let $\lambda_{b, \varepsilon}^{\prime}$ be an ε-orbit segment on L constructed as above so that $\lambda_{b, \varepsilon}^{\prime}$ starts at p_{b}^{\prime}, moves on $o\left(\left(f_{\beta}\right)^{n}\left(p_{b}^{\prime}\right)\right)$ and hits the slice $\{(7 / 32, y, t) \in P\}$ on $o\left(\left(f_{\beta^{\prime}}\right)^{n}\left(p_{b}^{\prime}\right)\right)$. Let $q_{b, \varepsilon}^{\prime}=\left(7 / 32,1 / 8, t_{b, \varepsilon}^{\prime}\right)$ be the end point of $\lambda_{b, \varepsilon}^{\prime}$ different from p_{b}^{\prime}. If $n \neq 0$, then $t_{b, \varepsilon}^{\prime} \neq t_{b}$. But if we choose t_{b} near enough to $1 / 8$, we have $t_{b, \mathrm{~s}}^{\prime}$ arbitrary near to $1 / 8$. Thus, if p_{b}^{\prime} is near enough to p_{b}, then there exists an ε-orbit segment $\lambda_{1, \varepsilon}$ in (iii) of (I) joining $q_{b, \varepsilon}^{\prime}$ to p_{1}.
(iv) Let $p_{b, \varepsilon}=\left(1 / 32,1 / 8, t_{b, \varepsilon}\right), t_{b, \varepsilon}<1 / 8$, be a point of J near enough to p_{b} satisfying the following conditions:
(a) there exists an ε-orbit segment $\lambda_{0, \varepsilon}$ in (i) of (I) joining p_{0} to $p_{b, \varepsilon}$,
(b) $p_{b, \varepsilon}$ satisfies the conditions of p_{b}^{\prime} in (i), (ii) and (iii) of (II).

Let $\sigma, \lambda_{c, \varepsilon}$ be orbit segments and let $\lambda_{2, \varepsilon}, \lambda_{3, \varepsilon}$ be ε-orbit segments in (I). By joining the ε-orbit segments $\lambda_{0, e}, \lambda_{b, \varepsilon}^{\prime}, \lambda_{1, \varepsilon}, \sigma, \lambda_{2, \varepsilon}, \lambda_{c, \varepsilon}$ and $\lambda_{3, \varepsilon}$ in that order, we have an ε-closed orbit representing $\alpha \beta^{n}$.
(III) By changing an orbit segment $\lambda_{r, \varepsilon}$ for an ε-orbit segment $\lambda_{c, \varepsilon}^{\prime}$
similar to $\lambda_{b, \varepsilon}^{\prime}$ in (iii) of (II), we have an ε-closed orbit representing $\alpha(\gamma \mu)^{m} \beta^{n}$ for an arbitrary pair (m, n) $\in Z^{2}$.
(IV) In order to represent $\alpha \mu^{-1}$, we choose $\bar{p}_{b, \varepsilon}=\left(1 / 32,1 / 8, \bar{t}_{b, \varepsilon}\right)$, $0<\bar{t}_{b, \varepsilon}-(1 / 8)<(1 / 2) \cdot(1 / 32) \cdot \varepsilon$ instead of $p_{b, \varepsilon}$. Then we construct an $\varepsilon-$ orbit segment on the opposite side of T_{b} to (I), and we have an ε-closed orbit representing $\alpha \mu^{-1}$.

By a construction similar to (II) and (III), we have an ε-closed orbit representing $\alpha(\gamma \mu)^{m} \mu^{-1} \beta^{n}$. If we construct an ε-orbit segment on the opposite side of T_{c} to (I), then we have $\alpha \nu^{-1}$ and then $\alpha \nu^{-1}(\gamma \mu)^{m} \beta^{n}$. Lastly composing these constructions, we have $\alpha \nu^{-1}(\gamma \mu)^{m} \mu^{-1} \beta^{n}$. This completes the proof.

Note that a homotopy class represented by composing those in Lemma 4.4 is also represented by an ε-closed orbit.

Proof of Lemma 4.1. By the relations of Lemm 4.3, the classes of (1) and (4) of Lemma 4.4 are rewritten as follows:
(1) $\alpha(\gamma \mu)^{m} \beta^{n}=\alpha\left(\alpha^{-1} \gamma \alpha\right)^{m} \beta^{n} \quad$ by (III)

$$
=\gamma^{m} \alpha \beta^{n}
$$

$$
\begin{array}{rlr}
\alpha \nu^{-1}(\gamma \mu)^{m} \mu^{-1} \beta^{n} & =\beta^{-1} \alpha \beta(\gamma \mu)^{m} \mu^{-1} \beta^{n} & \text { by (I) } \tag{4}\\
& =\beta^{-1} \alpha \beta(\gamma \mu)^{m-1} \gamma \beta^{n} \\
& =\beta^{-1} \alpha \beta \alpha^{-1} \gamma^{m-1} \alpha \gamma \beta^{n} \quad \text { by (III). }
\end{array}
$$

We set $m=1, n=-2$ for (4). Then $\beta^{-1} \alpha \beta \gamma \beta^{-2}$ is represented by an $\varepsilon-$ closed orbit. Set $m=-1, n=2$ for (1). Then $\gamma^{-1} \alpha \beta^{2}$ is represented by an ε-closed orbit. Hence the composition

$$
\begin{aligned}
\gamma^{-1} \alpha \beta^{2} \cdot \beta^{-1} \alpha \beta \gamma \beta^{-2} & =\gamma^{-1} \alpha \beta \alpha \beta \gamma \beta^{-2} \\
& =\left(\gamma^{-1} \alpha \beta \gamma\right)^{2} \beta^{-2} \\
& =\beta^{2} \cdot \beta^{-2} \quad \text { by (IV) } \\
& =1
\end{aligned}
$$

is represented by an ε-closed orbit. This completes the proof.
Theorem 4.5. $\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right)$ cannot be raised to a total foliation.
Proof. This follows from Lemma 4.1 and Theorem 3.3.

§ 5. Proof of the main theorem

In this section we prove Theorem 1.1. For this purpose we need some constructions used in [5].

Fig. 5.1.
Let $\mathscr{L}=L_{1} \cup L_{2} \cup L_{3}$ be the Borromean rings in S^{3} described in Fig. 5.1, where L_{1}, L_{2} and L_{3} denote the connected components of \mathscr{L}. Let $N(\mathscr{L})=N\left(L_{1}\right) \cup N\left(L_{2}\right) \cup N\left(L_{3}\right)$ denote a closed tubular neighborhood of \mathscr{L}. Let μ_{i} (resp. λ_{i}) be a simple closed curve on $\partial N\left(L_{i}\right)$ which represents the meridian (resp. the longitude) for $i=1,2,3$, that is,

$$
\begin{array}{ll}
\iota_{i} *\left[\mu_{i}\right]=0 & \text { in } H_{1}\left(N\left(L_{i}\right) ; Z\right) \\
\kappa_{i *}\left[\lambda_{i}\right]=0 & \text { in } H_{1}\left(S^{3}-\operatorname{int} N\left(L_{i}\right) ; Z\right)
\end{array}
$$

where $\left[\mu_{i}\right]\left(\operatorname{resp} .\left[\lambda_{i}\right]\right) \in H_{1}\left(\partial N\left(L_{i}\right) ; \boldsymbol{Z}\right)$ denotes the homology class of μ_{i} (resp. λ_{i}), and $\iota_{i^{*}}\left(\right.$ resp. $\left.\kappa_{i^{*}}\right)$ denotes the induced homomorphism of the natural inclusion

$$
\begin{aligned}
& \iota_{i}: \partial N\left(L_{i}\right) \rightarrow N\left(L_{i}\right), \\
& \kappa_{i}: \partial N\left(L_{i}\right) \rightarrow S^{3}-\operatorname{int} N\left(L_{i}\right)
\end{aligned}
$$

Let P_{1} and $P=P_{1}-($ int $N(b) \cup$ int $N(c))$ be the 3-manifolds constructed in Section 2 for $k=1$ and let

$$
U=\left\{(x, y, t) \in P_{1} ;(y-(1 / 2))^{2}+t^{2} \leq(1 / 4)^{2}\right\} .
$$

Then we see that P-int $U=P_{1}$-(int $\left.U \cup \operatorname{int} N(b) \cup \operatorname{int} N(c)\right)$ is diffeomorphic to $T^{3}-(\operatorname{int} N(u) \cup \operatorname{int} N(v) \cup \operatorname{int} N(w))$, where u, v and w are mutually disjoint circles parallel to three coordinate axes of the 3-dimensional torus T^{3}. Let $\mu_{U}: S^{1} \rightarrow \partial U$ and $\lambda_{U}: S^{1} \rightarrow \partial U$ be oriented simple closed curves defined by

$$
\begin{aligned}
& \mu_{U}(\theta)=(0,(1 / 4) \cdot \sin 2 \pi \theta+(1 / 2),(1 / 4) \cdot \cos 2 \pi \theta), \\
& \lambda_{U}(\theta)=((1 / 4) \cdot \theta, 0,0), \quad \theta \in S^{1}=\boldsymbol{R} / \boldsymbol{Z}
\end{aligned}
$$

Let $[\mu]$ and $[\beta]$ (resp. $[\nu]$ and $[\gamma \mu]$) be the homology classes of $H_{1}(\partial N(b) ; \boldsymbol{Z})$ (resp. $H_{1}(\partial N(c) ; \boldsymbol{Z})$) defined by the homotopy classes μ and β (resp. ν and
$\gamma \mu)$ in Lemm 4.3. Then the following proposition holds. For a proof, see [5].

Proposition 5.1 ([5, Proposition of Part Three of Chapter 5]). There exists a diffeomorphism

$$
h: P-\operatorname{int} U \rightarrow S^{3}-\left(\operatorname{int} N\left(L_{1}\right) \cup \text { int } N\left(L_{2}\right) \cup \text { int } N\left(L_{3}\right)\right)
$$

satisfying the following conditions:
(a) $h(\partial U)=\partial N\left(L_{1}\right), h(\partial N(b))=\partial N\left(L_{2}\right)$ and $h(\partial N(c))=\partial N\left(L_{3}\right)$,
(b) if we choose suitable orientations of μ_{i} and λ_{i} for $i=1,2,3$, then the following (i) and (ii) hold:
(i) $\left(\left.h\right|_{\partial U}\right)_{*}\left(\left[\mu_{U}\right]\right)=\left[\lambda_{1}\right]$,
$\left(\left.h\right|_{\partial U}\right)_{*}\left(-\left[\lambda_{U}\right]\right)=\left[\mu_{1}\right]$,
$\left(\left.h\right|_{\partial N(b)}\right)_{*}([\mu])=\left[\lambda_{2}\right], \quad\left(\left.h\right|_{\partial N(b)}\right)_{*}(-[\beta])=\left[\mu_{2}\right]$,
$\left(\left.h\right|_{\partial N(c)}\right)_{*}([\nu])=\left[\lambda_{3}\right], \quad\left(\left.h\right|_{\partial N(c)}\right)_{*}(-[\gamma \mu])=\left[\mu_{3}\right]$,
(ii) the linking numbers

$$
l k\left(\lambda_{i}, \mu_{i}\right)=+1, \quad \text { for } i=1,2,3
$$

with the right hand rule.
The following lemma is also contained in [5].
Lemma 5.2. (1) The closed 3-manifold obtained by the Dehn surgery with the coefficient +1 along each connected component of the Borromean rings $\mathscr{L}=L_{1} \cup L_{2} \cup L_{3}$ is diffeomorphic to the Poincaré homology 3-sphere Q^{3} :

$$
\left(S^{3}-\bigcup_{i=1}^{3} \operatorname{int} N\left(L_{i}\right)\right) \bigcup_{\partial} \bigcup_{i=1}^{3} S_{i}^{1} \times D_{i}^{2}=Q^{3},
$$

where $\left[\{*\} \times \partial D_{i}^{2}\right]=\left[\lambda_{i}\right]+\left[\mu_{i}\right]$ in $H_{1}\left(\partial N\left(L_{i}\right) ; \boldsymbol{Z}\right)$.
(2) Let $l_{i}=S_{i}^{1} \times\{0\}$ be a core circle of $S_{i}^{1} \times D_{i}^{2}(i=1,2,3)$, and let $p: S^{3} \rightarrow Q^{3}$ be the universal covering of Q^{3} which is of 120 sheets. Then $p^{-1}\left(l_{i}\right)(i=1,2,3)$ is a union of 12 fibers of the Hopf fibration of S^{3} :

$$
p^{-1}\left(l_{i}\right)=\bigcup_{j=1}^{12} \tilde{l}_{i j} \quad \text { for } i=1,2,3,
$$

$\tilde{l}_{i j}$ is a trivial knot, and $\operatorname{lk}\left(\tilde{l}_{i j}, \tilde{l}_{i k}\right)=+1(j \neq k)$.
(3) Let $\mu_{i} \subset \partial N\left(L_{i}\right)$ be the meridian curve of L_{i} chosen in (b) of Proposition $5.1(i=1,2,3)$. Then $p^{-1}\left(\mu_{i}\right)$ is also a union of 12 fibers of the fibration, and each connected component $\tilde{\mu}_{i j}(j=1, \cdots, 12)$ together with $\tilde{l}_{i j^{\prime}}\left(j^{\prime}=1, \cdots, 12\right)$ forms a Hopf link such that

$$
l k\left(\tilde{\mu}_{i j}, \tilde{l}_{i j^{\prime}}\right)= \pm 1
$$

Fig. 5.2 (i).

Fig. 5.2 (ii).
Theorem 5.3 ([5, Main Theorem]). Let M be a closed orientable 3-manifold. Then M has a total foliation $(\mathscr{F}, \mathscr{G}, \mathscr{H})$ satisfying the following conditions:
(1) \mathscr{F}, \mathscr{G}, and \mathscr{H} are transversely orientable and C^{∞}.
(2) There exists a compact codimension 0 submanifold R of M such that
(a) R is diffeomorphic to $S^{1} \times D^{2}$,
(b) $\left.\mathscr{F}\right|_{R}$ is a Reeb component, and
(c) $\left.\mathscr{G}\right|_{R}$ (resp. $\left.\mathscr{H}\right|_{R}$) consists of two half-Reeb components (Fig. 5.2
(i)) (for the definition see [13]) and $\left.\mathscr{G}\right|_{\partial R}$ (resp. $\left.\mathscr{H}\right|_{\partial R}$) is a foliation described
in Fig. 5.2 (ii), where the orientation of S^{1} is suitably chosen.
Though the condition (2) is not stated in the main theorem of [5], we can construct such a total foliation by using a method in [5]. We omit a proof of Theorem 5.3.

Theorem 5.4. There exist C^{∞} codimension one transversely orientable foliations \mathscr{F}^{\prime} and \mathscr{G}^{\prime} of $S^{1} \times D^{2}$ satisfying the following conditions:
(a) $\left(\mathscr{F}^{\prime}, \mathscr{G}^{\prime}\right)$ is a transverse pair,
(b) \mathscr{F}^{\prime} is tangent to $\partial\left(S^{1} \times D^{2}\right)$,
(c) $\left.\mathscr{G}^{\prime}\right|_{\partial\left(S^{1} \times D^{2}\right)}$ is a foliation as in Fig. 5.2. (ii), and
(d) $\left(\mathscr{F}^{\prime}, \mathscr{G}^{\prime}\right)$ cannot be raised to a total foliation.

Proof. Let \mathscr{F}_{1} and \mathscr{G}_{1} be codimension one foliations of P with $k=1$ constructed in Section 2. First we extend \mathscr{F}_{1} and \mathscr{G}_{1} to the Poincaré homology 3 -sphere Q^{3}. We easily verify the simple closed curve

$$
C=\{(\theta,(1 / 4) \cdot \cos 2 \pi \theta+(1 / 2),(1 / 4) \cdot \sin 2 \pi \theta) ; \theta \in \boldsymbol{R} / \boldsymbol{Z}\}
$$

on ∂U is homotopic to zero on U. By the definition of the oriented closed curves $\lambda_{U}, \mu_{U}: S^{1} \rightarrow \partial U$ in the beginning of this section, we have

$$
[C]=\left[\lambda_{U}\right]-\left[\mu_{U}\right] \quad \text { in } H_{1}(\partial U ; Z)
$$

From Proposition 5.1, we have

$$
h_{*}[C]=-\left[\mu_{1}\right]-\left[\lambda_{1}\right] \quad \text { in } H_{1}\left(\partial N\left(L_{1}\right) ; \boldsymbol{Z}\right) .
$$

Hence P is diffeomorphic to the manifold

$$
\left(S^{3}-\left(\operatorname{int} N\left(L_{1}\right) \cup \operatorname{int} N\left(L_{2}\right) \cup \operatorname{int} N\left(L_{3}\right)\right) \underset{\partial N\left(L_{1}\right)}{\bigcup} S^{1} \times D^{2}\right.
$$

obtained by performing the +1 Dehn surgery along L_{1} and then deleting int $N\left(L_{2}\right)$ and $\operatorname{int} N\left(L_{3}\right)$. In particular we can consider $P \subset Q^{3}$. By the construction in Section 2, we see $\left.\mathscr{F}_{1}\right|_{\partial N(b)}$ and $\left.\mathscr{G}_{1}\right|_{\partial N(c)}$ are as in Fig. 5.3.

$\left.\mathscr{F}_{1}\right|_{\partial N(b)}$

$\left.\mathscr{G}_{1}\right|_{\partial N(c)}$

Fig. 5.3.

From Proposition 5.1, we see $\left.\mathscr{F}_{1}\right|_{\partial N\left(L_{2}\right)}$ and $\left.\mathscr{G}_{1}\right|_{\partial N\left(L_{3}\right)}$ are as in Fig. 5.4.

Fig. 5.4.
Let $l_{i}(i=2,3)$ be the core circles in Q^{3} defined in (2) of Lemma 5.2. Since $\left[\lambda_{i}\right]+\left[\mu_{i}\right]=0$ in $H_{1}\left(N\left(l_{i}\right) ; \boldsymbol{Z}\right)$, by choosing on $\partial N\left(l_{i}\right)$ a meridian which is homotopic to zero in $N\left(l_{i}\right)$, and a longitude which is homotopy equivalent to $N\left(l_{i}\right)$ suitably, we see $\left.\mathscr{F}_{1}\right|_{\partial N\left(l_{2}\right)}$ and $\left.\mathscr{G}_{1}\right|_{\partial N\left(l_{3}\right)}$ are as in Fig. 5.5.

Fig. 5.5.
Let \mathscr{F}_{R} and \mathscr{G}_{R} be codimension one foliations of $S^{1} \times D^{2}$ such that
(α) \mathscr{G}_{R} is transverse to \mathscr{F}_{R},
(β) \mathscr{F}_{R} is a Reeb component, and
(r) \mathscr{G}_{R} consists of two half-Reeb components (Fig. 5.2 (i)).

Since both of foliations on the boundaries are coincident, we can glue \mathscr{F}_{R} (resp. \mathscr{G}_{R}) to \mathscr{G}_{1} (resp. \mathscr{F}_{1}) along $\partial N\left(l_{2}\right)$ and also glue \mathscr{F}_{R} (resp. \mathscr{G}_{R}) to \mathscr{F}_{1} (resp. \mathscr{G}_{1}) along $\partial N\left(l_{3}\right)$, and then we obtain codimension one foliations \mathscr{F}_{2} and \mathscr{G}_{2} of Q^{3} satisfying that \mathscr{G}_{2} is transverse to $\mathscr{F}_{2},\left.\mathscr{F}_{2}\right|_{P}=\mathscr{F}_{1}$ and $\left.\mathscr{G}_{2}\right|_{P}=\mathscr{G}_{1}$. Then by Theorem 4.6 , we see that $\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)$ cannot be raised to a total foliation. Let $\mathscr{F}_{3}=p^{*} \mathscr{F}_{2}$ and $\mathscr{G}_{3}=p^{*} \mathscr{G}_{2}$ be the foliations induced by $p: S^{3} \rightarrow Q^{3}$. Let $\phi=\mathscr{F}_{1} \cap \mathscr{G}_{1}$ be the one dimensional foliation
in Section 4. Let \widetilde{P} denote $p^{-1}(P)$ and let $\tilde{\phi}$ (resp. \tilde{g}) be $p^{*} \phi$ (resp. $p^{*} g$). Since p is a finite covering, $E(\tilde{\phi})=p^{-1}(E(\phi))$. Since $\left(P-E(\phi),\left.\phi\right|_{P-E(\phi)}\right.$, $\left.\left.g\right|_{P-E(\phi)}\right)$ has $0-$ N.C.O.P. by Lemma 4.1, we see by Proposition 3.5 that $\left(\widetilde{P}-E(\tilde{\phi}),\left.\tilde{\phi}\right|_{\tilde{P}-E(\tilde{\phi})},\left.\tilde{g}\right|_{\tilde{P}-E(\tilde{\phi})}\right)$ has $0-$ N.C.O.P.. Hence by Theorem 3.3 and the fact that $\widetilde{P} \subset S^{3}$, we see that $\left(\mathscr{F}_{3}, \mathscr{G}_{3}\right)$ cannot be raised to a total foliation. From (2) of Lemma 5.2, $p^{-1}\left(N\left(l_{3}\right)\right)$ is a tubular neighborhood of a union of 12 fibers of the Hopf fibration of S^{3}. Let $\tilde{N}\left(l_{3}\right)$ be one of 12 components of $p^{-1}\left(N\left(l_{3}\right)\right)$. Then since $\tilde{N}\left(l_{3}\right)$ is unknotted, $S^{3}-\operatorname{int} \tilde{N}\left(l_{3}\right)$ is diffeomorphic to $S^{1} \times D^{2}$. Consider $\mathscr{F}^{\prime}=\left.\mathscr{F}_{3}\right|_{S^{3-1 n t} \tilde{N}\left(l_{3}\right)}$ and $\mathscr{G}^{\prime}=$ $\left.\mathscr{G}_{3}\right|_{S^{3}-\operatorname{int} \tilde{N}\left(l_{3}\right)}$. Since $\partial N(c)$ is a compact leaf of \mathscr{F}_{1} of P, \mathscr{F}^{\prime} is tangent to $\partial\left(S^{3}-\operatorname{int} \tilde{N}\left(l_{3}\right)\right)$, so the condition (b) is verified. The condition (a) is obvious. Since $S^{3}-\operatorname{int} \widetilde{N}\left(l_{3}\right)$ contains \widetilde{P}, the condition (d) is verified. Now verify the condition (c).

Note that the homology class represented by a compact leaf of $\left.\mathscr{G}_{1}\right|_{\partial N(c)}$ oriented as in Section 4 is $[\gamma \mu] \in H_{1}(\partial N(c) ; \boldsymbol{Z})$. Hence by Proposition 5.1, this is equal to $-\left[\mu_{3}\right]$ in $H_{1}\left(\partial N\left(L_{3}\right) ; Z\right)$. Hence by (3) of Lemma 5.2, a compact leaf of $\left.\mathscr{G}^{\prime}\right|_{\partial \tilde{N}\left(l_{3}\right)}$ and the core circle of $\tilde{N}\left(l_{3}\right)$ form a Hopf link. This shows that a compact leaf of $\left.\mathscr{G}^{\prime}\right|_{\partial \tilde{N}\left(l_{3}\right)}$ and a core circle of the solid torus $S^{3}-\operatorname{int} \tilde{N}\left(l_{3}\right)$ also form a Hopf link. This shows that if we choose a longitude of $\partial\left(S^{3}-\operatorname{int} \tilde{N}\left(l_{3}\right)\right)$ suitably, then $\left.\mathscr{G}^{\prime}\right|_{\partial\left(S^{3}-\operatorname{int} \tilde{N}\left(l_{\mathbf{3}}\right)\right)}$ is as in Fig. 5.2 (ii), and we have (c). This completes the proof.

Proof of Theorem 1.1. Let M be a closed orientable 3-manifold. By Theorem 5.3, we have a total foliation ($\mathscr{F}, \mathscr{G}, \mathscr{H}$) of M satisfying (1) and (2). Let $\mathscr{F}^{\prime}, \mathscr{G}^{\prime}$ be codimension one foliations of $S^{1} \times D^{2}$ of Theorem 5.4. Since \mathscr{F} (resp. \mathscr{F}^{\prime}) is tagnent to $\partial R\left(\right.$ resp. $\partial\left(S^{1} \times D^{2}\right)$) and $\left.\mathscr{G}\right|_{\partial R}$ coincides with $\left.\mathscr{G}^{\prime}\right|_{\partial\left(S^{1} \times D^{2}\right)}$, we can replace $\left.\mathscr{F}\right|_{R}$ (resp. $\left.\mathscr{G}\right|_{R}$) by \mathscr{F}^{\prime} (resp. \mathscr{G}^{\prime}), and then we have the desired foliations.

References

[1] D.B.A. Epstein, Foliations with all leaves compact, Ann. Inst. Fourier, Grenoble, 26 (1976), 265-282.
[2] J. Franks, Anosov diffeomorphisms, Proc. Symp. in Pure Math., 14 (1970), 61-93.
[3] A. Haefliger, Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa, 16 (1962), 367-397.
[4] -, Travaux de Novikov sur les feuilletages, Sem. Bourbaki 1967/68, no. 339.
[5] D. Hardorp, All compact orientable three dimensional manifolds admit total foliations, Mem. Amer. Math. Soc., no. 233.
[6] J. Hempel, 3-manifolds, Ann. Math. Studies 86, Princeton Univ. Press.
[7] J. Milnor, On the existence of a connection with curvature zero, Commen:. Math. Helv., 32 (1958), 215-223.
[8] T. Nishimori, Existence problem of transverse foliations for some foliated 3-manifolds, Tôhoku Math. J., 34 (1982), 179-238.
[9] -, Foliations transverse to the turbulized foliations of punctured torus bundles over a circle, Hokkaido Math. J., 13 (1984), 1-25.
[10] S. P. Novikov, Topology of foliations, Amer. Math. Soc. Transl., (1967), 268-304.
[11] R. Roussarie, Sur les feuilletages des variétés de dimension trois, Ann. Inst. Fourier, Grenble, 21 (1971), 13-81.
[12] I. Tamura, Dynamical systems on foliations and existence problem of transverse foliations, this volume.
[13] I. Tamura and A. Sato, On transverse foliations, Publ. Math. of I.H.E.S., 54 (1981), 5-35.
[14] J. Wood, Bundles with totally disconnected structure group, Comment. Math. Helv., 46 (1971), 257-273.

Department of Mathematics
Faculty of Science
University of Tokyo
Tokyo, 113 Japan

